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1. INTRODUCTION

Unsteady flow in the passages of wave rotor devices can adequately be

modelled on a one-dimensional basis. However, this modelling can be quite

involved due to the peculiar characteristics typical of wave rotor type flows.

The numerical calculation has to provide approximate solutions of

time-dependent compressible fluid flow problems which involve discontinuities

and strong wave interactions. Ref . (1) lists three criteria which such

approximate solutions should satisfy simultaneously: (i) the solution must be

reasonably accurate in smooth regions of the flow. Continuous waves

(rarefaction waves, compression waves) should propagate at the correct speed

and should maintain the correct shape which involves steepening or spreading

at the correct rate; (ii) discontinuities which are transported along

characteristics (gradient discontinuities, contact surfaces), should be

modelled by sharp and discrete jumps, and should be transported at the correct

speed; and (iii) nonlinear discontinuities such as shocks should be computed

stably and accurately.

In addition, the complex pattern of shock waves and contact surfaces that

could evolve in wave rotor devices precludes the use of numerical methods

which rely on either some typt of artificial viscosity or a special tri-itment

of discontinuities. Such methods would quickly become quite impractic.il for

this application due to programming difficulties and cost of execution.

Computation of such solutions has generally been carried out by solving a

set of finite difference equations which approximate the guverning

differential equations of flow. All such schemes inherently have a finite

amount of dissipation as well as dispersion of the wave modes they model, and

it is difficult to construct difference schemes which simultaneously satisfy

the criteria given above. Stability problems may also be an added concern for

1



these schemes.

In view of the foregoing, an alternative approach to solving wave rotor

type flows was sought, and the purpose of this report is to describe such a

scheme along with some results. The scheme is known variously as Glimm's

method, the Random Choice Method (RCM) or the piecewise sampling method. The

method evolved from a constructive proof of the existence of solutions to

systems of nonlinear hyperbolic conservation laws given by Glimra (Ref. 2).

Chorin (Refs. 3 and 4) developed the scheme into an effective numerical tool

for gas dynamic applications, with emphasis on detonation combustion problems

and reacting gas flows. Although the RCM computes solutions on a fixed grid,

it is not a difference scheme, utilizing solutions of locally defined Riemann

problems as the basic building blocks for the global solution. Each of the

local Riemann problems (defined in more detail in section 2) provides an

analytically exact elementary similarity solution. By means of a suitable

sampling procedure, usually of a pseudo-random or quasi-random nature, the

similarity solutions are superposed to construct the approximate solution to

the equations.

With an appropriate sampling technique, the RCM in one dimension is

possibly superior to any finite difference scheme in meeting the criteria

established above.



2. METHOD

2.1. Solution Procedure

The method models the one-dimensional, compressible, inviscid Euler

equations, expressed in conservation form as

3U 3F(U) n ,

-*— + —rr—- - , where
ot dx

U(x,t) = pu

E

and F(U) = pu- + p

(E + p)„

(1)

Here E is the total energy per unit volume and may be expressed as (tor a

polytropic gas)

E = p e + — ,ju2 , e A internal energy per unit mass

p is the density, p is pressure and u is velocity in the one space

dimension being considered here. With initial data specified in the form

U(x,0) = 9(x) ,

an initial value problem is defined for the Euler equations. The simplest

initial value problem for which discontinuities appear is the Riemann probl

to find the gas flow resulting from an initial state in which the gas on the

right of an 'origin' is in a constant state, and the gas on the left is in

another constant state, i.e.,

U L , x <

era

•Kx) =

with
U R , x >

U L,R =
^L,R
(^ U )L,R
EL,R



where the subsripts L and R denote the left and right sides of the

'origin', here arbitrarily prescibed at . That is, the Riemann problem

consists of prescribing constant initial data on either side of an origin

where a jump discontinuity exists. As mentioned before, the solution of the

problem constitutes a basic building block of the random choice method. A

special case of the Rieraann problem in which u^, = ur = is often referred

to as the shock tube problem. The answer to the problem is that there are

four possible types of subsequent flow, depending on the inequalities in the

left and right side data prescribed. Thus, in both directions from the

origin, a shock or a centered rarefaction wave may propagate, giving rise to

the above mentioned four different possibilities. Fig. (1) illustrates the

special case of shock tube type flow and the evolution of the wave pattern.

Fig. (2) shows the simple fixed Cartesian grid set up for the method.

Let /ax be a spatial increment and At a time increment. The solution is to

be evaluated at time (n + 1 ) At , n being a non-negative integer, at

spatial increments i Ax , i = 1,2,3, . . . The initial data is prescribed

for each time step at nAt in a piecewise constant manner i.e., it consists

of intervals of length Ax where the data is constant, separated by jump

discontinuities

:

U(x , nAt) = U\* , (i—)Ax < x < (i+^-)Ax

The solution at time (n+l)At then is required to have the same property,

i.e., it is piecewise constant over an interval Ax , and it serves as the

initial data for the next time step:

U(x,(n+l)At) = Uj
+1

, (i --j)Ax < x < (i-^-)Ax



This procedure defines a sequence of local Riemann problems to be solved at

each time level. On the grid shown in Fig. 2, for example, initial data would

be specified at points L, 3, 5 ..... setting up a succession of Riemann

problems defined by each pair of states (1,3) , (3,5) , (5,7), with the

discontinuities at the midpoint of each, i.e., at 2, 4, 6, .... etc. If the

time step increment At is calculated such that

At < o.(Ax). max ( I u . I +a
. ) , with

< o < i

then the waves generated at the discontinuities of adjacent Riemann problems

will not interact, as shown schematically in Fig. 2.

Each of the local Riemann problems yields an exact analytical solution,

with the resulting wave structure a particular combination/variation of the

general structure shown in Fig. 3.

In the x-t plane, the solution to a Riemann problem consists of

essentially four regions connected by three waves. Thus states I and TV are

the prescribed left and right states for the problem, and states II and III

are the 'starred' middle states separated by a slip line or contact
dx

discontinuity — = u* . The velocity, u , and pressure, p , are

continuous across the contact, but ,j in general is not. Thus u^* = ur* ,

PL* = PR* a°d PL* * PR* • s l'b »
s 2»b and s l»f »

s 2»f represent

respectively the backward and forward facing waves generated at the point of

discontinuity and may be either shocks or rarefaction waves.

Still referring to Fig. 3, it is seen that at a time nAt < t < (n+l)At,

the exact solution of the local Riemann problem for the interval [(i-l)Ax ,

iAx] may actually consist of several distinct states. Consider now a



translation of each interval [(i-l)ax, iAx] to
axT ' "75]

such that

the discontinuity (i.e., the point from which the waves are generated) is

centered at a zero origin. Let be the value of a random variable, defined

over the interval [—=- , + -=-] , and let

Ax . _ . Ax
C = UAx , i.e. 2 ~2

,n+
Also, define U" (x,t) , nAt < t < (n+l)At , to be the exact solution to

exact
each Riemann problem. Using the value of c, to fix a point in the interval

ax of each Riemann problem, the exact solution at that point is determined

and assigned Lo either the left or the right grid point, depending on whether

£ is < or > . Thus, if the point fixed by £, is P* (Fig. 3), the

exact solution to the Riemann problem at that sampled location is assigned to

the grid point on the right and if the sampled point is P" , the solution at

that location is assigned to the grid point on the left, i.e., for a typical

interval [(i-l)ax, iax] ,

if C < , U\
+

[
= U

n+
(C , t)

l-l exact

j j c - v n ,,ri+l
1Tn+ , _ .

and if % > , U. =U (t,,t)
l exact

It is seen immediately that although the solutions are computed on a

grid in this method, it is not a differencing scheme. Also, instead of using

a weighted average of the Riemann problem solution to arrive at the solution

for a grid pointt, the RCM samples a particular value from an explicit wave

t The Godunov method, for example implements

n+1 1
/* (i+2> Axn+1 j_ n1+

2

1 ' ^J (l-L)Ax
U
n+

(x,t)dx
exact



solution, thus eliminating the smoothing out of wave transport and interaction

information inherent in averaging. This leads to the 'infinite' resolution of

contact discontinuities and shocks that the scheme displays.

From the foregoing discussion, it is evident that the success of the

scheme hinges, to a large extent, on the inexpensive and exact solution of

Rieraann problems and an appropriate sampling technique. Ref. (3) describes a

modification to an iterative method due to Godunov (Ref. 5). Theoretical

details for the Riemann problem solution are also given in Ref. (6).

The mathematical properties required in a sampling procedure applicable

to this scheme are defined in Ref. (1). A brief description of the procedure

is given below.

In previous computations using the RCM, random sampling with some

variance reduction technique (stratified sampling); was used, i.e., the values

were taken from the random number generator installed in the computer (Ref.

3). It was shown in Ref. (1) that a more accurate form of sampling is a

technique due to van der Corput (Ref. 7). The sequence generated is, strictly

speaking, non-random, but has particular statistical properties that are

suitable to the application. The sequence is referred to as quasirandom and

is generated as follows:

The binary expansion of natural numbers may be expressed as (with R=2):

n = A R° + A^ 1 + A2 R
2 + + Am R<n

, (0 v A k < R)

ra

I

k=0
i.e. n = i Ak .2k , with Ak = or 1 , n = 1, 2, 3, ...



Next, the digits of the binary numbers are reversed and a decimal point is put

preceding the number; this gives the numbers

<Pn = AqR" 1 + AIR-2 + ... + AnjR"^"
1
"
1 )

ra

or » 'hi
= 1 &k.2~(^

+ ^)
, again with A^ = or 1

k=0

Conversion to the decimal scale of these numbers yields the required sequence

of quasirandom numbers defined over the interval [0,1], i.e.,

<pn (decimal) = n + y

or n = yn (decimal) - y

and E,n = On .Ax as defined earlier.

The first few elements of the sequence given below illustrate the construction

n-1 (decimal) = 1 (binary); 44 = 0.1 (binary) = U.5 (decimal)
2

'
10 0.01 0.25

3 11 0.11 0.7 5

4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.37 5

7 111 0.111 0.875
8 1000 0.0001 0.0625

The van der Corput sequence is 'equidistributed
'

, and yields better results

than those obtained using a 'stratified' random sampling technique.

The subroutine employed in the program to compute the random numbers is

described in Appendix B.

2.2. Boundary Conditions

In general, the implementation of boundary conditions in the RCM is

quite straightforward, but does require some thought. Referring to Fig. 2,

the b.c.'s are specified at points 1 and N for the left and right boundary



respectively. Note that if the sampled solution at (n+l)at corresponds to a

random number ^ < , the solution is assigned to the grid point on the

left. For the Riemann problem defined by points 1 and 3, the sampled solution

would then be assigned to grid point 1 at (n+l)At ; however this is

overridden by assigning the proper boundary condition at 1 again, and there is

no contradiction. A similar procedure is adopted at the right hand boundary

when Cn >

The subroutines for the boundary conditions are named in the format

BCxn , BC standing for Boundary Condition, x being either L (for Left),

or R (for Right boundary) and n being a number from I to 5 with the

following designations:

1 - solid wall condition

2 - outflow at constant static pressure

3 - special formulation ('piston' inflow)

4 - isentropic inflow from reservoir

5 - special formulation (rarefaction wave cancellation)

2.2.1. Solid Wall Conditions

The solid wall boundary condition requires a zero normal velocity at

the wall for inviscid flow computations. Due to the random sampling involved
Ax

in the method and the lateral movement of the sampled solution —— to the

left or right of the discontinuity, the condition is difficult to implement

uniquely. However, the procedure adopted here is found to yield reasonably

accurate results for the applications intended. (Note that the difficulty is

not unique to this method only. The implementation of zero mass flux through

a surface is difficult per se for the Euler equations).

Referring to Fig. 2, let the physical boundaries be at point 2 and



point (N-l) for the left and right sides respectively. However, the boundary

conditions are specified at point 1 (point N) for the left (right) side as a

fictitious 'mirror' state of the conditions at point 3 (point (n-2))

respectively, but with the reverse sign taken for the velocity component.

Thus, for the left hand boundary Riemann problem,

PL = P(3) , PL = P(3) , uL = -u(3)

PR P(3) , PR = p(3) , ur = u(3)

and, analogously, for the right hand boundary Riemann problem.

pL = p(N-2) , m L = p(N-2) , uL = u(N-2)

pR = p(N-2) , mr = p(N-2) , uR = -u(N-2)

The solutions are then sampled in the manner outlined earlier.

2.2.2. Outflow Conditions

For subsonic outflow, only the static pressure p is defined, with

the continuation condition being applied to the rest of the variables. Thus,

for the right hand boundary for example, the Riemann problem is defined as

follows

:

PL = P(N~2) , ml = P(N-2) , uL = u(N-2)

PR = Pout > PR " P(N"2) , uR = -u(N-2)

where Pout i- s c^ e specified outlet pressure. If the flow going out is

supersonic, there can be no propagation of disturbances upstream, and the

continuation condition is implemented for all the variables, i.e., the Riemann

problem now is the trivial case defined by

PL = p(N-2) , p L - p(N-2) , uL = u(N-2)

Pr = p(N-2) , pr = p(N-2) , uR = -u(N-2)

2.2.3. Special Formulation of 'Piston' Inflow

In general, for idealized wave rotor flows, hot combustion gases are

10



introduced into the rotor through nozzles angled such as to allow the flow to

'slip onto' the rotor, i.e., without incurring incidence or deviation angle

losses. Also, in the ideal treatment, the air in the passages of a wave rotor

is exposed to the hot gas at high pressure instantaneously. The idealizations

allow for uniform conditions to be prescribed at the hot gas inlet port.

Thus, a 'special' form of inflow boundary condition needs to be specified

here, namely, the static pressure, the velocity and the density of the

incoming hot gas. Although equivalent to specifying the total pressure and

temperature in the usual inflow boundary condition treatment, some thought is

required in wave rotor type flows when specifying p Jas , pgas an ^ n aas

This is because only a shock wave needs to be generated, with no waves

travelling opposite to the direction of flow. The solution to the Rieniann

problem would then consist of just two states connected by a single shock

wave. The flow is equivalent to that generated when a piston is pushed

instantaneously into a gas at rest. In general, the state of the air inside

the rotor passage is known; explicit relations for two states connected

through a shock wave are given in Ref. (6). These so-called transition

functions help in specifying the boundary conditions for the incoming flow

properly.

If we consider the left boundary for this inflow, the Rieraann problem

is set up as:

PL
= Phot gas » ^L = Phot gas >

UL
= uhot gas

PR P(3) , PR - p(3) , ur = u(3)

with pl , pl and u^ having been chosen in accordance with the

considerations discussed above.

11



2.2.4. Isentropic Inflow From Reservoir

The induction of fresh charge or air onto the rotor usually

corresponds to an isentropic inflow situation. The flow in the vicinity of

the passage end can be treated as quasi-steady, with the assumption that no

flow separation takes place when the flow enters. Two boundary conditions are

required for this type of inflow; these are provided by the conservation of

energy in the flow from the external region to the inlet (assumed to be

steady), and by the prescibed entropy level of the gas in the external

region.

The boundary conditions may thus be expressed as

2 2 2 2 2
u. + —p a, = —r a
in y-1 in Y~l tot

s in
= stot

where the subscripts 'in' and 'tot 1 apply to conditions at the inlet of the

passage and external reservoir respectively. The sonic velocity is denoted by

a , and flow velocity by u . Note that knowledge of the Riemann variable

arriving at the passage end from within the passage is required to be able to

solve the energy equation above for a^ n and ui n . For the left end, for

example

,

2

Qin " -yTf
ain ~ u in

which together with the energy equations yields

ai
J Y+l 2 y-1 2

n - Qin + ^ Y-i
a
tot 2 Q Ln

Y+l

Y-1

and subsequently the other variables.

12



The simple analytical treatment given above has to be modified

somewhat if a contact discontinuity is formed when the inflow begins. This

is due to the fact that the value of the arriving Riemann variable is changed

across such a discontinuity, which thus leads to an additional unknown.

Procedures for solving the inflow for these situations are given in Ref. (8).

In the program developed here, reasonably good results are obtained by setting

the velocity at the boundary point equal to the velocity at the point nearest

the physical boundary. For the left end e.g., the variables for the Left

state of the Riemann problem are obtained as follows:

u(l) = u(3) ,

a reasonably accurate assumption just at the point of inlet opening.

Then, from the 'energy ellipse',

a<1) " V a
tot - *£ u(l)2

MO) =
) ( » incoming Mach number

a ( 1 )

n(\) = Ptot
P Y-l 9 Y/(Y-1) '

[1+Y- M(l)2]
y/u i;

with similar isentropic relations to compute other flow variables. Note

that once the interface or contact discontinuity has moved a certain distance

inside the passage, the simple analytical expressions given earlier in the

section can be used, since now the value of the arriving Riemann variable

would be known at the boundary.

2.2.5. Special Formulation for Rarefaction Wave Cancellation

The spreading of rarefaction fans leads to unwanted wave reflections

13



which occupy large zones in the passages of wave rotors. Fig. (4) shows a

wave diagram proposed by Spectra Technology, Inc., which incorporates

so-called 'wave management' or 'tuning' ports to ideally cancel (and otherwise

attenuate) impinging rarefaction fans. The physical boundary conditions are

thus dictated by the flow developing in the passage, i.e., the port has

non-uniform flow conditions in it, which at each point match those of the flow

at the end of the passage so as to disallow any reflections to take place.

Numerically, this condition is achieved by implementing the continuity

condition across the boundary for all the flow variables involved. For the

left boundary, thus, the Riemann problem is defined by:

PL = p(3) , PL = P(3) , ul = u(3)

PR = p(3) , PR = P(3) , uR = u(3)

and analogously for the right boundary. Note that these boundary conditions

may involve either inflow or outflow.

2.3 Example Calculations

The listing of the program is included in Appendix A, and the various

names for the variables are listed in Appendix B, along with some instructions

on how to use the program. No effort as yet has been made to optimize the

code either for storage requirements or for execution efficiency.

In this section, some sample calculations are carried out using the code,

to illustrate its usefulness in constructing idealized design point wave

diagrams which can serve as the starting configuration for detailed

construction of diagrams incorporating real flow effects.

2.3.1. Test Case for 1-D, Inviscld, Unsteady, Compressible Flow

Fig. (1) illustrates the initial conditions in a shock tube, with the

diaphragm at xq . Sod (Ref. 9) suggested a test case for hyperbolic

14



conservation laws with the following conditions as initial states in the shock

tube

:

PI = 1.0 , pi = 1.0 , ui = 0.0

P5 = 0.1 , P5 = 0.125 , U5 = 0.0

i.e., the gas on either side of the diaphragm is in a quiescent state

initially. The ratio of specific heats is chosen to be 7/5, and Ax is

chosen to be 0.01.

The solution (before any wave has reached either the left or right

end) is shown in Fig. (5). The squares shown at locations x^ , x2 , X3

and x/, in the density plot give the analytically calculated amplitude and

location of the head - and tail waves of the left-running r.iref action , the

contact surface moving to the right and the shock, wave moving at supersonic

velocity to the right respectively. The solid lines are the solutions

obtained by the RCM at different time levels; the zero numerical diffusion

feature of the method is evident in the 'infinite' resolution of the contact

discontinuity and the shock, and the dispersion (phase error) is within one

grid spacing. The constant states are perfectly realized.

It is these features of the method that make it very attractive for

application to wave rotor type flows, since the successful design of the

device is predicated on being able to accurately compute wave arrival times at

the various ports.

2.3.2. Wave Turbine Experiment

Ref. (10) describes the wave rotor experimental set up at the

Turbopropulsion Laboratory. Initial tests being carried out currently are

with the wave rotor in a turbine mode, i.e., one side of the rotor is blocked

off, and high pressure air is brought onto the rotor and taken off again from
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the other side. The passages of the rotor being angled at 60° to the axis,

the 180° reversal in the direction of the fluid flow creates an angular

momentum change, in turn generating large turbomachinery work, coefficients.

Fig. (6) shows the wave diagram computed using the code. The movement of the

rotor is from top to bottom. At t=0 , the high pressure air is brought

into contact with quiescent atmospheric air in the rotor passages, at point a.

This corresponds to the 'piston' inflow boundary condition described in

section 2.2.3.. A shock, S , is generated immediately, (idealized case of

instantaneous cell opening), which travels from the right to the left, and

strikes the solid wall at the left end. The reflection of the shock takes

place at point b according to the solid wall boundary condition described in

section 2.2.1.. Behind this shock, and moving at a slower velocity is the

contact surface, T , which penetrates into the passage only a fractional

distance before encountering the reflected shock, RS , at point c. The

reflected shock is transmitted through the contact surface, (bringing the flow

to a near halt), and reaches the right side at point d, whereupon the inlet

port is closed. The air trapped in the rotor passages is now at a high

pressure and in a quiescent state. When this air is released at point e to a

low pressure region, a rarefaction wave is generated, R , which travels to the

left, spreading out in the process. It interacts with the stationary contact

surface, I , setting it into motion again, and reflects off the solid wall at

the left as RR . The boundary condition imposed at point e is the outflow

at constant static pressure condition described in section 2.2.2.. The outlet

port is closed at a time when the exit velocity falls to about half its

initial value.

This experiment embodies two fundamental processes in wave rotors:

those of cell filling and cell emptying. Almost all the other processes
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typical to wave rotors are combinations of the cell filling and cell emptying

unit processes. Comparison of the ideal computed numbers obtained here with

experimental data will provide information helpful in the identification and

sources of losses.

The program is set up to start at t=0 in this case, with initial

data provided along the entire passage, i.e., from x=0 to x=0. 1863m (the

actual length of the wave rotor being tested). Since the passages have

quiescent atmospheric air in them at t=0 , the initial data, of course,

describes these conditions. Switches for the left and right boundaries

describe what type of boundary conditions prevail and direct the program to

the appropriate subroutines. These switches, designated SWL and SWR , for

left and right respectively, are assigned integer number values which

correspond to the numeric value of the particular boundary condition they

represent. Thus, if the left boundary is a solid wall, SWL= 1 ,

corresponding to the boundary condition subroutine BCL1 . In this example

then, the initial switch settings at t=0 are SWL=1 and SWR=3 ,

corresponding to a solid wall at the left and a 'piston' inflow at the right

(which starts at t=0 at point a). At point d , the switches are reset to

SWL-1 and SWR=1 due to the closure of the inlet port. At point e , the

switches are SWL=1 , SWR=2 , signifying opening of the exhaust port with

outflow at a constant static pressure. The whole wave diagram can thus be

packaged into a 'module' subroutine and called from the main program with a

single call statement. This type of modularity allows for wave diagrams of

different 'families' to be developed by simply calling the right 'module'

subroutine.

The next two examples illustrate this concept as they deal with two

very different types of wave diagrams.
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2.3.3. General Electric Wave Engine

Fig. (7) shows a schematic of the wave diagram constructed for the

G.E. wave engine. Briefly, the device is configured for a gas generator mode

of operation, with counterflow scavenging, and is capable of producing net

shaft power. For a fuller description of the machine, see Ref. (11). In this

example, fresh charge (air) is induced into the rotor (from an external

reservoir) through the wave action of the rarefaction fan originating at the

exhaust port opening. The usefulness of the rotor is gauged by the net

pressure rise across the machine, i.e., the ratio of the total exhaust

pressure to total (fresh air) inlet pressure.

For performance estimation purposes, it is sufficient to investigate

only the exhaust and induction processes as shown in Fig. (8). The initial

data specified is as follows: the exhausting pressure ratio Pe/Po > tne

total pressure ratio across the rotor Pte/Pta and an assumed total

temperature ratio T te/T ta • *n tn i- s particular cycle, the amount of fresh

charge induced in is ideally equal to the gases exhausted out, i.e.,

min = "but > an d this mass balance is carried out after each computation to

correct the assumed temperature ratio T te /T ta (which otherwise constitutes

overspecif ication of the initial conditions).

The calculation starts at t=0 , with initial data consistent with

the chosen pressure and temperature ratios specified along the passage length.

Initial switch settings are SWL=1 and SWR=2 for the solid wall boundary at

the left and the exhaust to a constant pressure at the right. As shown in the

figure, a rarefaction fan is generated, propagating to the left and reflecting

off the solid wall. At time t=Tj
> tne pressure at the wall has been

reduced to that outside the passage, p ta , which is when the inlet port is

opened. The switches are now set to SWL=4 and SWR=2 for isentropic inflow
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from an external reservoir at the left, and still outflow at a constant

pressure at the right. The exhaust port is closed at time t=T2 which

corresponds to the exit velocity having dropped off to approximately half its

steady state value at the beginning of the exhaust process. Now the switches

are set to SWL=4 and SWR=1 , for the solid wall condition at the right.

The sudden closure of the exhaust port generates a 'hammer' shock travelling

to the left, interacting with the Incoming interface (shown by dashed line),

and reaching the passage end at t=T4 at which time the inlet port is closed,

with the switches being reset to SWL= 1 and SWR=1 . Note the reflected

shock travelling from left to right generated at the interaction of the

contact surface and the hammer shock.

Once this solution is obtained, integration of the mass flux through

the inlet and exhaust ports is carried out and if the two numbers do not

match, the assumed temperature ratio Ite/^ta * s adjusted in the initial

data, till such time as m± n = mOK1 ^

This calculation is sufficient for performance analyses: If the

entire wave diagram has to be worked out, then at a time t > C3
, hot gas

from the combustion chamber is brought onto the rotor (the boundary condition

corresponding to 'piston' inflow) on the right hand side. This would

generate the shock to compress the induced air and when this shock reached

the left end, the transfer port (see Fig. 7) would be opened for such time it

takes for the compressed air to be completely scavenged out of the rotor.

Fig. (9) shows some performance curves obtained using the procedure outlined

above. In Figs. (10a, b, c) are shown three sets of flow parameters at

different time steps corresponding to the inlet port just opening, the

exhaust port closing and the inlet port closing; the qualitative distributions

of the flow parameters in the passage are immediately seen to be accurate when
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compared with the wave diagram shown in Fig. (8). Of interest is the set of

plots for the time step when the inlet port has just been closed. The flow

between the end of the passage and the location of the interface is seen to

be quite non-uniform in the density plot. At the same time, the shock

reflected from the interface has reached the right side and reflected off the

solid wall. These considerations help to decide optimum port opening and

closing times. For example, Fig. (11) shows what happens if the inlet port is

not closed at just the time the shock reaches the end, but rather at some

short time later. The shock now sees an open boundary and reflects off as an

expansion to match the high pressure behind it with the incoming total

pressure which is at a lower value. This reflected expansion is manifested in

the pressure, density and velocity plots of the figure.

The Entire sequence of wave interactions of this example is computed

by the RCM without the implementation of artificial viscosity or artificial

compression methods, or tracking and capturing schemes. This 'hands off'

feature of the method renders it eminently useful for fast preliminary

evaluations of complex wave diagrams for the application at hand.

The next example computes an idealized wave diagram for the nine-port

pressure exchanger concept proposed by Spectra Technology, Ref. (12).

2.3.4. Spectra Technology Pressure Exchanger

Fig. (4) shows the ideal wave diagram for the nine-port pressure

exchanger. This configuration is a good case example to compute with the RCM

because of the different types of boundary conditions that need to be dealt

with in the evaluation of the cycle. The computation is started at t=0 , at

the point of high pressure hot gas inlet (driver gas inlet). In the manner

described in the G.E. wave engine example, the initial data is prescribed for
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the entire passage at this time step and the boundary condition switches are

initially set at SWL=1 and SWR=3 for the solid wall at the left, and the

'piston' inflow at the right hand end. Since there is a multiplicity of types

of boundary conditions, e.g., three outflow ports, an index, JCOUNT, is used

to ensure proper sequencing of the switches. The following table is

presented as an example of the settings of the switches to carry out

calculations for one cycle. The inflow and outflow port conditions are those

proposed by Spectra Technology for their idealized diagram.

TIME STEP, N JCOUNT SWL SWR REMARKS

1 3 CYCLE STARTS. HP GAS INLET PORT OPENS

500 1 2 3 HP AIR OUTLET PORT OPENS

1408 2 2 1 HP GAS INLET PORT CLOSES

1765 3 5 1

HP AIR OUTLET PORT CLOSES. TUNING PORT
LI OPENS

1816 4 2 1

TUNING PORT LI CLOSES. IP GAS OUTLET
PORT OPENS (PORT El)

2069 5 2 5 TUNING PORT Rl OPENS

2261 6 2 I TUNING PORT Rl CLOSES

2595 7 5 1

IP GAS OUTLET PORT CLOSES. TUNING PORT
L2 OPENS

2636 8 2 1

TUNING PORT L2 CLOSES. LP GAS OUTLET
PORT OPENS (PORT E2)

3029 9 2 5 TUNING PORT K2 OPENS

3237 10 2 4

TUNING PORT R2 CLOSES. LP AIR INLET

PORT OPENS

4961 11 1 4 LP GAS OUTLET PORT CLOSES

5529,0 1 3

LP AIR INLET PORT CLOSES. CYCLE
COMPLETED

The total cycle time as calculated by the RCM is 3.0676 mseconds, which

compares well with the time computed by Spectra Technology (using the

FCT-SHASTA algorithm) of 3.07 mseconds. The execution time on an IBM

370-3033AP for the 5529 steps computed in the example above was 3 minutes

38 seconds, including the I/O operations and the graphics.

21



Figs. (12a, b, c) show three sets of plots of the flow parameters for

the following cases: a) the H.P. air outlet port opens on time, i.e., just as

the shock reaches the left end of the passage, b) the port opens before the

shock has reached the end, and c) the port opens after the shock has reached

the end. The constant pressure and velocity states that prevail in the

passage just after the shock has reached the left end (time 'section' line tj

in wave diagram), are perfectly realized in Fig. (12a), while the contact

surface is at the location shown by the sharp discontinuities in the density

and entropy plots. Should the inlet port be opened earlier, e.g., at the time

level shown by x^_ in the wave diagram, what happens is as follows: the

pressure in the passage is still at the pre-corapressed level and this comes

into contact with the pressure level in the port which is considerably higher,

resulting in' a shock propagating into the passage, colliding with the left

moving shock and raising the overall pressure level to ~3.0 as shown in

Fig. (12b). However, as soon as the left moving shock readies the end, it now

encounters an open boundary with conditions that do not match those behind the

shock, resulting in a rarefaction fan being generated, which propagates to the

right. This expansion fan, travelling at sonic velocity relative to the gas

into which it is propagating, soon overtakes the right moving shock which is

travelling at a subsonic velocity relative to the same gas. This interaction

results in an attenuation of both the rarefaction as well as the shock wave.

Note that the overall pressure and velocity levels behind the rarefaction are

about the same as for case a), i.e., the effects of the mismatch are not very

significant at the outlet port. However, should the right moving pressure

perturbations of case b) not attenuate each other significantly before they

reach the right hand end, the consequences could be severe for the overall

wave diagram, since this will lead to further (unwanted) wave reflections.
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Fig. (12c) shows what occurs if the outlet port is opened too late,

corresponding to time level t\+ on the wave diagram. Now the left

travelling shock, encounters a wall boundary condition on reaching the left

end and reflects off as a shock, effectively doubling the pressure level

behind it ( >3.5 in pressure plot of Fig. (12c)). When the outlet port opens,

there is again a mismatch of conditions in the port and in the passage, with

the pressure level in the passage being considerably higher than that

prescribed for the outlet port. A rarefaction wave is generated which

propagates to the right and overtakes the reflected shock. The same criterion

holds for this case too, i.e., the ensuing attenuation of these pressure

pulses should occur before they reach the right hand end, preferably even

before they reach the interface still propagating towards the left at the

flow velocity.

The considerations above give a preview of the nature of decisions

required in the successful design of a wave rotor device. It is clear that

quite a few iterations are involved in the process of designing a viable wave

diagram for a particular application, and each iteration entails calculating

two or more complete cycles to ensure 'closure' or repeatability of the cycle.

A fast solver like the RCM allows reaching an idealized 'base' design quickly

and inexpensively.

Appendix A is a listing of the program in its present development

stage. As mentioned earlier, no attempt has been made to optimize the

program, either for storage requirements or for execution.

Appendix B gives a description of the structure of the program, a

listing of the important variables, the subroutines and the function

subprograms. A step by step guide is also included to set up and run the

program.
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3. DISCUSSION AND RECOMMENDATIONS

3.1. Discussion

For meeting the criteria listed in the Introduction, in one dimension,

Glimm's method or the RCM appears to be superior to any difference method.

For wave rotor type applications, where discontinuities need to be computed

with sharpness, the 'infinite' resolution of such discontinuities inherent in

the RCM make it a natural choice to carry out ideal flow calculations for

preliminary design purposes. Boundary conditions can be implemented quite

easily and do not require information from points outside the domain of

dependance as is the case in some finite difference schemes. The van der

Corput sampling technique results in the best possible representation of the

wave propagation, which is essential for the correct representation of

continuous waves, particularly those produced by nonlinear interactions.

The method, however, is not recommended to solve for f Lows with real

effects such as friction, heat transfer and area change, or to be extended to

multi-di mensional flows. Although considerable research is being done to

rigorously extend the method to such flows, with some degree of success (see

Refs. 1, 4, 13), the present state of development is not mature enough to

ensure a useful practical code as the outcome.

3.2. Recommendations

Many options are available for one wishing to develop either a 1-D code

with real effects and/or a multi-dimensional code for wave rotor type

applications. The author prefers to recommend numerical formulations which

are dependent on the solution of Riemann problems, such as the Godunov method;

the motivating reason for this preference is that a Riemann problem

constitutes the solution of a discontinuity in the flow in terms of other

24



discontinuities (if any are, indeed, present), and the scheme is thus

intrinsically suited for solving such flows; on the other hand, the other

schemes, in general, require to be made aware of discontinuities in the flow

through some external device, and then treat them through other artificial

devices.

A second-order, quasi one-dimensional (variable cross-sectional area)

scheme has recently been developed by Ben-Artzi and Falcovitz (Ref. 14). The

method is based on the exact solution of 'generalized Rieraann propbleras
' , and

has demonstrated very good results; it's least accurate approximation is

equivalent to Godunov's first order method (Ref. 9). The resolution of shocks

and other discontinuities and singularities of the flow field is also high.

Extension to more than one dimension appears to be straightforward through the

use of operator splitting techniques, but has as yet not been tried

extensively.
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APPENDIX A

Listing of Program RCM
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PROGRAM RCM WITH VAN DER CORPUT SAMPLING AND SINGLE TIME STEP RCM00030
INTEGER QPRINT, QSTOP , SWL, SWR RCM00040
DIMENSION XX(6) ,YY( 6) RCM00050
DIMENSION XARRAY(IOO) RCM00060
DIMENSION WNORM(12),IDIGT(12) RCM00070
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203) RCM00080
COMMON/SUBS/P,R,U,A,S,X RCM00090
COMMON/ GLIMM1/ PGLIM , RGLIM , UGLIM , PL , RL , UL , PR , RR , UR , AL , AR , GL , GR , EPS RCMOO 100
COMMON /GLIMM2/DT,DX, XI RCM00110
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU RCMOO 120
COMMON/ SAMPLE /WNORM,IDIGT RCM00130
COMMON XARRAY,N1 RCMOO 140
CALL COMPRS RCMOO 150
CALL BLOWUP (0.5) RCM00160
CALL PAGE (11. 0,8. 5) RCMOO 170
CALL HWSCAL( 'SCREEN'

)

RCM00180
DATA K,SWL,SWR/500,1,3/ RCM00190
DATA N,CFLNUM,TTOTAL/ 0,0. 60,0.0/ RCM00200
DATA PSEXIT,PSINL,PSINR,RINL,RINR/116954. ,3770000. , 3819952 . 50 , 6 . 8 ,RCM00210

--6.800/ RCM00220
DATA PSOUTl,PSOUT2,PSOUT3/ 38 19952. 5, 243 1800. 0,15 30007. 5/ RCM00230
DATA PTOTIN,RTOTIN/1656663.8,7.486/ RCM00240
DATA PREF,RREF,XREF/1656663.8,7.486,0. 1800/ RCM00250
G=1.4 RCM00260
GL=1.4 RCM00270
GR=1.4 RCM00280
EPS=l.E-06 RCM0O290
QSTOP=20 RCM00300
N1 = RCM00310
JCOUNT=0 RCM00320
KCOUNT=0 RCM00330
UEXMAX=0. RCM00340
DX=0.01 RCM00350
AREF=SQRT(PREF/RREF) RCM00360
TIMREF=XREF/AREF RCM00370
RMU=SQRT((G-1.)/(G+1.)) RCM00380
X(l)=-0.5-DX RCM00390
ZETA=WDP(1) RCM00400
XII=DX*(WDP(0)-0.5) RCM00410
DO 25 1=2,203 RCM00420
X(I)=X(I-1)+0.5*DX RCM00430

25 CONTINUE RCM00440
DO 35 1=1,100 RCM00450
XARRAY(I)=X(I*2+1) RCM00460

35 CONTINUE RCM00470
INITIAL DATA RCM00480
CALL INIT1 RCM00490
CALL INIT2L(PSEXIT) RCM00500
CALL INIT2R(PSEXIT,PREF,RREF) RCM00510
CALL INIT3L(PSINL,RINL) RCM00520
CALL INIT3R(PSINR,RINR) RCM0O530
NONDIMENSIONALIZATION RCM00540
DO 30 1=1,203,2 RCM00550
P(I)=P(I)/PREF RCM00560
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R(I)=R(I)/RREF
U(I)=U(I)/AREF
A(I)=A(I)/AREF
S ( I ) =ALOG ( P ( I ) /R ( I

) **G

)

30 CONTINUE
CALL PLOTl(K)
DO 40 J=1,K
N = N+1
XII=DX*(WDP(0)-0.5)
QPRINT=N/50
DT=100.
DO 50 1=1,203,2
DTT=CFLNUM-DX/(2."AMAX1(ABS(A(I)+U(I)),ABS(A(I)-U(I))))
DT=AMIN1(DTT,DT)

50 CONTINUE
TTOTAL=TTOTAL+DT
TIME=TTOTAL*TIMREF
XI=-XII
DO 60 1=1,201,2
PL=P(I)
RL=R(I)
UL=U(I)
PR=P(I+2)
RR=R(I+2)
UR=U(I+2)
XITEMP=XI
IF(I.EQ.l) XI=ABS(XI)
IF((I.EQ.201).AND. (XI.GT.0.0)) XI=-XI
CALL GLIMM(QSTOP,PSTAR,USTAR,ASTAR)
XI=XITEMP
P(I+1)=PGLIM
R(I+1)=RGLIM
U(I+1)=UGLIM

60 CONTINUE
DO 70 1=1,201,2
IF(XI.LT.O. ) GOTO 80
P(I+2)=P(I+1)
R(I+2)=R(I+1)
U(I+2)=U(I+1)
A(I+2)=SQRT(G*P(I+2)/R(I+2))
S(I+2)=ALOG(P(I+2)/R(I+2)**G)
GOTO 70

80 P(I)=P(I+1)
R(I)=R(I+1)
U(I)=U(I+1)
A(I)=SQRT(G»P(I)/R(I))
S(I)=ALOG(P(I)/R(I)**G)

70 CONTINUE
C CALL GE(SWL,SWR,N,TTOTAL,TIME,UEXMAX,PTOTIN,PREF)
C CALL DETON(SWL,SWR,N,QPRINT,TTOTAL,TIME)

CALL SPCTRA (N , SWL , SWR , TIME , UEXMAX , PSEXIT , PSOUT1 , PSOUT2 , PSOUT3 ,

J

-COUNT
,
QPRINT , TTOTAL , KCOUNT

)

IF(SWL.EQ.i; CALL BCL1
IF(SWL.EQ.2) CALL BCL2 (PSEXIT , PREF)
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IF(SWL.EQ.3
IF(SWL.EQ.4
IF(SWL.EQ.5
IF(SWR.EQ.l
IF(SWR.EQ.2
IF(SWR
IF(SWR
IF(SWR
IF ((N

EQ.3
EQ.4
EQ.5

CALL BCL3(PSINL,RINL,PREF,RREF) RCM0111C
CALL BCL4(PT0TIN,RT0TIN,PREF,RREF) RCM0112C
CALL BCL5 RCM0113C
CALL BCR1 RCM0114C
CALL BCR2(PSEXIT,PREF) RCM0115C
CALL BCR3(PSINR,RINR,PREF,RREF) RCM0116C
CALL BCR4(PTOTIN,RTOTIN,PREF,RREF) RCM0117C
CALL BCR5 RCM0118C

EQ. (50*QPRINT)).AND. (N.GE.O)) CALL PLOT2(N,K) RCM0119C
40 CONTINUE RCM0120C

CALL ENDPL(O) RCM0121C
CALL DONEPL RCM0122C
STOP RCM0123C
END RCM0124C
SUBROUTINE GLIMM(QSTOP , PSTAR, USTAR,ASTAR) RCM0125C
INTEGER Q,QSTOP RCMO 12 60
REAL ML , MR , MLN , MRN

'

RCM0127C
COMMON / GLIMM1 / PGLIM , RGLIM , UGLIM , PL , RL , UL , PR , RR , UR , AL , AR , GL , GR , EPS RCMO 12 8

COMMON /GLIMM2/DT,DX, XI RCM0129C
DATA Q, ML, MR/0, 100. ,100./ RCM0130C
PSTAR=0.5*(PL+PR) RCMO 13 10
COEFL=SQRT(PL*RL) RCMO 13 20
COEFR=SQRT_(PR*RR) RCMO 13 30
ALPHA=1. RCM0134G
BEGIN GODUNOV ITERATION RCM0135C

30 Q=Q+1 RCM0136C
IF(PSTAR.LT.EPS) PSTAR=EPS RCM0137C
COMPUTE NEXT ITERATION FOR ML AND MR RCMO 1380
MLN = COEFL*PHI ( PSTAR , PL

)

RCMO 13 9

MRN=COEFR*PHI( PSTAR, PR) RCMO 1400
DIFML=ABS(MLN-ML) RCM01410
DirMR=ABS(MRN-MR) RCM01420
ML=MLN RCM0143C
MR=MRN RCMO 1440
COMPUTE NEW PSTAR RCMO 1450
PTIL=PSTAR RCM0146C
PSTAR= (UL-UR+PL/ML+PR/MR)/ (1. /ML+1. /MR) RCMO 1470
PSTAR=ALPHA*PSTAR+(1.-ALPHA)*PTIL RCM01480
IF(Q.LE.QSTOP) GOTO 10 RCM01490
IF(ABS(PSTAR-PTIL) .LT.EPS) GOTO 20 RCM01500
COMPUTE NEW ALPHA RCMO 15 10
ALPHA=0.5 -ALPHA RCM01520
Q=0 RCM01530
IF((1. -ALPHA) .LT.EPS) GOTO 20 RCM0154C

10 IF (DIFML.GE.EPS) GOTO 30 RCMO1550
IF(DIFMR.GE.EPS) GOTO 30 RCMO1560
END OF GODUNOV ITERATION; COMPUTE USTAR RCMO 1570

20 USTAR=(PL-PR+ML*UL+MR*UR)/(ML+MR) RCMO 1580
BEGIN SAMPLING PROCEDURE RCM0159C
IF (XI.LT.USTAR-DT) GO TO 40 RCMO 1600
RIGHT SIDE; SELECT CASE OF SHOCK OR EXPANSION RCMO 16 10

IF (PSTAR. LT. PR) GO TO 50 RCM0162C
RIGHT WAVE IS A SHOCK WAVE RCM0163C
WR=UR+MR/RR RCM0164C
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60

50

70

80

40

100

90

IF (XI.LT.WR*DT) GO TO 60
RIGHT OF RIGHT SHOCK CASE
RGLIM=RR
PGLIM=PR
UGLIM=UR
RETURN
LEFT OF RIGHT SHOCK CASE
RGLIM=-MR/ (USTAR-WR)
PGLIM=PSTAR
UGLIM=USTAR
RETURN
RIGHT WAVE IS A RAREFACTION WAVE
CONST=PR/RR**GR
RSTAR= ( PSTAR/ CONST ) ** ( 1

.
/ GR

)

ASTAR= SQRT ( GR*PSTAR/ RSTAR

)

AR=SQRT(GR*PR/RR)
IF (XI.GE. (USTAR+ASTAR)*DT) GO TO 70
LEFT OF RIGHT FAN CASE
RGLIM= RSTAR
UGLIM=USTAR
PGLIM= PSTAR
RETURN
SELECT RIGHT OF FAN
IF (XI.GE. (UR+AR)*DT)
IN RIGHT FAN CASE
UGLIM=2. / (GR+1. )*(XI/DT
RGLIM=(((AR+(GR-1. )/2.*
PGLIM= CONST*RGLIM**GR
RETURN
RIGHT OF RIGHT FAN CASE
RGLIM=RR
PGLIM=PR
UGLIM=UR
RETURN
LEFT SIDE
IF (PSTAR
LEFT WAVE
WL=UL-ML/RL
IF (XI.GE.WL-DT) GO TO 100
LEFT OF LEFT SHOCK CASE
RGLIM=RL
PGLIM=PL
UGLIM=UL
RETURN
RIGHT OF LEFT SHOCK CASE
RGLIM=ML/ (USTAR-WL)
PGLIM=PSTAR
UGLIM=USTAR
RETURN
LEFT WAVE IS A RAREFACTION WAVE
CONST=PL/RL**GL
RSTAR=( PSTAR/ CONST )**(1./GL)
ASTAR= SQRT ( GL- PSTAR/ RSTAR

)

AL=SQRT(GL-VPL/RL)

OR IN FAN
GO TO 80

-AR+(GR-1. )/2."
(UGLIM-UR))**2

:UR)
)/(GR*CONST))" (l./(GR-l.))

SELECT CASE OF
LT.PL) GO TO 90
IS A SHOCK WAVE

SHOCK OR RAREFACTION
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GO TO 110

FAN CASE
TO 120

1. )/2.*UL+XI/DT)

IF (XI.LT. (USTAR-ASTAR)*DT)
RIGHT OF LEFT FAN CASE
RGLIM=RSTAR
PGLIM=PSTAR
UGLIM=USTAR
RETURN
SELECT LEFT OF FAN OR IN

110 IF (XI.LT. (UL-AL)-'DT) GO
IN LEFT FAN CASE
UGLIM=2./(GL+1. )*(AL+(GL-
RGLIM= ( ( (AL+ (GL- 1

. ) / 2 . * (UL-UGLIM) )**2
. ) / (GL-CONST )

)** ( 1
. / (GL- 1

. )

)

PGLIM=CONST*RGLIM**GL
RETURN
LEFT OF LEFT FAN CASE

120 RGLIM=RL
PGLIM=PL
UGLIM=UL
RETURN
END
FUNCTION PHI(Y,Z)
REAL RMU
COMMON / FUN 1 / G , PA , RA , UA , RB , RMU
EPS=l.E-06-
PARAM=Y/Z
IF (ABS(l.-PARAM) .GE.EPS) GO TO 10
PHI=SQRT(G)
RETURN

10 IF (PARAM.GE.l. ) GO TO 20
PHI= (G-l

. ) /2 . *(1. - PARAM) / ( SQRT(G)* ( 1 . - PARAM** ( (G-l . ) / (2
. *G ) ) )

)

RETURN
20 PHI=SQRT((G+1. )/2 .*PARAM+ (G-l. )/2.

)

RETURN
END
FUNCTION PHIl(PB)
REAL RMU
COMMON/ FUN1/G , PA , RA , UA , RB , RMU
PHI1= (PB-PA)*SQRT( (1. -RMU**2. ) / (RA* (PB + RMU**2 . *PA) )

)

RETURN
END
FUNCTION PSI(PB)
REAL RMU
COMMON/ FUN1 / G , PA , RA , UA , RB , RMU
PSI= SQRT ( 1 . -RMU— 4

. ) /RMU**2 .
/ SQRT (RA)*PA** ( 1 . / (2 . *G) )*(PB** ( (G- 1

.

*/(2.*G))-PA**((G-l.)/(2.*G)))
RETURN
END
SUBROUTINE INITl
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
COMMON/ SUBS/P,R,U,A,S,X
DO 10 1=1,9,2
P(I)=810600.00
R(I)=0.7132
U(I)=644.4

RCM0219C
RCM0220C
RCM0221C
RCM0222C
RCM02230
RCM02240
RCM02250
RCM02260
RCM02270
RCM02280
RCM02290
RCM02300
RCM02310
RCM02320
RCM02330
RCM02340
RCM02350
RCM02360
RCM02370
RCM02380
RCM02390
RCM02400
RCM02410
RCM02420
RCM0243G
RCM02440
RCM02450
RCM0246G
RCM02470
RCM02480
RCM02490
RCM02500
RCM02510
RCM02520
RCM02530
RCM02540
RCM02550
RCM02560
RCM02570
RCM02580
RCM02590
RCM02600
)RCM02610
RCM02620
RCM02630
RCM02640
RCM02650
RCM02660
RCM02670
RCM02680
RCM02690
RCM02700
RCM02710
RCM02720
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A(I)=SQRT(G*P(I)/R(I))
10 CONTINUE

DO 20 1=11,203,2
P(I)=101325.0
R(I)=1.22
U(I)=0.0
A(I)=SQRT(G*P(I)/R(I))

20 CONTINUE
RETURN
END
SUBROUTINE INIT2R(PSEXIT , PREF , RREF

)

DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
COMMON / SUBS/P,R,U,A,S,X
DO 10 1=3,201,2
P(I)=PREF
R(I)=RREF
U(I)=0.0
A(I)=SQRT(P(I)*G/R(I))

10 CONTINUE
P(D = P(3)
R(1)=R(3)
U(l)=-U(3) .

A(1)=SQRT(G*P(1)/R(1))
P(203)=PSEXIT
R(203)=R(201)
PA=P(201)
RA=R(201)
UA=U(201)
PB=P(203)
RB=R(203)
IF(PA.GT.PB) GO TO 20
U(203)=UA-PHI1(PB)
GO TO 30

20 U(203)=UA-PSI(PB)
30 A(203)=SQRT(G*P(203)/R(203))

RETURN
END
SUBROUTINE INIT2L(PSEXIT)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON / FUN1 / G , PA , RA , UA , RB , RMU
COMMON / SUBS / P , R , U , A , S ,

X

DO 10 1=3,201,2
P(I)=285080.0
R(I)=0.897
U(I)=0.0
A(I)=SQRT(G-P(I)/R(I))

10 CONTINUE
RETURN
END
SUBROUTINE INIT3L(PSINL,RINL)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
COMMON / SUBS / P , R , U , A , S ,

X
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DO 10 1=3,201,2
P(I)=2390000.0
R(I)=9.787
U(I)=0.0
A(I)=SQRT(G*P(I)/R(I))

10 CONTINUE
P(1)=PSINL
R(1)=RINL
PA=P(3)
RA=R(3)
UA=U(3)
PB=P(1)
U(1)=UA+PHI1(PB)
A(1)=SQRT(G*P(1)/R(1))
P(203)=P(201)
R(203)=R(201)
U(203)=-U(201)
A( 203 )= SORT (G*P ( 203 )/R( 203))
RETURN
END
SUBROUTINE INIT3R(PSINR,RINR)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ SUBS/ P,R,U, A, S,X
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
DO 10 1=3,201,2
P(I)=2421667.5
R(I)=9.787
U(I)=0.0
A(I)=SQRT(G*P(I)/R(I))

10 CONTINUE
P(203)=PSINR
PA=P(201)
RA=R(201)
UA=U(201)
PB=P(203)
U(203)=UA-PHI1(PB)
R(203)=RINR
A(203)=SQRT(G*P(203)/R(203))
P(1)=P(3)
R(1)=R(3)
U(l)=-U(3)
A(1)=SQRT(G*P(1)/R(1))
RETURN
END
SUBROUTINE BCL1
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON / SUBS/P,R,U,A,S,X
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
P(1)=P(3)
R(1)=R(3)
U(l)=-U(3)
A(1)=SQRT(G-P(1)/R(1))
RETURN
END

RCM03270
RCM03280
RCM03290
RCM03300
RCM03310
RCM03320
RCM03330
RCM03340
RCM03350
RCM03360
RCM03370
RCM03380
RCM03390
RCM03400
RCM03410
RCM03420
RCM03430
RCM03440
RCM03450
RCM03460
RCM03470
RCM03480
RCM03490
RCM03500
RCM03510
RCM03520
RCM0 3 5 30
RCM03540
RCM03550
RCM03560
RCM03570
RCM03580
RCM03590
RCM03600
RCM03610
RCM03620
RCM03630
RCM03640
RCM03650
RCM03660
RCM03670
RCM03680
RCM03690
RCM03700
RCM03710
RCM03720
RCM03730
RCM03740
RCM03750
RCM03760
RCM03770
RCM03780
RCM03790
RCM03800
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10
20

SUBROUTINE BCRl
DIMENSION P(203),R(203),U(203) , A(203 ) , S (203 ) ,X(203

)

COMMON/ SUBS /P,R,U, A, S,X
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
P(203)=P(201)
R(203)=R(201)
U(203)=-U(201)
A(203)=SQRT(G*P(203)/R(203))
RETURN
END
SUBROUTINE BCL2 (PSEXIT , PREF)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ SUBS /P,R,U, A, S,X
COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
P(1)=PSEXIT/PREF
R(1)=R(3)
U(1)=U(3)«
A(1)=SQRT(G«P(1)/R(1))
RETURN
END
SUBROUTINE BCR2 (PSEXIT , PREF)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ SUBS /P,R,U, A, S,X
COMMON/ FUNl/G , PA, RA , UA , RB , RMU
P(203)=PSEXIT/PREF
R(203)=R(201)
PA=P(20l)
RA=R(201)
UA=U(201)
PB=P(203)
RB=R(203)
IF(PA.GT.PB) GO TO 10
U(203)=UA-PHI1(PB)
GO TO 20
U(203)=UA-PSI(PB)
A(203)=SQRT(G*P(203)/R(203))
RETURN
END
SUBROUTINE BCL3 ( PSINL , RINL , PREF , RREF

)

DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON / SUBS / P , R , U , A , S ,

X

COMMON/ FUN1/ G , PA , RA , UA , RB , RMU
P(1)=PSINL/PREF
R(1)=RINL/RREF
PA=P(3)
RA=R(3)
UA=U(3)
PB=P(1)
U(1)=UA+PHI1(PB)
A( 1 ) = SQRT (G*P ( 1 ) /R( 1 )

)

RETURN
END
SUBROUTINE BCR3 ( PSINR , RINR , PREF , RREF

)

DIMENSION P(203),R(203),U(203) ,A'(203) , S(203) ,X(203)
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60

50

COMMON/ SUBS /P,R,U, A, S,X
COMMON/ FUN1 / G , PA , RA , UA , RB , RMU
P(203)=PSINR/PREF
R(203)=RINR/RREF
PA=P(201)
RA=R(201)
UA=U(201)
PB=P(203)
U(203)=UA-PHI1(PB)
A(203)=SQRT(G*P(203)/R(203))
RETURN
END
SUBROUTINE BCL4 (PTOTIN,RTOTIN , PREF ,RREF)
INTEGER QOUT
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
DIMENSION XARRAY(IOO)
COMMON / SUB S/P,R,U,A,S,X
COMMON / FUN 1 / G , PA , RA , UA , RB , RMU
COMMON XARRAY,N1
N1=N1+1
QOUT=Nl/5
PTOT=PTOTIN/PREF
RTOT=RTOTIN/RREF
ATOT=SQRT(G*PTOT/RTOT)
STOT=ALOG(PTOT/RTOT**G)
U(1)=U(3)
A ( 1 ) = SQRT ( ATOT** 2 .

- (
G - 1

. ) / 2 . *ABS (U ( 1 )
) **2

.

)

AMACH=U(1)/A(1)
IF(AMACH.LT.O.O) GO TO 60
P(l)=PTOT/(l.+(G-l. ) / 2 . *AMACH**2

.
)**(G/(G-1. ))

R(l)=RTOT/(l.+(G-l. ) / 2 . *AMACH**2
.
)**(1./(G-1. ))

S ( 1 ) = ALOG ( P ( 1 ) / R ( 1
) **G

)

GO TO 50
P(l)=PTOT/(l.+(G-l. )/2.*ABS(AMACH)**2.

)

R(l)=RTOT/ (l.+(G-l. )/2.*ABS(AMACH)**2.

)

S(l)=ALOG(P(l)/R(l)**G)
RETURN
END
SUBROUTINE BCR4 (PTOTIN ,RTOTIN , PREF ,RREF)
INTEGER QOUT
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
DIMENSION XARRAY(IOO)
COMMON/ SUBS /P,R,U, A, S,X
COMMON/ FUN1/ G , PA , RA ,UA , RB , RMU
COMMON XARRAY,N1
N1=N1+1
QOUT=Nl/25
PTOT=PTOTIN/PREF
RTOT=RTOTIN/RREF
ATOT=SQRT(G-PTOT/RTOT)
STOT = ALOG(PTOT/RTOT'v "G)
U(203)=U(201)
A( 203 ) = SQRT (ATOT**2 .

- (G
AMACH=U(203)/A(203)

(G/(G-1.))
(l./(G-l.))

l.)/2.*ABS(U(203))**2.)

RCM04350
RCM04360
RCM04370
RCM04380
RCM04390
RCM04400
RCM04410
RCM04420
RCM04430
RCM04440
RCM04450
RCM04460
RCM04470
RCM04480
RCM04490
RCM04500
RCM04510
RCM04520
RCM04530
RCM04540
RCM04550
RCM04560
RCM04570
RCM04580
RCM04590
RCM04600
RCM04610
RCM04620
RCM04630
RCM04640
RCM04650
RCM04660
RCM04670
RCM04680
RCM04690
RCM04700
RCM04710
RCM04720
RCM04730
RCM04740
RCM04750
RCM04760
RCM04770
RCM04780
RCM04790
RCM04800
RCM04810
RCM04820
RCM048 30
RCM04840
RCM04850
RCM04860
RCM048 70
RCM04880
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60

50

20

10

40
50

60

)**(G/(G-1.))
)**(1./(G-1.))

IF(AMACH.LT.O.O) GO TO 60
P(203)=PTOT/(l.+(G-l. )/2.*AMACH**2. )**(G/(G-1. ))
R(203)=RTOT/(1.+(G-1. ) / 2 . *AMACH**2

.
)**(!. /(G-l. ))

S(203)=ALOG(P(203)/R(203)**G)
GO TO 50
P(203)=PTOT/(1.+(G-1. )/2.*ABS(AMACH)**2
R(203 ) =RTOT/ (1. + (G-l. ) /2 . *ABS (AMACH)**2
S(203)=ALOG(P(203)/R(203)**G)
RETURN
END
SUBROUTINE BCL5
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/ SUBS/P,R,U, A, S,X
P(1)=P(3)
R(1)=R(3)
U(1)=U(3)
A(1)=A(3)
RETURN
END
SUBROUTINE BCR5
DIMENSION P(203),R(203),U(203),A(203),S(203) ,X(203)
COMMON / SUBS/P,R,U,A,S,X
P(203)=P(201)
R(203)=R(201)
U(203)=U(201)
A(203)=A(201)
RETURN
END
FUNCTION WDP(II)
DIMENSION WNORM(12),IDIGT(12)
COMMON/ SAMPLE /WNORM,IDIGT
IF (II.EQ.O) GO TO 10
Ll = 2

L2=l
DO 20 JJ=1,12
IDIGT(JJ)=0
WNORM( JJ ) = 1

.
/FLOAT (LI**JJ

)

CONTINUE
WDP=0.
RETURN
DO 40 JJ=1,12
Ll=2
L2=l
KJO=IDIGT(JJ)
KJN=MOD((KJ0+l) ,L1)
IDIGT(JJ)=KJN
IF (KJO.LT.KJN) GO TO 50
CONTINUE
SUM=0.
DO 60 JJ=1,12
KNEW=MOD ( IDIGT ( JJ ) *L2 , LI

)

SUM= SUM+ FLOAT ( KNEW ) *WNORM ( JJ

)

CONTINUE
WDP=SUM
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RETURN
END
SUBROUTINE PLOTl(K)
DIMENSION XORG(4) ,Y0RG(4) , YMAX(4) , YMIN (4)

5,4.75,0.5,4.75/
5,0.5,4.75,4.75/
50,3.0,0.5,2.0/
5,0.0,-0.5,-2.0/

DATA XORG/0
DATA YORG/0
DATA YMAX/3
DATA YMIN/0
DO 10 1=1,4
CALL PHYSOR(XORG(I) ,YORG(I))

AREA2D(3.5,3.5)CALL
CALL
CALL
CALL

FRAME
GRAF(0.

,

ENDGR(O)
10 CONTINUE

CALL PHYSOR(8
AREA2D(2
FRAME
GRAF(0.

,

ENDGR(O)

SCALE ',1.0, YMIN ( I )

,

' SCALE
'

, YMAX ( I )

)

5,0.5)
25,7.75)

SCALE' ,1. ,0, 'SCALE' ,K)

CALL
CALL
CALL
CALL
RETURN
END
SUBROUTINE- PLOT2(N,K)
DIMENSION XORG(4) ,Y0RG(4) ,YMAX(4) ,YMIN(4) ,KNT(4) ,IYNAM(10)
DIMENSION PARRAY ( 100 ) , RARRAY ( 100 ) , UARRAY ( 100 ) , SARRAY ( 100 ) , XARRAY

(

»00

)

DIMENSION P(203) ,R(203),U(203),A(203) ,S(203) ,X(203)
COMMON/ SUBS /P,R,U, A, S,X
COMMON XARRAY
DATA XORG/0. 5, 4. 75, 0.5,

4

YORG/0. 5, 0.5, 4. 75,

4

YMAX/ 3. 50, 3. 0,0. 5, 2

YMIN/ 0.5, 0.0, -0.5
KNT/1,4,6,9/
IYNAM/ 'PRES'

*, 'ENTR' , 'OPY$'/
DO 200 1=1,100
PARRAY(I)=P (1-2+1)
RARRAY(I)=R(I*2+1)
UARRAY(I)=U(I*2+1)
SARRAY(I) = S (1*2+1)

200 CONTINUE
DO 300 1=1,4
CALL PHYSOR(XORG(I) ,YORG(I))

AREA2D(3.5,3.5)
XNAME (

'

X
'

, 1

)

YNAME ( IYNAM (KNT ( I ) ) , 100

)

GRAF(0. , 'SCALE' ,1.0,YMIN(I)
EQ.l) CALL SETCLR( 'YELLOW

)

DATA
DATA
DATA
DATA
DATA

75/
75/
0/

2.0/

SURE
'

,

'

$

DENS
'

,

' ITY$
'

,

' VELO
'

,

' CITY
'

,

'

$

CALL
CALL
CALL
CALL
IF(I
IF(I
IF(I
IF(I
IF(N
IF(I

SCALE' ,YMAX(I))

EQ.2) CALL SETCLR( 'CYAN'

)

EQ.3) CALL SETCLR( 'RED'

)

EQ.4) CALL SETCLR( 'MAGENTA'

)

EQ . K

)

CALL SETCLR (
' WHITE

'

)

EQ.l) CALL CURVE ( XARRAY, PARRAY, 100 , )

RCM0543C
RCM05440
RCM05450
RCM05460
RCM05470
RCM05480
RCM05490
RCM05500
RCM05510
RCM05520
RCM05530
RCM05540
RCM05550
RCM05560
RCM05570
RCM05580
RCM05590
RCM05600
RCM05610
RCM05620
RCM05630
RCM05640
RCM05 6 50
RCM05660
1RCM05670
RCM05680
RCM05690
RCM05700
RCM05710
RCM05720
RCM05730
RCM05740
RCM05750
RCM05760
'RCM05770
RCM05780
RCM05790
RCM05800
RCM05810
RCM05820
RCM05830
RCM05840
RCM05850
RCM05860
RCM05870
RCM05880
RCM05890
RCM05900
RCM05910
RCM05920
RCM05930
RCM05940
RCM05950
RCM05960
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IF(I.EQ.2) CALL CURVE ( XARRAY , RARRAY , 100 , )

IF(I.EQ.3) CALL CURVE ( XARRAY, UARRAY , 100 , )

IF(I.EQ.4) CALL CURVE (XARRAY , SARRAY , 100 , )

CALL ENDGR(O)
300 CONTINUE

RETURN
END
SUBROUTINE GE ( SWL , SWR , N , TTOTAL , TIME , UEXMAX , PTOTIN , PREF

)

INTEGER SWL, SWR
DIMENSION P(203),R(203) ,U(203 ) ,A(203 ) , S (203 ) ,X(203

)

COMMON / SUBS / P , R , U , A , S ,

X

C*-CALCULATION STARTS AT EXHAUST PORT OPENING. SUBROUTINE STRUCTURED
C* -ACCORDINGLY.

IF((SWL.EQ.1).AND. (SWR.EQ.2)) GO TO 10
IF((SWL.EQ.4) .AND. (SWR.EQ.2)) GO TO 30
IF((SWL.EQ.4).AND. (SWR.EQ.l)) GO TO 50
IF ( ( SWL . EQ . 1 ) . AND

.
( SWR . EQ . 1 ) ) RETURN

10 PWALL=P(2)
(PTOTIN/PREF)) GO TO 20LEIF(PWALL

RETURN
20 SWL=4

WRITE (6, 74)
WRITE (6, 75 J N, TTOTAL, TIME
RETURN

30 UEXIT=U(202)
IF (UEXMAX. LT.UEXIT) UEXMAX=UEXIT
IF(UEXIT.LT.UEXMAX/2. ) GO TO 40
RETURN

40 SWR=1
WRITE (6, 76)
WRITE (6, 75) N, TTOTAL, TIME
RETURN

50 P1SH0K=P(2)
IF(P1SH0K.GT. PTOTIN/PREF) GO TO 60
RETURN

60 SWL=1
WRITE (6, 77)
WRITE (6, 75) N, TTOTAL, TIME

74 FORMAT ( 5 X, 'INLET PORT OPENS AT:')
75 F0RMAT(5X,I4,5X,2F14.7)
76 FORMAT ( 5 X, 'EXHAUST PORT CLOSES AT:')
7 7 FORMAT ( 5 X, 'INLET PORT CLOSES AT:')

RETURN
END
SUBROUTINE SPCTRA (N , SWL , SWR , TIME , UEXMAX , PSEXIT , PSOUT1 , PSOUT2 , PSOUTRCMCji

*3 , JCOUNT
,
QPRINT , TTOTAL , KCOUNT

)

INTEGER SWL, SWR, QPRINT
DIMENSION P(203) ,R(203),U(203),A(203),S(203),X(203)
COMMON/ SUBS /P,R,U, A, S,X

C-CALCULATION STARTS AT HP GAS IN PORT. JCOUNT
IF((SWL.EQ.1).AND. (SWR.EQ.3)) GO TO 10
IF((SWL.EQ.2) .AND. (SWR.EQ.3)) GO TO 20
IF( (SWL. EQ. 2) .AND. (SWR.EQ.l)) GO TO 30
IF( ( SWL. EQ. 5) .AND. (SWR.EQ.l)) GO TO 40

IS NUMBERED ACCORDINGLY-
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50
60
70

10

11

12
13

20

22

23

24
25

26
30

31

32
33

40

41

IF((SWL.EQ.2).AND. (SWR.EQ.5)) GO TO
IF( (SWL. EQ. 2). AND. (SWR.EQ.4)) GO TO
IF((SWL.EQ. 1) .AND. (SWR.EQ.4)) GO TO
IF(U(3) .LT.0.0) GO TO 11
RETURN
JC0UNT=JC0UNT+1
PSEXIT=PS0UT1
SWL=2
WRITE(6,12)
WRITE ( 6 , 13 )N , TIME , SWL , SWR , JCOUNT
FORMAT (5X, 'H.P. AIR OUT PORT OPENS AT')
F0RMAT(5X,I4,5X,F9.7,5X,3I3)
RETURN
DO 26 1=5,199,2
IF((R(I)-R(I+2)).GT.0.1) GO TO 22
GO TO 26
XCNTCT=X(I)
UCNTCT=U(I)
TCNTCT=XCNTCT/ ABS (UCNTCT

)

AHEAD=A(199)
THEAD=1.0/A(199)
IF(TCNTCT.LE.THEAD) GO TO 23
RETURN
JCOUNT=JCOUNT+l
SWR=1
WRITE (6, 24)
WRITE ( 6 , 25 ) N , TIME , SWL , SWR , JCOUNT
FORMAT (5X, 'H.P. GAS IN PORT CLOSES AT')
FORMAT ( 5X , 14 , 5X , F9 . 7 , 5X , 31 3

)

RETURN
CONTINUE
IF(JC0UNT.EQ.4)
IF(JC0UNT.EQ.6)
IF(JC0UNT.EQ.8)
IF((R(2)-R(4))
RETURN
JCOUNT=JCOUNT+l
SWL=5
WRITE(6,32)
WRITE ( 6 , 3 3 ) N , TIME , SWL , SWR , JCOUNT
FORMAT (5X, 'HP AIR OUT PORT CLOSES
FORMAT ( 5X , 14 , 5X , F9 . 7 , 5X , 3 13

)

RETURN
GO
GO

GO TO 80
GO TO 90
GO TO 100

GT.0.1) GO TO 31

AND TUNING PORT LI OPENS AT')

7)
0)

TO
TO

110
41

42
43

IF(JCOUNT.EQ
IF(U(3).GE.O
RETURN
JCOUNT=JCOUNT+l
PSEXIT=PS0UT2
SWL=2
WRITE (6, 42)
WRITE (6, 43 )N, TIME, SWL, SWR, JCOUNT
FORMAT (5X, 'TUNING PORT LI CLOSES
FORMAT ( 5X , 14 , 5X , F9 . 7 , 5X , 313

)

RETURN

AND EXHAUST PORT El OPENS AT')

RCM0651C
RCM0652C
RCM0653C
RCM0654C
RCM0655C
RCM0656C
RCM0657C
RCM0658C
RCM06 5 9C
RCM0660C
RCM06 61C
RCM06620
RCM0663C
RCM06640
RCM06650
RCM06660
RCM06670
RCM0668C
RCM06690
RCM06700
RCM06710
RCM06720
RCM06730
RCM0674C
RCM06750
RCM06760
RCM06770
RCM06780
RCM06790
RCM06800
RCM06810
RCM06820
RCM068 30
RCM06840
RCM06850
RCM06860
RCM06870
RCM06880
RCM06890
RCM06900
RCM06910
RCM06920
RCM06930
RCM06940
RCM06950
RCM06960
RCM06970
RCM06980
RCM06990
RCM07000
RCM07010
RCM07020
RCM07030
RCM07040
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80 IF(ABS(U(201)).GT. .0001) GO TO 81
RETURN

81 JC0UNT=JC0UNT+1
SWR=5
WRITE (6, 82)
WRITE ( 6 , 8 3 ) N , TIME , SWL , SWR , JCOUNT

82 FORMAT (5X, 'TUNING PORT Rl OPENS AT')
83 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
50 IF(JCOUNT.EQ.9) GO TO 120

IF(ABS(U(201)-U(3)).LE. 0.001) GO TO 51
RETURN

51 JCOUNT=JCOUNT+l
SWR=1
WRITE (6, 52)
WRITE ( 6 , 5 3 ) N , TIME , SWL , SWR , JCOUNT

52 FORMAT ( 5 X, 'TUNING PORT Rl CLOSES AT')
53 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
90 THEAD1=X(201)/(ABS(U(3))+A(3))

KC0UNT=KC0UNT+1
IF(KCOUNT.EQ.l) TT0T1=TT0TAL
IF(TTOTAL.GE. (TTOTl+THEADl) ) GO TO 91
RETURN

91 JCOUNT=JCOUNT+l
SWL=5
WRITE(6,92)
WRITE ( 6 , 9 3 ) N , TIME , SWL , SWR , JCOUNT

92 FORMAT (5X, 'EXHAUST PORT El CLOSES AND TUNING PORT L2 OPENS AT')
93 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
110 IF(U(3).GE.0.0) GO TO 111

RETURN
111 JC0UNT=JC0UNT+1

PSEXIT=PS0UT3
SWL=2
WRITE (6, 112)
WRITE ( 6 , 1 13 ) N , TIME , SWL , SWR , JCOUNT

112 FORMAT (5X, 'TUNING PORT L2 CLOSES AND EXHAUST PORT E2 OPENS AT')
113 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
100 IF(ABS(U(201)).GT. .0001) GO TO 101

RETURN
101 JCOUNT=JCOUNT+l

SWR=5
WRITE(6,102)
WRITE ( 6 , 10 3 )N , TIME , SWL , SWR , JCOUNT

102 FORMAT (5X, 'TUNING PORT R2 OPENS AT')
103 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
120 IF(ABS(U(201)-U(3)).LE. 0.0001) GO TO 121

RETURN
121 JC0UNT=JC0UNT+1

SWR=4
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WRITE(6,122)
WRITE ( 6 , 12 3 ) N , TIME , SWL , SWR , JCOUNT

122 FORMAT ( 5 X, 'TUNING PORT R2 CLOSES AND L.P
123 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
60 IF((R(4)-R(2)).GT.0.1) GO TO 61

RETURN
61 JCOUNT=JCOUNT+l

SWL=1
WRITE (6, 62)
WRITE ( 6 , 6 3 ) N , TIME , SWL , SWR , JCOUNT

62 FORMAT (5X, 'EXHAUST PORT E2 CLOSES AT')
63 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
70 IF(U(201) .GE.0.0) GO TO 71

RETURN
71 JC0UNT=0

SWR=1
WRITE (6, 72)
WRITE ( 6 , 7 3 ) N , TIME , SWL , SWR , JCOUNT

72 FORMAT (5X, 'CYCLE COMPLETED.')
73 F0RMAT(5X,I4,5X,F9.7,5X,3I3)

RETURN
END

AIR INLET OPENS AT'

)

RCM07590
RCM07600
RCM07610
RCM07620
RCM07630
RCM07640
RCM07650
RCM07660
RCM07670
RCM07680
RCM07690
RCM07700
RCM07710
RCM07720
RCM07730
RCM07740
RCM07750
RCM07760
RCM07770
RCM07780
RCM07790
RCM07800
RCM07810
RCM07820
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APPENDIX B

PROGRAM RCM

B. 1 . Program Description

B. 1.1. Computational Grid

The computational region is divided into 100 cells; the solution grid

points are odd numbered, e.g., 3, 5, 7 ..., 201 with 1 and 203 being the

points where the boundary conditions are specified. The even numbered points,

2, 4, 6 ..., 202 are intermediate locations where solutions are stored before

being assigned to the solution grid points. See Fig. (2).

B.1.2. Data Input

Data for various ports (exhaust, inlet, etc.) is specified in

dimensional form in S.I. units (Pascal (N/m^) for pressure, kg/ra^ for

density, ra/s for velocity etc.). Reference values are also specified in

like manner. See lines RCM00210 through 00250.

Initial data is specified through a call to an appropriate

subroutine, depending on where the calculation is started for a particular

wave diagram. For the example given in section II on the Spectra Technology

wave diagram, the computation is started at the point when the high pressure

gas inlet port just opens. The call for initial data is made to subroutine

INIT3R, which prescribes data consistent with a solid wall boundary at Che

left and a 'piston' inflow boundary at the right.

B.1.3. Non -d i mens ionalizat ion

Non-dimensionalization is carried out in lines 00540 through 00610

with entropy defined as

S = Jin (£-)
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Note that velocities are all referred to a reference sonic velocity defined

by

a c = prefaref — —
^ref

B.1.4. Structure

The main program loop starts at line 00630, for the number of time

steps specified. The time step is computed according to the appropriate CFL

condition for the method, and a random number for the time step is generated

by a call to the function subroutine WDP

.

A secondary loop to define the sequence of local Riemann problems for

the time step is set up at line 00750. For each Riemann problem defined, a

call is made to subroutine GL1MM which i) solves the Riemann problem, and ii)

samples the solution using the random number generated. The subroutine then

returns the sampled solution as the parameters PGLIM, RGLIM, UGLIM for the

pressure, density and velocity respectively. These solutions are initially

stored in the even numbered intermediate locations on the grid, and are then

assigned to either the left or the right solution grid point depending on

whether the random number was In the negative or the positive half of the

interval respectively.

A call is then made to one of the modular subroutines structured for

particular types of wave diagrams, lines 01050-01080, and the others are

commented out.

Boundary conditions are invoked after the call to the modular

subroutines which return the proper values of the switches SWL and SWR. The

structure of the boundary condition subroutines is described in section II.

This sequence completes one pass through the main loop and the process is

repeated for the number of time steps specified.
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B.2. Example Use of Program RCM

The program is set up in the following steps:

i) Line 00150 - output device designation. See B.3.

ii) Line 00190 - specify the number of time steps, k , and the

switches SWL and SWR consistent with where the

computation is to be started.

iii) Lines 00210 - prescribe flow data for various ports in

through 00250 dimensional form. See list of variables for

explanation of variable names.

iv) Lines 00490 - invoke the proper initial data subroutine and
through 00530 comment out the rest. See list of subroutines

for explanation of subroutine, function subprogram
names

.

v) Line 00660 - set the interval for number of time steps at which
a plot of the flow parameters is required.

vi ) Lines 01050 - user supplied modular subroutine for particular
through 01080 wave diagram to be computed. Comment out the rest.

vii) Line 01190 - call to plotting routine should be consistent with
interval specified in line 0660.

viii) Lines 02650 - identify proper subroutine to prescribe initial
through 03700 data (consistent with iv), and specify the data in

the subroutine in dimensional form.

ix) Lines 05470 - specify plotting parameters, viz., origins of

through 05990 plots, scales, number of points to be plotted,

color of plots, etc. Facility dependent.

The subroutines PL0T1 and PL0T2 given in the

listing are structured for DISSPLA software
installed in the facility at NPGS.

x) Lines 06040 - user supplied modular subroutine for wave diagram
through 07820 to be computed.

B. 3. Execution

The program is run in an interactive mode and is invoked through a call

to DISSPLA, available on most mainframes. After compiling the program
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(FORTRAN H Extended compiler), the following command executes it:

DISSPLA filename

If working at stations equipped with dual screens, the command on line 150 can

be of the type

CALL TEK618 + Tektronix screen

If working on a non-graphics terminal, or a single screen station, this

should be changed to

CALL COMPRS

which generates a 'DISSPLA METAFILE' to be routed later to either a screen or

a plotter, e.g., VRSTEC, IBM79, TEK618, etc. Once generated, the metafile can

be accessed and routed by the command

DISSPOP device designation

These are facility dependent commands and should be modified accordingly.

B.4. List of Important Variables (In Alphabetical Order)

A - sonic velocity
AHEAD - sonic speed of head wave of rarefaction fan

AMACH - Mach number
AL - left side sonic speed value for RP

AR - right side sonic speed value for RP

AREF - reference speed of sound
ASTAR - speed of sound in 'starred' state of RP solution

(see Fig. 3)

CFLNUM - CFL number for time step determination
DT - time step
DX - grid cell width
EPS - small number for pressure iteration in RP solver
G - ratio of specific heats, y

IDIGT - see WNORM
II - argument used in function subprogram PHI equal to either

or 1

JCOUNT - counter
K - number of time steps

KCOUNT - counter
N - counter for time steps

Nl - counter
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P - pressure
PA - flow parameter describing 'a' state in transition functions
PGLIM - pressure value returned by subroutine GLIMM
PL - left side pressure value for RP
PR - right side pressure value for RP

PREF - reference pressure
PSEXIT - static pressure at exit or outlet port
PSINL - static pressure for incoming 'piston' flow on left side

PSINR - static pressure for incoming 'piston' flow on right side

PSOUTn - n = 1,2,3 - exit static pressures for cycles with more than
one exhaust port

PSTAR - pressure in 'starred' state of RP solution (see Fig. 3)

PTOTIN - total pressure for isentropic inflow
QPRINT - specification of interval size for output
QSTOP - maximum number of iterations for solution of Riemann

problem, (RP)

R - density
RA,RB - flow parameters describing 'a' and 'b' states in transition

functions
RGLIM - density returned by subroutine GLIMM
RINL - static density for incoming 'piston' flow on left side

RINR - static density for incoming 'piston' flow on right side
RL - left side density for RP

RMU - function of Y

RR " right side density for RP
RREF - reference density
RTOTIN - total density for isentropic inflow
S - entropy
SWL - switch for left boundary
SWR - switch for right boundary
TCNTCT - time taken by contact surface to travel a certain distance
THEAD - time taken by head wave of expansion to travel a certain

distance
TIME - real time in seconds
TIMEREF - reference time

TTOTAL - cumulative non-dimensional time for number of time steps

U - velocity
UA - flow parameter for 'a' state in transition functions
UCNTCT - velocity of contact surface

UEXMAX - maximum velocity occurring at an outflow boundary
UGLIM - velocity returned by subroutine GLIMM
UL - left side velocity for RP

UR - right side velocity for RP

USTAR - velocity in 'starred' state of RP solution (see Fig. 3)

WDP - value returned by random number generator subprogram
WL - left shock wave velocity
WR - right shock wave velocity
WNORM - variable used in random number generator subprogram
X - space dimension
XCNTCT - location of contact surface
XI, XII - random numbers scaled to grid cell

60



XREF - reference length
Y - argument used in function subprogram PHI equal to PSTAR
Z - argument used in function subprogram PHI equal to either

PL or PR
ZETA - dummy variable (for initialization purposes in random

number generator)

B. 5. List of Subroutines, Function Subprograms

B.5.1. Subroutines

INIT1 - prescribes initial data corresponding to SWL=1, SWR= 1

;

e.g., shock-tube problem

INIT2L - prescribes initial data corresponding to SWL=2, SWR=1

INIT2R - prescribes initial data corresponding to SWL=1, SWR=2

INIT3L - prescribes initial data corresponding to SWL=3, SWR=1

INIT3R - prescribes initial data corresponding to SWL=1, SWR=3

PL0Ti,2 - graphics subroutines

GLIMM - solves the Riemann problem, samples the solution and
returns values for flow parameters

GE modular user supplied subroutine to simulate wave diagram
of General Electric Wave Engine

DETON - modular user supplied subroutine to simulate evacuation of

detonation chamber

SPCTRA - modular user supplied subroutine to simulate wave diagram
of Spectra Technology's Pressure Exchanger

BCL1 - prescribes boundary conditions (BC's) corresponding to

SWL=1, i.e., solid wall on left side

BCL2 - prescribes BC's corresponding to SWL=2, i.e., outflow at

constant static pressure on left side

BCL3 - prescribes BC's corresponding to SWL=3, i.e., 'piston'

inflow on left side

BCL4 - prescribes BC's corresponding to SWL=4, i.e., isentropic
inflow from reservoir on left side

BCL5 - prescribes BC's corresponding to SWL=5, i.e., wave 'tuning'
on left side
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8CR1, BCR2, BCR3, BCR4 , BCR5 - prescribe BC's corresponding to

SWR=1 ,2,3,4,5 respectively on right side

B.5.2. Function Subprograms

PHI(y,z) - required in iteration procedure for solution of RP

PHIl(PB) - describes shock transition function, ^a(Pb) » f° r

two states a and b connected by a shock wave (see

Ref. 6, Ch. Ill)

PSI(PB) - describes rarefaction transition function, ^a(Pb) »

for two states a and b connected by a rarefaction wave
(see Ref. 6, Ch. Ill)

WDP(II) - generates a random number in a van der Corput sequence
each time it is invoked. Note that it needs to be called
once from outside the main loop by specifying an argument
11=1 to initialize IDIGT and WNORM, returning a value
of for the dummy variable ZETA, and then a second time

from within the main loop with an argument 11=0 to return
a value which is the random number.

62



DISTRIBUTION LIST

1

.

Commander
Naval Air Systems Command
Washington, DC 20361

Attention: Code AIR 931 1

Code AIR 931E 1

Code AIR 93 2D 1

Code AIR 530 1

Code AIR 536 1

Code AIR 00D 14

Code AIR 93D 1

2. Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
Attention: Dr. A. D. Wood 1

Dr. M. K. Ellingsworth 1

3. Commanding Officer
Naval Air Propulsion Center
Trenton, NJ 08628
Attention: G. Mangano, PE-31 1

4. Commanding Officer 1

Naval Air Development Center
Warminster, PA 19112

Attention: AVTD

5. Library 1

Army Aviation Material Laboratories
Department of the Army
Fort Eustis, VA 23604

6. Dr. Arthur J. Wennerstrom 1

AFWAL/POTX
Wright-Patterson AFB
Dayton, OH 45433

7. Air Force Office of Scientific Research 1

AFOSR/NA
Boiling Air Force Base
Washington, DC 20332
Attention: Mr. James Wilson

63



8. National Aeronautics & Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attention: Chief, Internal Fluid Mechanics Division 3

Library 1

9. Library 1

General Electric Company
Aircraft Engine Technology Division
DTO Mail Drop H43
Cincinnati, OH 45215

10. Library 1

Pratt & Whitney Aircraft Group
Post Office Box 2691

West Palm Beach, FL 33402

.11. Library 1

Pratt -Whitney Aircraft Group
East Hartford, CT 06108

12. Library . 1

Curtis -Wright Corporation
Woodridge, NJ 07075

13. Library 1

AVCO/Lycoming
550 S. Main Street
Stratford, CT 06497

14. Library 1

Teledyne CAE , Turbine Engines
1330 Laskey Road
Toledo, OH 43612

15. Library 1

Williams International
P. 0. Box 200

Walled Lake, MI 48088

16. Library 1

Detroit Diesel Allison Division G.M.C.
P. 0. Box 894

Indianapolis, IN 46202

17. Library 1

Garrett Turbine Engine Company
111 S. 34th Street
P. 0. Box 5217

Phoenix, AZ 85010

64



8. Professor J. P. Gostelow
School of Mechanical Engineering
The New South Wales Institute of Technology
New South Wales
AUSTRALIA

19. Dr. G. J. Walker
Civil and Mechanical Engineering
Department

The University of Tasmania
Box 25 2C

GPO Hobart, Tasmania 7110

AUSTRALIA

20. Professor F. A. E. Breugelmans
Ins ti tut von Karraan de la Dynamique

des Fluides
72 Chausee de Waterloo
1640 Rhode-St. Genese
BELGIUM

21. Professor Ch. Hirsch
Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels
BELGIUM

22. Director
Gas Turbine Establishment
P. 0. Box 305

Jiangyou County
Sichuan Province
CHINA

23. Professor C. H. Wu

P. 0. Box 2706

Beijing 100080
CHINA

24. Director, Whittle Laboratory
Department of Engineering
Cambridge University
ENGLAND

25. Professor Jacques Chauvin
Universite d'Aix-Marseille
1 Rue Honnorat
Marseille
FRANCE

65



26. Mr. Jean Fabri
ONERA
29, Ave. de la Division Leclerc
92 Chatillon
FRANCE

27. Professor D. Adler
Technion Israel Institute of Technology
Department of Mechanical Engineering
Haifa 32000
ISRAEL

28. Dr. P. A. Paranjpe
Head, Propulsion Division
National Aeronautics Laboratory
Post Bag 1700

Bangalore - 17

INDIA

29. Dr. W. Schlachter
Brown, Boveri Company Ltd.

Dept. T-T
P. 0. Box CH-5401 Baden
SWITZERLAND

30. Professor Leonhard Fottner
Department of Aeronautics and Astronautics
German Armed Forces University
Hochschule des Bundeswehr
Werner Heisenbergweg 39

8014 Neubiberg near Munich
WEST GERMANY

31. Professor Dr. Ing. Heinz E. Gallus
Lehrstuhl und Institut feur Strahlantiebe
und Turbourbeitsraashinen

Rhein. -Westf . Techn. Hochschule Aachen
Templergraben 55

5100 Aachen
WEST GERMANY

32. Dr. Ing. Hans -J. Heinemann
DFVLR-AVA
Bunsenstrasse 10

3400 Geottingen
WEST GERMANY

33. Dr. H. Weyer
DFVLR
Linder Hohe
505 Porz-Wahn
WEST GERMANY

66



34. Dr. Robert P. Dring 1

United Technologies Research Center
East Hartford, CT 06108

35. Chairman 1

Aeronautics and Astronautics Department
31-265 Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

36. Dr. B. Lakshminarayana I

Professor of Aerospace Engineering
The Pennsylvania State University
233 Hammond Building
University Park, Pennsylvania 16802

37. Mr. R. A. Langworthy 1

Army Aviation Material Laboratories
Department of the Army
Fort Eustis, VA 23604

38. Professor Gordon C. Oates 1

Department of Aeronautics and Astronautics
University of Washington
Seattle, Washington 98105

39. Mechanical Engineering Department
Virginia Polytechnic Institute and

State University
Blacksburg, VA 24061
Attn: Professor W. O'Brian 1

Professor H. Moses 1

40. Professor T. H. Okiishi 1

Professor of Mechanical Engineering
208 Mechanical Engineering Building
Iowa State University
Ames, Iowa 50011

41. Dr. Fernando Sisto I

Professor and Head of Mechanical
Engineering Department

Stevens Institute of Technology
Castle Point
Hoboken, NJ 07030

42. Dr. Leroy H. Smith, Jr. 1

Manager, Compressor and Fan

Technology Operation
General Electric Company
Aircraft Engine Technology Division
DTO Mail Drop H43
Cincinnati, OH 45215

67



43. Dr. W. Tabakoff 1

Professor, Department of Aerospace
Engineering

University of Cincinnati
Cincinnati, OH 45221

44. Mr. P. Tramm 1

Manager, Research Labs
Detroit Diesel Allison Division
Genteral Motors
P. 0. Box 894

Indianapolis, IN 46206

45. Mr. P. F. Yaggy 1

Director
U. S. Array Aeronautical Research Laboratory
AMES Research Center
Moffett Field, CA 94035

46. Library 1

Code 1424

Naval Postgraduate School
Monterey, CA 93943

47. Office of Research Administration 1

Code 012
Naval Postgraduate School
Monterey, CA 93943

48. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

49. Naval Postgraduate School
Monterey, CA 93943
Attn: Professor M. F. Platzer (67PL) 1

Turbopropulsion Laboratory (67Sf) 10

68





DUDLEY KNOX LIBRARY

iii iii ill in,;
i mil

1
'" ' "'

3 2768 00341654 6


