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Unscented Kalman Filtering: NPSAT1 Ground Test Results

Pooya Sekhavat, ¤ Qi Gong y and I. Michael Ross z

NPSAT1 is a small satellite that employs magnetic sensing and actuation for attitude control. The

spacecraft orientation and angular velocity should, therefore, be estimated from the magnetometer

readings. The inherent nonlinear dynamics of the system poses a challenging problem on the observer

design. This paper demonstrates the ground test results of NPSAT1 state estimation using the

Unscented Kalman Filter (UKF) - a fairly recent method with inherent appeals of extended Kalman

filter but with no need for linearization; thus more suitable for highly nonlinear filtering and control

applications. The quaternion-based modeling constraint that the quaternion has a unit norm is

enforced by treating the norm of the quaternion as a dummy measurement. The experimental results

show the superior performance of the UKF in practice.

I. Introduction

NPSAT1 is a small experimental satellite designed and constructed at the Naval Postgraduate School
and is scheduled to launch in 2007 (Fig. 1). The satellite is a prolate non-spinning body that primarily uses
a three-axis active magnetic attitude control. Magnetic attitude control facilitates the system robustness,
light weight, low power consumption, and cost-efficiency and is an attractive choice for low-orbit satellites.
The NPSAT1 magnetic control system is comprised of a magnetometer and three magnetic torque rods.
Interaction between the three magnetic dipole moments generated by the torque rods and the Earths magnetic
field produces a resulting torque that actuates the spacecraft. As far as the previous literature on magnetic
attitude control1–5 and, in particular, magnetic attitude control for NPSAT16,7 is concerned, the control
command is generated using the current spacecraft position and/or angular velocity. Having a magnetometer
as the only available sensor onboard, rules out any possibility of direct position and/or velocity measurement.
Therefore, it is imperative to estimate them using magnetometer readings.

One of the most powerful estimation techniques that has been commonly used in various dynamic systems
is the Kalman filter, initially designed for linear systems and later extended for nonlinear systems (EKF). The
EKF design is based on linearizing the system dynamics along the system trajectory and applying standard
linear Kalman Filter to get the estimation. This enables a better capture of the nonlinear characteristics of
the system during the state estimation and, thus, be potentially attractive for spacecraft attitude control
with dominant nonlinear characteristics.8–11

While EKF serves as a popular tool for nonlinear estimation, it continues to endure some of the fun-
damental limitations of the original Kalman filter. In particular, the linearization inherent in the EKF
algorithm can be the potential cause of ultimate divergence and failure of the scheme. Moreover, derivation
of Jacobian matrix for complex nonlinear systems can be cumbersome and prone to human errors.

As a major step forward, Julier and Uhlmann proposed the so-called Unscented Kalman filter (UKF),12,13

that circumvents the above-mentioned problems. The UKF is “founded on the intuition that it is easier to
approximate a probability distribution than it is to approximate an arbitrary nonlinear function or trans-
formation”.12 By introducing a set of sample points, called sigma-points, that capture the higher order
statistics of the system, UKF successfully avoids the EKF’s linearization step. This property alone provides
significant advantage by extending the application of the method to systems with discontinuity, table look
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Figure 1. Rendition of NPSAT1 in orbit.

up, or even systems with rule-based decision making where Extended Kalman Filter is not applicable. Fur-
thermore, by preserving the higher order information of the system, UKF improves both the accuracy as
well as the convergence properties of the estimated results. Remarkably, it has been shown that UKF has
roughly the same computational complexity as the EKF14,15 and its superior performance can be achieved
with no extra computational burden.

Within the context of attitude estimation, UKF has been recently applied for attitude estimation of
spacecraft without considering the effects of magnetic actuation.15–17 The numerical simulations presented
in these studies have illustrated the superior performance of UKF in spacecraft attitude estimation. In the
present work, we extend the application of UKF to magnetically actuated spacecraft and, both theoretically
and experimentally, demonstrate its successful performance for attitude estimation.

Typically, the attitude state is represented by a quaternion vector to prevent singularity at certain
attitudes. Since the norm of the quaternion vector is always equal to one, this method of state representation
introduces an additional constraint on the attitude states that should be enforced during any state estimation.
In case of using EKF or UKF for attitude estimation, failure to do so may cause the covariance matrix of
the quaternion state to be singular.8 The common remedy used in previous studies is to replace the four
element quaternion with a newly defined three-element error quaternion.8–10,15,16,18 In this paper, we adopt
a new simple strategy to impose the unity-norm constraint of the quaternion. Simply put, we treat the norm
of the quaternion as a dummy output. In other words, although there is no real sensor to measure the norm
of the quaternion vector, we know its “sensed” value is always equal to one from physics. Therefore, we can
augment the norm of the quaternion to the real sensor measurements and proceed with the standard UKF
algorithm. In this paper we show that this simple idea resolves the unity-norm constraint issues in very easy
way that is desirable for real-time experimental implementations.

The paper is organized as follows. First, we illustrate the performance of the proposed method of incor-
porating the unity-norm of quaternion vector through NPSAT1 simulations. We then take the next step of
examining UKF algorithm in practice through NPSAT1 ground tests. To verify the convergence of estima-
tion routine, the estimated attitude states are compared with an alternative set of independently measured
values obtained from an optical measurement system installed on the test rig. The experimental ground
test results not only confirm the previous numerical works on UKF advantages in attitude estimation,15–17

but also illustrate its successful performance in the particular case of highly nonlinear magnetic actuation
systems.
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II. Dynamic Model of NPSAT1

In this section we briefly describe the dynamics of the NPSAT1 spacecraft. The details can be found in
Ref. [7,19]. Choosing the standard quaternion and body rates as the state variables, we have x = (q, ω) ∈ R7,
where

• q = (q1, q2, q3, q4): quaternion of the body frame with respect to the orbit frame,
• ω = (ωx, ωy, ωz): rotation rate of the body frame with respect to the inertial frame expressed in the

body frame.

and the quaternion must lie on S3 given by the following state constraint at each time instant

q2
1 + q2

2 + q2
3 + q2

4 = 1 (1)

Following the above notations, the kinematic equations of motion for the NPSAT1 is19

q̇1(t) =
1
2

[ωx(t)q4(t)− ωy(t)q3(t) + ωz(t)q2(t)

+ω0q3(t)] (2)

q̇2(t) =
1
2

[ωx(t)q3(t) + ωy(t)q4(t)− ωz(t)q1(t)

+ω0q4(t)] (3)

q̇3(t) =
1
2

[−ωx(t)q2(t) + ωy(t)q1(t) + ωz(t)q4(t)

−ω0q1(t)] (4)

q̇4(t) =
1
2

[−ωx(t)q1(t)− ωy(t)q2(t)− ωz(t)q3(t)

−ω0q2(t)] (5)

where ω0 is angular velocity of the orbit with respect to the inertial frame.
Euler’s equations can next be used to derive the dynamic equations of motion. Control torques are

applied as a result of the interaction between the dipole moments generated by the three magnetic torque
rods u = (u1, u2, u3) ∈ R3 and the Earth magnetic field. Thus,

ω̇x(t) =
I2 − I3

I1
[ωy(t)ωz(t)− 3

µ

r3
0

C23C33] +

1
I1

[Bz(q, t)u2 −By(q, t)u3] (6)

ω̇y(t) =
I3 − I1

I2
[ωx(t)ωz(t)− 3

µ

r3
0

C13C33] +

1
I2

[Bx(q, t)u3 −Bz(q, t)u1] (7)

ω̇z(t) =
I1 − I2

I3
[ωx(t)ωy(t)− 3

µ

r3
0

C13C23] +

1
I3

[By(q, t)u1 −Bx(q, t)u2] (8)

where (I1, I2, I3) are the principal moments of inertia; µ is Earth gravitational constant; r0 is the distance
from the center of spacecraft to the center of the Earth and Cij denote the corresponding element in the
Direction Cosine Matrix

Cq =




q2
1 − q2

2 − q2
3 + q2

4 , 2(q1q2 + q3q4), 2(q1q3 − q2q4)
2(q1q2 − q3q4), q2

2 − q2
1 − q2

3 + q2
4 , 2(q2q3 + q1q4)

2(q1q3 + q2q4), 2(q2q3 − q1q4), q2
3 − q2

1 − q2
2 + q2

4


 .

Also, (Bx, By, Bz) are Earth’s magnetic field in the body frame defined as



Bx(q, t)
By(q, t)
Bz(q, t)


 = Cq




B1(t)
B2(t)
B3(t)


 (9)
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where (B1(t), B2(t), B3(t) are the components of the Earth’s magnetic field in the orbit frame and can be
modeled as20

B1 =
Me

r3
0

[cos (ω0t)[cos (ε) sin (i)− sin (ε) cos(i) cos(ωet)]

− sin(ω0t) sin(ε) sin(ωet)]

B2 = −Me

r3
0

[cos(ε) cos(i) + sin(ε) sin(i) cos(ωet)]

B3 =
2Me

r3
0

[sin(ω0t)[cos(ε) sin(i)− sin(ε) cos(i) cos(ωet)]

+2 cos(ω0t) sin(ε) sin(ωet)].

For NPSAT1, the parameters used in the above equations are as follows:

• (I1, I2, I3) ≈ (5, 5.1, 2)kg.m2

• ω0 =
√

µ
r3
0
≈ 0.00108rad/s

• µ = 3.98601× 1014m3/s2

• r0 = 6978± 40km

• Me = 7.943× 1015Wb.m; the magnetic dipole moment of the Earth

• i = 35.4◦; the orbit inclination

• ε = 11.7◦; is the magnetic dipole tilt

• ωe = 7.29× 10−5rad/s; is the spin rate of the Earth.

The complete dynamic model of NPSAT1 is given by equations (2)—(8). Clearly, it is a fairly complex
nonlinear system. Note that the magnetic field, (B1(t), B2(t), B3(t)), is time-variant. Therefore, the overall
system is a time-varying dynamic system. Also, the maximum applicable control torque is subject to the
limitations on the available dipole moments, i.e.,

|ui| ≤ 33A.m2, i = 1, 2, 3.

NPSAT1 does not have any sensor for direct measurement of the state variables, (q, ω). In fact, the only
onboard sensor is a three-axis magnetometer that measures the magnetic field in the body frame. However,
since the NPSAT1 attitude control is through active actuation of magnetic torque rods, the magnetometer
reading at each time instant is a combination of the Earth magnetic field, (Bx, By, Bz), and the magnetic
field generated by actuators, (Bxu, Byu, Bzu). Thus, the output function of the system (2)—(8) is

h(q, ω, u, t) =




Bx(q, t)
By(q, t)
Bz(q, t)


 +




Bxu(u1, u2, u3)
Byu(u1, u2, u3)
Bzu(u1, u2, u3)


 (10)

On the other hand, the magnetic filed generated by each actuator, (Bxu, Byu, Bzu), is a linear function
of the actuator dipole moment, (u1, u2, u3),21

Buk
=

µ0uk

2πZ3
k = 1, 2, 3.

where Z is the distance normal to the coil, and µ0 is the permeability constant. Therefore, knowing the
control moment, uk, and the slope of the linear functions Buk

= f(uk), we can then calculate and subtract
Buk

from the sensor measurements to obtain the pure Earth magnetic field, (Bx, By, Bz).
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III. Unscented Kalman Filter Design for NPSAT1

As explained in previous sections, the major difference between an EKF and a UKF lies in the prediction
step of the filter. EKF uses linearization technique to propagate the mean and the covariance while UKF
utilizes the so-called sigma point in order to generate the prediction. This elimination of linearization step
helps UKF provide improved accuracy over the EKF. This is due to the fact that the linearization step
of the EKF scheme only preservers the first order system statistics. On the other hand, the UKF sigma
point propagation preserves both the first- and second-order statistics and results in considerably improved
convergence properties. This is particularly important for highly nonlinear systems like NPSAT1 where
poor convergence of the estimator can degrade the stability of the closed-loop control system and eventually
make the system unstable. Therefore, in this study, UKF is adopted for observer design. The details of the
standard UKF algorithm is included in the Appendix. More details can be found in the Refs. [12, 13,15].

While UKF has served as an accurate and efficient tool for nonlinear observer design, we cannot enforce
the constraint equation (1) by employing the standard UKF algorithm for attitude estimation. As a result
of not enforcing such constraint equation, the covariance matrix of the quaternion state will be singular.8

Since this has also been a problem in EKF applications for attitude estimation, it has been previously
addressed and various solutions has been proposed in the literature. For example, in Ref.[ 15] the problem
is addressed via employing a three-element error-quaternion state for attitude representation. In the present
work, we adopt a simple new strategy that requires less computations and, thus, is more suitable for real-time
implementations.

Consider a general nonlinear system

ẋ = f(x, u, t) (11)

with measurement output

y = h(x, u, t)

and algebraic constraint

φ(x, u, t) = 0

that should always be satisfied along the system trajectory. In other words, although there is no real sensor
to measure the quantity φ(x, u, t), we know that it must be zero at all times. This means that φ(x, u, t) can
be treated as a dummy output and be augmented into the real measurements. We can, then, construct a
new output function

ỹ =

(
h(x, u, t)
φ(x, u, t)

)
(12)

and proceed with the standard UKF and EKF observer design technique. This strategy provides a simple
way to incorporate the constraint information into the filter design procedure with no need for state trans-
formation. Note that, when the filter converges, the algebraic constraint (1) is automatically enforced. This
method of enforcing the unity-norm constraint of quaternion is extremely simple to implement and does not
require any modification in the standard UKF/EKF routine.

By applying the above-explained idea for the state estimation of NPSAT1, we construct the following
augmented output function

h(q, ω, u, t) =




Bx(q, t) + Bxu(u1, u2, u3)
By(q, t) + Byu(u1, u2, u3)
Bz(q, t) + Bzu(u1, u2, u3)

q2
1 + q2

2 + q2
3 + q2

4 − 1


 (13)

Equations (13) can now be replaced into the left-hand side of (9) and then used in conjunction with
dynamic equations (2)—(8) in the standard UKF algorithm (see Appendix).
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IV. Simulation Results

Before proceeding with experiments, the above explained method is simulated with the actual NPSAT1
parameters detailed in section II. The simulation results with zero control input are shown in Fig.2 and Fig.3.
In these simulations, the actual initial orientation of the spacecraft in all three directions is 45◦ and the actual
initial angular velocities are (ωx, ωy, ωz) = (0.002, 0.03, 0.02) rad/s. However, the filter starts with the initial
orientation of 90◦ in all three directions and the initial angular velocities of (ωx, ωy, ωz) = (0.004, 0.06, 0.04)
rad/s. In other words, the initial state errors are deliberately chosen to be 100% larger than their actual
real values. It is clearly seen that despite such a large initial errors, all states converge to their real values.

0 500 1000 1500
−1

−0.5

0

0.5

1

t

q 1

0 500 1000 1500
−1

−0.5

0

0.5

1

t

q 2

0 500 1000 1500
−1

−0.5

0

0.5

1

t

q 3

0 500 1000 1500
−1

−0.5

0

0.5

1

t

q 4

Figure 2. Quaternion estimation for NPSAT1. The solid lines are the real and the dashed lines are the
estimated values.
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0
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0.05
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t

ω

ω
x
 

ω
z
 

ω
y
 

Figure 3. Angular velocity estimation for NPSAT1. The solid lines are the real and the dashed lines are the
estimated values.

In order to better follow the trend of state convergence, Fig.3 illustrates the state estimation error defined
as

‖e(t)‖2 = ‖q1 − q̂1‖2 + ‖q2 − q̂2‖2 + ‖q3 − q̂3‖2 +
‖q4 − q̂4‖2 + ‖ωx − ω̂x‖2 + ‖ωy − ω̂y‖2
+‖ωz − ω̂z‖2.

It is clear that the error converges to zero despite such an unrealistically large initial estimation errors.
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Figure 4. Estimation error.

V. Ground Test Experiments

As it is not easy to create an artificial space-like environment on the surface of the Earth, an air-bearing
platform is used to resemble NPSAT1 during the ground tests. The experimental results presented in this
section are part of the extensive test experiments conducted before the NPSAT1 launch. They are intended
to specifically address the applicability of the proposed UKF procedure in practical maneuvers.

A. Experimental Test Rig

Figure 5 illustrates the air-bearing test rig. The table is capable of moving about three perpendicular axes
that resemble the NPSAT1 attitude motion in orbit. The table stand is secured on a floor covered with
electrically-safe rubber matting. The platform is equipped with on-board power supply comprised of four
12-volt and two 6-volt batteries. Three MT-30-2-CGS Microcosm magnetic torque rods are aligned with
the principle axes of the air-bearing. The test-bed also includes a Honeywell Smart Digital Magnetometer
HMR2300 aligned with the principle axes of the air-bearing. The magnetometer measures the instantaneous
magnetic field in each x-y-z direction. The onboard single-board computer (SBC) is a repackaged PC
running a 400 MHz Pentium. The air-bearing Input/Output (I/O) is orchestrated with a simple onboard
microcontroller which accepts ASCII-encoded serial-based (RS232) commands. The SBC interfaces with
the magnetometer and the torque control board via serial commands and the microcontroller. The SBC is
connected to the command-generating Laptop by serial communication through a Linksys wireless Ethernet
bridge. The communication is facilitated by using the Matlab Instrument Control Toolbox. The overall
platform is symmetrical and is passively balanced by using dummy weights that are installed symmetric to
the actual components such as magnetic torque rods, magnetometer, wireless bridge, etc.

The UKF algorithm only uses the magnetometer readings for state estimation. In order to validate the
UKF estimated states, the air-bearing is also equipped with an optical measurement system that indepen-
dently measures the attitude angles. It consists of an onboard laser diode, and indicator screen, CCD camera
and a PC with the required software to transform the camera readings into Euler angles.

B. Modified Air-bearing Dynamic Equations

As a result of using the air-bearing platform for test experiments, the original NPSAT1 equations of motion
(2)—(8) should be modified based on the air-bearing dynamic features. The main difference in the actual
NPSAT1 and the laboratory test rig is the fact that the dynamic equations of NPSAT1 are derived with
respect to the spacecraft center of mass whereas the air-bearing equations are with respect to its center
of rotation which normally does not coincide with its center of mass. Consequently, the in-flight gravity
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Camera 

Magnetometer 

Laser Diode 

SBC 

Power supply 

Wireless Bridge 

Torque Rods 

Wireless Communication 

Figure 5. Air-bearing test rig.

gradient torque is replaced with the following external gravitational torque:



Tx

Ty

Tz


 = mgl



−C23

C13

0


 ,

where m is the mass of the table platform, g is the gravitational constant and l is the distance between
the center of mass and the center of rotation of the table. This results in the modified dynamic equations
(6)—(8) as follows:

ω̇x(t) =
I2 − I3

I1
ωy(t)ωz(t)− mglC23

I1
+

1
I1

[Bz(q, t)u2 −By(q, t)u3] (14)

ω̇y(t) =
I3 − I1

I2
ωx(t)ωz(t) +

mglC13

I2
+

1
I2

[Bx(q, t)u3 −Bz(q, t)u1] (15)

ω̇z(t) =
I1 − I2

I3
ωx(t)ωy(t) +

1
I3

[By(q, t)u1 −Bx(q, t)u2] (16)
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Equations (14)—(16) together with (2)—(5) constitute the complete dynamic model for the airbearing test-
bed. The airbearing parameters used in the above dynamic equations are listed in Table B.

(I1, I2, I3) (2.6, 2.87, 1.45)kg ·m2

m 59kg

l 0.56mm

Table 1. Parameters of the air-bearing test-bed

Finally, as explained in section III, the magnetometer measurements are combination of the Earth’s
magnetic field (Bx, By, Bz) and the magnetic field generated when actuators are in action, (Bxu, Byu, Bzu).
In order to derive the real values of the Earth magnetic field, the latter magnetic contamination should be
calculated and subtracted from the measurements. A simple experimental analysis reveals that the linear
relation between the actuator-generated magnetic field and the actuator control signal can be expressed as
follows

Bxu(u1, u2, u3) = −0.0012u1 − 0.000039u2 − 0.00051u3

Byu(u1, u2, u3) = −0.000013u1 − 0.0017u2 − 0.00011u3

Bzu(u1, u2, u3) = 0.000049u1 − 0.00022u2 + 0.0017u3

C. Results and Analysis

In the the first set of experiments, we apply a constant control

u1 = u2 = u3 = 33A/m2

to the system and estimate the system states using the explained UKF algorithm. The only measurement
available to the UKF is the magnetic field measured from the magnetometer. The motion starts when the
spacecraft is oriented near (q1, q2, q3, q4) = (0, 0, 0, 1). However, similar to the simulations discussed in Sec
IV, the filter starts with large initial errors of (q1, q2, q3, q4) = (0.4,−0.2, 0.1, 0.9). In fact, the filter initial
conditions do not even satisfy the unity-norm condition of equation (1). The UKF estimated quaternion and
angular velocities are depicted in Figs. 6 and 7, respectively.
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Figure 6. UKF Estimated quaternion. Solid lines represent the estimations and dashed lines are the laser
diode measurements.

Next, the convergence of the filter is verified in two different and completely independent ways. The first
verification method is to compare the UKF estimated quaternion with the camera angular measurements.
Although neither quaternion nor the angular rates can be measured during NPSAT1 mission in orbit, the
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Figure 7. UKF Estimated angular velocities.

ground test-bed is equipped with a CCD camera capable of recording the Euler angles (θ, φ, ψ) throughout
the motion. The Euler angles can then be transformed to quaternion by employing




q1

q2

q3

q4


 =




sin(θ/2) cos((φ− ψ)/2)
sin(θ/2) sin((φ− ψ)/2)
cos(θ/2) sin((φ + ψ)/2)
cos(θ/2) cos((φ + ψ)/2)




The result of such measurement and transformations are the dotted lines included in Fig. 6. It can be seen
that the estimated and camera-measured quaternion coincides within the camera’s precision of 2.5◦.

As a second measure of convergence, we calculate the right-hand side of equation (9) using the UKF
estimated states. If convergence is achieved, the UKF-based calculated right-hand side values for the mag-
netic field should match the experimental measurements of magnetometer (left-hand side). This is shown in
Fig. 8. The excellent match between the two is another indication that the estimation scheme has indeed
converged.
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Figure 8. The magnetic field. Solid lines are the measurement from the magnetometer and the dashed lines
are the estimated values based on UKF estimated states.

To further illustrate that despite the initial violation of the quaternion norm from unity, the filter con-
vergence will automatically enforce the unity of the quaternion norm, the norm of the estimated quaternion
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is depicted in Fig. 9. It verifies that the quaternion is preserved to be one after the filter convergence is
achieved.
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Figure 9. The norm of the estimated quaternion.

In the second set of experiments, we test the practical performance of the UKF scheme under the time-
varying control trajectory shown in Fig.10. It is the open-loop control for 135◦ time-optimal slew maneuver
of the spacecraft about its z-axis. The details of how the control trajectory is derived is beyond the scope of
this paper and is discussed elsewhere.19

0 20 40 60 80 100 120
−40

−30

−20

−10

0

10

20

30

40

t (s)

u 
(a

m
p/

m
2)

u
1

u
2

u
3

Figure 10. The time-varying control been applied.

Figs. 11 and 12 show the UKF estimated states under the above time-varying control trajectory. Similar
to the the previous case with constant control, two independent tests are conducted to verify the successful
convergence of the filter under the time-varying control. The dotted lines on Fig. 11 are the quaternion
captured by the CCD camera throughout the maneuver. They clearly match the estimated quaternion and
confirm the filter convergence.

The second test compares the measured magnetic field values (left-hand side of (9)) with the values
calculated using the UKF-estimated quaternion (right-hand side of (9)). They provide a yet another evidence
implying the filter convergence under the time-varying control.
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Figure 11. Comparison of the quaternion estimation. Solid lines represent the UKF estimations and dashed
lines are the laser diod measurements.
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Figure 12. Estimation of the angular velocities by UKF.

VI. Conclusions

NPSAT1 is a gravity-friendly prolate spacecraft that uses active magnetic attitude control. A three-axis
magnetometer is the primary onboard sensor that measures the Earth magnetic field during the motion.
Magnetometer measurements would then need to be transformed into attitude and angular velocity for
control design. In this paper, the Unscented Kalman Filter is designed and experimentally implemented for
NPSAT1 attitude estimation. The quaternion unity-norm is enforced through a simple new idea that does
not require transformation of four-element quaternion vector into three-element error-quaternion. Instead,
the quaternion norm is treated as a dummy output with a “sensed” value of one and augmented into the real
sensor measurements. The successful performance of the algorithm is shown through simulations and test
experiments. The experiments are conducted on an airbearing test rig that resembles the spacecraft motion
in the laboratory environment. Different sets of experiments illustrate the superior performance of the filter
under both constant and time-varying control. The convergence of UKF scheme in both cases is validated
in various ways including an independent measurement of attitude using an optical measurement system.
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Figure 13. The magnetic field. Solid lines are the measurement from the magnetometer and the dashed lines
are the estimated values based on UKF estimated states.

VII. Appendix

A. UKF Algorithm

Consider a general time-varying nonlinear system

ẋ = f(x, u, t) (17)
y = h(x, t)

where x is the state, u is the control and y is the measurement, respectively. Let sequence {tn}∞n=0 be the
sampling time and xn = x(tn), yn = y(tn).

All Kalman filters have a two-step structure. The first step is to get the prediction of the state, output,
denoted as x̃n, ỹn, and the covariance matrices:

P̃ xx
n = E[(xn − x̃n)(xn − x̃n)T ]

P̃ yy
n = E[(yn − ỹn)(yn − ỹn)T ]

P̃ xy
n = E[(xn − x̃n)(yn − ỹn)T ].

Once those predictions are calculated, the second step is to correct them using the current measurements.
The state is updated according to a simple formula

x̂n = x̃n + K(yn − ỹn) (18)

where x̂n is the estimation of x(tn) and K is called the Kalman gain matrix. By minimizing the trace of the
covariance matrix,

P̂ xx
n = E[(xn − x̂n)(xn − x̂n)T ],

it is easy to show

K = P̃ xy
n [P̃ yy

n ]−1 (19)
P̂ xx

n = P̃ xx
n −KP̃ xy

n KT . (20)

The prediction of the state, x̃n, is indeed the predication of the mean. Extended Kalman Filter estimates
the mean and the covariance by approximating the nonlinear dynamics by a linear one and propagating the
mean and covariance to this linear system. Unscented Kalman Filter calculates the prediction of the mean
and the covariance with no linearization. The UKF assumes that at every sampling instance, the state x is
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always a normally distributed variable. The mean and the covariance information of this random variable
can be stored in a set of specially selected points called sigma points. One simple choice of such sigma points
is given below12

σi = E(x)±
√

NxP , i = 1, 2, . . . , Nx

where E(x) is the mean of the random variable x, P is the covariance matrix and Nx is the dimension of x.
It can be shown that the nonlinear transformation of the sigma points preserves the system statistics up to
the second order in a Taylor series expansion.12

Using the above concept, a prediction of the state and the covariance matrices can be carried out as
follows

• Based on previous step estimations of the state, x̂n−1, and the covariance matrix, P̂ xx
n−1, a set of sigma

points can be calculated as

σi = x̂n−1 ±
√

NxP̂ xx
n−1, i = 1, 2, . . . , Nx;

• Propagate all the sigma points to the nonlinear dynamic with σi as the initial condition, i.e.,

ż = f(z, u, t),
z(tn−1) = σi, i = 1, 2, . . . , Nx;

and denote zi = z(tn), gi = h(zi, tn).

• Calculate the mean (prediction) of the state and the output as

x̃n =
1

2Nx

2Nx∑

i=1

zi

ỹn =
1

2Nx

2Nx∑

i=1

gi;

• The prediction of the covariance matrices are calculated by

P̃ xx
n =

1
2Nx

2Nx∑

i=1

(zi − x̃n)(zi − x̃n)T (21)

P̃ yy
n =

1
2Nx

2Nx∑

i=1

(gi − ỹn)(gi − ỹn)T (22)

P̃ xy
n =

1
2Nx

2Nx∑

i=1

(zi − x̃n)(gi − ỹn)T

Once the prediction of x̃n, P̃ xx
n , P̃ yy

n and P̃ xy
n are available, the update is given by equations (18)-(19)-(20).

There are different ways to deal with the process noise and the measurement noise. For instance, one
can augment the noises with the state to form a new augmented state vector.12 This method can take the
full advantage of the unscented transformation at the price of increasing computational burden; since more
sigma points are generated. In this paper, we assume the process and the measurement noise are purely
additive to the model and simply add their covariances to the covariances of the state and the output, i.e.,
we change the formulas (21)-(22) to the following

P̃ xx
n =

1
2Nx

2Nx∑

i=1

(zi − x̃n)(zi − x̃n)T + Q

P̃ yy
n =

1
2Nx

2Nx∑

i=1

(gi − ỹn)(gi − ỹn)T + R

where Q and R represent the covariance of the process and measurement noise, respectively.
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