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Discrete Verification of Necessary Conditions For Switched Nonlinear Optimal 
Control Systems 

I. Michael Ross and Fariba Fahroo 

Absua+ We conslder a fairly general class of state-constrained 
nonlinear hybrid optimal contra1 problems that are based on coor- 
dhatizlng Sunmann’a model. An event set genersllzes the notion of 
a gusrd set, reset map, endpoint set as well as the switching set. 
We present P pseudospectral (PS) knotting method that dircretizea 
the continuous-time variables of the problem. The discrete event 
conditions are imposed over the PS knots leading to P large, sparse, 
mired-variable programming (MVP) problem. The Karusb-Kuhn- 
’lhcker Conditions for the MVP ate transformed In a manner that 
makes them closely resemble the discretized necessary Conditions 
obtained from tbe Aybrid Minimum Principle. A set of closure 
conditions nre introduced to facilitate commuting the operations of 
duPllzatian and diseretiutian. An Immediate consequence of this 
is a Hybrid Covector Mapping Theorem that pmvides am order- 
preserving transformation of the Lagrange multipliers associated with 
the discretized problem to the discretized covectors associated with 
the bybrid optimal control problem. 

I. INTRODUCTION 

A fairly large class of complex control problems can be de- 
scribed under a unified framework of hybrid optimal control [4]. 
Solving a hybrid optimal control problem is an extremely chal- 
lenging task since even a smooth, nonlinear, ordinary (i.e. non- 
hybrid) optimal control problem is still widely considered to be 
quite difficult to solve [26]. A significant source of difficulty arises 
from a need to obtain feedback solutions by solving the Hamilton- 
Jacobi-Bellman (HJB) equations. As is well-known [I] ,  [SI, [E], 
the HEJ approach is beset with fundamental problems, such as the 
nonsmoothness ofthe value function [E] and the famous “curse of 
dimensionality”. An alternative approach is the Hybrid Minimum 
(Maximum) Principle [23], [24], [ZS]. Although this approach is 
more tractable than the HJB approach, it generates only open- 
loop controls. The Minimum-Principle approach is also fraught 
with fundamental computational problems due to the fact that 
the costates are adjoint to the state perturbation equations [5]. In 
other words, the dynamics-adjoint equation pair typically generate 
a numerically sensitive multi-point boundary value problem that 
may produce such wild trajectories as to exceed the numerical 
range of the computer [5]. To overcome this difficulty, direct 
methods have been employed to solve smooth optimal control 
problems arising in engineering applications [2], [9], [IO]. The 
main advantage of direct methods is that they facilitate solving 
the optimal control problem without requiring a development of 
the necessary conditions such as the adjoint equations or complex 
switching conditions in dual space. An extension of direct collo- 
cation methods for solving bybrid optimal control problems has 
been recently proposed by von Stryk and his colleagues [6], [7], 
[ 121, [27], [28] by incorporating integer programming techniques 
with sparse nonlinear programming. While significant research still 
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needs to be done to develop efficient algorithms to solve the result- 
ing large, sparse, mixed-integer nonlinear programming problem, it 
is possible, in principle, to achieve feedback solutions by predictive 
control techniques. In many applications, such as interplanetary 
spaceflight [22], the time-constants are large enough that feedback 
solutions, via real-time computation, are quite feasible with current 
hardware [19]. In this spirit, we present a Legendre pseudospectral 
(PS) knotting method as a means to verify the optimality con- 
ditions associated with a purportedly optimal hybrid trajectory. 
A key element of the Legendre PS method is the imposition of 
closure conditions [17], [la] which allows one to commute the 
operations of dualization and discretization so that the transformed 
Lagrange multipliers can be related to the discretized covectors 
associated with the Minimum Principle. This notion was exploited 
in [IS] for the “smooth” optimal control problem formulation and 
the current paper extends this concept to hybrid optimal control 
problems. 

11. HYBRID SYSTEM 
Although there are many ways to model a hybrid system, we 

adopt Sussmann’s model [23], [24], [25] as it is readily amenable 
to an application of the Hybrid Minimum Principle. Since our 
focus is largely practical applications, we coordinatize Sussmann’s 
coordinate-free descriptions by way of functional inequalities. 
Except for the state- and control functions, I(.) and U ( . ) ,  all 
functions are assumed to be piecewise differentiable; however, note 
that inequalities on the functions imply the inclusion of nonsmooth 
objects. We consider problems defined over a finite horizon and 
hence the time-dependent relations are assumed to hold for almost 
all t over this horizon. With these preliminaries in mind, let Q be 
a given finite set of cardinality, NQ E W. The members of Q 
are called locations. For each q E Q, consider a continuous-time 
controlled dynamical system, 

a) = f ( d t ) ? W , 9 )  (1) 

where f(.,p) : W N z  x WN: + E l N :  is a controlled vector field 
indexed by Q, N(.) E W, while D E BN: and U E RNz are the 
continuous-time state and control variables respectively. Similarly, 
we define a (hybrid) path constraint as, 

h ( 4 ) , 4 ) , 9 )  5 0 (2) 

where h(.,q) : BN: x RNz - WN:, and 0 implies a 
component-wise inequality. Although practical problems [20] have 
two-sided inequality constraints with lower and upper bounds, it 
suffices to consider a one-sided inequality like (2) for theoretical 
purposes since a two-sided inequality may easily be transformed 
to a one-sided form. Note also that (2) includes a coordinatization 
of the invariant set [I41 (or the domain), Inu : Q + 2x3 given 

with X = WN:. Now, let (.,U) and (=’,U’) denote the 
continuous-time state and control variables associated with two 
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locations, q,q’ E Q. When it is not an empty, the Event Set, 
E(q, q’), is defined as, 

I , I  
%q’) = { ( z , u , T , z , u , T ) :  

e (x ,u ,T ,x ’ ,u ’ ,T ‘ ,q ,q ’ )  5 0 1 . (4) 

where e( . ,q,  q‘) : lRNz x BNz x W x RNz‘ x RNz‘ x R - W”:“ 
is called the event function [ZO] associated with q and q’. Similar 
to the reasons argued for the path constraints, we consider one- 
sided inequalities without loss in generality. In an event set, the 
clock is allowed to be reset (i.e. allowing r # T I )  so that we can 
treat the endpoint constraint set in exactly the Same manner as 
a switching set [24]. The clock resets also allow us to efficiently 
handle certain computational complexities as described in [ZO] and 
illustrated in [ZZ]. The event set generalizes the notion of a Guard 
Set, p : Q x Q + 2‘, and Reset Map, ‘R : ‘2 x Q x X i 2‘, as 
these are given by, 

G(q,q’) = { Z E W N .  : (z,u,T,z’,u‘,T’) E S ( q , q ’ ) }  

R(q,q’,x)’ = {z’ E wN= : ( x , u , T , z ’ , u ’ , T ’ )  E S(q,q‘)} 

where S(q,q’) c E(q,q‘)  is the Switching Set, 

S(q, q’) = {(=,U, 7, z’, U’, T’) E E(q, 9’) : 

T = r’ E R} 
IfS(q,q’) # B,then(q,q’) E QxQisanedgeofadigraphwhose 
vertices are given by Q. Finally, for each q E 4, we associate a 
running cost, 

while for any pair, (q, 4’). we associate an event cost, 

F( . ,q )  : BNZ x IRNZ + w 

E(., s,q‘) : W q ,  9’) + R U 

that takes the value m whenever E(q, 9‘) = 0. In a practical (com- 
putational) setting, we handle the evaluation, 00, for the switching 
set S(q, q’), by simply setting the corresponding element of the 
adjacency matrix to zero (see [ZI]) so that a transition from q to 
q’ is disallowed. 

111. HYBRID BOLZA PROBLEM (PROBLEM H) 
Let q = [qo, q l , .  . . , q N s ]  be a discrete-variable mahix that 

represents a finite sequence of locations where q’ E Q for 
i E N. = { O , l ,  ..., N 8 }  and N,  E Z+ is the number of 
switches. Let a = [ao,a,, . . . , aN.1 and b = [bo, b 1 , .  . . , bNll]  be 
real-valued matrices representing finite sequences of real numbers 
associated with q such that [ai, b;] ,  a; # b; ,  are compact subsets 
of B. We define the initial time, t o  = ao, and the final time as 
t f  = b.v.. Usually, we will have a,+l = b; (as in the case of 
a switch), but it is not necessary to make this assumption. The 
fieedom in not making this assumption is particularly helpful in 
practical problem solving via discretization as noted in [ZO] and 
exploitedin[ZZ].Letz(.): t H (x ’ ,x l , . . . zNa)andu( . ) :  t ct 
(U’, U’, . . . uNa)  represent the continuous-time state and control 
functions associated with q. The tuple, (z(.),u(.),q,a, b, N8) ,  
is called a primal execution. Following Sussmann [25] we define 
4, as, 

i < N. 
(5) 

i = N,  
i i l  = { if 

This operation simply allows us to w a p  indices since q i ,  for i = 
& I , .  . . , N,  is equal to q“’, for i = N,,  0 , 1 , .  . . , N,  - 1. All 

the point-wise conditions for the hybrid problem, including the 
boundary conditions, can be succinctly evaluated as 

( z ’ ( b i ) ,  u i ( b , ) ,  bi,  z“l(a,+l), u”l(a,+l), a,+1, 

q‘,qiF1) E E(q’,q’sl) V i  E N ,  (6) 

The hybrid B o l a  problem is to find a primal execution that 
minimizes the cost function, 

bi 

pi, + J.< ~ ( z ( t ) ,  u(t), 4’) .) (7) 

subject to the dynamics, (l), the path constraints, (Z), and the event 
conditions, (6). Any pnmal execution that satisfies (I), (2) and (6) 
is called a primal feasible execution. 

IV. FIRST-ORDER NECESSARY CONDITIONS (PROBLEM ‘HA) 
A rigorous development of the necessary conditions for Problem 

H is given by Sussmann [23], [24], [ZS]. The first-order necessary 
conditions can be articulated as a generalized equation in primal- 
dual space. This equation can be obtained by applying the gener- 
alized Lagrange Multiplier Rule to Problem H. For the purposes 
of brevity, we simply state these conditions and note some key 
points related to the Lagrangian for Problem H, as it plays a 
central role in both theory and computation. There are a number 
of other “Lagrangians” associated with the problem as will be 
apparent shortly. In the following, we also limit ow discussions to 
normal extremals, i.e. assume that the normality condition holds. 

For each q E &, we define the control Hamiltonian function, 
W, as the real-valued function, 

H ( X , z , u ,  n) = F(z ,u ,q )  + XTf(z,u, 9)  (8) 

where X E RN: is a covector that satisfies the adjoint equation, 

I .  a ~ [ t ]  
-X(t) = - ax (9) 

where the notation Hit] is used as a shorthand for 
H ( X ( t ) , x ( t ) , u ( t ) , q ) .  ‘The D-form of the Lagrangian of 
the Hamiltonian, P, is defined as [13], 

- 
H ( p , X , z , u , q )  = H ( X , z , u , s )  + p T h ( z , w q )  (10) 

where p E W N z  satisfies the complementarity condition, 

0 5 p(t )  I - hjt] _> 0 (11) 

where the notation, “I,” means that pT( t )h[ t ]  = 0 in addition 
to the stated inequalities Note that the covectors, X and f i  are 
implicit functions of q similar to the state or control variables. 
The gradient normality condition associated with the Hamiltonian 
minimization condition is simply given by, 

az 
au - = o  

Equations (1 I) and (12) :are essentially the Karush-Kuhn-Tucker 
(KKT) conditions associated with the minimization of the Hamil- 
tonian. Now, for each q, q‘ E Q, we define an event Lagrangian, 
E, associated with the pair, ( E , e ) ,  as, 

E ( U , z , u , r , l  ,‘U ,T , 4 , 9 )  =E(z,U,T,z’,u‘,T’,q,ql) 

- 
1 1 1  I - 

+U T e(z ,u ,T ,x ‘ ,u ’ ,T ’ ,q ,q ’ )  (13) 
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where U E WN:.' satisfies the complementarity condition, 

According to the Sussmann's Hybrid Minimum (Maximum) Prin- 
ciple [23], a putative optimal execution satisfies the switching 
conditions, 

where we have used the shorthand notation, 

The switching conditions are essentially a generalization of the 
transversality conditions and the Hamiltonian value conditions. 
All of these conditions can be derived fiom the generalized 
Lagrange Multiplier  le after constructing the Lagrangian for the 
full problem, 

- 
J[v( . ) ,  14.)) A(,), 4.), u(.),p, a, b, Nal = 

whose importance in terms of a sufficiency condition will be 
apparent shortly. In the above equation, the notation, pit, i] stands 

Problem 71" is now defined as finding a primaldual execution, 
{U( .), p(.) ,  A(,), z( . ) ,  U ( . ) ,  q, a, b, N s }  $at is primal feasible 
and satisfies the adjoint equation, (9). the first order Hamiltonian 
minimization condition, (12), the switching conditions, (15) and 
(16), and the complementarity conditions, (11) and (14). 

for ~ ( ~ ( t ) , X ( t ) , z ( t ) , u ( t ) , q ' ) .  

v. THE PSEUDOSPECTRAL KNOTTING METHOD 
The details of the pseudospectral (PS) knotting method are 

described in [16], [ZO]. Here we briefly sun?marize the main 
points of the PS method as it pertains to the hybrid system 
model developed in the previous sections..The goal'of the PS 
knotting method is to solve Problem H by approximating it 
to a mixed variable programming (MW')  problem in a manner 
that permits the discretization to commute with dualization. This 
means that a putative optimal execution must automatically satisfy 
the discretized necessary conditions. Solving hybrid problems by 
this approach is far simpler than developing and solving for the 
necessary conditions. 

A general PS method [3] consists of two major steps. In the 
first step, for each i E N., we select ( N '  + 1) cardinal functions, 
&$, 1 = 0,1,. . . , N',  over the time interval, [as, b;], such that they 
satisfy the Kronecker delta condition, 

of(t',) = St* k = 0,1,, . . , N' 

where the grid points, T' = { t : ,  t i , .  . . ,t"}, are called nodes. 
The nodes are chosen in a manner consistent with approximation 
theory (e.g. shifted Gauss points). The continuous-time primal and 
dual variables are approximated as Lagrange interpolants, 

where yi are the values of y N i ( t j )  and y(.) denotes a generic 
continuous-time variable. Once these basis functions are chosen, 
various operations on the continuous-time variable are commuted 
with the approximation implied in (18). Thus, for example, inte- 
gration is approximated as, 

where wi, 

w: := Jb, &)dt  
ai 

form weights for a discrete 1-form (inner product). Similarly, 
we approximate the derivative of y( t )  by the derivative of the 
approximation, 

N' 

Y(t) Y YNi(t) = C y f & ( t )  (20) 
1=0 

In the second major step of the method, the equations of approxi- 
mation are obtained obtained by projecting the problem equations 
(Problem H and HA) over the node points. Since a discrete event 
occurs at a; and b,, we choose the ends of the grid, T', such 
that ti = a; and t" = b;. These are the shifted Lobano points. 
Since a switch occurs when a;+, = b,, we have double Lobano 
points, t;+' = thi over a switch. These double Lobatto points 
are called PS knots [ZO] and facilitate distinct left- and right-hand 
limits, precisely the type of conditions required for a switch. The 
derivatives of yN' (t) over T' are evaluated from (20), where the 
differentiation matrix, 

0:' = &( t i )  I , k  = 0,1,. . . , N' 

provides a rapid procedure for evaluating the derivatives at the 
node points. 

In the Legendre PS method, which is the focus of the current pa- 
per, the grid points are the shilled Legen&-Gauss-Lobam CGL) 
points where the "shift" is achieved by mapping the physical 
domain, [as, b,]  3 t', to a computational domain, [-1,l] 3 T ,  

by the affine transformation, 

.(ti) = 2 t ' - ( b ; + a ; )  
(bi - a i )  

where we have abused notation in using r to imply both the 
transformation as well as'the transformed variable. The LGL 
weights and the differentiation matrix, 

otherwise 

with T;, k = 0,1,. . . , N' denoting the LGL nodes [3] satisfy 
a discrete form of integration by parts that is explicitly used in 
the derivation of the main theorem of this paper (details omitted, 
hut please see [18]) . The integration-by-parts lemma can be 
summarized as, 
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Lemma I: For,each i E N,, the elements of the Differentia- 
tion Matrix, D r  , and the LGL weights, wi, satisfy a discrete 
integration by parts condition, 

is a discrete controller,that determines the sequence of locations 
q by way of the equation, 

q = Q A, A E UD C {0, l}Nox(N"+l) (27) 

where WD is the set of allowable discrete controls that represent 
a transcription of the switching sets, S(q, q') V (q, q') E Q X e. 
In incorporating (27) under Problem H N ,  we now treat A as a 
discrete controller while q lakes the role of the discrete state. 

VII. DISCRETIZED NECESSARY CONDITIONS (PROBLEM 

For i = 0,. . . , N,, let 

d D 3 '  + wfD$ = 0 k,l = 1 , .  . . , N' - 1 (21) 

In addition, the Lobaao terms, satisfy a normality condition, 
2v0D00 = -1, and 2wh,D{INi = 1. Finally, C k = o w ;  = 
(b; -a i ) .  

N *  

For f proof of this, see [ 1 I]. 
In the following sections we will denote by (yi] the collection of ~ H " N )  

the discretized continuous-time variable for k = 0,. . . , N', i = 
0,. . . N,. N i  , N i  

x N i  ( t i )  = xi+;(t;) pN' (t') = ,,, I81 i (ti) 

Following a procedure outlined in Section V, it can be shown that, 
for i = 0 , .  . . , N. andik = 0,. . . , N', the discretized necessary 

k 0  1-0 
VI. DISCRETIZED PRIMAL PROBLEM (PROBLEM H N )  

For i = 0,. . . , N., let 

N i  N i .  

XNi(t')  = Czf&(t') U " i ( t i )  = CUf&(l*) conditions are given by, 
I=0 I=0 E a u k  (p;,A:,z: ,u:,q*)  = o  (28) Following the procedure outlined in Section V, Problem 71 can 

be approximated as the sparse M W  (Problem XN) of finding 
the discretized primal execution, {[=:I, [U;], q, a, b, N.} that 
minimizes, 

OSpL I -b [k , i ] tO (29) 

(30) 

JN([z;],[~:],q,a,b,N.) = [E(zh+,uhi,b;, 0 5 vi I - e[;] 2 o (31) 

(32) 

N i  

- ax; ai? ( pk i ,  A k  ., xk '., uk i ,  4 i) f CD;'Af=o 

x;,--=o 

A;,+-=O 

N .  k 0  

i=O aE[i] 

N' aE[i] 
z;*l,u;T1, a;*l, q i ,  q'+') axhi 

(33) 

(34) 

(35) 

+E ( 5 0  F(r:,u:,q')u:] (22) 8s; 
aqi]  

. .  aqil 
H(XN'rxhi ,u~i ,q*)  =-- ab; 

:H(x;,x;l,u;l,q') = - 
f(xi,ub,q')-xD;'xf = 0 (23) atli 

N i  

k 0  
where the notation, h[k, 4 ,  E[i] and E[i] are used as a shorthand 

h(&&9') 5 0 (24) for, 
~ ( z ~ ~ , ~ ~ ~ , b ; , x ~ T 1 , u ~ T 1 , u ; ~ l , q ' , q ' * l )  5 0 (25) 

h[k,i] := h(x(t'(T;)),u(t'(T;)),q*) 
for k = 0,. , , , N' and i = 0,. . , , N,. Any discretized primal 
execution that satisfies (23)-(25) is called discrete primal feasible. 

jqi] := q v i , z & , ,  b,, & I , ~ ,  iil ,a ,F1,qi ,  q G ~ )  
'+l ui41 

In a practical implementation of this MVp, it may be necessary e[il := e(zk,, I *i, %o , o ,%?.I, q', 9 

to define an explicit algebra associated with the set &. For Thus, Problem H A N ,  can now be defined as a mixed 
example, if Q is generated by some finite automaton, then the variable, mixed complementarity problem of finding 
discrete dynamics that generates q can be easily added to the {v ' ,  [@;I, [Ai] ,  [.I], [ui],q,a, b, N,} that satisfy (23) - 
definition of Problem E N .  Inspired by the work ofvon Stryk and (25) and (28) - (35). It'is already apparent that Problem H N  is 
his colleagues [27], [28], we illustrate this point by way of using significantly easier to solve than Problem RAN.  

VIII. KKT CONDITIONS (PROBLEM x N A  ) a binary control variable as follows, 
We define the operation I over the Cartesiamproduct, &x{O, l}, 

The KKT conditions .for'Problem H N  can be generated quite 
easily after constructing the Lagrangian. As noted in Section V and 
elsewhere [IS], [17], we' can use the discrete weights to construct 
the I-form so that we can define the Lagrangian as, 

as, 
q * o = 0  q * l = q  V 9 E Q  

Let Q be a row matrix whose columns are the NQ elements of 
p. Let A E {o, I}~Q'(~-+') with the property that 

subject to, 

- 
We define q * A as a termwise operation so that each column 1 k=O 

N i  

1613 
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product Q * A in the usual sense of a matrix operation. Thus, A, 

N, N i  

q + 0 = 0 + q = q so that the * operation is extended to the + x(~)Twkh(z; ,u; ,q'j  - c ( T k j T w ; c  D$z: (36) 
k=O k-0 k 0  



where s, 2 and I' are the Lagrange multipliers associated with 
(23) - (25) respectively, and, 

B[i] := F ( ~ ' , x ~ , , u ~ i , b i , 5 ~ ~ 1 , ~ ~ ~ 1 , a i i l , g ' , q ' S ' )  

Note that the weights are not used in defining & I .  Examining (36) 
and (17), it is very tempting to set Xi = A&, pi  = .E;, and vi = 
I' since the approximation of (17) by way of (19) is exactly equal 
to (36). In general, this is not hue; that is, the discretized covectors 
are not equal to the Lagrange multipliers associated with the 
discretized problem. This is because dualization and discretization 
are not commutative operations [17], [IS]. 

When the necessary conditions arising from the stationarity of 
the Lagrangian are derived, they do not resemble the discretized 
necessary conditions. On the other hand, when Lemma 1 is used, 
it then becomes straightforward to show the following: 

-I 

For i = 0,. . . , N. and k = 0,. . . , N', we get, 

(37) 

where I, implies the discrete weighted complementarity condi- 
tion for each i EN.. For i = 0,. . . , N. and k = 1,. . . , N' - 1, 
we have, 

Finally for i = 0,. . . , N,, we have 

0 5 ij' I - eli] 2 0 (40) 

where cb and chi are arbitrary vectors in PNz' .  Thus, Problem 
RNA can now be defined as a mixed variable, mixed complemen- 
tarity problem of finding {I', [ & I ,  [SI, [ x i ] ,  [U; ] ,  q, a, b, N.} 
that satisfy (23) - (25) and (37) - (46). 

Ix. CLOSURE CONDITIONS 

Letx:= {[x~.,[ui],q,a,b,N,} a n d A : =  { u ' , [ p i ] , [ A i ] } .  
We denote by MAN(x)  the multiplier set corresponding to x. 

MI""() := {A : A satisfies (28) - (35)} (47) 

Similarly, we define, A := {ij',[jii],[z]} and M N A ( x )  the 
multiplier set, 

WN*(x) := {x : x satisfies (37) - (46)) (48) 

- 

Clearly, MAN(x)  c MNA(x) .  That is, every solution to Problem 
N A N  is also a solution to Problem H N *  but not vice versa. 
Introducing the closure conditions, 

c; = 0 (49) 
Cki = 0 (50) 

(51) 

(52) 

H ( % , x ; , u b , g ' )  = H (?Ni,z;,,u;,,g;) 

W f H  ( X : , x f , u : ,  $) - - 
(bi - a i )  

we generate a new multiplier set, 

kN*(x )  := {x E MN*(x) : x satisfies (49) - (52)) (53) 

Ohviously, k N * ( x )  N M"(x). Thus, the imposition of closure 
conditions on Problem 'HNA implies that every solution of the 
modified Problem HN' is also a solution to Problem 'HAN. 

X. THE HYBRID COVECTOR MAPPING THEOREM 
Let M"(x) # 0 and {Si, [X],[z]} E GNA(x); then the 

bijection, G N A ( x )  - M"(x), is given by, 

(54) 
- AN(& = j;t p"(ti) = p:, U = U 

The proof of this follows quite simply from the closure conditions. 
A schematic of the main results are depicted in Fig. I. 

mnvergenat 

Problem 'HA Problem 'HAN 
discretization covector 

(indirect) 1 1Mapping Theorem t 
Problem HNA 

Co""ergenca 

Problem H. * ~ Problem 'XN 
discretization 

(direct) 

of ule Main Resulu: The gap denotes the set MN*(x) \  

Remark 1: Although (54) offers Eulerian-like elegance, note 
that this equation was obtained only after imposing the closure 
conditions and defining the discrete Lagrangian as a weighted I -  
form. No such additional conditions are necessary for Eulerian 
discretizations. 

Remark 2: The grid A' (see Sec.V) contains N' points. Unlike 
a PS method, a forward Euler method does not collocate a 
derivative at the point tk i .  Hence, derivative information across 
two adjacent grids, T' and A'+', cannot be transferred at a discrete 
event even if double node points were defined as "Eulerian knots.'' 
A similar notion holds for a backward Euler method or Runge- 
Kutta Methods. 

Remark 3: Since dualization and discretization are noncommu- 
tative operations (see Fig. I ) ,  a solution to the Mvp Problem R N A  
may be primal feasible but not satisfy the discretized necessary 
conditions (i.e. Problem H"). Such a spurious solution can be 
easily detected from the Hybrid Covector Mapping Theorem by 
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solving-the system of gcnerdlized (set-valued) linear ~quationr that 
define M N * ( x )  for a given primal execution, If M K A ( x )  = II, 
w e  have a spunous solution. 

XI. CONCLUSIONS 

I t  is far simpler IO discretize and solve a hybrid optimal control 
problem than to solve for the necessary conditions rcsultmg 
from thc l l ybnd  Minimum Pnnciple. Rather than use Eulenan 
discreti7ations that gencratc a linear convergence rate. the pseu- 
dospectral IPS) knotting mcihwl i s  proposed as m cficienr higher- 
order method to solve hybrid problems. PS knols prowde a simple 
method to handle switches. resets and other event condittons. 
Solving the PS-discretued hybrid problem may result in spurious 
solutions. The  hybrid coveclor mapping theorem can be used 
IO detect these spunous solutions by checking the oprimality 
conditions over the node poinu.  
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