1973-05-08

An analysis of algorithms for hardware evaluation of elementary functions

Franke, Richard H.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/29706

Downloaded from NPS Archive: Calhoun
An Analysis of Algorithms
for
Hardware Evaluation of Elementary Functions
by
Richard Franke

Approved for public release; distribution unlimited.
Abstract: Algorithms for the automatic evaluation of elementary functions were studied. Available algorithms obtained from current literature were analyzed to determine their suitability for hardware implementation, in terms of their accuracy, convergence rate, and hardware requirements. The functions considered were quotient, arctangent, cosine/sine, exponential, power function, logarithm, tangent, square root, and product.

This task was supported by: Naval Electronics Laboratory Center
San Diego, CA 92152

NPS-53FE73051A
8 May 1973
Table of Contents

1.0 Introduction 1
2.0 Error Analysis Considerations 2
3.0 Unified Algorithms 4
3.1 Coordinate Rotation Methods 4
3.2 Pseudo-Division/Multiplication Methods 10
3.3 Normalization Methods 16
4.0 Algorithms for Specific Functions 17
4.1 Quotient 17
4.2 Arctangent 29
4.3 Cosine/Sine 33
4.4 Exponential 37
4.5 Power Function 41
4.6 Logarithm 42
4.7 Tangent 46
4.8 Square Root 47
4.9 Product 56
5.0 Conclusion 60
Appendix A: Block Diagrams 61
Appendix B: CORDIC Simulation Program 69
1.0 Introduction

The purpose of this study was to identify and analyze mathematical algorithms for possible hardware implementation. Emphasis was placed on the evaluation of elementary functions, such as square root, logarithm and exponential, trigonometric functions, and multiply and divide. The study was directed toward algorithms for binary computers, although some references are included which address themselves to radices 10 [56], 16 [18], and -2 [53], [54], [65].

We have not assumed that any fixed degree of accuracy was required. Rather, we have generally concentrated on methods which are flexible enough for the accuracy to be a function of the number of iterations performed. We have generally assumed that extremely low precision is not sufficient, thus ruling out consideration of methods which are essentially table-look-up, with or without interpolation (e.g., [23], [52], [57]). Low precision interpolation, such as Mitchell [43], and variations of it ([11], [27], [39]) have not been studied.

The commitment of a large amount of hardware can sometimes be used to decrease the execution time for evaluation of functions. The use of cellular arrays has been proposed for multiplication [13], division [37], [62], [3], square root [9], [22], [38], and logarithm [15]. While this idea is promising in terms of speed, we have concentrated on algorithms to be implemented with the use of only a moderate amount of parallel processing.

A number of the proposed algorithms are unified in the sense that with variations in certain parameters the same procedure can be used to evaluate any one of several functions. A description of three algorithms of this type will be given in Section 3, before proceeding with a discussion of algorithms for specific functions in Section 4. A short consideration of error analysis is given in Section 2.
2.0 Error Analysis Considerations

The error involved in evaluating a function consists of three parts: (i) Roundoff error is accumulated in doing the necessary arithmetic; (ii) The methods are interative, and convergence is obtained only to within a specified tolerance, thus truncation error occurs; and (iii) If the intermediate results are carried to additional bits of accuracy to reduce roundoff error accumulation, an error is committed by reducing the number of bits in the final result to machine precision.

We will generally assume that we are dealing with fractional numbers which involve N fraction bits. This is compatible with the notion of floating point arithmetic, where the value of the exponent, or characteristic, is taken care of by a separate normalization procedure. This may be performed before or after the algorithm we discuss. More is said about this in discussing the various functions.

Suppose that M operations where roundoff error may occur are performed. If the error committed each time is bounded by ϵ, the total error can not exceed $M\epsilon$. Assuming N fraction bits, we would probably want the roundoff error to be bounded by 2^{-N-1}, or $M\epsilon \leq 2^{-N-1}$. Thus $-\log_2 \epsilon \geq N + 1 + \log_2 M$.

Roundoff error is decreased by increasing the precision of the intermediate results; say, use J "guard" bits for a total of N + J fraction bits. Then

$$\epsilon = K \cdot 2^{-N-J-1},$$

where

$$K = \begin{cases}
1, & \text{rounding} \\
2, & \text{chopping}
\end{cases}$$

Thus, (1) in the above, yields $-\log_2 K + N + J + 1 \geq N + 1 + \log_2 M$.

*The term chopping will refer to simply truncating after N + J bits without regard to the N + J + 1st bit. The term truncation error will be defined later.
or

\[J \geq \begin{cases} \log_2 M & \text{for rounding} \\ \log_2 M + 1 & \text{for chopping} \end{cases} \]

The truncation error in these algorithms occurs when a function \(g(x) \) is to be evaluated at a point \(\alpha \), and actual evaluation point is \(\alpha - \gamma \). This error is the result of truncating an infinite process after a finite number of steps. If \(g \) is differentiable, which it is in our case, the difference in the function values is \(g(\alpha) - g(\alpha - \gamma) = g'(\alpha^*)\gamma \), where \(\alpha^* \) is between \(\alpha \) and \(\alpha - \gamma \). The number \(\gamma \) is related to the convergence criterion used in the algorithm, and in most cases it will be bounded by \(2^{-N-1} \), the same as the roundoff error bound we will assume.

The choice of bound for truncation error and roundoff error should be undertaken together, since it does not make good sense to choose either so that the truncation or roundoff error bounds differ significantly from each other. That is, it would not be meaningful to do enough iterations in a calculation to make the truncation error as small as \(2^{-20} \) if the roundoff error could be as big as \(2^{-16} \). Conversely, it is wasteful to hold roundoff error to \(2^{-20} \) if one is trying to obtain accuracy to \(2^{-16} \).

In line with the above proposed selection of \(J \), the truncation error bound should be made about \(2^{-N-1} \) also. The total error could then be as large as \(2^{-N} \), in the calculated value. It is then necessary to chop or round this result to \(N \) bits, which introduces an additional error of at most \(2^{-N} \) or \(2^{-N-1} \), respectively. The final value could then be in error by as much as \(2 \cdot 2^{-N} \) or \(3/2 \cdot 2^{-N} \). These are bounds, and in the usual case the error will be smaller. One should keep in mind that they are sharp bounds, in the sense they may be approached closely in a given case.
It appears that it would certainly be worthwhile to round to \(N \) bits after the final iteration, since this procedure gives a significantly smaller total error bound than that for chopping. If the error bound given previously for the results of the iterations (before the final round) are not sufficiently accurate, the bound on this part of the calculation can be reduced to \(2^{-N-1} \) from \(2^{-N} \) by the performance of one additional iteration, using one more guard bit. The total error bound can never be made smaller than \(2^{-N-1} \), since that is the bound for the error in the final rounding operation.

The error bounds given in Section 4 will be for the \(N + J \) bit result, before the final round to \(N \) bits, the added error bound for the final rounding being the same for all cases where \(J > 0 \).

3.0 Unified Algorithms

Algorithms which, with small modifications, can evaluate one of several functions are basically of three types. One is formulated as a coordinate rotation problem, another is formulated as a "pseudo-division/multiplication" process, while a third type is a normalization procedure. We will discuss each of them in this section.

3.1 Coordinate Rotation Methods

The Coordinate Rotation Digital Computer was first discussed by Volder [64], who considered rotations in the usual circular coordinate system. It was indicated that work was also done in hyperbolic and linear coordinate systems, but this was not reported in detail. An earlier report by Volder [63], was not available. Liccardo [31] did a master's thesis on the CORDIC methods, and included the hyperbolic system. He also outlined procedures for multiply and divide. Linhardt and Miller [34] included the details of the hyperbolic system, but not the linear system. Walther [66] presented the unified algorithm and his paper tied together the rotations in the three
different coordinate systems. A paper by Perle [47] also appeared, which
included a method of obtaining $\sin^{-1}x$. The algorithm for $\sin^{-1}x$ does not
fit the pattern, in that it does not generalize to hyperbolic and linear
systems. Very recently, Schmid and Bogacki [56] discuss the implementation
of the CORDIC algorithm in radix 10.

Basically, the CORDIC method involves taking a sequence of rotations
(with radial distortion) of an initially rotated coordinate system. The
initial angle of rotation is $z_0 = z$. A point $(x_o, y_o) = (x, y)$ is specified
by giving its coordinates with respect to the rotated coordinate system.
We generate the following sequence of points by the rotations; $(x_o, y_o),
(x_1, y_1), \ldots, (x_n, y_n)$, where

$$
\begin{align*}
x_{i+1} &= x_i + m_1 \delta_i y_i \\
y_{i+1} &= y_i - \delta_i s_i x_i
\end{align*}
$$

(3)

Here m is parameter indicating the type of coordinates for the rotations
(1, 0, -1 for circular, linear, hyperbolic, respectively), $s_i = \pm 1$ determines
the direction of rotation, and the δ_i are specified constants. The angles
z_i of the rotated coordinate system, and radii R_i of the radius vectors to
the (x_i, y_i) are given by

$$
\begin{align*}
z_{i+1} &= z_i + s_i \alpha_i \\
R_{i+1} &= R_i \left(1 + m \delta_i^2 \right)^{\frac{1}{2}}, \text{ where} \\
\alpha_i &= m^{-\frac{1}{2}} \tan^{-1} \left(m^{\frac{1}{2}} \delta_i \right), \text{ and} \\
R_o &= \left(x_o^2 + y_o^2 \right)^{\frac{1}{2}}.
\end{align*}
$$

(4)
is specified, as indicated previously. We see that each \((x_i, y_i)\) is the location of the (radially distorted) point \((x_o, y_o)\), with respect to a coordinate system rotated through angle \(z_i\). Also note that

\[
\begin{align*}
 z_n &= z_o + \alpha \\
 R_n &= R K o_m, \text{ where} \\
 \alpha &= \sum_{i=0}^{n-1} s_i \alpha_i, \text{ and} \\
 K_m &= \prod_{i=0}^{n-1} (1 + m \delta_i^2)^{1/2}
\end{align*}
\]

are independent of the \((x_i, y_i)\), except insofar as they may influence the \(s_i\).

In terms of the initial values \(x_o\) and \(y_o\), it can be shown that

\[
\begin{align*}
 x_n &= K_m \{ x_o \cos (am_k^2) + y_o m_k^2 \sin (am_k^2) \} \\
 y_n &= K_m \{ y_o \cos (am_k^2) - x_o m_k^2 \sin (am_k^2) \}
\end{align*}
\]

It is necessary that the initial values of \(x_o, y_o, \) and \(z_o\) be restricted, both for purposes of representing them in the computer, and to guarantee convergence of the algorithm. We say more about this later. With the appropriate restrictions on \(x_o, y_o, \) and \(z_o, \) and judicious choice of the \(s_i, \) the values of \(x_n, y_n, \) and \(z_n\) can be forced to approach that values indicated in Table 1. The terms rotation mode (\(s_i\)'s chosen to force \(z_n\) to zero) and vectoring mode (\(s_i\)'s chosen to force \(y_n\) to zero) were coined by Volder and are descriptive. The choice of \(s_i\) is as follows. In rotation mode

\[
 s_i = \begin{cases}
 1 & \text{if } z_i < 0 \\
 -1 & \text{if } z_i \geq 0.
 \end{cases}
\]

-6-
In the vectoring mode

\[s_i = \begin{cases}
1 & \text{if } y_i \geq 0 \\
-1 & \text{if } y_i < 0
\end{cases} \]

The latter is dependent on \(x_1 \) being non-negative. This is easily adjusted for in cases where \(x_0 \) is negative, as we will note in the pertinent sections.

The choice of \(\delta_i \) is critical to the entire procedure and in order to facilitate computation, we want each \(\delta_i \) to be a power of two. Thus the transformations (in a binary computer) are accomplished by shifting and adding. In order that the radial distortion constant, \(K_m \), be independent of the input data, it is necessary that the magnitudes of the \(\delta_i \) be independent of the input data. Thus the same sequence of rotations must always be done, except that the direction of rotation may vary. Walther gives the choice of \(\delta_i \) given in Table 2. We also list the maximum value of \(\alpha \) obtainable with this sequence, as well as the corresponding value of \(K_m \) and the number of iterations, \(N_m \), required so that \(\alpha_{N_m} \geq 2^{-N-1} \).

We will see that with appropriate range reduction techniques, discussed for the individual functions in the next section, that the sequences given in Table 2 are adequate.

Because the last rotation of magnitude \(\alpha_{N_m} \) must be accomplished, the value of \(z_{N_m+1} \) can be as large as \(\alpha_{N_m} \), in the rotation mode, and the value of \(y_{N_m+1} \) can be as large as \(x_{N_m} \delta \), in the vectoring mode. The truncation error for the CORDIC algorithm is based on \(\alpha_{N_m} \), then.
Rotation mode

\[
\begin{array}{cccc}
\lim_{n \to \infty} x_n & \lim_{n \to \infty} y_n & \lim_{n \to \infty} z_n \\
1 & K_1(x \cos z - y \sin z) & K_1(y \cos z + x \sin z) & 0 \\
0 & x & y + x \cdot z & 0 \\
-1 & K_{-1}(x \cosh z + y \sinh z) & K_{-1}(y \cosh z + x \sinh z) & 0 \\
\end{array}
\]

Vectoring mode

\[
\begin{array}{cccc}
1 & K_1(x^2 + y^2)^{1/2} & 0 & z + \tan^{-1}y/x \\
0 & x & 0 & z + y/x \\
-1 & K_{-1}(x^2 - y^2)^{1/2} & 0 & z + \tanh^{-1}y/x \\
\end{array}
\]

Table 1

<table>
<thead>
<tr>
<th>m</th>
<th>(p_i) sequence (\delta_i = \pm 2^{-p_i})</th>
<th>Max (\alpha)</th>
<th>(K_m)</th>
<th>(N_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1,2,..., (n)</td>
<td>-1.74</td>
<td>1.0</td>
<td>(N + 2)</td>
</tr>
<tr>
<td>0</td>
<td>1,2,3,..., (n)</td>
<td>1.0</td>
<td>1.0</td>
<td>(N + 1)</td>
</tr>
<tr>
<td>-1</td>
<td>1,2,3,4,4,..., (n)</td>
<td>-1.13</td>
<td>~.80</td>
<td>(N + 1 + R^*)</td>
</tr>
</tbody>
</table>

*Repeated values are 4,13,...,k, 3k + 1, \(R\) denotes the number of repeated values, e.g., if \(N = 16\), \(R = 2\).
The values of K_m and $\alpha_i = m^{-\frac{1}{2}} \tan^{-1}(m^{\frac{1}{2}} \delta_i)$, $i = 1,2,..., N_m$, must be available, and as with most algorithms in this class, it is assumed these will be stored in a read-only-memory. Note that in practice, for the algorithm to operate for all three values of m, values of the α_i for all three m, $(\tan^{-1}2^{-i}, 2^{-i}, \text{and} \tanh^{-1}2^{-i})$ would need to be stored.

The greatest asset of the CORDIC algorithm is its versatility. It is, in fact, even more versatile than would appear at first glance, since functions related to those of Table 1 can be evaluated by pre- or post-manipulation of the data. For example, \sqrt{w} may be obtained by setting $x = w + \frac{1}{4}$, $y = w - \frac{1}{4}$, and entering the algorithm in the vectoring mode with $m = -1$, followed by a division by K_{-1}.

The main disadvantage of the method is that it requires a fixed number of iterations (rotations), whether needed or not, to avoid changing the constant K_m. DeLugish [16] gives a partial solution to the problem, which we will discuss later. Also, the CORDIC algorithm could be used in part, as we note later, in Section 4.3.3, such that the radial distortion constant is eliminated.

3.1.1 Error Reduction for Certain Functions

For functions which are zero when the argument is zero, special procedures must be used to obtain results which are accurate to N significant digits. Generally the normalization procedures handle this automatically, but we will discuss briefly some functions where this is not the case.

When the sine, tangent, or arctangent of a small argument, in floating point form, is desired, we would like the result to be accurate to as many significant digits as possible. The procedures outlined in Section 4 do not result in this desired accuracy. We will note in Section 4 that all the
algorithms for these functions reduce to the CORDIC algorithm, essentially, and Walther [66] has treated this problem. The solution is to scale the argument by an appropriate power of two, beginning the rotations with an appropriately small angle and continuing for the usual number of rotations. This requires the inclusion of a set of distortion constants, depending on the initial angle of rotation, as well as additional values for the a_i. The details of the implementation can be found in Walther. The above should also be done for the hyperbolic system if the hyperbolic sine, tangent, and arctangent are desired. If the hyperbolic system is to be used to calculate the exponential, logarithm, and square root, the increased accuracy there is more apparent than real, since the initial or final transformation negates the increased accuracy.

3.2 Pseudo-Division/Multiplication Methods

Consider the division of y by x using the method of successive subtractions. This can be organized (in binary) as follows. Let y and x be normalized so that $\frac{1}{2} \leq x, y < 1$. Then $\frac{1}{2} < y/x < 2$. Let the quotient be represented by the number $Q = \sum_{i=0}^{n-1} q_i 2^{-i}$, where each q_i is 0 or 1. The q_i are determined by the following loop. Let $D_0 = y$, $d_0 = x$, $Q_0 = 0$. For $i = 0,1,\ldots, n$, let

$$q_i = \begin{cases} 0 & \text{if } D_i \geq d_i, \\ 1 & \text{if } D_i < d_i, \end{cases}$$

Then $D_{i+1} = 2(D_i - q_i d_i)$
$$d_{i+1} = d_i$$
$$Q_{i+1} = Q_i + q_i 2^{-i}.$$
For multiplication, the procedure is reversed. Let \(x = \sum_{i=0}^{n-1} x_i 2^{-i} \). Then the product \(xy = p_n \) is generated by \(p_0 = 0, y_0 = y \), and for \(i = 0,1,\ldots, n-1 \),

\[
\begin{align*}
p_{i+1} &= 2(p_i + x_i y_i) \\
y_{i+1} &= y_i
\end{align*}
\]

The product is assumed to be accumulated in a register of length \(2n+1 \) bits. At the end of the multiplication the product has been shifted \(n+1 \) bits, into the most significant \(n \) bits of the register, and chopping (or rounding) to the most significant \(n \) bits gives the result. Error occurs only when the least significant half is chopped or rounded off.

A pseudo-division or multiplication is a procedure like one of the above, where the \(q_i \)'s or \(x_i \)'s are not necessarily the coefficients in radix 2, and the divisor \(d_i \), or multiplicand \(y_i \), may be modified at each iteration.

Meggitt [40] devised a class of these methods for division/multiplication, logarithm/exponential, tangent/arctangent, and square root. While Meggitt's paper was developed for radix 10, the conversion to any other radix is simple.

Meggitt's algorithms correspond to a restoring division. The test for \(D_i \geq d_i \) would be done by computing a tentative value of \(\frac{1}{2} D_{i+1} \), \(\frac{1}{2} D_{i+1}^{(t)} = D_i - d_i \), then testing \(\frac{1}{2} D_{i+1}^{(t)} \) for sign. If \(\frac{1}{2} D_{i+1}^{(t)} \) is non-negative, \(q_i = 1 \), and \(D_{i+1} = 2(\frac{1}{2} D_{i+1}^{(t)}) \). If \(\frac{1}{2} D_{i+1}^{(t)} \) is negative, \(q_i = 0 \) and \(D_{i+1} = 2(\frac{1}{2} D_{i+1}^{(t)} + d_i) \). That is, we must "restore" the value of \(D_i \) in the latter case.

It is not necessary to restore the value of \(D_i \), however, since it is possible to compute \(\frac{1}{2} D_{i+2}^{(t)} \) directly from \(D_{i+1}^{(t)} \). Suppose \(q_i = 0 \), then we have
\[
\frac{1}{2} D_{i+2}^{(t)} = D_{i+1} - d_{i+1} = 2 D_{i} - d_{i+1}
\]
\[
= 2\left(\frac{1}{2} D_{i+1}^{(t)} + d_{i}\right) - d_{i+1}
\]
\[
= D_{i+1}^{(t)} + d_{i} - (d_{i+1} - d_{i}).
\]

Depending on \((d_{i+1} - d_{i})\), this expression may or may not be easier to compute than by first restoring \(D_{i}\). In normal division, \(d_{i+1} = d_{i}\), so in that case it is definitely easier to use the above, non-restoring division. We then compute the sequence \(D_{i}^{(t)}\) rather than \(D_{i}\), with

\[
\frac{1}{2} D_{i+1}^{(t)} = D_{i}^{(t)} - d_{i} \text{ if } q_{i} = 1, \text{ or}
\]
\[
\frac{1}{2} D_{i+1}^{(t)} = D_{i}^{(t)} + d_{i} \text{ if } q_{i} = 0, \text{ and that } q_{i} \text{ is } 1 \text{ or } 0 \text{ as } D_{i}^{(t)} \text{ is non-negative or negative, respectively.}
\]

Sarkar and Krishnamurthy [55] modified Meggitt's algorithms to correspond to a non-restoring pseudo-division/multiplication. This results in a faster algorithm. It would appear this is more advantageous in radix 10 than in radix 2. The above mentioned paper incorporated a possibility of restoration or non-restoration, depending on which appeared to be more advantageous, i.e., which left the smaller dividend.

We list in Tables 3 and 4 the initialization and iteration equations for Meggitt's algorithms in radix 2. In cases where it is assumed a number is expressed in a variable radix \((\log(1 + 2^{-1}) \text{ or } \tan^{-1} 2^{-1})\), this must be first obtained by a modified division. The procedure given by Meggitt is as follows, where \(D\) is to be recoded in one of the above radices.

\[
D_0 = D
\]
For $i = 0, 1, \ldots, n - 1$
\[d_i = 2^i \log(1 + 2^{-i}), \quad [\text{or: } 2^i \tan^{-1} 2^{-i}] \]
\[q_i = \begin{cases}
1 & \text{if } D_i \geq d_i \\
0 & \text{if } D_i < d_i
\end{cases} \]
\[D_{i+1} = 2(D_i - q_i d_i) \]

At the end of the loop, we have
\[D = \sum_{i=0}^{n-1} q_i \log(1 + 2^{-i}), \quad [\text{or: } \sum_{i=0}^{n-1} q_i \tan^{-1} 2^{-i}] \]
with remainder $D_n/2^n$.

The advantage of the pseudo-division/multiplication processes is that they look very much like multiplication and division, and could be implemented with little additional hardware. The routines are inherently accurate and insensitive to roundoff error, and accuracy comparable to other methods can be obtained with only one guard bit. The use of one double length register is necessary, although with some reformulation this might be replaced by one having only a sufficient number of guard bits, about $\log_2 n+1$.

The evaluation of some functions require a modified division to recode an argument, followed by a pseudo-multiplication, or a pseudo-division, followed by a modified multiplication, and as outlined, some of these must be done serially, not in parallel.
\[
\begin{array}{|c|c|c|c|}
\hline
& y/x & \log(1+y/x) & \tan^{-1} y/x & \sqrt{y/x} \\
\hline
Z_0 & y & y & y & y \\
x_0 & x & x & x & x \\
Pseudo-dividend & 2(Z_i - q_i x_i) \\
Pseudo-divisor & x_i & x_i - q_i 2^{-i} x_i & x_i + q_i 2^{-2i} Z_i & x_i + x q_i 2^{-i+1} - x 2^{-i-1} \\
Pseudo-quotient & \sum_{i=0}^{n-1} q_i 2^{-i} & \sum_{i=0}^{n-1} q_i \log(1+2^{-i}) & \sum_{i=0}^{n-1} q_i \tan^{-2^{-i}} & \sum_{i=0}^{n-1} q_i 2^{-i} \\
\hline
\end{array}
\]

Note: \(q_i = 0 \) or \(1 \) as \(Z_i \geq x_i \) or \(Z_i < x_i \), respectively.

Table 3: Meggitt Pseudo-division
<table>
<thead>
<tr>
<th>Pseudo-Multiplier</th>
<th>$xp+y$</th>
<th>$x(e^p-1)+y$</th>
<th>$\tan p$</th>
<th>yp^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_0</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_n</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>x_o</td>
<td></td>
<td></td>
<td>$Q(\text{arbitrary})$</td>
<td></td>
</tr>
<tr>
<td>x_n</td>
<td></td>
<td></td>
<td></td>
<td>$2(Z_1+q_1x_1)$</td>
</tr>
<tr>
<td>Z_{i+1}</td>
<td>$1/2 (Z_1+q_1x_1)$</td>
<td>$1/2 (Z_1+q_1x_1)$</td>
<td>$x_1-q_1^{-2-i}x_1$</td>
<td>$x_1^{-2-i}q_1Z_1$</td>
</tr>
<tr>
<td>Z_{i-1}</td>
<td>$2(Z_1+q_1x_1)$</td>
<td></td>
<td></td>
<td>$2(Z_1+q_1x_1)$</td>
</tr>
<tr>
<td>x_{i+1}</td>
<td>$x_1+q_1^{-2-i}x_1$</td>
<td></td>
<td></td>
<td>$x_1^{-2-i}q_1Z_1$</td>
</tr>
<tr>
<td>x_{i-1}</td>
<td>x_i</td>
<td>$x_i^{-2-i}q_1Z_1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Meggitt Pseudo-Multiplication
3.3 Normalization Methods

Consider a function of two variables which is to be subjected to a series of transformations under which the function value is to be invariant. The first variable will be transformed to a specified value while the second is altered in such a way that its value is forced to approach the desired function value.

For example, consider the function \(y + \log x \). Let \(x_0 = x \), \(y_0 = y \), and define the sequence \((x_i, y_i)\) by \(x_{i+1} = a_i x_i \), \(y_{i+1} = y_i - \log a_i \), where the \(a_i \) are positive constants. Then we have

\[
y + \log x = y_0 + \log x_0 = y_1 + \log x_1 = \ldots = y_n + \log x_n.
\]

If the \(a_i \) are chosen in such a way that

\[
\lim_{n \to \infty} x_n = 1,
\]

we see that

\[
\lim_{n \to \infty} y_n = y + \log x.
\]

Thus, as \(x_n \) is "normalized" to one, \(y_n \) is forced to the desired function value.

The above is but one example of a function evaluated by a normalization method. Others amenable to the same approach are given in Table 5, along with appropriate transformations for the variables.

<table>
<thead>
<tr>
<th>Function</th>
<th>((x_0, y_0))</th>
<th>((x_{i+1}, y_{i+1}))</th>
<th>(\lim_{n \to \infty}(x_n, y_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y + \log x)</td>
<td>((x, y))</td>
<td>((a_i x_i, y_i - \log a_i))</td>
<td>((1, y + \log x))</td>
</tr>
<tr>
<td>(y/x)</td>
<td>((x, y))</td>
<td>((a_i x_i, a_i y_i))</td>
<td>((1, y/x))</td>
</tr>
<tr>
<td>(w/x^{1/2})</td>
<td>((x, y))</td>
<td>((a_i^2 x_i, a_i y_i))</td>
<td>((1, y/x^{1/2}))</td>
</tr>
<tr>
<td>(y e^x)</td>
<td>((x, y))</td>
<td>((x_i - \log a_i, a_i y_i))</td>
<td>((0, ye^x))</td>
</tr>
</tbody>
</table>

Table 5: Normalization Methods
A number of authors have addressed themselves to the implementation of the normalization methods, including (in historical order), Speckler [61], Perle [46], DeLugish [16], and Chen [5]. The principal matter to be decided is how the \(a_i \) should be chosen. Clearly \(a_i \) is to be of the form \(1 + s_i 2^{-p_i} \), where \(p_i \) is an integer, and \(s_i = \pm 1 \) or 0. Ideally, the \(a_i \) should be chosen so that \(x_n \) is forced to within a specified tolerance of its limit value for as small an \(n \) as possible. We shall discuss the various strategies for choosing the \(a_i \) as we consider the various functions.

Chen suggests the use of a termination algorithm which decreases the number of iterations required. Essentially the idea is to use a one term Taylor series expansion when the most significant half of the number has been computed. This is generally done at the expense of a half precision multiply (i.e., the most significant half of the multiplier is represented by all zero bits). It does have an additional advantage in that it halves the round-off error accumulation since only about one-half as many iterations are required. We will discuss the individual termination algorithms in the next section.

The advantage of the normalization methods is their simplicity (depending on how one decides on \(a_i \)), and their potential speed. Of course they are not as versatile as the CORDIC algorithm and no normalization methods have been devised for trigonometric functions.

4.0 Algorithms for Specific Functions

4.1 Quotient

There are several kinds of division algorithms. We have previously mentioned the CORDIC, successive subtraction, and normalization algorithms. Another normalization method using multiplication and based on Newton's
method has been proposed. This procedure converges quadratically, and thus is best suited when high precision is required. Flynn [20] discusses a number of iterative techniques for division. Another method is based on a reciprocal generator. Huber [24] did a thesis on binary division algorithms which discusses most of the above methods.

Suppose that we desire the quotient X/Y, where $Y = 2^\alpha \cdot y$, $X = 2^\alpha \cdot x$, with α, β integers and $\frac{1}{2} \leq x, y < 1$, that is X and Y are expressed in normalized form. In some algorithms, we will assume $y < x$, relaxing the requirement that both x and y be in $[\frac{1}{2}, 1)$. This leads to the quotient being in $[\frac{1}{2}, 1)$, hence no normalizing shift would be required for the quotient. In any case, we concern ourselves with the generation of the quotient y/x.

4.1.1 CORDIC Algorithm

Inspection of Tables 1 and 2 reveal that $N + 1$ iterations are required. Because of the sequence of a's for this case we must have $y < x$; this can be accomplished by right shifting y one place, if necessary, or always. To avoid a possible left shift to normalize the quotient, the right shift of y should be done only if necessary.

After $N_o = N + 1$ iterations we obtain

$$y_{N_o + 1} = y_o - x_o \sum_{i=0}^{N_o} s_i a_i,$$

then $|y_{N_o + 1}| = |y_o - x_o \sum_{i=0}^{N_o} s_i a_i| \leq x N_{N_o} = x a_{N_o}$.

Since $z_{N_o + 1} = - \sum_{i=0}^{N_o} s_i a_i$, the above yields, with $z_o = 0$, $|y_o / x_o - z_{N_o + 1}| \leq a_{N_o} = 2^{-N-1}$. Thus the truncation error is bounded by 2^{-N-1}.
If a left shift were necessary to normalize the quotient, the error would become as large as 2^{-N+1}, thus we see why it is important to right shift Y only if necessary.

4.1.2 Restoring and Non-restoring Division

It would again be advantageous to have $y < x$ and y/x in $[\frac{1}{2},1)$ to avoid a normalization shift at the end of the operation. Also, one would then avoid generating $N + 1$ quotient bits when only N are necessary, since the first bit would always be 1.

If N quotient bits are generated, there will be as many as N subtractions of the divisor from the dividend. Assuming left shifts of the dividend rather than right shifts of the divisor, no roundoff error will occur during these operations. The truncation error will be determined by the size of the remainder divided by the divisor, and will be bounded by $K \cdot 2^{-N-1}$, where

$$K = \begin{cases}
1 & \text{if a final round is performed} \\
2 & \text{if chopping is used}
\end{cases}$$

Thus the error is at most one bit.

If $N + 1$ quotient bits are generated with a possible right shift required to normalize the quotient, the error bound is the same.

Nandi and Krishnamurthy [44] proposed a procedure for a non-restoring type of division for radix β. It obtained the quotient in redundant form, and was especially designed for divisors with leading coefficient 1 or $\beta - 1$. While the procedure could be adapted for radix 2, there is a conflict in the decision process, which differs depending on whether the leading coefficient of the divisor is 1 or $\beta - 1$. These digits coincide in radix 2, of course.
The decision process for the quotient bits is somewhat complicated, as well.

The advantage of redundant representation (using ± 1 and 0 as coefficients, instead of just 1 and 0) of function values is that more zero bits can be "built in". Every number has a minimal representation, i.e., a representation with a minimal number of non-zero bits. Metze has investigated this idea for several functions, one of which is division [41]. Basically the idea is an extension of non-restoring division, and contains S-R-T division [50] as a special case. The decision as to the value of the quotient bit is based on the value of the previous remainder. The decision is somewhat complicated, with the comparison constant a function of the divisor.

The following procedure is that given by Metze for minimally represented quotients. The comparison constant, \(K \), is obtained from Table 6. We first assume that \(\frac{1}{2} \leq x < 1 \) and \(0 < y < x \). We just as well assume that \(\frac{1}{2} \leq y/x < 1 \).

Let \(Q = y/x = \sum_{i=0}^{n} q_i 2^{-i} \), \(Q_{-1} = 0 \), \(2R_{-1} = x \). For \(i = 0, 1, \ldots, N \), determine \(q_i \) by

\[
q_i = \begin{cases}
1 & \text{if } 2R_{i-1} \geq K \\
-1 & \text{if } 2R_{i-1} < K \\
0 & \text{otherwise}
\end{cases}
\]

Then
\[
2R_i = 2(2R_{i-1} - q_i x)
\]
\[
Q_i = Q_{i-1} + q_i 2^{-i}
\]

The comparison constants given in Table 6 are not particularly convenient, but it is the smallest number of different ones possible. Another, more convenient set is given in Table 7.

For S-R-T division the comparison constant is \(K = \frac{1}{2} \) for all divisors, and a minimally represented quotient is obtained for divisors in the range \([3/5, 3/4]\).
<table>
<thead>
<tr>
<th>Range of divisor</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1/2, 39/64)</td>
<td>13/32</td>
</tr>
<tr>
<td>[39/64, 3/4)</td>
<td>1/2</td>
</tr>
<tr>
<td>[3/4, 15/16)</td>
<td>5/8</td>
</tr>
<tr>
<td>[15/16, 1)</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Range of divisor</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1/2, 9/16)</td>
<td>3/8</td>
</tr>
<tr>
<td>[9/16, 5/8)</td>
<td>7/16</td>
</tr>
<tr>
<td>[5/8, 3/4)</td>
<td>1/2</td>
</tr>
<tr>
<td>[3/4, 15/16)</td>
<td>5/8</td>
</tr>
<tr>
<td>[15/16, 1)</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Table 7
A minimal recoding can be obtained by requiring that non-zero bits be
separated by at least one zero, thus at most \[\frac{N+1}{2} \] bits can be non-zero
(see [41], first paragraph). Because of the left shift of the remainder,
\[R_k \], no roundoff error is introduced. It is easy to prove that
\[y = x - Q_k + 2^{-k} R_k \] thus for \(k = N \), we have truncation error
\[\frac{2^{-N} R_N}{x} \].
We show by induction that \(|R_k| < x \). \(R_{-1} = x/2 \), and assume that \(|R_{k-1}| < x \).
Then if \(q_k = 0 \), \(R_k = 2R_{k-1} \), and \(|R_k| = 2|R_{k-1}| < K \), by the selection rule
for \(q_k \), and the recursion formula. Tables 6 and 7 both show that \(K < x \),
thus \(|R_k| < x \). If \(q_k = \pm 1 \), we have \(R_k = 2R_{k-1} - \text{sign} (R_{k-1}) x \), or
\[|R_k| = |2|R_{k-1}| - x| < x \], since by induction \(|R_{k-1}| < x \). Thus \(|R_k| < x \)
for all \(k \), and in particular, \(|R_N| < x \), thus the truncation error
\[\frac{2^{-N} R_N}{x} < 2^{-N}, \] or less than one in the least significant bit.

Note that no shift for normalization is required. In order to be
assured that \(y < x \), however, it may be necessary to right shift \(y \) initially.
If no guard bit is provided, this could cause an error of \(2^{-N-1} \) in \(y \), and
since \(2^{-N-1}/x < 2^{-N} \), we see that the error could be as large as \(2^{-N+1} \), or
the last two bits could be in error. The error in \(y \) can be eliminated with
one guard bit.

Metze makes no mention of the average number of non-zero quotient bits.
The probability of a zero occurring in S-R-T division is about .63, and Metze's
algorithm must do better than that. We noted previously we must have about
one-half of the digits equal to zero, although it is unlikely that in the
average case, half of the remaining digits will also be zero. The probable
number of non-zero bits is likely between \(N/4 \) and \(N/3 \).
4.1.3 Normalization Methods

As we noted earlier, the principal matter to be decided here is a strategy for the choice of \(a_i \) (see Table 5). We assume that \(a_i = 1 + s_i 2^{-p_i} \), where \(s_i = \pm 1 \) or 0, and \(p_i \) is an integer. The iteration procedure is

\[
x_0 = x, \quad y_0 = y, \quad \text{and for } i = 0, 1, 2, \ldots, n-1
\]

\[
x_{i+1} = x_i a_i
\]

\[
y_{i+1} = y_i a_i.
\]

Further we assume that \(\frac{1}{2} \leq x < 1 \). We discuss several strategies for choice of \(a_i \).

The first is very simple, and reminiscent of the CORDIC algorithm.

\[
a_i = \begin{cases}
1 + 2^{-i} & \text{if } x_i < 1 \\
1 - 2^{-i} & \text{if } x_i \geq 1
\end{cases}
\]

It is easily seen that \(1 - 2^{-i} \leq x_{i+1} < 1 + 2^{-i} \), thus after \(n \) iterations

\[
|y_{n+1} - y_0/x_0| = |y_{n+1} - y_{n+1}/x_{n+1}| = \frac{x_{n+1}^{-1}}{x_{n+1}} \cdot y_{n+1} |\leq 2^{-n} \frac{y_{n+1}}{x_{n+1}} = 2^{-n} y/x.
\]

Thus, the relative error is \(2^{-n} \), and if \(x \) and \(y \) are normalized as usual, \(\frac{1}{2} < y/x < 2 \), hence the truncation error is less than one in the \((n-1)\)st significant bit. Roundoff error would accumulate up to \(\log_2 n + 1 \) bits, thus if \(n = N + 1 \) iterations are used, \(\log_2 (N + 1) + 1 \) guard bits would give an error no greater than one in the last bit.

Another similar strategy is

\[
a_i = \begin{cases}
1 + 2^{-i} & \text{if } x_i (1 + 2^{-i}) < 1 \\
1 & \text{otherwise}
\end{cases}
\]
This division procedure is the analogue of the Specker [61] and Perle [46] algorithms. It has the seeming advantage of skipping some iterations (if \(a_i = 1 \)), and the real advantage of keeping \(x_i < 1 \). However, note that the decision requires calculation of a tentative value of \(x_{i+1} \), hence no saving is obtained there. The roundoff error would be decreased in the average case, but not the bound. Truncation error is the same, although one knows its sign and could compensate after the last iteration.

DeLugish [16] gives a more sophisticated strategy for choice of \(a_i \). DeLugish normally requires an initialization procedure. In this case it is

\[
a_0 = \begin{cases}
2 & \text{if } 1/2 \leq x_0 < 3/4 \\
1 & \text{if } 3/4 \leq x_0 < 1
\end{cases}
\]

and \(x_1 = a_x, y_1 = a_y \).

Now, as one would likely do in practice in the previous examples, DeLugish does not actually compute the sequence of \(x_i \)'s. Rather, for ease in testing, we compute the sequence \(u_i = 2^{i}(x_i - 1) \), and then \(u_{i+1} = 2u_i + s_i + s_i u 2^{-i} \). Here \(p_i = i+1 \), and \(s_i \) is determined by

\[
s_i = \begin{cases}
1 & \text{if } u_i < -3/8 \\
-1 & \text{if } u_i \geq 3/8 \\
0 & \text{otherwise}
\end{cases}
\]

DeLugish shows that \(|x_i - 1| \leq 3/8 \cdot 2^{-i+1} \) for \(i \geq 2 \), thus \(|x_{N-1} - 1| \leq 3/8 \cdot 2^{-N} \), so truncation error is no more than 3/4 that derived for the earlier examples. No study was made of roundoff error, but the bound depends on the number of iterations with \(s_i \neq 0 \). DeLugish shows the probable number of non-zero \(s_i \)'s is about \(N/3 \). The maximum number is not discussed. However, it is easy to
show that not more than two successive \(s_i \) can be non-zero. For \(i \geq 2 \),
\[|x_i - 1| \leq 3/8 \cdot 2^{-i+1}, \text{ thus } |u_i| \leq 2^i \cdot 3/8 \cdot 2^{-i+1} = 3/4. \]
Now, suppose
\[u_i > 3/8 \] and thus \(s_i = -1 \). Then
\[u_{i+1} = 2u_i + s_i + s_i u_i 2^{-i} \leq 2 \cdot 3/4 - 1 = 1/2. \]
Also we have \(u_{i+1} \geq (2 - 1/4) \cdot 3/8 - 1 = -11/32 > -3/8 \). Then, suppose
\[3/8 < u_{i+1} \leq 1/2, \text{ hence } s_{i+1} = -1, \text{ since otherwise } s_{i+1} = 0. \]
Then
\[u_{i+2} = 2u_{i+1} + s_{i+1} u_{i+1} 2^{-i-1} \leq (2 - 1/8)1/2 - 1 = -1/16, \text{ and as before} \]
\[u_{i+2} > -3/8. \] Thus \(s_{i+2} = 0 \), as was to be proved. If \(u_i \) is negative, the
argument is symmetric and the result follows. Thus we have that \(\log_2 2N + 1 \)
guard bits are sufficient, with chopping.

The method suggested by Chen [5] used a different approach. Here we
must use some sort of procedure for counting left zeros in \(1 - x_i \). We write
\[1 - x_i = 2^{-P_i} + v_i, \text{ where } 0 \leq v_i < 2^{-P_i}. \]
Then \(P_i \) is one plus the number of left zeros in \(1 - x_i \). With \(a_i = 1 + 2^{-P_i} \) we have
\[x_{i+1} = (1 - 2^{-P_i} - v_i)(1 + 2^{-P_i}) = 1 - v_i (1 + 2^{-P_i}) - 2^{-2P_i}. \]
Thus we see that the transformation has eliminated the leading non-zero bit
of \(1 - x_i \), and leaves the succeeding bits largely unchanged. Thus, in no
more than \(N + 1 \) iterations, \(1 - x_i < 2^{N-1} \). On the average, one expects
only about \(N/2 \) iterations would be necessary. The error bound here is the
same as for the first two ideas presented.

However, Chen suggests a termination algorithm, to be applied when
\(P_i > N/2 \). It is simply a Taylor series expansion about the then current
point. In this case, if we have computed \((x_0,y_0), (x_1,y_1), \ldots, (x_n,y_n) \), with
\(P_n > N/2 \), then \(y/x \simeq y_n + y_n (1 - x_n) \). This requires a multiply, however note
that since \(P_n > N/2 \), \(1 - x_n \) is a half precision number (i.e., the most
significant \(N/2 \) bits are zero), thus costing half a usual multiply time.
The truncation error bound is 2^{-N}. Chen notes that since the error is of a definite sign, we could halve the truncation error by computing

$$y/x \approx y_n + y_n (1 - x_n + 2^{-N-1}).$$

The roundoff error is halved, of course, since at most $N/2$ iterations need to be performed. Hence $\log_2 N$ guard bits are sufficient with chopping. The expected number of iterations is $N/4$.

4.1.4 Quadratically Converging Normalization Methods

The methods of Section 2.1.3 converge linearly, that is, the number of iterations required depends linearly on the number of bits of accuracy required. Quadratically convergent normalization methods are based on the Newton method for solving $1/z - 1 = 0$ with initial guess $z_0 = x_0 = x$, where x is the divisor. The calculations can be arranged as $y_0 = y$, $x_0 = x$, then for $i = 1, 2, \ldots, n$,

$$x_i = x_{i-1}(2 - x_{i-1})$$

$$y_i = y_{i-1}(2 - x_{i-1}) .$$

The error $1 - x_i = E_i = (1 - x_0)^{2^i}$. Thus convergence is critically tied to the accuracy of the "initial guess". We must have $|1 - x_0| < 1$ for convergence.

We see that if $0 < x_0 < 2$, convergence is assured, hence $x = x_0$ is adequate for convergence, with x in $[1/2, 1)$.

We pause to consider the number of iterations required. If we want $E_n < 2^{-N}$, then n must be taken so that $(1 - x_0)^{2^n} < 2^{-N}$, or

$$2^n > \frac{N}{-\log_2 |1-x_0|} .$$
For x_o in $[1/2, 1), (1 - x_o) \leq 1/2$, thus no more than $\log_2 N$ iterations would be required.

We could improve this a little by some initial adjustment of x and y. Thus we might take $x_o = ax, y_o = ay$, where a may or may not be a function of x. To avoid an actual multiplication here, we could take

$$a = \begin{cases}
2 & \text{if } 1/2 \leq x < 2/3 \\
1 & \text{if } 2/3 \leq x < 1.
\end{cases}$$

Then $|1 - x_o| \leq 1/3$, and $\log_2 \frac{N}{\log_2 3} \leq \log_2 \frac{N}{1.58}$ iterations would then be required. For $N = 20$, five iterations would be required by the previous procedure, and four iterations plus the initialization for the latter procedure. This example is biased somewhat, however. Note that if N is a power of two, no advantage is had by first initializing as above. For N a power of 2, one would need to initialize so that $|1 - ax| \leq 2^{-2^k}$ to save k iterations.

In general the roundoff error doubles at each iteration. Thus for roundoff error to be less than 2^{-N-1} requires that J guard bits be used, where $2^n(2^{-N-J}) < 2^{-N-1}$, or $J = n + 1$ with chopping.

Krishnamurthy [29] has considered solving $1/z - 1/K = 0$ instead of $1/z - 1 = 0$. For a simple recursion for the x_i's, this necessitates $K = 2^{-r}$ for some integer r, although $K = 2/3$ is possible. He also considers using lower precision multiplies for early iterations. A table of initial transformations is given for computing a 48 bit quotient in 4 iterations (plus the initial transformation).

The idea of a table for the initial transformation is used in the IBM System 360 Model 91 [1]. With that machine 56 bit accuracy is desired, and
a table of $2^7 = 128$ entries is used and gives $(1 - x_o) < 2^{-7}$. Thus, after the initial transformation, only three iterations would be required. However, in order to speed up the early iterates, low precision multiplications are used with truncated intermediate results, and four iterations lead to 64 bit accuracy.

Ferrari [19] proposed a method he calls the optimized geometric series (OGS) method. If the two multiplications are to be done serially, his method is faster, since convergence is superquadratic. If the multiplications can be done simultaneously, his method has no advantage.

Shaham and Riesel [58] suggest a modification of the Newton iteration. Suppose that $1 - x_i = 2^{-k} + v_i$, with $0 \leq v_i < 2^{-k}$. Then normally one would have $1 - x_{i+1} = 2^{-2k} + v_{i+1}$, with $0 \leq v_{i+1} < 2^{-2k}$. They suggest using as a multiplier, $2 - x_i + p2^{-2k}$, instead of $2 - x_i$, where p is a table-look-up value depending on the first few bits of v_i. They show, for example, that a 56 bit result can be obtained in one less iteration than with the classical method, starting with an initial result accurate to six bits.

Ling [33] has given a version of this algorithm which was purportedly designed especially for 32 bit accuracy, and yields the quotient in 3 multiplication times. Ling's method is to first transform the divisor, $x = .d_2d_3 \ldots d_8 + 2^{-8}(\delta_9 \ldots \delta_n)$ into a form $x = .d_1 \ldots d_7 \pm 2^{-8}(d_9 \ldots d_n)$, i.e., with the eighth bit equal to zero. We see that if $\delta_8 = 0$, the plus sign is taken, and $d_i = \delta_i$. If $\delta_8 = 1$, the minus sign is taken, and $d_1 \ldots d_7 = .d_2 \ldots d_8 + 2^{-8}$, $d_9 \ldots d_n = (1 - .d_9 \ldots d_n)$. If $\delta_2 = \delta_3 = \ldots = \delta_8 = 1$, there is an apparent difficulty here, which washes out later on. Ling implements the above via logical circuits rather than by actual addition and complementation. The initial transformation is then $y/x = y(2k) / x(2k)$, where
\[k = \frac{1}{2} \cdot (d_1 \ldots d_n)^{-1} \] is obtained by table-look-up. We then have \(x(2k) = 1 \pm 2^{-7} k(d_9 \ldots d_n) \), the \(\pm \) having been determined previously. Ling indicates that the denominator is within \(2^{-8} \) of one, thus within \(2^{-32} \) of one after two Newton iterations. This is not the case however, as can be seen by considering \(x = .1000000011 \ldots 1 \), whence \(k = 1 \), and \(2xk = 1 + 2^{-7}(111 \ldots 1) \). Thus Ling's algorithm is good for at least 28 bits, but one cannot be sure of more than 28 bits.

4.1.5 Other Methods

Dean [10] proposes a reciprocal generator which forms the reciprocal of a number in a controlled register as the number is entered serially into a shift register. Formation of the quotient bits is done by means of logical circuits. He gives complete information for four, five, and six bit numbers. The logic would seem to become quite complicated for high precision numbers. However, if, as Dean says, the size of connectors negates the possibility of components becoming much smaller, but rather their complexity increasing to take up (some of) the available space, such a device might be feasible where speed is the main consideration. However, I am assuming the logical circuits could be implemented so as to be very fast.

4.2 Arctangent

Several authors have directed their attention to calculation of the arctangent. While it is not readily apparent when glancing through the literature, it is in fact true that only one algorithm has been developed, so far as this author has been able to determine. The CORDIC method was the first to appear, followed by Meggitt [40] and Sarkar and Krishnamurthy [55], Specker [61], and DeLugish [16]. The algorithms differ mainly from the CORDIC algorithm in that not all of the rotations are performed.
Meggitt keeps $z_1 \geq 0$, Sarkar and Krishnamurthy minimize $|z_1|$, Specker's method coincides with the CORDIC algorithm, and DeLugish uses a decision process similar to that for division.

We assume that $\tan^{-1} y/x$ is to be computed, where $x \neq 0$. We will generally assume that a first quadrant angle is to be computed, hence an initial transformation using the identity $\tan^{-1}(-y/x) = -\tan^{-1} y/x$ may be necessary. For the CORDIC algorithm, we must have $x > 0$, so the sign is attached to whichever of x or y is appropriate. If the result of the calculation must be in the correct quadrant, additional care must be taken with that step, and furthermore, an additional rotation through π radians may be necessary. In the CORDIC algorithm this can be accomplished with no post-manipulation of the data.

4.2.1 CORDIC Algorithm

As Table 1 indicates, $\tan^{-1} y/x$ is obtained by the algorithm with $m = 1$ in the vectoring mode. Since we have discussed the general procedure in some detail in Section 3.1, we need only to discuss the truncation error bound for this particular calculation. As we indicated, the magnitude of y_{N+1} can be as large as $x_o \alpha_i$ in vectoring mode. Now $x_{N+1} = K_1(x_o^2 + y_o^2)^{1/2}$, so $|y_{N+1}| \leq K_1(x_o^2 + y_o^2)^{1/2}2^{-N-1}$. Consideration of equation (6) and some algebraic manipulation yields $\tan \alpha = y_o/x_o - \frac{y_{N+1}}{x_o K_1 \cos \alpha}$. Thus we have

$$\alpha = \tan^{-1}[y_o/x_o - \gamma] = \tan^{-1} \frac{y_o/x_o - \gamma}{1 + r^2},$$

where r is between y_o/x_o and $y_o/x_o - \gamma$. Thus the truncation error is

$$-\frac{\gamma}{1 + r^2} = -\frac{\gamma}{1 + y_o^2/x_o^2}.$$
Then \[|\frac{y}{1 + y^2/x^2}| \leq \frac{x^2 \cdot K_1(x^2 + y^2)^{1/2}}{x \cdot K_1 \cos \alpha (x^2 + y^2)^{1/2}} \leq \frac{x^2}{(x^2 + y^2)^{1/2}} \cos \alpha \].

But \[\frac{x^2}{(x^2 + y^2)^{1/2}} \leq \cos \alpha \), hence the truncation error is no more than (approximately) \(2^{-N-1} \). Roundoff error is likewise bounded, hence total error is no more than \(2^{-N} \).

We will consider the problem of initializing for both principal values of the arctangent and for values in the correct quadrant, the quadrant determined by the signs of \(y \) and \(x \).

For principal value we let

\[x_o = x \cdot \text{sign} \ x \]
\[y_o = y \cdot \text{sign} \ x \]
\[z_o = 0 \ . \]

For the correct quadrant to be obtained, we take

\[x_o = x \cdot \text{sign} \ x \]
\[y_o = y \cdot \text{sign} \ x \]
\[z_o = \begin{cases} \pi & \text{if sign} \ x < 0 \\ 0 & \text{if sign} \ x > 0 \end{cases} \ . \]

One can also accomplish the initialization by always doing an initial rotation of \(\pi/2 \) radians, clockwise if \(y > 0 \), and counterclockwise if \(y < 0 \). This will also force \(x_o > 0 \). Then

\[x_o = y \cdot \text{sign} \ y \]
\[y_o = -x \cdot \text{sign} \ y \]
\[z_o = \pi/2 \cdot \text{sign} \ y \ . \]
4.2.2 Modified CORDIC Algorithm.

We will discuss the various modifications of the CORDIC algorithm in a unified manner. Basically, all of the modifications can be put in the same form as equations (3) - (5), except that the decision for \(s_i \) is different. This will change the radial distortion constant, but it does not enter significantly in this case, anyway.

Meggitt takes

\[
\begin{align*}
 s_i &= \begin{cases}
 \text{sign } y_i & \text{if } |y_i| \geq \delta_i x_i \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

Sarkar and Krishnamurthy take

\[
\begin{align*}
 s_i &= \begin{cases}
 \text{sign } y_i & \text{if } |y_i - \text{sign } y_i \cdot \delta_i x_i| < |y_i| \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

DeLugish considers \(\tan^{-1} x \), \(0 \leq x < 1 \), and takes

\[
\begin{align*}
 s_i &= \begin{cases}
 +1 & \text{if } y_i < -3/8 \cdot 2^{-i} \\
 -1 & \text{if } y_i \geq 3/8 \cdot 2^{-i} \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

with the initialization procedure

\[
x_{-1} = 2^\beta(x - 1), \quad y_{-1} = 2^\beta(x + 1),
\]

with \(\beta \) chosen so that \(x_{-1} \) is in \([-1,0)\).

Then \(y_{-1} \) is in \([1,2)\). We set \(z_o = \pi/4 \),

\[
x_o = x_{-1} t_o, \quad y_o = y_{-1} t_o,
\]

where
\[
t_o = \begin{cases}
\frac{3}{4} & \text{if } 0 \leq x < \frac{1}{4} \\
\frac{5}{8} & \text{if } \frac{1}{4} \leq x < \frac{1}{2} \\
\frac{1}{2} & \text{if } \frac{1}{2} \leq x < 1
\end{cases}
\]

Note that the sign of the s_i is different because $x_i < 0$ for his initialization.

The error bounds for all of the above are the same as for the CORDIC algorithm, and the roundoff error will probably be smaller in practice because the average number rotations is less than $N+2$. For the DeLugish method the average number of rotations (number of non zero s_i) is about $N/3$.

4.3 Cosine/Sine

As with the arctangent algorithms, all of the algorithms for cosine/sine reduce to the CORDIC algorithm, or a variation of it. We consider that the angle, θ, could be any angle. This is then reduced to the range $[0, 2\pi)$. Let the reduced angle be denoted by Z. Then we can find z in $[0, \pi/2)$ so that $Z = \pi/2 \cdot Q + z$, where $Q = 0, 1, 2,$ or 3. We compute $\sin z$ and $\cos z$, and then

\[
\sin Z = \sin \theta = \begin{cases}
\sin z & \text{if } Q = 0 \\
\cos z & \text{if } Q = 1 \\
-sin z & \text{if } Q = 2 \\
-cos z & \text{if } Q = 3
\end{cases}
\]

and

\[
\cos Z = \cos \theta = \begin{cases}
\cos z & \text{if } Q = 0 \\
-sin z & \text{if } Q = 1 \\
-cos z & \text{if } Q = 2 \\
\sin z & \text{if } Q = 3
\end{cases}
\]
The proper values can be obtained either by pre- or post-manipulation of the data.

4.3.1 CORDIC Algorithm

By Table 1 we see that if one enters the algorithm with \(m = 1, x = K_1^{-1}, y = 0, \) and \(z \) in the rotation mode, one obtains \(\cos z \) and \(\sin z \) for \(|z| \leq \pi/2 \).

From equation (6)

\[
\begin{align*}
x_{N_1+1} &= K_1 (K_1^{-1} \cos \alpha) = \cos \alpha \\
y_{N_1+1} &= K_1 (-K_1^{-1} \sin \alpha) = -\sin \alpha .
\end{align*}
\]

Now \(|z + \alpha| = |z_{N_1+1}| \leq \alpha_{N_1} \), thus

\[
\begin{align*}
x_{N_1+1} &= \cos (z - \gamma) = \cos z + \sin z^* \cdot \gamma, \\
y_{N_1+1} &= \sin (z - \gamma) = \sin z - \cos z^* \cdot \gamma,
\end{align*}
\]

where \(z^* \) and \(z \) are each within \(|\gamma| \) of \(z \), and \(|\gamma| \leq \alpha_{N_1} = \tan^{-1} \frac{1}{2^{N-1}} = 2^{-N-1} \).

Then, since sine and cosine are bounded by one, the truncation error is bounded by \(2^{-N-1} \). If roundoff error is also bounded by \(2^{-N-1} \), total error is bounded by \(2^{-N} \).

4.3.2 DeLugish Modification

Because the distortion constant \(K_1 \) depends on the rotations performed, \(\epsilon_{R_1} \), the usual DeLugish [16] modification will not work. Recall that the distortion in the step

\[
\begin{align*}
x_{i+1} &= x_i + s_i \delta_i y_i \\
y_{i+1} &= y_i - s_i \delta_i x_i
\end{align*}
\]

is \((1 + \delta_i)^{1/2} \). A correction to remove the distortion would require
division of each variable by \((1 + \delta_i^2)^{1/2}\). This is not feasible, of course. But \((1 - \delta_i^2)^{-1/2} = 1 - 1/2 \delta_i^2 + 3/8 \delta_i^4 \ldots\), and if \(\delta_i\) is small enough for the third term to be less than \(2^{-N-1}\), we have \((1 + \delta_i^2)^{-1/2} = 1 - 1/2 \delta_i^2\), rounded to \(N\) digit accuracy, and such a correction could be made with a shift and subtract, since \(\delta_i\) is a power of two. Eventually, \((1 + \delta_i^2)^{-1/2} = 1\), rounded to \(N\) bit accuracy, and then no correction is required. This idea is used by DeLugish to introduce redundancy into the cosine/sine calculation.

We consider \(0 \leq z < \pi/2\). The initialization is

\[
z_o = \begin{cases}
z & \text{if } z \leq \pi/4 \\
\pi/2 - z & \text{if } z > \pi/4
\end{cases}
\]

then

\[
(x_1, y_1) = \begin{cases}
(1/K^*, (1/K^*) \tan \pi/8) & \text{if } z \leq \pi/4 \\
((1/K^*) \tan \pi/8, 1/K^*) & \text{if } z > \pi/4
\end{cases}
\]

and \(z_1 = z_o - \pi/4\),

where \(K^* = (1 + \tan \pi/8)^{1/2} \prod_{j=0}^{N^*} (1 + 2^{-j+1})^{1/2}\).

Here \(N^* = \left[\frac{N-6}{4}\right] + 1\), the number of iterations to be performed before shift and subtract corrections can be made for the radial distortion. The iteration equations are

\[
x_{i+1} = (x_i - s_i y_i 2^{-i-1}) T_i
\]
\[
y_{i+1} = (y_i + s_i x_i 2^{-i-1}) T_i
\]
\[
z_{i+1} = z_i - s_i \tan 1/2^{-i-1}
\]

where \(s_i\) is determined by
for \(i = 1, 2, \ldots, N^* \),

\[
\begin{align*}
 s_i &= \begin{cases}
 -1 & \text{if } z_i < 0 \\
 1 & \text{if } z_i \geq 0
 \end{cases}, \\
 s_i &= \begin{cases}
 -1 & \text{if } z_i < -3/8 \ 2^{-i} \\
 1 & \text{if } z_i > 3/8 \ 2^{-i} \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

for \(i = N^* + 1, \ldots, N \)

and

\[
T_i = \begin{cases}
 1 & \text{for } i = 1, 2, \ldots, N^* \\
 1 - s_i \ 2^{- (2i+3)} & \text{for } i = N^* + 1, \ldots, N^{**} \\
 1 & \text{for } i = N^{**} + 1, \ldots, N
 \end{cases}
\]

Here \(N^{**} = \lceil \frac{N-3}{2} \rceil + 1 \), the point at which \((1 + \delta_i 2)_{-1/2} = 1\), to \(N \) bit accuracy.

The above was as given by DeLugish. DeLugish, however, did not consider the effects of roundoff error, and his examples were done with \(N = 40 \), and at least \(13 \) guard bits. For purposes of roundoff error control, the values of \(N^* \) and \(N^{**} \) should be determined on the basis of \(N + J \) bit accuracy, rather than \(N \) bit accuracy. Thus, one should take \(N^* \) and \(N^{**} \) to be \(\lceil \frac{N+J-6}{4} \rceil + 1 \) and \(\lceil \frac{N+J-3}{2} \rceil + 1 \), respectively.

The truncation error is similar to the CORDIC algorithm. The roundoff error bound is complicated by the fact that about \(\frac{N+J}{4} \) iterations are performed which may require corrections \(T_i \), with \(T_i \neq 1 \). It is conceivable that nearly all rotations (all \(s_i \)) will be non-zero, thus the roundoff error bound will be about 25% larger. However, the average number of \(s_i \) equal to zero should be about \(\frac{3N}{8} \), so on the average, roundoff error will be smaller.
4.3.3 An Alternate Procedure

We have seen in the previous section that the radial distortion constant complicates the usage of no rotation at any step. If one were to use a scheme such as the Delugish scheme for computing the tangent (See Section 4.7.2), the sine could then be computed from
\[
\sin z = \frac{\tan z}{(1 + \tan^2 z)^{1/2}}.
\]
This type of algorithm was implemented in the Hewlett-Packard HP-35 calculator [6]. In addition to the fact that the calculations are radix 10, the goal there was compactness of the program, rather than speed. The above identity is certainly not likely to achieve high speed.

4.4 Exponential

The calculation of the exponential function has been treated by several authors. Normalization is the principal technique, although the other unified algorithms also can be used.

We will generally allow the argument to be any number, X. The range will be reduced by the transformation
\[
X = Q \log 2 + x, \quad \text{where } Q \text{ is an integer, and } 0 \leq x < \log 2.
\]
Then
\[
e^X = e^{Q \log 2 + x} = 2^Q e^x.
\]
Note that
\[
1 < e^X < 2.
\]

4.4.1 CORDIC Algorithm

Table 1 yields the information that entering the algorithm with \(m = -1 \) in the rotation mode, taking \(x = 1/K_{-1}, \ y = 0, \) and \(z = \) argument, the result of the calculation will be
\[
x_{N-1+1} = \cosh z, \ y_{N-1+1} = \sinh z.
\]
Then
\[
e^z = \cosh z + \sinh z = x_{N-1+1} + y_{N-1+1}.
\]

* We will use \(\log u \) to denote \(\log_e u = \ln u, \) while any other base will be specified by subscript.
The truncation errors are given by
\[
\frac{x_{N-1} + 1}{\cosh z} = \cosh x - \cosh z \\
= \cosh \left(z - \frac{x_{N-1} + 1}{\cosh z}\right) - \cosh z \\
= -\left(\sinh z^*\right) \frac{x_{N-1} + 1}{\cosh z},
\]
and similarly,
\[
\frac{y_{N-1} + 1}{\sinh z} = -\left(\cosh \frac{z}{z^*}\right) \frac{x_{N-1} + 1}{\cosh z}, \text{ where } z^* \text{ and } \frac{z}{z^*} \text{ are between } z \text{ and } \frac{x_{N-1} + 1}{\cosh z}.
\]
Then, the truncation error for \(e^x \) is the sum,
\[
-\frac{1}{x_{N-1} + 1}\left(\sinh z + \cosh z^*\right) e^z - \frac{1}{x_{N-1} + 1} e^z \frac{x_{N-1} + 1}{\cosh z}. \]
Since \(\left|\frac{x_{N-1} + 1}{\cosh z}\right| \leq 2^{-N-1} \)
and \(0 \leq z < \log 2 \), the bound is \(2 \cdot 2^{-N-1} = 2^{-N} \). Roundoff error in each is \(2^{-N-1} \), hence the total roundoff error could be as large as \(2^{-N} \), giving a total error of no more than \(2^{-N+1} \). However recall that a right shift is necessary to normalize the result, thus the error is then bounded by \(2^{-N} \).

4.4.2 Pseudo-Division/Multiplication Methods

From Table 4 we see it is first necessary to recode the exponent in the variable radix \(\log (1 + 2^{-i}) \) This is accomplished by the modified divider discussed in Section 3.2. Let us first investigate the error in the process of recoding the exponent. Without rounding error, and chopping after \(N \) bits it is easily seen that the truncation error in the process is bounded by \(\log (1 + 2^{-N}) \approx 2^{-N} \). The roundoff error is introduced solely through the divisors, and is left shifted in the new dividend at each iteration. If the error in divisor \(d_i \) is \(\epsilon_i \), we have error
\[
-2^N q_0 \epsilon_0 - 2^{N-1} q_1 \epsilon_1 - \cdots - 2^1 q_N \epsilon_N \text{ in } D_{N+1}. \]
Thus the error accumulation in remainder is the above, divided by \(2^{N+1} \). Assuming correct rounding of the
divisors the roundoff error accumulation is bounded by

$$2^{-N-1} (2^N + \ldots + 2) 2^{-N-1} \leq 2^{-N-1}.$$

Thus if no guard bits are used, roundoff error is less than 2^{-N-1}. Thus the total error in this procedure could be as large as $2^{-N} + 2^{-N-1}$. If we take $y = x = 1$ in the procedure, we obtain e^{p-y}, where $|y| \leq 3/2 \cdot 2^{-N}$. Thus the error here is $e^p - e^{p-y} = e^{p^*_y}$, where p^* is near p. Thus the error is bounded by $e^{\log 2 |y|} \leq 2 \cdot 3/2 \cdot 2^{-N} = 3 \cdot 2^{-N}$.

Now in the pseudo-multiplication, roundoff can occur only in the calculation of the pseudo-multiplicand, x_i. The error propagated to the pseudo-product z_{N+1}, then is $2^{N-1} \epsilon_o + 2^N q_1 \epsilon_1 + \ldots + 2^N \epsilon_N$, where ϵ_1 is the error in x_i. $\epsilon_o = 0$, and $|\epsilon_1| \leq 2^{-N}$, so the total error is bounded by $(2^N + 2^{N-1} + \ldots + 2) 2^{-N} < 2$. Because the accumulation is in a double length register (the least significant part being $N+1$ bits), we see that the actual error is no more than $2 \cdot 2^{-N-1} = 2^{-N}$.

Thus the total error in the procedure is bounded by $3 \cdot 2^{-N} + 2^{-N} = 2^{-N+2}$. Recall that a right shift is necessary for normalization which reduces the error to 2^{-N+1}.

We note that the above was accomplished without guard bits, and one double length register. The inclusion of one guard bit would reduce this error to 2^{-N}. However it would be necessary to include an additional quotient bit in the modified division to recode the exponent, since this was the largest source of error.

4.4.3 Normalization Methods

The basic algorithm has been described previously, the choice of a_i being the issue to be decided. Specker [61] and later Perle [46] use the criterion
\[
\begin{align*}
a_i = & \begin{cases}
1 + 2^{-i-1} & \text{if } x_i - \log(1 + 2^{-i-1}) \geq 0 \\
1 & \text{otherwise.}
\end{cases}
\end{align*}
\]

Then \(x_i \geq 0 \) for all \(i \), and it is easy to show that \(x_i \leq 2^{-i} \), thus after \(N \) iterations \(x_{N+1} \leq 2^{-N-1} \). Then we have \(y_{N+1} e^{x_{N+1}} = y e^x \), and taking \(y_{N+1} = e^x \) gives an error of \(y_{N+1}(e^{x_{N+1}} - 1) \approx y_{N+1} \cdot x_{N+1} \leq e^x \cdot 2^{-N-1} \).

Since \(0 \leq x < \log 2 \), the truncation error is seen to be bounded by \(2^{-N} \).

Roundoff error is bounded by \(2^{-N-1} \), assuming a sufficient number of guard bits, and since the result must be right shifted to normalize, the total error is bounded by \(2^{-N-1} + 2^{-N-2} < 2^{-N} \).

DeLugish [16] initializes by taking
\[
\begin{align*}
x_1 &= x - \log e_o \\
y_1 &= e_o \cdot \begin{cases}
e^{1/2} & \text{if } x \geq 1/2 \\
e^{1/4} & \text{if } 1/4 \leq x < 1/2 \\
1 & \text{if } x < 1/4
\end{cases}
\end{align*}
\]

where \(e_o = \begin{cases}
e^{1/2} & \text{if } x \geq 1/2 \\
e^{1/4} & \text{if } 1/4 \leq x < 1/2 \\
1 & \text{if } x < 1/4
\end{cases} \)

Then \(a_i = 1 + s_i 2^{-i-1} \) is chosen by
\[
\begin{align*}
s_i = & \begin{cases}
-1 & \text{if } x_i < -3/8 \cdot 2^{-i} \\
1 & \text{if } x_i \geq 3/8 \cdot 2^{-i} \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

It is shown that \(|x_1| \leq 3/8 \cdot 2^{-i+1} \), hence \(|x_{N+1}| \leq 3/8 \cdot 2^{-N} \), so truncation error is slightly smaller than in the previous case. The number of non-zero

* DeLugish actually allows \(|x| < \log 2 \), and thus two more possible initialization values are given by him.
\(s_i \) is about \(N/3 \). One can again show that (for moderate \(i \)) that no more than two successive \(s_i \) can be non-zero, thus the maximum number of non-zero \(s_i \) is about \(2N/3 \), decreasing the number of guard bits required. Total error is bounded by \(3/4 \cdot 2^{-N-1} + 2^{-N-2} = 5/4 \cdot 2^{-N-1} < 2^{-N} \).

Chen [5] lets \(p_i \) be one plus the number of leading zeros in \(x_i \), i.e.,
\[
x_i = 2^{-p_i} + v_i, \quad 0 \leq v_i < 2^{-p_i}.
\]
Then \(\log(a_i) = \log(1 + 2^{-p_i}) = 2^{-p_i} + 0(2^{-2p_i}) \), and the leading one bit in \(x_i \) is eliminated. At most \(N + 1 \) iterations will be required for \(x_i < 2^{-N-1} \). The termination algorithm, to be applied when \(p_n > N/2 \) is \(e^x = y_n + x_n y_n \). Again, as with division, truncation error can be halved by taking \(e^x = y_n + y_n(x_n + 2^{-N-2}) \). The total error bound is again less than \(2^{-N} \).

4.5 Power Function

The power function, \(x^y \), has not received much attention in the literature. This function is usually evaluated by the identity \(x^y = e^{y \log x} \), which requires evaluating both a logarithm and an exponential, with a multiplication necessary also.

A direct method was proposed by Krishnamurthy [28]. He assumed the numbers were in radix \(r \), but we specialize this to \(r = 2 \). We first write
\(y = I + f \), where \(I \) is an integer and \(0 \leq f < 1 \). \(x^I \) can be evaluated by multiplications and a division, possibly. Let us write
\[
f = \sum_{i=1}^{n} q_i 2^{-i}.
\]
Then
\[
x^f = x \prod_{i=1}^{n} q_i 2^{-i} = \prod_{i=1}^{n} (x^{2^{-i}}) q_i
\]

If we let \(z_i = x^{1/2}, z_{i+1} = z_i^{1/2} \), for \(i = 1,2,\ldots,N-1 \), we have
\[
x^f = \prod_{i=1}^{N} z_i^{q_i}.
\]
We can determine \(x^f \) with the following loop.
Let $p_0 = 1, z_0 = x$, then

for $i = 1, 2, \ldots, N$

$$z_i = z_{i-1}^{1/2} \quad ,$$

$$p_i = p_{i-1} \cdot z_i^{q_i} = \begin{cases} p_{i-1} & \text{if } q_i = 0 \\ p_{i-1}z_i & \text{if } q_i = 1 \end{cases}$$

Then $x^f = p_N$.

This method would seem to be a rather time consuming procedure, since N square roots and up to N multiplications are necessary for only the fractional part of the exponent. It seems unlikely that it would compare favorably with the conventional method, unless a square root operation were available, and a logarithm/exponential routine was not.

Roundoff error would be able to come in both during the square rooting operation and during formation of the product, and would thus require more guard bits than usual.

4.6 Logarithm

Since the logarithm is the inverse of the exponential, it seems reasonable that the inverse of methods used for the exponential could be used for the algorithm. This is essentially true. Most routines are for any base logarithm, depending on the stored constants, but one due to Philo [48] and Dean [15] is for base 2 logarithms.

We will consider the logarithm of X, where X is any positive number. We then write $X = 2^a \cdot x$, where $1/2 \leq x < 1$, and then $\log X = a \log 2 + \log x$. It is then necessary to discuss the computation of $\log x$.
4.6.1 CORDIC Algorithm

Here we will make use of the identity \(\log w = 2 \tanh^{-1} \frac{w-1}{w+1} \). If \(1/2 \leq w < 1 \), then \(-1/3 \leq \frac{w-1}{w+1} < 0 \), a region for which the CORDIC algorithm converges. We enter the algorithm with \(m = -1 \) in the vectoring mode, with \(z = 0 \), \(x = w + 1 \) and \(y = w - 1 \). The value of \(z_{N+1} \) must then be left shifted to obtain the result.

Truncation error is found by consideration of equation (6), by a procedure similar to that for the inverse tangent, and we obtain the bound \(\delta_{N-1} \). Roundoff error is of similar size, however, these bounds are for the hyperbolic tangent, which must be left shifted to obtain the logarithm thus the error bound is \(2^{-N+1} \).

4.6.2 Pseudo-Division/Multiplication Methods

This is a pseudo-division process, and can be carried out in one pass, as is seen from Table 3. Normally, \(\log z \) is required, and this can be obtained by setting \(y = 1 - z \), \(x = z \). This gives \(\log(1 + y/x) = \log(1 + \frac{1-z}{z}) = -\log z \). This particular transformation keeps \(x \) and \(y \) small and non-negative, as is desirable and necessary.

Using no guard bits, we find that the error in \(z_{N+1} \) is \(-2^N q_0 \varepsilon_0 - 2^N q_1 \varepsilon_1 - \ldots - 2^N q_N \varepsilon_N \). Since \(\varepsilon_0 = 0 \), and \(|\varepsilon_i| \leq 2^{-N} \), we have the error bounded by \((2^N + 2^N + \ldots + 2)2^{-N} = 2 \). The pseudo-remainder is \(z_{N+1}/2^{N+1} \), hence the error is bounded by \(2^{-N} \). Now the accumulation of the pseudo-dividend requires the use of guard bits. If it is done in the double length register, as suggested by Meggitt, roundoff error will be insignificant, and the total error will be less than \(2^{-N} \).
4.6.3 Normalization Methods

Specker [61], Perle [46], DeLugish [16], and Chen [5] have suggested these algorithms, and the selection of a_i is the same as for division, since in each case it is desired to force x_i to 1. The error bounds are about the same. If $|1 - x_n| \leq 2^{-N-1}$, then the error is $\log|1 - x_n| \approx 2^{-N-1}$, as before. Roundoff error again can accumulate up to 2^{-N-1} for a total error of 2^{-N}.

Chen's termination algorithm is $y + \log x \approx y_n - (1 - x_n)$, or to reduce the truncation error, $y + \log x \approx y_n - (1 - x_n + 2^{-N+2})$. Again n is taken so that $p_n > N/2$. Comments pertaining to errors, made in Section 4.1.3, apply here also.

4.6.4 Other Methods

Philo and Dean suggested the following method for computing $\log_2 x$. It is the inverse of the procedure described in Section 4.5 for computing x^y. It was discussed by Dean in terms of implementation using cellular arrays.

We want to compute digits q_i such that $x = \sum_{i=1}^{N} q_i 2^{-i}$. We assume that $1 \leq x < 2$ so that $0 \leq \log_2 x < 1$. Then $x = 2^{1/2} \cdot q_1 \cdot 2^{1/4} \cdot q_2 \ldots \cdot 2^{1/2^n} \cdot q_n$. If $x^2 \geq 2$, then it is apparent that $q_1 = 1$. If $x^2 < 2$, then $q_1 = 0$. The following recursion can be seen to generate the q_i.

$$x_0 = x, \text{ for } i = 1, 2, \ldots, N,$$

$$q_i = \begin{cases} 1 & \text{if } x_{i-1}^2 \geq 2 \\ 0 & \text{if } x_{i-1}^2 < 2 \end{cases}$$
and
\[
x_i = \begin{cases}
1/2 \cdot x_{i-1}^2 & \text{if } q_i = 1 \\
x_{i-1}^2 & \text{if } q_i = 0
\end{cases}
\]

The truncation error of the above procedure is \(2^{-N}\) if enough guard bits are carried in the calculation of the \(x_i\). The error will generally more than double at each iteration, although a possible right shift will tend to keep it about the same magnitude. For example, if the error at the \(i-1\)th stage is \(\epsilon_{i-1}\), then
\[
\epsilon_i = \begin{cases}
1/2 \cdot (2x_{i-1}\epsilon_{i-1} + \epsilon_{i-1}^2) & \text{if } q_i = 1 \\
2x_{i-1}\epsilon_{i-1} + \epsilon_{i-1}^2 & \text{if } q_i = 0
\end{cases}
\]

Considering that \(q_i = 1\) or 0 as \(x_{i-1} \geq 2^{1/2}\) or \(x_{i-1} < 2^{1/2}\), we have
\[
\epsilon_i \leq \begin{cases}
1/2(2 \cdot 2x_{i-1}\epsilon_{i-1} + \epsilon_{i-1}^2) = 2\epsilon_{i-1} + 1/2\epsilon_{i-1}^2 \approx 2\epsilon_{i-1} \\
2 \cdot 2^{1/2}\epsilon_{i-1} + \epsilon_{i-1}^2 = 2^{3/2}\epsilon_{i-1} + \epsilon_{i-1}^2 \approx 2^{3/2}\epsilon_{i-1}
\end{cases}
\]

This does not include the error due to chopping after the squaring operation, which would be bounded by \(2^{-N-J}\), using \(J < N\) guard bits. \(\epsilon_0\) is zero, so we have \(|\epsilon_1| \leq 2^{3/2} \cdot 0 + \epsilon_{R_1} = 2^{-N-J}\). Then \(|\epsilon_2| \leq 2^{3/2}(2^{-N-J}) + 2^{-N-J} = (2^{3/2} + 1)2^{-N-J}\). Continuing in this fashion, or by induction, one obtains

\[
|\epsilon_N| \leq [(2^{3/2})^{N-1} + (2^{3/2})^{N-2} + \ldots + 1]2^{-N-J}, \quad \text{or}
\]

\[
|\epsilon_N| \leq (2^{3/2})^N \cdot 2^{-N-J} = 2^{N/2 - J}. \quad \text{Thus the use of } N/2 \text{ guard bits}
\]
will prevent buildup of error larger than 2^{-N}.

Because repeated squaring is required, this method is probably not too attractive, even though it is a simple calculation.

Nicoud and Dessoulay [45] suggested a method which requires repeated multiplication. Suppose $\log x$ is desired, where $1 \leq x < 2$. Now, for an appropriate number $u = 1 + 2^{-k}$, we consider the sequence $1, u, \ldots, u^n$, until $u^n \geq x$. Then we have $\log x \approx \log u^n = n \log u$. The truncation error is

$$|\log u^n - \log x| \leq \log u^n - \log u^{n-1} = \log u \approx 2^{-k},$$

hence we would probably take $k = N + 1$. The error introduced by forming the sequence $1, u, \ldots, u^n$ is bounded by $n \, 2^{-N-1}$. Unfortunately, for $x \approx 2$, we would require

$$n \approx \frac{\log 2}{\log(1+2^{-N-1})} \approx 3 \cdot 2^{N-1},$$

thus the number of operations required for high precision is excessive. About $N + 1$ guard bits would be required.

4.7 Tangent

Several authors have discussed generation of the tangent function, including Meggitt [40] and DeLugish [16]. Of course, the tangent can always be generated as the quotient of the sine and cosine, say from the CORDIC algorithm. Both Meggitt and DeLugish use this idea, with modifications.

We assume that the angle is reduced as in the sine/cosine routines. Thus we have a first quadrant angle. This is further reduced by the identity $\tan z = \cot(\pi/2 - z)$ if $z > \pi/4$.

Meggitt's initial modified division is equivalent to finding which rotations need to be done to drive the angle to zero, and doing only those which do not "over-shoot" zero. The arbitrary value, Q, should be approxi-
mately of full register length, near one. The accumulation in the double length register renders roundoff error to be insignificant. Error in recoding the angle is about the same as was discussed in the case of the exponential function, and one guard bit and \(N + 1 \) iterations \((n = N + 2)\) are required to bring the truncation error bound down to the desired level.

DeLugish use the same initialization as for sine/cosine, and the same decision process as is used in the latter stages of that procedure. Of course, the radial distortion correction is not necessary for any of the iterations.

The errors in calculation of the sine and cosine were found to be bounded by \(2^{-N} \), and these bounds hold for the modified procedures here. Then

\[
\frac{K \sin z - \epsilon_1}{K \cos z - \epsilon_2} = (\tan z - \frac{\epsilon_1}{K})(1 + \frac{\epsilon_2}{K \cos z})
\]

\[
z = \tan z - \frac{\epsilon_1}{K} + \frac{\epsilon_2 \tan z}{\cos z}
\]

The approximate error is then bounded by \(|\epsilon_1| + \frac{|\epsilon_2|}{\cos z} \leq (1 + \sqrt{2})2^{-N} \). However, separate consideration of the truncation and roundoff errors in \(K \sin z \) and \(K \cos z \) will yield a better bound, about \((1 + 1/\sqrt{2})2^{-N} \), an error confined to the last two bits of the result. For angles greater than \(\pi/4 \), the reciprocal is taken, and the error becomes arbitrarily large. This is natural, however, since the value of the tangent also becomes arbitrarily large.

4.8 Square Root

Computation of square roots has received a great deal of attention. Lenaerts [30] was one of the first to discuss the possibility of a build-in square root operation; his suggestion was for a particular type of existing
computer, and was an adaption of the usual hand method for extracting square roots. Cowgill [8] gave a non-restoring version of the usual hand method. Kostopoulos [26] and others have also suggested adaptations of the basic hand calculation. Metze [42] gave an algorithm which generates the square root in a minimally represented redundant form. The pseudo-multiplication of Meggitt [40] and Sarkar and Kirshnamurthy [55] will calculate square roots, as will the CORDIC algorithm. Chen [5] and DeLugish [16] give normalization techniques for the calculation. DeLugish gives two algorithms for the square root. One is an additive normalization procedure which is actually a modified hand method. We will discuss iterative techniques briefly.

We assume that \(X = 2^{2\alpha} \cdot x \), where \(1/4 \leq x < 1 \), then \(x^{1/2} = 2^\alpha \cdot \sqrt{x} \), and \(1/2 \leq \sqrt{x} < 1 \). We concern ourselves with the computation of \(\sqrt{x} \).

4.8.1 CORDIC Algorithm

Suppose \(\sqrt{w} \), \(1/4 \leq w < 1 \) is to be computed. Then, setting \(x = w + 1/4 \), \(y = w - 1/4 \), and entering the algorithm with \(m = -1 \) in the vectoring mode will yield the value \(K_{-1} \sqrt{x^2 - y^2} = K_{-1} \sqrt{w} \). Unfortunately, a multiplication by \(K_{-1}^{-1} \) is then necessary to obtain \(\sqrt{w} \), taking an additional multiplication and increasing roundoff error. An initial formation of \(wK_{-1}^{-2} \) could be done, also, but would require that \(K_{-1}^{-2} \) be stored, as well as \(K_{-1}^{-1} \).

The truncation error for the calculation of \(K_{-1} \sqrt{w} \) is a lengthy calculation, and is approximately
\[
\frac{K_{-1} (w^2 - w + 3/16)}{(w + 1/4) \cosh \alpha} \delta_{-1} N, \text{ where } \alpha = \tanh^{-1} \frac{w - 1/4}{w + 1/4}
\]

Hence the truncation error is bounded by \(K_{-1} \cdot 2^{-N-2} \). Roundoff errors are the same as for other applications of the CORDIC algorithm, so the error in \(K_{-1} \sqrt{w} \) is bounded by \(2^{-N-1} + K_{-1} \cdot 2^{-N-2} \). The division (or multiplication) would introduce additional error.
4.8.2 "Hand" Methods

The usual hand method for extracting square roots is a matter of trial and error. Let us outline and review the procedure for radix two.

Suppose we have a number x, $1/4 \leq x < 1$, and we have computed digits $q_1, q_2, \ldots, q_{i-1}$ so that $R_{i-1} = \sum_{j=1}^{i-1} q_j 2^{-j}$ is as large as possible, and still satisfies $x - \frac{2}{i-1} \geq 0$. Then we take q_i to be zero or one, depending on whether $x - (R_{i-1} + 2^{-i})^2$ is negative or non-negative. If we let $E_i = x - R_i^2$, then

$$E_i = x - (R_{i-1} + q_i 2^i)^2 = E_{i-1} - q_i 2^{-i+1} (R_{i-1} + q_i 2^{-i-1}).$$

Thus, we see that a trial value of E_i can be computed by subtracting $2^{-i+1} (R_{i-1} + 2^{-i-1})$ from E_{i-1}. If the result is negative, $q_i = 0$ and $E_i = E_{i-1}$. If the result is non-negative, $q_i = 1$, and E_i has been computed.

For machine implementation it is more convenient to deal with $M_i = 2^i E_i$, rather than E_i. The calculations can then be arranged as follows. Since $1/4 \leq x < 1$, $q_i = 1$; thus we can initialize

$$M_1 = 2(x - 1/4)$$
$$R_1 = 1/2$$

For $i = 2, 3, \ldots, N$

$$T_i = 2M_{i-1} - (2R_{i-1} + 2^{-i}).$$

Then, if $T_i \geq 0$

$$q_i = 1$$
$$M_i = T_i$$
$$R_i = R_{i-1} + 2^{-i},$$

or if $T_i < 0$

$$q_i = 0$$
$$M_i = 2M_{i-1}$$
$$R_i = R_{i-1}$$
This is seen to be a restoring type of process, since a trial value is computed, and then may be discarded.

It is easily seen that the truncation error is 2^{-N}, since we have computed the first N bits of the square root, and the remainder,
$$\sum_{i=N+1}^{\infty} q_i 2^{-i} \leq 2^{-N}.$$ As we have outlined the procedure, no roundoff error occurs since no numbers are right shifted off the register, and all other numbers are represented exactly with N fraction bits. We should note that M_i can be large enough to require some bits to the left of the binary point, however. This might be best handled by scaling and inclusion of an appropriate number of guard bits.

The above procedure can easily be converted to a non-restoring square root routine. The version we give is not generalized the same way as the non-restoring division routine, however.

Let $M_1 = 2(x-1/4)$
$$R_1 = 1/2$$
For $i = 2,3,\ldots,N$
$$q_i = \begin{cases} 1 & \text{if } M_{i-1} \geq 0 \\ -1 & \text{if } M_{i-1} < 0 \end{cases},$$
then $R_i = R_{i-1} + q_i 2^{-i}$
$$M_i = 2M_{i-1} - q_i (2R_{i-1} + q_i 2^{-i}).$$

The error bounds are the same as for the restoring square root procedure.

Metze has given a non-restoring algorithm which yields the value in a minimally represented redundant form. As with the Metze division algorithm [41]
there is overlap in the regions where a digit may be chosen as zero or non-zero. We outline the algorithm as given, and then discuss the overlap and a possible compromise. Let

\[R_{-1} = x \]
\[S_{-1} = 0 \]

Here \(R_i \) will correspond to the partial remainder \(x - S_i^2 \), where \(S_i \) is the approximation to the square root after \(i \) steps.

For \(i = 0,1,\ldots,N \)

\[K_i^\pm 0 = 2^{-i}(\pm 5/3 \cdot S_{i-1} + 25/36 \cdot 2^{-i}) \]
\[K_i^\pm 1 = 2^{-i}(\pm 4/3 \cdot S_{i-1} + 4/9 \cdot 2^{-i}) \]

Determine \(q_i \) by

\[q_i = \begin{cases}
0 & \text{if } K_i^0 < R_{i-1} < K_i^{+0} \\
1 & \text{if } K_i^{+1} < R_{i-1} \\
-1 & \text{if } K_i^{-1} > R_{i-1}
\end{cases} \]

Then

\[R_i = R_{i-1} - q_i 2^{-1}(2S_{i-1} + q_i 2^{-1}) \]
\[S_i = S_{i-1} + q_i 2^{-1} \]

Since \(K_i^{-0} < K_i^{-1} < K_i^{+1} < K_i^{+0} \), it is not well defined in the above how \(q_i \) is to be chosen if \(R_{i-1} \) is in one of the overlapping regions. It can be chosen either way one prefers; the representation will still be minimal. Since the above values of \(K_i^\pm 0 \) and \(K_i^\pm 1 \) are not particularly easy to compute, a reasonable suggestion would seem to be to compromise at some point in the regions which is easier to compute. Such a value is

\[K_i^\pm = 2^{-i}(\pm 3/2 \cdot S_{i-1} + 2^{-i-1}) \]

Actually, in the above there appears to be a
slight difficulty with the iteration \(i = 0 \) since then \(K_0 \pm 0 = 25/36 \), and \(K_0 \pm 1 = 4/9 \). However, since \(R_{-1} > 0 \), the negative values are not required. The same difficulty appears in our suggestion, and is resolved the same way.

With our suggested criterion for determining the \(q_i \) and the replacement of \(2^i R_i \), an algorithm for computing minimally represented square roots is as follows. We remove the apparent difficulty on the first iteration by initializing differently.

Let

\[
S_o = \begin{cases}
1 & \text{if } x \geq 1/2 \\
0 & \text{if } x < 1/2
\end{cases}
\]

and

\[
M_o = x - S_o^2 = x - S_o
\]

For \(i = 1, 2, \ldots, N \)

\[
K_i^\pm = \pm 3/2 \cdot S_{i-1} + 2^{-i-1},
\]

then determine \(q_i \) by

\[
q_i = \begin{cases}
1 & \text{if } K_i^+ < 2M_{i-1} \\
-1 & \text{if } K_i^- > 2M_{i-1} \\
0 & \text{otherwise}
\end{cases}
\]

Then

\[
M_i = 2M_{i-1} - q_i(2S_{i-1} + q_i2^{-i})
\]

\[
S_i = S_{i-1} + q_i2^{-i}
\]

The same comments pertaining to roundoff error made for previous methods applies here. Metze shows that the remainder \(R_N \) is bounded by \(K_N^{\pm 0} \), thus we have

\[
2^{-N}(-5/3 \cdot S_{N-1} + 25/36 \cdot 2^{-N}) < x - S_N^2 < 2^{-N}(+5/3 \cdot S_{N-1} + 25/36 \cdot 2^{-N}).
\]
Now, \(S_{N-1} \approx S_N \), and \(2^{-N} \ll S_N \), so \(x - S_N \frac{2}{2} \) is bounded by about \(2^{-N} \cdot 5/3 \cdot S_N < 2^{-N+1} S_N \). The latter can be shown to be a rigorous bound for moderate values of \(N \). We are interested in \(\sqrt{x} - S_N \), not \(x - S_N \frac{2}{2} \), but recalling that

\[
S_N \approx \sqrt{x}, \quad |\sqrt{x} - S_N| = \left| \frac{x - S_N \frac{2}{2}}{\sqrt{x} + S_N} \right| \leq \frac{x - S_N \frac{2}{2}}{2S_N} \leq 2^{-N+1} S_N = 2^{-N}.
\]

Thus the error is no greater than one in the last bit.

DeLugish gives a similar procedure where the comparison constant is not a function of the partial result. Let \(U_o = x_o/4 \), then the initialization step is

\[
U_1 = 1/2(x_o - r_o \frac{2}{2})
\]

\[
R_1 = r_o
\]

where \(r_o \) is given in Table 8. The comparison constant \(c^1 \) is also given in the table.

<table>
<thead>
<tr>
<th>interval for (x)</th>
<th>(r_o)</th>
<th>(c^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1/2, 5/16)</td>
<td>1/2</td>
<td>3/8</td>
</tr>
<tr>
<td>[5/16, 3/8)</td>
<td>9/16</td>
<td>7/16</td>
</tr>
<tr>
<td>[3/8, 9/16)</td>
<td>5/8</td>
<td>1/2</td>
</tr>
<tr>
<td>[9/16, 7/8)</td>
<td>3/4</td>
<td>5/8</td>
</tr>
<tr>
<td>[7/8, 1)</td>
<td>1</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Table 8
For $i = 1, 2, \ldots, N-1$,

$$s_i = \begin{cases}
-1 & \text{if } U_i < -\frac{1}{4} \\
1 & \text{if } U_i \geq \frac{1}{4} \\
0 & \text{otherwise}
\end{cases}$$

and $U_{i+1} = 2U_i - 1/2 \cdot s_i (R_i + s_i 2^{-i-2})$,

$$R_{i+1} = R_i + s_i 2^{-i-1}.$$

DeLugish shows that $|\sqrt{x} - R_i| \leq 2^{-i}$, hence $|\sqrt{x} - R_N| \leq 2^{-N}$, so truncation error is bounded by 2^{-N}. Because of the way DeLugish initializes, 2 guard bits are required to avoid error in the initial calculation of U_o and in the latter stages of the U_i sequence. This is the same problem referenced earlier when discussing the magnitude of the partial remainders and a possible scaling with guard bits to contain the right shift.

4.8.3 Pseudo-Division/Multiplication Methods

Meggitt's method can be used to compute square roots, as Table 3 shows. The only complication is that the recursion for x_{i+1} has three terms, but this is common to most methods. Roundoff error will occur in the calculation of x_{i+1}, but as before, the effect is less than $1/2$ in the Nth digit, or less than 2^{-N-1}, with no guard bits required.

4.8.4 Normalization Methods

Normalization methods are for the calculation of y/\sqrt{x}, and \sqrt{x} is obtained by setting $y = x$. The procedures are similar to those for division, except that x_i is multiplied by a_i^2, requiring a three term sum, as in the hand methods. We assume $1/4 \leq x < 1$.

DeLugish initializes by $x_o = x_1$, $R_o = y$, then
\[U_1 = r_0 x_0 - 1 \]
\[R_1 = R_0 \sqrt{r_0} \quad \text{, where} \]
\[r_o = \begin{cases}
4 & \text{if} \quad 1/4 \leq x_o < 1/2 \\
1 & \text{if} \quad 1/2 \leq x_o < 1
\end{cases} \]

For \(i = 1, 2, \ldots, N \)
\[s_i = \begin{cases}
-1 & \text{if} \quad U_i \geq 3/8 \\
1 & \text{if} \quad U_i < 3/8 \\
0 & \text{otherwise}
\end{cases} \quad , \]
and then
\[U_{i+1} = 2U_i + s_i + 2^{-i}(2U_is_i + 1/4 \cdot s_i^2) + U_is_i \cdot 2^{-i-1} \]
\[R_{i+1} = R_i (1 + s_i 2^{-i-1}) \]

In the above, we note that \(a_i = 1 + s_i 2^{-i-1} \) and \(U_{i+1} = 2^i(x_{i+1} - 1) \),
where \(x_{i+1} = x_i (1 + s_i 2^{-i-1})^2 \).

DeLugish gives the error bound \(|x_{N+1} - 1| \leq 3/4 \cdot 2^{-N} \), and this gives a
truncation error bound of about \(3/8 \cdot 2^{-N} < 2^{-N-1} \). Roundoff error bounds
are the same as most other DeLugish algorithms. The average number of non-zero
\(s_i \) is about \(N/3 \). It is not known what the maximum number of non-zero \(s_i \) is,
but in any case \(\log_2 N + 1 \) guard bits are sufficient.

The Chen algorithm again counts left zeros in \(1 - x_i = 2^{-p_i+1} + v_i \),
\[0 \leq v_i < 2^{-p_i+1} \], and \(p_i \) is two plus the number of left zeros in \(1 - x_i \).
Then \(a_i = 1 + 2^{-p_i} \), and \(1 - x_{i+1} = 1 - a_i x_i = 1 - (1 + 2^{-p_i})^2 (1 - 2^{-p_i+1} + v_i) = v_i + 0(2^{-2p_i+2}) \), thus, again the leading one-bit is eliminated.

The termination algorithm, again applied when \(p_n > \frac{N}{2} \), is \(y/\sqrt{x} \geq y_n + 1/2 \cdot y_n (1 - x_n) \). For purposes of reducing truncation error, the termination
algorithm \(y/\sqrt{x} \approx y_n + 1/2 \ y_n (1 - x_n + 2^{-N-2}) \) may be used. Truncation error is then bounded by \(2^{-N-2} \). The same comments about roundoff error made in other discussions of Chen's normalization algorithms apply here.

4.8.5 Iterative Procedures

The classical iteration for the solution of \(Z^2 - x = 0 \) is the Newton iteration, \(Z_{i+1} = 1/2 \cdot (Z_i - x/Z_i) \), with \(Z_0 \) given as an initial guess. Convergence is quadratic. Many papers have been written concerning optimal starting values and other aspects of the iteration. As written above, a division is required.

Ramamoorthy, Goodman, and Kim [49] have made a study of iterative methods which use only multiplication, except for a possible final division. The iteration

\[
R_{i+1} = \frac{R_i}{2} (3 - xR_i^2)
\]

converges to \(x^{-1/2} \) for appropriate \(R_0 \).

Another iteration, involving two variables is

\[
R_{i+1} = R_i (2 - B_i R_i)
\]

\[
B_{i+1} = 1/2(B_i + xR_{i+1})
\]

Here \(\{R_i\} \) converges to \(x^{-1/2} \) and \(\{B_i\} \) to \(x^{1/2} \).

It is interesting to note that if \(B_i = N \) for all \(i \) in the first equation, that this is the iteration for the reciprocal of \(N \), thus if this type of division were employed, the square root could be implemented easily.

4.9 Product

Unlike many functions, the product is easily implemented in a straightforward fashion. A modification of the usual successive shift and add method, additive normalization, is suggested by DeLugish [16]. Ling [32] has given a method based on logical circuits to form the product of 8 bit segments of
numbers. Chen [4] gives another, somewhat similar algorithm, based on
\[AB = \left(\frac{A+B}{2} \right)^2 - \left(\frac{A-B}{2} \right)^2. \] Logan [36] has a similar proposal using "squaring" chips. And of course, the CORDIC algorithm will yield a product.

In general we assume that we wish to compute \(y^x \), where \(1/2 \leq x < 1 \) and \(y \) may be any number.

4.9.1 CORDIC Algorithm

Entering the CORDIC algorithm with \(m = 0 \), \(y = 0 \), in the rotation mode, yields \(y_{N_0+1} = xz \), where in this instance \(|z| \leq 1 \). We have \(y_{N_0+1} = \)

\[x \left(-\sum_{i=0}^{N_0} a_i \right), \quad \text{and} \quad |z + \sum_{i=0}^{N_0} a_i| \leq |y_{N_0+1}| \leq a_{N_0} = 2^{-N-1}. \]

Thus, the truncation error is no more than \(2^{-N-1} |x| \), and if \(|x| \leq 1 \), the bound is \(2^{-N-1} \). The roundoff error is also bounded by \(2^{-N-1} \) for a total error of no more than \(2^{-N} \), or one in the last bit.

4.9.2 "Hand" Methods

The usual shift and add method was outlined in Section 3.2. There is no truncation error, and \(N \) guard bits are required for no roundoff error (i.e., a double length register), but \(\log_2 N + 1 \) guard bits renders roundoff error less than \(2^{-N-1} \), with chopping.

DeLugish uses the following additive normalization. Let \(U_0 = x \), \(P_0 = 0 \). Initialize

\[U_1 = 2(U_0 - m_0) \]

\[P_1 = P_0 + y m_0, \]

where

\[m_0 = \begin{cases}
1/2 & \text{if } 1/2 \leq x < 3/4 \\
1 & \text{if } 3/4 \leq x < 1
\end{cases} \]
For $i = 1, 2, \ldots, N$

$$s_i = \begin{cases}
-1 & \text{if } U_i < -3/8 \\
1 & \text{if } U_i \geq 3/8 \\
0 & \text{otherwise}
\end{cases}$$

then

$$U_{i+1} = 2U_i - s_i$$

$$P_{i+1} = P_i + ys_i2^{-i-1}.$$

Letting $m_i = s_i2^{-i-1}$ for $i \geq 1$, we have $U_i = 2^i(x - \sum_{j=0}^{i-1} m_j)$, and

$$P_i = y \sum_{j=0}^{i-1} m_j.$$

Thus the truncation error is

$$yx - P_{N+1} = y(x - \sum_{j=0}^{N} m_j).$$

DeLugish shows that $|x - \sum_{j=0}^{N} m_j| \leq 3/8 \cdot 2^{-N}$,

thus the truncation error is bounded by $|y| \cdot 3/8 \cdot 2^{-N} < 2^{-N-1}$ if $|y| \leq 1$.

Roundoff error again depends on the number of non-zero s_i, which average about $N/3$ again. By an argument similar to that for division, it can be shown that no more than two successive s_i can be non-zero, thus at most about $2N/3$ of the s_i can be non-zero. Hence, about $\log_2 2N/3 + 1$ guard bits are sufficient to bound roundoff error by 2^{-N-1}. Total error is no more than one bit.

4.9.3 Other Methods

Several methods have been derived for obtaining the product by decomposing it into a sum of several other terms which are determined by means of logical circuits. Ling gave a method whereby the product of two 8 bit numbers is obtained in three additions. For longer word lengths, the idea is applied to
segments of the numbers in parallel, and then the product found by summing.

Time is about \(1 + 2k \) addition times, where the word length is \(8 \cdot 2^{k-1} \), \(k \geq 1 \).

Basically, the idea is to form

\[
\frac{x+y}{2} = I = 2^n i \quad , \quad 1/2 \leq i < 1
\]
\[
\frac{x-y}{2} = J = 2^n j \quad , \quad 1/2 \leq j < 1
\]

Then, with \(S(z) = z - \frac{z^2}{2} \), \(S(i) \) and \(S(j) \) are formed by means of logical circuits. Then it is easily verified that

\[
xy = 2 \{2^n I - 2^m J - 2^n S(i) + 2^m S(j)\}.
\]

As many as 26 terms involving seven variables occur in the definition of the bits of \(S(z) \).

Chen uses the idea that \(xy = \left(\frac{x+y}{2}\right)^2 - \left(\frac{x-y}{2}\right)^2 \), and a decomposition of the square of a number into the sum of three quantities (for 8 bits; two quantities for 4 or 6 bits), \(Z^2 = R + S + T \).

The expressions for \(R \), \(S \), and \(T \) are decided upon by considering the "squaring parallelogram" that results when forming the square with pencil and paper. Symmetry can be exploited, and the decomposition given by Chen results in each bit involving no more than 14 terms and six variables.

Logan [36] has a similar idea using squaring chips [35], except that he forms \(2xy = (x+y)^2 - x^2 - y^2 \). This would appear to be more costly in terms of both time and hardware than using \(xy = \left(\frac{x+y}{2}\right)^2 - \left(\frac{x-y}{2}\right)^2 \).

The above procedures form a double length product, thus there is no error involved.
5.0 Conclusion

Several conclusions can be drawn from this study, depending on the point of view taken. If simplicity and generality is the main objective, then the CORDIC algorithm of Walther [66] should be heavily favored. If speed is of principal importance, then the normalization method proposed by Chen [5] is excellent for its purpose. We note that Chen's algorithm is the subject of a U.S. patent. For implementation with more conventional hardware, and a good compromise between simplicity and speed, the set of normalization algorithms proposed by DeLugish must be highly rated.

The special purpose algorithms usually (although not always) are faster than those which are part of a unified algorithm. The minimal representation algorithms by Metze [41], [42] should be excellent for their purpose. The decomposition schemes for performing multiplication, proposed by Ling [32], Chen [4], and Logan [36], appear to be capable of high speeds.

As was noted earlier, the only method available for computation of trigonometric functions is the CORDIC algorithm and variations of it. It appears that this is one area where some additional study is necessary to develop faster and more efficient algorithms.
Appendix A: Block Diagrams
BLOCK DIAGRAM - CORDIC ALGORITHM

\[X, Y, Z, m, \text{mode} \]

Register
<table>
<thead>
<tr>
<th>R</th>
<th>X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Y_i</td>
</tr>
<tr>
<td>T</td>
<td>Z_i</td>
</tr>
<tr>
<td>I</td>
<td>I_i</td>
</tr>
</tbody>
</table>

Contents
<table>
<thead>
<tr>
<th>R</th>
<th>X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Y_i</td>
</tr>
<tr>
<td>T</td>
<td>Z_i</td>
</tr>
<tr>
<td>I</td>
<td>I_i</td>
</tr>
</tbody>
</table>

\[R \leftarrow X \]
\[S \leftarrow Y \]
\[T \leftarrow Z \]
\[I \leftarrow 0 \]

Rotation
\[m \leftarrow c(T) \]
\[A \leftarrow c(S) \]

Sign Sensor
\[s_i = \text{sign } c(A) \]

Complementor
\[ms_i \cdot c(J) \]
\[-s_i \cdot c(R) \]
\[s_i \cdot \alpha_i \]

Shifter
\[ms_i \cdot c(J)2^{-P} \]
\[-s_i \cdot c(R)2^{-P} \]
\[-P_i \]

Adder
\[R \leftarrow c(R) + ms_i \cdot c(S)2^{-P} \]
\[S \leftarrow c(S) - s_i \cdot c(R)2^{-P} \]
\[T \leftarrow c(T) + s_i \cdot \alpha_i \]

\[I \leftarrow c(I) + 1 \]

Exit

\[N_m \]

\[c(I) \]
BLOCK DIAGRAM - PSEUDO-MULTIPLICATION

\[x, y, p = \{ q_i \}, fctn \]

\[\text{product, tan} \quad fctn \quad \text{exp, square} \]

\[\begin{align*}
\text{II} & \leftarrow -1 \\
\text{I} & \leftarrow n
\end{align*} \]

\[C \leftarrow x \]
\[Z \leftarrow y \]
\[X \leftarrow x \]

\[\#0 \]
\[q_i = 0 \]

\[\text{product} \quad fctn \quad \text{square} \quad \text{exp} \quad \text{tan} \]

\[M \leftarrow 0 \]
\[M \leftarrow c(X) \]
\[M \leftarrow -c(Z) \]
\[M \leftarrow -c(C) \]

\[\text{shifter} \quad M \leftarrow c(M)2^{-i} \]
\[\text{shifter} \quad M \leftarrow c(M)2^{-2i} \]
\[\text{shifter} \quad M \leftarrow c(M)2^{-i+1} \]

\[\text{adder} \quad Z \leftarrow c(Z) + c(X) \]
\[\text{adder} \quad X \leftarrow c(X) + c(M) \]

\[\#0 \text{ and } \#n \]
\[c(I) = 0 \text{ or } n \]

EXIT

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>pseudo-multiplicand, (x_i)</td>
</tr>
<tr>
<td>Z</td>
<td>pseudo-product, (z_i)</td>
</tr>
<tr>
<td>M</td>
<td>multiplicand modifier</td>
</tr>
<tr>
<td>C</td>
<td>(x)</td>
</tr>
<tr>
<td>I</td>
<td>index, (i)</td>
</tr>
<tr>
<td>II</td>
<td>index modifier, (t_i)</td>
</tr>
</tbody>
</table>

\[M \leftarrow c(C) \]

\[\text{shifter} \quad M \leftarrow c(M)2^{-i-1} \]

\[\text{adder} \quad X \leftarrow c(X) + c(M) \]

\[\text{shifter} \quad c(II) \leftarrow c(II) \]

\[\text{adder} \quad I \leftarrow c(I) + c(II) \]

\[\text{adder} \quad X \leftarrow c(X) + c(M) \]
x, y, fctn

\[Q \leftarrow 0 \]
\[A \leftarrow y \]
\[B \leftarrow x \]
\[C \leftarrow x \]
\[I \leftarrow 0 \]

quotient

fctn

log

\[M \leftarrow -c(B) \]

shifter

\[M \leftarrow c(M)2^{-i} \]

adder

\[A \leftarrow c(A) - c(B) \]

\[B \leftarrow c(B) + c(M) \]

\[Q \leftarrow c(Q) + 1 \]

\[A \leftarrow c(A) + c(B) \]

\[A \leftarrow 2c(A) \]

\[M \leftarrow c(C) \]

\[M \leftarrow c(M)2^{-i} \]

adder

\[I \leftarrow c(I) + 1 \]

adder

\[B \leftarrow c(B) - c(M) \]

EXIT
BLOCK DIAGRAM - NORMALIZATION METHODS

```
x, y, fctn
    \[ \log \]
    fctn \[ \text{ratio, square root} \]
    \[ \exp \]

\[ R \leftarrow x \]
\[ S \leftarrow x \]
\[ T \leftarrow y \]
\[ T \leftarrow y \]

select \( s_i \) and \( p_i \)

\[ U \leftarrow c(R) \]

complementor
\[ s_i \leftarrow c(U) \]

shifter
\[ c(U) \cdot 2^{-m} \]

adder
\[ R \leftarrow c(R) + c(U) \cdot 2^{-m} \]

otherwise
fctn
square root

\[ \text{yes} \]
\[ \text{1st time} \]
\[ \text{no} \]

EXIT \[ \geq N \]
\[ \leq N \]

adderc
\[ I \leftarrow c(I) + 1 \]

- \( m \):
\[ \begin{cases} 
  p_i, \text{fctn= square root} \\
  p_i-1, \text{fctn= square root, 1st time} \\
  p_i+1, \text{fctn= square root, 2nd time} 
\end{cases} \]

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R )</td>
<td>( x_i ) or ( x_i )</td>
</tr>
<tr>
<td>( S )</td>
<td>( y_i )</td>
</tr>
<tr>
<td>( T )</td>
<td>( y_i )</td>
</tr>
<tr>
<td>( I )</td>
<td>( y_i )</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\text{Register} & \quad \text{Contents} \\
U & \quad U_i \\
P & \quad P_i \\
I & \quad I \\
T & \quad \text{test value}
\end{align*}
\]
BLOCK DIAGRAM - METZE DIVISION

**Register**
- R
- Q
- K
- I
- T

**Contents**
- $2R_i$
- $Q_i$
- $K$
- i
- $(2R_i - \phi \text{sign}(R_i))$

```
x, y
R ← y
Q ← 0
I ← 0

< 3/4 c(R) ≥ 3/4
< 39/64 c(R) ≥ 39/64 < 15/16 c(R) ≥ 15/16
K ← 13/32 K ← 1/2 K ← 5/8 K ← 3/4

< 0 c(R) ≥ 0
add
T ← c(K) - c(R)
qi ← -1
add
T ← c(R) - c(K)
qi ← 1

≥ 0 c(T) < 0
complement
qi 2^-i
add
Q ← c(Q) + qi 2^-i
complement
qi x
add
R ← c(R) - qi x

shifter
R ← 2c(R)
add
I ← c(I) + 1

≤ N c(I) > N
EXIT
```
BLOCK DIAGRAM - METZ SQUARE ROOT

Register Contents
M partial remainder
S approx. square root
I i
K K
A test value

\[ x \]

\[ M \leftarrow x \]
\[ I \leftarrow 1 \]

\[ S \leftarrow 1 \]

\[ \frac{1}{2} \]

\[ \frac{1}{2} \]

\[ S \leftarrow 0 \]

\[ F \]

\[ \text{complementor} \ q_i \]
\[ q_i2^{-i} \]

\[ \text{shifter} \ K \leftarrow \frac{1}{2}c(S) \]

\[ \text{shifter} \ M \leftarrow 2c(M) \]

\[ \text{adder} \ K \leftarrow c(K) + c(S) \]
\[ \text{adder} \ A \leftarrow c(M) - 2^{-i} - 1 \]

\[ \text{adder} \ K \leftarrow c(K) + c(A) \]

\[ c(K) \geq 0 \]
\[ < 0 \]

\[ q_i \leftarrow -1 \]

\[ q_i \leftarrow 1 \]

\[ \text{complementor} \ A \leftarrow -c(A) \]

\[ \text{adder} \ M \leftarrow c(M) + (-2q_i c(S)) \]

\[ \text{adder} \ S \leftarrow c(S) + q_i2^{-i} \]

\[ \text{adder} \ A \leftarrow c(M) - 2^{-i} \]

\[ \text{adder} \ I \leftarrow c(I) + 1 \]

\[ \leq N \]
\[ > N \]

\[ \text{EXIT} \]
Appendix B: CORDIC Simulation Program
PROGRAM CORDIC

THIS PROGRAM SIMPLIFIES THE GENERALIZED CORDIC ALGORITHM OF WALther
RCM VALUES ARE COMPUTED WITH ROUNDING TO NPB + NGB BITS ACCURACY IN THE ITERATIONS, CHOPPING IS USED AFTER MULTIPLICATIONS. THIS CORRESPONDS TO A RIGHT SHIFT OFF THE END

INPUTS ARE AS FOLLOWS:

M IS M
MODE IS 1 FOR ROTATION, 2 FOR VECTORING
NPE IS THE NUMBER OF PRECISION BITS OF THE COMPUTER NGB IS THE NUMBER OF GUARD BITS WITH WHICH THE CALCULATIONS ARE PERFORMED (NOTE THAT WITH 32 BIT ARITHMETIC THE VALUE OF NPB + NGB MUST BE NO MORE THAN 31)
IC OUTPUT IS GIVEN ON THE ITERATION WHEN I/IO IS AN INTEGER
X THE INPUT VALUE OF X (SHOULD BE LESS THAN ONE)
Y THE INPUT VALUE OF Y (SHOULD BE LESS THAN ONE)
Z THE INPUT VALUE OF Z (IS IN DEGREES IF M = 1, AND SHOULD BE 180 OR LESS IN MAGNITUDE. IF M IS -1 CR 0 Z SHOULD BE LESS THAN ONE IN MAGNITUDE)

DIMENSION RCM(2,5C),NXI(32),NYI(32),NZI(32)
INTEGER RCM,SFP,SFG,TSF,ZI,XI,YI,XTEMP,DELI,M,MODE,NPB,D1,SZ,K
1 REPEAT,XCR,YCR,ZCR,FSG
REAL*R8 D,CATANH,RK,X,Y,Z,PI,ANG,XC,YC,ZC
CATANH(X) = .5D0*DLCLG((1.D0 + X)/(1.D0 - X))
PI = DATAN(1.D0)*.CC
100 REAL I,PI,MODE,NPE,NGB,IO
IF(NPB.LE.0)STOF REPEAT = 4 SFP = 2**NPE SFG = 2**NGB HSFG = SFG/2 TSF = SFP * SFG
INITIALIZE RCM,COMMAND SCALE FACTOR

RK = 1.D0 C1 = 1
IF(M.LE.0)C1 = 2 I = C J = C 1 
I = I + 1 J = J + 1 C = 1.C0/C1 RCM(2,1) = TSF/C1 IF(M)14C,15C,16C
140 RCM(1,1) = CATANH(C)*TSF +.5D0 GC TC 180
15C RCM(1,1) = TSF/D1 GC TC 180
16C RCM(1,1) = CATAN(C)*TSF +.5C0 180 RK = RK*(1.C0 + M*D**2)
190 IF(M)195,20C
195 IF(J.AE.REPEAT)GC TC 200 I = I + 1 REPEAT = 3*REPEAT + 1 RCM(1,1) = RCM(1,1-1) RCM(2,1) = RCM(2,1-1) RK = RK*(1.C0 + M*D**2)
200 IF(D1.GT.SFP)GO TC 2C1 I = 2*C1 GC TC 120
201 NMAX = I IF(NGB.LE.0)NMAX = NMAX - 1 K = CSCRT(RK)*TSF + .5C0
READ 2,X,Y,Z
PRINT 5,M,MCLE,NPE,NGB,X,Y,Z

SCALE INPUTS TC INTEGER (NPE*NGB BITS) AND DO FIRST 90 DEGREE RCTATIONS

IF(M*0)GC TC 205
ZI = Z*SFP + DSIGN(.5E0,Z)
XI = X*SFP/K*TSF + DSIGN(.5D0,X)
YI = Y*SFP/K*TSF + DSIGN(.5E0,Y)
GO TC 250

205 ANG = Z/18.0*PI
GC TC (21C,22C),MCDE
21C SZ = DSIGN(1.0C,Z)
GC TC 230
22C SZ = -DSIGN(1.0C,Y)
230 IF(SZ*EQ.0)SZ = 1
ZI = (Z - SZ*90)/1.8E2*PI*SFP + DSIGN(.5D0,Z - SZ*SC
XI = S2*X*SFP/K*TSF + DSIGN(.5D0,-SZ*Y)
YI = S2*X*SFP/K*TSF + DSIGN(.5D0,SZ*X)
25C ZI = Z*SFG
XI = X*SFG
YI = Y*SFG

NOW START THE RCTATIONS

CG 4CC I=1,NMAX
J = I - 1
IF(MCC(J,IC),NE.0)GC TC 280
CALL BINARY(XI,NXI,32)
CALL BINARY(YI,MYI,32)
CALL BINARY(ZI,NZI,32)
PRINT 3,J,NX1,NY1,NZ1,XI,YI,ZI
280 CONTINUE
GC TC (30C,310),MCDE
300 SZ = DSIGN(1,01)
GC TC 320
310 SZ = -DSIGN(1,XI)*ISIGN(1,YI)
320 IF(SZ*EQ.0)SZ = 1
DELI = -SZ*RCM(2,1)
XTEMP = XI
ICLCSF = TSF/DELI
XI = XI + M*YI/ICLCSF
YI = YI - XTEMP/ICLCSF
ZI = ZI - SZ*RCM(1,1)
400 CONTINUE
CALL BINARY(XI,NXI,32)
CALL BINARY(YI,MYI,32)
CALL BINARY(ZI,NZI,32)
PRINT 3,NMAX,NXI,MYI,NZI,XI,YI,ZI

SUMMARY OF RESULTS

LPTG = MODE + 2*(M + 1)
GC TC (410,420,43C,440,45G,46C),LPTG
410 XC = X*CCS(H(Z) + Y*ESINH(Z)
YC = Y*CCS(F(Z) + X*ESINH(Z)
ZC = C.DO
GC TC 47C
420 XC = CCSRT(X**2 - Y**2)
YC = C.DO
ZC = Z + CATANH(Y/X)
GC TC 470
430 XC = X
YC = Y + X*2
ZC = 0.DO
GC TC 47C
440 XC = X
YC = 0.DO
ZC = Z + Y/X
GC TC 470
450 XC = X*CCS(ANG) - Y*ESIN(ANG)
YB = Y*CCCS(ANG) + X*CSIN(ANG)
ZB = C*DC
CC TC 470
460 XB = C*SQRT(X**2 + Y**2)
YB = C*DC
ZB = ANG + CATANG(Y, X)
470 XI = (XI + ISIGN(FSG, XI))/FSG
YI = (YI + ISIGN(FSG, YI))/FSG
ZI = (ZI + ISIGN(FSG, ZI))/FSG
XCR = X*SF + DSIGN(.5DO, XC)
YCR = Y*SF + DSIGN(.5DO, YC)
ZCR = Z*SF + DSIGN(.5DO, ZC)
PRINT 4, SFF, XI, XCR, Y1, YCR, ZI, ZCR
CC TC 100
1 FORMAT(1015)
2 FORMAT(8D10.0)
3 FORMAT(13, 3(1X, 32A1), 2I10)
4 FORMAT(// 'SUMMARY OF RESULTS COMPUTED CORRECT'/'
2 16 (' * ** * '), 'RF'
5 FORMAT(// 'CM, MCCE, NPE, NGB', 4IS, '0X, Y, Z', 4P3D15.6, // '0 I',
END

SUBROUTINE EINARY(NI, NG, ND)
THIS ROUTINE CONVERTS THE NUMBER NI TO SIGNED BINARY (BCD)
THE CHARACTERS ARE STORED IN THE ARRAY NI
THE LEAST SIGNIFICANT DIGIT IS STORED IN NI(ND)
IT IS ASSUMED THAT NI IS NO BIGGER THAN 2**(ND-2) - 1 IN MAGNITUDE
DATA ISP, ISP, ISB, ISL, ISO, /1H+, 1H-, 1H, 1H0/
DIMENSION NC(I)
CC 1CC I=1, NC
10CC NG(I) = ISB
ISP = ISP
IF(NI.LT.0) ISP = ISM
K = IABS(NI)
CC 200 I=1, NC
M = K/2
K = NC - I + 1
NC(K) = ISO
IF(K.NE.2*M) NC(K) = IS1
IF(M.NE.0) GC TO 2CC
IF(K.GT.1) NC(K-1) = IS
RETURN
20C K = M
RETURN
END

72
Bibliography


23. Albert Hemel, "Square root extraction with read only memories", Computer Design, April 1972; 100-102, 104.


47. ______, "CORDIC technique reduces trigonometric function look-up", Computer Design, June 1971; 72,74,76,78.


60. Shankar Singh and Ronald Waxman, "Multiple operand addition and multiplication", IEEE Trans on Computers C-22(1973)113-120.


65. L. B. Wadel, "Negative base number systems", IRE Trans. on Electronic Computers EC-6(1957)123


67. ______, "A floating point processor for elementary functions", Manuscript.
<table>
<thead>
<tr>
<th>Distribution List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Documentation Center</td>
</tr>
<tr>
<td>Cameron Station</td>
</tr>
<tr>
<td>Alexandria, Virginia</td>
</tr>
<tr>
<td>Library</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>Monterey, California</td>
</tr>
<tr>
<td>Naval Electronics Laboratory Center</td>
</tr>
<tr>
<td>Research Library, Code 6700</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. W. J. Dejka, Code 4300</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. S. Snyder, Code 4000</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. H. T. Mortimer, Code 0220</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. M. Lamendola, Code 5200</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. W. Loper, Code 5200</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Dr. R. Kolb, Code 3300</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. E. E. McCown, Code 3100</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. H. F. Wong, Code 3200</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Dr. P. C. Fletcher, Code 2000</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
<tr>
<td>NELC</td>
</tr>
<tr>
<td>Mr. John Wasilewski, Code 4300</td>
</tr>
<tr>
<td>San Diego, California</td>
</tr>
</tbody>
</table>
Dean J. M. Wozencraft, Code 023
Dean of Research
Naval Postgraduate School
Monterey, California 93940

Professor W. M. Woods, Code 53Wo
Chairman, Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

Professor Richard Franke, Code 53Fe
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

Professor Craig Comstock, Code 53Zk
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

Professor R. E. Barnhill
University of Utah
Salt Lake City, Utah 84112

Steve Walther
Hewlett-Packard Laboratories
Electronics Research Laboratory
1501 Page Mill Road
Palo Alto, California 94304

Dr. Richard Lau
Office of Naval Research
Pasadena, California 91100

Dr. Leila Bram
Director, Mathematics Program
Office of Naval Research
Arlington, Virginia 22217

Professor V. Michael Powers, Code 52Pw
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

Professor Gary Kildall, Code 53Kd
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940
Algorithms for the automatic evaluation of elementary functions were studied. Available algorithms obtained from current literature were analyzed to determine their suitability for hardware implementation, in terms of their accuracy, convergence rate, and hardware requirements. The functions considered were quotient, arctangent, cosine/sine, exponential, power function, logarithm, tangent, square root, and product.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Elementary Functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>