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1.0 Introduction

The purpose of this study was to identify and analyze mathematical

algorithms for possible hardware implementation. Emphasis was placed on

the evaluation of elementary functions, such as square root, logarithm and

exponential, trigonometric functions, and multiply and divide. The study

was directed toward algorithms for binary computers, although some references

are included which address themselves to radices 10 [56], 16 [18], and -2

[53], [54], [65].

We have not assumed that any fixed degree of accuracy was required.

Rather, we have generally concentrated on methods which are flexible enough

for the accuracy to be a function of the number of iterations performed.

We have generally assumed that extremely low precision is not sufficient,

thus ruling out consideration of methods which are essentially table-look-up,

with or without interpolation (e.g., [23], [52], [57]). Low precision inter-

polation, such as Mitchell [43], and variations of it ([11], [27], [39])

have not been studied.

The commitment of a large amount of hardware can sometimes be used to

decrease the execution time for evaluation of functions. The use of cellular

arrays has been proposed for multiplication [13], division [37], [62], [3],

square root [9], [22], [38], and logarithm [15]. While this idea is promising

in terms of speed, we have concentrated on algorithms to be implemented with

the use of only a moderate amount of parallel processing.

A number of the proposed algorithms are unified in the sense that with

variations in certain parameters the same procedure can be used to evaluate

any one of several functions. A description of three algorithms of this type

will be given in Section 3, before proceeding with a discussion of algorithms

for specific functions in Section 4. A short consideration of error analysis

is given in Section 2.



2.0 Error Analysis Considerations

The error involved in evaluating a function consists of three parts:

(i) Roundoff error is accumulated in doing the necessary arithmetic; (ii)

The methods are interative, and convergence is obtained only to within a

specified tolerance, thus truncation error occurs; and (iii) If the inter-

mediate results are carried to additional bits of accuracy to reduce roundoff

error accumulation, an error is committed by reducing the number of bits in

the final result to machine precision.

We will generally assume that we are dealing with fractional numbers

which involve N fraction bits. This is compatible with the notion of

floating point arithmetic, where the value of the exponent, or characteristic,

is taken care of by a separate normalization procedure. This may be performed

before or after the algorithm we discuss. More is said about this in

discussing the various functions.

Suppose that M operations where roundoff error may occur are performed.

If the error committed each time is bounded by 6, the total error can not

exceed Me. Assuming N fraction bits, we would probably want the roundoff

-N-l -N-l
error to be bounded by 2 , or Me < 2 . Thus - log.e > N + 1 + log_M.

Roundoff error is decreased by increasing the precision of the intermediate

results; say, use J "guard" bits for a total of N + J fraction bits. Then

(1)

where

Thus, (1) in the above, yields - log
2
K +N+J+1>N+1+ log^l,

*The term chopping will refer to simply truncating after N + J bits without

regard to the N + J + U& bit. The term truncation error will be defined later,
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or

(2) J >

log M for rounding

log
?
M + 1 for chopping .

The truncation error in these algorithms occurs when a function g(x) is

to be evaluated at a point a, and actual evaluation point is a - y. This

error is the result of truncating an infinite process after a finite number

of steps. If g is differentiable, which it is in our case, the difference

in the function values is g(a) - g(a - y) = g' (a*)y, where a* is between

a and a - y. The number y is related to the convergence criterion used in

-N-l
the algorithm, and in most cases it will be bounded by 2 , the same as the

roundoff error bound we will assume.

The choice of bound for truncation error and roundoff error should be

undertaken together, since it does not make good sense to choose either so

that the truncation or roundoff error bounds differ significantly from each

other. That is, it would not be meaningful to do enough iterations in a

-20
calculation to make the truncation error as small as 2 if the roundoff

error could be as big as 2 . Conversely, it is wasteful to hold roundoff

error to 2 if one is trying to obtain accuracy to 2

In line with the above proposed selection of J, the truncation error

-N-l
bound should be made about 2 also. The total error could then be as

-N
large as 2 , in the calculated value. It is then necessary to chop or

round this result to N bits, which introduces an additional error of at most

_N -N-l
2 or 2 , respectively. The final value could then be in error by as

-N -N
much as 2*2 or 3/2*2 . These are bounds , and in the usual case the error

will be smaller. One should keep in mind that they are sharp bounds, in

the sense they may be approached closely in a given case.
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It appears that it would certainly be worthwhile to round to N bits

after the final iteration, since this procedure gives a significantly smaller

total error bound than that for chopping. If the error bound given previously

for the results of the iterations (before the final round) are not sufficiently

accurate, the bound on this part of the calculation can be reduced to 2 from

-N
2 by the performance of one additional iteration, using one more guard bit.

-N-l
The total error bound can never be made smaller than 2 , since that is the

bound for the error in the final rounding operation.

The error bounds given in Section 4 will be for the N + J bit result,

before the final round to N bits, the added error bound for the final rounding

being the same for all cases where J > 0.

3.0 Unified Algorithms

Algorithms which, with small modifications, can evaluate one of several

functions are basically of three types. One is formulated as a coordinate

rotation problem, another is formulated as a "pseudo-division/multiplication"

process, while a third type is a normalization procedure. We will discuss

each of them in this section.

3.1 Coordinate Rotation Methods

The Coordinate Rotation Digital Computer was first discussed by Voider

[64], who considered rotations in the usual circular coordinate system. It

was indicated that work was also done in hyperbolic and linear coordinate

systems, but this was not reported in detail. An earlier report by Voider

[63], was not available. Liccardo [31] did a master's thesis on the CORDIC

methods, and included the hyperbolic system. He also outlined procedures

for multiply and divide. Linhardt and Miller [34] included the details of

the hyperbolic system, but not the linear system. Walther [66] presented

the unified algorithm and his paper tied together the rotations in the three
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different coordinate systems. A paper by Perle [47] also appeared, which

included a method of obtaining sin x. The algorithm for sin x does not

fit the pattern, in that it does not generalize to hyperbolic and linear

systems. Very recently, Schmid and Bogacki [56] discuss the implementation

of the CORDIC algorithm in radix 10.

Basically, the CORDIC method involves taking a sequence of rotations

(with radial distortion) of an initially rotated coordinate system. The

initial angle of rotation is z = z. A point (x ,y ) = (x,y) is specified

by giving its coordinates with respect to the rotated coordinate system.

We generate the following sequence of points by the rotations; (x ,y )

,

(x,y ),..., (x ,y ) , where11 n n

x. in = x. + ms.6.y.
l+l l ill

(3) y. ... = y . - 6.s.x.J l+l J
i ill

Here m is parameter indicating the type of coordinates for the rotations

(1, 0, -1 for circular, linear, hyperbolic, respectively), s. = ± 1 determines

the direction of rotation, and the 6. are specified constants. The angles

z. of the rotated coordinate system, and radii R. of the radius vectors to
1 J x

the (x.,y.) are given by

z . ,
, = z . + s .a .

l+l i li
2.*

R #l1 = R.(l + m6.")
2

, where
l+l l l

(4) a. = m " tan (m 6.), and
l l

2 2 \
R = (x + y )
o o o
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z is specified, as indicated previously. We see that each (
x ,Y.) is the

o i i

location of the (radially distorted) point (x ,y ), with respect to a
o o

coordinate system rotated through angle z.. Also note that

z = z + a
n o

R = R K , where
n o m

(5) n-1
a = / s . a . , and

,

L 11
i=o

n-1
2 u

K - n (1 + mS. )
2

m i=o l

are independent of the (x.,y.), except insofar as they may influence the s ,

In terms of the initial values x and y , it can be shown that
o o

h h hx = K {x cos (am ) + y m sin (am )

}

n m o o

(6)

h, -h
y = K {y cos (am ) - x m sin(am 2

)}
n m o o

It is necessary that the initial values of x y and z be restricted,
o o o

both for purposes of representing them in the computer, and to guarantee

convergence of the algorithm. We say more about this later. With the

appropriate restrictions on x y and z and judicious choice of the s
.

,

rr r o o o J i

the values of x
}y y and z can be forced to approach that values indicated

n n n

in Table 1. The terms rotation mode (s.'s chosen to force z to zero) and
l n

vectoring mode (s.'s chosen to force y to zero) were coined by Voider and
l n

are descriptive. The choice of s. is as follows. In rotation mode
l

s. =
l

if z
. <
i

-1 if z. >0.
l

-6-



In the vectoring mode

1 if y. >

S
i

-1 if y <

The latter is dependent on x. being non-negative. This is easily adjusted

for in cases where x is negative, as we will note in the pertinent sections.

The choice of 6 . is critical to the entire procedure and in order to
l r

facilitate computation, we want each 6. to be a power of two. Thus the

transformations (in a binary computer) are accomplished by shifting and

adding. In order that the radial distortion constant, K , be independent
m

of the input data, it is necessary that the magnitudes of the 6. be indepen-

dent of the input data. Thus the same sequence of rotations must always be done,

except that the direction of rotation may vary. Walther gives the choice of 6.

given in Table 2. We also list the maximum value of a obtainable with this

sequence, as well as the corresponding value of K and the number of iterations,

-N-l
N , required so that a„, ~ 2
m N

m
We will see that with appropriate range reduction techniques, discussed

for the individual functions in the next section, that the sequences given

in Table 2 are adequate.

Because the last rotation of magnitude cl, must be accomplished, the
m

value of z can be as large as a„ , in the rotation mode, and the value
N +1 N
m m

of y .. can be as large as x 6 in the vectoring mode. The truncation
m mm

error for the CORDIC algorithm is based on a„ , then.6 N
m
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m lim x
n-*» n

K.. (x cos z

Rotation mode

lim y
n-*» n

lim z
n-x» n

y sin z) K (y cos z + x sin z)

x y + x*z

-1 K (x cosh z + y sinh z) K (y cosh z + x sinh z)

Vectoring mode

K
x
(x

2
+ y

2
)
h z + tan y/x

z + y/x

-1 K , (x
2

- y
2 )^ z + tanh y/x

Table 1

m p. sequence (6. = * 2 i

1 0,1,2, ..., n

1,2,3, ..., n

•1 1,2,3,4,4,*. .. , n

Max a

-1.74

1.0

-1.13

K
m

-1.65

1.0

-.80

N
m

N + 2

N + 1

N + 1 + R*

*Repeated values are 4,13,...,k, 3k + 1, R denotes the number of repeated

values, e.g., if N = 16, R = 2.

Table 2
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-J* -1 i<

The values of K and a = m l

tan (in 6), i = 1,2,..., N , must bemi I m

available, and as with most algorithms in this class, it is assumed these

will be stored in a read-only-memory. Note that in practice, for the

algorithm to operate for all three values of m, values of the a for all

three m, (tan 2,2, and tanh 2 ) would need to be stored.

The greatest asset of the CORDIC algorithm is its versatility. It is,

in fact, even more versatile than would appear at first glance, since functions

related to those of Table 1 can be evaluated by pre - or post - manipulation

of the data. For example, •w" may be obtained by setting x = w + ^, Y = ^ - h,

and entering the algorithm in the vectoring mode with m = - 1, followed by

a division by K .

The main disadvantage of the method is that it requires a fixed number

of iterations (rotations), whether needed or not, to avoid changing the

constant K . DeLugish [16] gives a partial solution to the problem, which
m

we will discuss later. Also, the CORDIC algorithm could be used in part,

as we note later, in Section 4.3.3, such that the radial distortion constant

is eliminated.

3.1.1 Error Reduction for Certain Functions

For functions which are zero when the argument is zero, special pro-

cedures must be used to obtain results which are accurate to N significant

digits. Generally the normalization procedures handle this automatically,

but we will discuss briefly some functions where this is not the case.

When the sine, tangent, or arctangent of a small argument, in floating

point form, is desired, we would like the result to be accurate to as many

significant digits as possible. The procedures outlined in Section 4 do not

result in this desired accuracy. We will note in Section 4 that all the
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algorithms for these functions reduce to the CORDIC algorithm, essentially,

and Walther [66] has treated this problem. The solution is to scale the

argument by an appropriate power of two, beginning the rotations with an

appropriately small angle and continuing for the usual number of rotations.

This requires the inclusion of a set of distortion constants, depending on

the initial angle of rotation, as well as additional values for the a..

The details of the implementation can be found in Walther. The above should

also be done for the hyperbolic system if the hyperbolic sine, tangent, and

arctangent are desired. If the hyperbolic system is to be used to calculate

the exponential, logorithm, and square root, the increased accuracy there

is more apparent than real, since the initial or final transformation negates

the increased accuracy.

3.2 Pseudo-Division/Multiplication Methods

Consider the division of y by x using the method of successive sub-

tractions. This can be organized (in binary) as follows. Let y and x be

normalized so that \ < x,y < 1. Then h < v/x < 2. Let the quotient be

n _

.

represented by the number Q . =£ q.2 , where each q. is or 1. The q.

i=0

are determined by the following loop. Let D =y,d =x,Q =0.

For i = 0,1,..., n, let

q
i

=

Then D = 2(D - q^)

d
t+i ' d

i

r
if D. > d. , or

l l

1 if D. < d^ ,
l i

-10-



n-1
For multiplication, the procedure is reversed. Let x = 7 x 2 '

. Then
i

i=0
the product xv = P is generated by P = 0, y = y, and for

i = 0,1,.. . , n - 1,

<Vi " 2(p
i
+ xiV

y i+i y
i

The product is assumed to be accumulated in a register of length 2n+l bits.

At the end of the multiplication the product has been shifted n+1 bits,

into the most significant n bits of the register, and chopping (or rounding)

to the most significant n bits gives the result. Error occurs only when

the least significant half is chopped or rounded off.

A pseudo-division or multiplication is a procedure like one of the above,

where the q.'s or x.'s are not necessarily the coefficients in radix 2, and11
the divisior d., or multiplicand y., may be modified at each iteration.

Meggitt [40] devised a class of these methods for division/multiplication,

logarithm/exponential, tangent/arctangent, and square root. While Meggitt'

s

paper was developed for radix 10, the conversion to any other radix is simple.

Meggitt' s algorithms correspond to a restoring division. The test for

D. h d. would be done by computing a tentative value of h D . . n , h D....11 i+1 l+l

D. - d., then testing h D._/, for sign. If % D -+-i *s non-negative, q. = 1,

and D... = 2(h D. £?'). If % T>.^ is negative, q. = and D... =
l+l l+l l+l ° n i l+l

2(h D.;, + d.). That is, we must "restore" the value of D. in the latter
l+l l l

case.

It is not necessary to restore the value of D
.

, however, since it is

possible to compute ^ D - + 9 directly from D.
+1

• Suppose q. =0, then we

have

-11-



h Di« - D
l+1 - d

i+l
- 2 D

i
- d

l+l

a. „ (t)
" 2ft D

t+l
+ d

i>
" d

i+l

" Dm + d
l

" (d
l+l - d

i>
•

Depending on (d - d.), this expression may or may not be easier to compute

than by first restoring D.. In normal division, d #11 = d,, so in that case
1 l+l i

it is difinitely easier to use the above, non-restoring division. We then

compute the sequence D. rather than D., with

h D.^ } = Df
t}

- d. if q. = 1, or
l+l l li

^ D.J, = D. + d. if q. = 0, and that q . is 1 or as D; is
l+l ill i i

non-negative or negative, respectively.

Sarkar and Krishnamurthy [55] modified Meggitt's algorithms to

correspond to a non-restoring pseudo-division/multiplication. This results

in a faster algorithm. It would appear this is more advantageous in radix

10 than in radix 2. The above mentioned paper incorporated a possibility

of restoration or non-restoration, depending on which appeared to be more

advantageous, i.e., which left the smaller dividend.

We list in Tables 3 and 4 the initialization and iteration equations

for Meggitt's algorithms in radix 2. In cases where it is assumed a number

is expressed in a variable radix (log(l +2 ) or tan 2 ), this must be

first obtained by a modified division. The procedure given by Meggitt is

as follows, where D is to be recoded in one of the above radices.

D = D
o

-12-



For i = 0,1, ... , n - 1

d
±

= 2
1

log(l + 2
X

) , [or : 2
1

tan
1

2
±

]

q
±

- <

1 if D. > d,
i 1

If D. < d
Jl i

D
±+i

= 2(D
i " VP

At the end of the loop, we have

n-1 _. n-1
D =

I q log(l + 2
X
) , [or: £ q tan

X
2

X
] ,

i=0
X

1=0
x

-1 ~-i

with remainder D /2 .

n

The advantage of the pseudo-division/multiplication processes is that

they look very much like multiplication and division, and could be imple-

mented with little additional hardware. The routines are inherently accu-

rate and insensitive to roundoff error, and accuracy comparable to other

methods can be obtained with only one guard bit. The use of one double

length register is necessary, although with some reformulation this might

be replaced by one having only a sufficient number of guard bits, about

log
2
n+l.

The evaluation of some functions require a modified division to recode

an argument, followed by a psuedo-multiplication, or a pseudo-division,

followed by a modified multiplication, and as outlined, some of these

must be done serially, not in parallel.
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3.3 Normalization Methods

Consider a function of two variables which is to be subjected to a

series of transformations under which the function value is to be invariant.

The first variable will be transformed to a specified value while the second

is altered in such a way that its value is forced to approach the desired

function value.

For example, consider the function y + log x. Let x = x, y = y, and
o o

define the sequence (x.,v.) by x = a .x
. , Y ..-, = Y. - log a , where the

a. are positive constants.
1

Then we have

y + log x = y + log x = y + log x = . . . = y + log x .

o o 1 ± n n

If the a. are chosen in such a way that
x

lira x = 1, we see that lim y = y + log x.
n-*» n n-*>° n

Thus, as x is "normalized" to one, y is forced to the desired function
n n

value.

The above is but one example of a function evaluated by a normalization

method. Others amenable to the same approach are given in Table 5, along

with appropriate transformations for the variables.

Function (x ,y )
o o

(X
i+l'yi+l>

lim(x ,y )
n"*00 n' n

y + log x (x,y)

y/x (x,y)

w/x^ (x,y)

ye
X

(x,y)

0*i
X
i*
y
i~

log a
±
)

(a.x^a.y.)

(a
i
2x

i»
a
i
y
i
)

(x
±

- log a
±

»
a
i
Y
±
)

(l,y + log x)

(l,Y/x)

(i,y/x
h

)

(o,ye
x

)

Table 5: Normalization Methods
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A number of authors have addressed themselves to the implementation

of the normalization methods, including (in historical order), SpecHer [61],

Perle [46], DeLugish [16], and Chen [5]. The principal matter to be decided

—

n

is how the a. should be chosen. Clearly a. is to be of the form 1 + s.2 i,
l l l

where p. is an integer, and s. = ± 1 or 0. Ideally, the a. should be chosen
l l l

so that x is forced to within a specified tolerance of its limit value for
n

as small an n as possible. We shall discuss the various strategies for

choosing the a. as we consider the various functions.

Chen suggests the use of a termination algorithm which decreases the

number of iterations required. Essentially the idea is to use a one term

Taylor series expansion when the most significant half of the number has

been computed. This is generally done at the expense of a half precision

multiply (i.e., the most significant half of the multiplier is represented

by all zero bits). It does have an additional advantage in that it halves

the round-off error accumulation since only about one-half as many iterations

are required. We will discuss the individual termination algorithms in

the next section.

The advantage of the normalization methods is their simplicity (depending

on how one decides on a.), and their potential speed. Of course they are

not as versatile as the CORDIC algorithm and no normalization methods have

been devised for trigonometric functions.

4.0 Algorithms for Specific Functions

4.1 Quotient

There are several kinds of division algorithms. We have previously

mentioned the CORDIC, successive subtraction, and normalization algorithms.

Another normalization method using multiplication and based on Newton's
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method has been proposed. This procedure converges quadratically , and

thus is best suited when high precision is required. Flynn [20] discusses

a number of iterative techniques for division. Another method is based on

a reciprocal generator. Huber [24] did a thesis on binary division algorithms

which discusses most of the above methods.

Suppose that we desire the quotient X^Y , where Y = 2 «y , X 2 *x,

with a,B integers and h < x,y < 1, that is X and Y are expressed in

normalized form. In some algorithms, we will assume y < x, relaxing the

requirement that both x and y be in [^,1). This leads to the quotient being

in [^,1), hence no normalizing shift would be required for the quotient.

In any case, we concern ourselves with the generation of the quotient y/x.

4.1.1 CORDIC Algorithm

Inspection of Tables 1 and 2 reveal that N + 1 iterations are required.

Because of the sequence of a's for this case we must have y < x; this can

be accomplished by right shifting y one place, if necessary, or always. To

avoid a possible left shift to normalize the quotient, the right shift of

y should be done only if necessary.

After N = N + 1 iterations we obtain
o

N

yN +1
= Y

o
" X

o £
SiV

o i=0

N
o

then
I yXT , n I

=
| y " x I s . a . |

< x a = x « .'N+l 1

' o o.^ii 1 N N oN
o i=0 o

N
o

Since z„
,
, = - 7 s.a., the above yields, with z = ,N+l .

Ln l l o
o i=0

\J ,x
i «-N-l . . , , , , „-N-lo/o-z ,<a +

=2 . Thus the truncation error is bounded by 2
1 N +1

' N
o o
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If a left shift were necessary to normalize the quotient, the error would

-N+l
become as large as 2 , thus we see why it is important to right shift

Y only if necessary.

4.1.2 Restoring and Non-restoring Division

It would again be advantageous to have y < x and y/x in [^,1) to avoid

a normalization shift at the end of the operation. Also, one would then

avoid generating N+l quotient bits when only N are necessary, since the

first bit would always be 1.

If N quotient bits are generated, there will be as many as N

subtractions of the divisor from the dividend. Assuming left shifts of the

dividend rather than right shifts of the divisor, no roundoff error will

occur during these operations. The truncation error will be determined by

the size of the remainder divided by the divisor, and will be bounded by

K* 2 , where

II
if a final round is performed

2 if chopping is used

Thus the error is at most one bit.

If N + 1 quotient bits are generated with a possible right shift

required to normalize the quotient, the error bound is the same.

Nandi and Krishnamurthy [44] proposed a procedure for a non-restoring

type of division for radix $. It obtained the quotient in redundant form,

and was especially designed for divisors with leading coefficient 1 or 3 - 1.

While the procedure could be adapted for radix 2, there is a conflict in

the decision process, which differs depending on whether the leading coefficient

of the divisor is 1 or $ - 1. These digits coincide in radix 2, of course.

-19-



The decision process for the quotient bits is somewhat complicated, as

well.

The advantage of redundant representation (using ± 1 and as coefficients,

instead of just 1 and 0) of function values is that more zero bits can be

"built in". Every number has a minimal representation, i.e., a representation

with a minimal number of non-zero bits. Metze has investigated this idea

for several functions, one of which is division [41] • Basically the idea

is an extension of non-restoring division, and contains S-R-T division [50]

as a special case. The decision as to the value of the quotient bit is

based on the value of the previous remainder. The decision is somewhat

complicated, with the comparison constant a function of the divisor.

The following procedure is that given by Metze for minimally represented

quotients. The comparison constant, K, is obtained from Table 6. We first

assume that h ^ x < 1 and < y < x. We just as well assume that H ^ y/x < 1.

n _.

Let Q - y/x = £ q.2 , Q = 0, 2R_ = x. For i = 0,1,..., N ,

i=0
1

determine q. by

q i
=

Then 2R., = 2(2R. ,
- q. x)

l l-l l

Q. = Q. , + q.2" 1

i i-i i

The comparison constants given in Table 6 are not particularly con-

venient, but it is the smallest number of different ones possible. Another,

more convenient set is given in Table 7.

For S-R-T division the comparison constant is K = h for all divisors,

and a minimally represented quotient is obtained for divisors in the range

[3/5, 3/4].

-20-

1 if 2R. . > K
i-i

-1 if 2^.1 < K

otherwise



Range of divisor K

[1/2, 39/64) 13/32

[39/64, 3/4) 1/2

[3/4, 15/16) 5/8

[15/16, 1) 3/4

Table 6

Range of divisor K

[1/2, 9/16) 3/8

[9/16, 5/8) 7/16

[5/8, 3/4) 1/2

[3/4, 15/16) 5/8

[15/16, 1) 3/4

Table 7
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A minimal recoding can be obtained by requiring that non-zero bits be

N+l
separated by at least one zero, thus at most [ o ] bits can be non-zero

(see [41], first paragraph). Because of the left shift of the remainder,

R. , no roundoff error is introduced. It is easy to prove that

y = x-Q, +2 R. thus for k = N, we have truncation error y/x - Q =
k k. N x

We show by induction that |R
I

< x. R = x/2, and assume that I R, I

< x.

Then if qk
= 0, R

k
= 2R

k_ 1
, and |R^| =

|
2R

|
< K, by the selection rule

for q, , and the recursion formula. Tables 6 and 7 both show that K < x
k

thus IR^I < x. If q, = ± 1, we have R. = 2R^_
1

- sign (R^ )x, or

IR, I

=
1 2 1 R,_-

L
I

~ xl < x, since by induction IR, J < x. Thus |R-| < x

for all k, and in particular, |R.^| <x, thus the truncation error

2 '\
-N

< 2 , or less than one in the least significant bit.
x

Note that no shift for normalization is required. In order to be

assured that y < x, however, it may be necessary to right shift y initially.

-N-l
If no guard bit is provided, this could cause an error of 2 in y , and

since 2 /x < 2 , we see that the error could be as large as 2 » or

the last two bits could be in error. The error in y can be eliminated with

one gaurd bit.

Metze makes no mention of the average number of non-zero quotient bits.

The probability of a zero occuring in S-R-T division is about .63, and Metze 's

algorithm must do better than that. We noted previously we must have about

one-half of the digits equal to zero, although it is unlikely that in the

average case, half of the remaining digits will also be zero. The probable

number of non-zero bits is likely between N/4 and N/3.
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4.1.3 Normalization Methods

As we noted earlier, the principal matter to be decided here is a

strategy for the choice of a. (see Table 5). We assume that a, = 1 + s.2 i ,° l i i

where s = ± 1 or 0, and p. is an integer. The iteration procedure is

x = x, y = y, and for i = 0,1,2,..., n-1
o o

X
i+1

= X
i
a
i

y±+i
= y i

a
i

•

Further we assume that % < x < 1. We discuss several strategies for

choice of a..
l

The first is very simple, and reminiscent of the CORDIC algorithm.

1 + 2" 1 if x. < 1
l

a. =
1

-i1-2 if x. > 1
i

It is easily seen that 1-2 < x. ,, < 1 + 2 , thus after n iterations

ly +1
- y /x

I

= ly +1
- y .-« +1 1

= 1%^ • y .. \*
2~n ^±1 = 2

"n y/x
.y n+l o o n+1 n+1/ n+1 x §1 n+1 x in

K +1"1

h+1
>

-n
Thus, the relative error is 2 , and if x and y are normalized as usual,

st
h < y/x < 2, hence the truncation error is less than one in the (n-1)

significant bit. Roundoff error would accumulate up to log n + 1 bits,

thus if n = N + 1 iterations are used, log-(N + 1) + 1 guard bits would

give an error no greater than one in the last bit.

Another similar strategy is

1 + 2
_1

if x.(l + 2
_i

) < 1

a. =
i

V

otherwise
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This division procedure is the analogue of the Specker [61] and Perle [46]

algorithms. It has the seeming advantage of skipping some iterations

(if a. =1), and the real advantage of keeping x. < 1. However, note that

the decision requires calculation of a tentative value of x - , hence no

saving is obtained there. The roundoff error would be decreased in the

average case, but not the bound. Truncation error is the same, although

one knows its sign and could compensate after the last iteration.

DeLugish [16] gives a more sophisticated strategy for choice of a..

DeLugish normally requires an initialization procedure. In this case it is

<

if 1/2 < x < 3/4
o

1 if 3/4 < x < 1
o

and x. = a x , y. = a y
1 o o

J
l o"o

Now, as one would likely do in practice in the previous examples,

DeLugish does not actually compute the sequence of x.'s. Rather, for ease

in testing, we compute the sequence u. = 2 (x. - 1), and then u - = 2u. +

s. + s.u.2 . Here p. = i+1, and s. is determined byill l l

s. =
i

if u. < - 3/8
i

< -1 if u. > 3/8
i

otherwise

Delugish shows that Ix. - ll < 3/8«2~1+1 for i > 2, thus lx^ - ll < 3/8 -2~N
,

so truncation error is no more than 3/4 that derived for the earlier examples.

No study was made of roundoff error, but the bound depends on the number of

iterations with s. 4 0. DeLugish shows the probable number of non-zero s.'s

is about N/3. The maximum number is not discussed. However, it is easy to
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show that not more than two successive s. can be non-zero. For i > 2 ,

1 *

\x - 1| £ 3/8 •
2~ i+1

, thus lu I

< 2
i .3/8'2"i+1 = 3/4. Now, suppose

u. > 3/8 and thus s. = - 1. Then u... = 2u. + s. + s.u.2
_1

< 2-3/4 - 1 = 1/2,
l l l+l i l l i

Also we have u - > (2 - 1/4)- 3/8 - 1 = - 11/32 > - 3/8. Then, suppose

3/8 < u #11 < 1/2, hence s #11 = - 1, since otherwise s.,, = 0. Then
l+l l+l l+l

tt.j-o
= 2u -^ + ^..^...2 ^ (2 " l/8>l/2 - 1 = - 1/16, and as before

1+2 l+l l+l l+l

u.,» > - 3/8. Thus s.,„ = 0, as was to be proved. If u. is negative, the
i+2 i+2 l

2N
argument is symmetric and the result follows. Thus we have that log-— + 1

guard bits are sufficient, with chopping.

The method suggested by Chen [5] used a different approach. Here we

must use some sort of procedure for counting left zeros in 1 - x.. We write

1 - x. = 2
p i + v., where < v. < 2

"
1

. Then p. is one plus the number of11 l l

left zeros in 1 - x.. With a. = 1 + 2 i we have
i i

x. Ll = (1 - 2~p i - v.)(l + 2
_pi) = 1 - v.(l + 2~Pi

) - 2~ 2p i
.

l+l l i

Thus we see that the transformation has eliminated the leading non-zero bit

of 1 - x., and leaves the succeeding bits largely unchanged. Thus, in no

-N-l
more than N + 1 iterations, 1 - x. < 2 . On the average, one expects

only about N/2 iterations would be necessary. The error bound here is the

same as for the first two ideas presented.

However, Chen suggests a termination algorithm, to be applied when

p. > N/2. It is simply a Taylor series expansion about the then current

point. In this case, if we have computed (x ,y ), (x.. ,y. ),..., (x ,y ), with

p > N/2, then y/x ~ y +y(l-x). This requires a multiply, however note
n nn n

that since p > N/2, 1 - x is a half precision number (i.e., the most
n n

significant N/2 bits are zero), thus costing half a usual multiply time.
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-N
The truncation error bound is 2 . Chen notes that since the error is of

a definite sign, we could halve the truncation error by computing

y/x = y + y (1 - x + 2~N_1
) .

n n n

The roundoff error is halved, of course, since at most N/2 iterations

need to be performed. Hence log N guard bits are sufficient with chopping.

The expected number of iterations is N/4.

4.1.4 Quardratically Converging Normalization Methods

The methods of Section 2.1.3 converge linearly, that is, the number

of iterations required depends linearly on the number of bits of accuracy

required. Quadratically convergent normalization methods are based on the

Newton method for solving 1/z -1=0 with initial guess z = x = x,
o o

where x is the divisor. The calculations can be arranged as y = y,

x = x, then for i = 1,2,..., n,
o

X
i

= X
i-1

(2 " X
i-1

}

y± - y
lTTl

(2 - Vi }
•

2
1

The error 1-x. =E. =(l-x) . Thus convergence is critically

tied to the accuracy of the "initial guess". We must have |l - x
|

< 1 for

convergence.

We see that if < x < 2, convergence is assured, hence x = x is
o - o

adequate for convergence, with x in [1/2,1).

We pause to consider the number of iterations required. If we want

E < 2 , then n must be taken so that (1 - x ) < 2 , or
n o

2
n

>
N

-log
2
|l-x

o
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For x in [1/2,1), (1 - x ) < 1/2, thus no more than log^N iterations would
o o 2

be required.

We could improve this a little by some initial adjustment of x and y.

Thus we might take x = ax, y = ay, where a may or may not be a function

of x. To avoid an actual multiplication here, we could take

/

a =

2 if 1/2 < x < 2/3

1 if 2/3 < x < 1 .

Then 1 1 — x
I

^ 1/3, and log. - = ~ log. =—^r— iterations would then
o °2 log 3 °2 1.58

be required. For N = 20, five iterations would be required by the previous

procedure, and four iterations plus the initialization for the latter pro-

cedure. This example is biased somewhat, however. Note that if N is a

power of two, no advantage is had by first initializing as above. For N

a power of 2, one would need to initialize so that |1 - ax| < z to

save k iterations.

In general the roundoff error doubles at each iteration. Thus for

-N-l
roundoff error to be less than 2 requires that J guard bits be used,

where 2 (2 )<2 ,orJ=n+l with chopping.

Krishnamurthy [29] has considered solving 1/z - 1/K - instead of

1/z -1=0. For a simple recursion for the x.'s, this necessitates K = 2
1

for some integer r, although K = 2/3 is possible. He also considers using

lower precision multiplies for early iterations. A table of initial trans-

formations is given for computing a 48 bit quotient in 4 iterations (plus

the initial transformation)

.

The idea of a table for the initial transformation is used in the IBM

System 360 Model 91 [1]. With that machine 56 bit accuracy is desired, and

-27-
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a table of 2 = 128 entries is used and gives (1 - x ) < 2 . Thus, after

the initial transformation, only three iterations would be required. However,

in order to speed up the early iterates, low precision multiplications are

used with truncated intermediate results, and four iterations lead to 64 bit

accuracy.

Ferrari [19] proposed a method he calls the optimized geometric series

(OGS) method. If the two multiplications are to be done serially, his method

is faster, since convergence is superquadratic. If the multiplications can

be done simultaneously, his method has no advantage.

Shaham and Riesel [58] suggest a modification of the Newton iteration.

-k -k
Suppose that 1 - x. = 2 + v., with < v. < 2 . Then normally one would

have 1 - x.+1
= 2 ' + v.,-, with ^ v - + i

< 2 '

. They suggest using as a

-2k
multiplier, 2 - x. + p2 , instead of 2 - x., where p is a table-look-up

value depending on the first few bits of v.. They show, for example, that

a 56 bit result can be obtained in one less iteration than with the classical

method, starting with an initial result accurate to six bits.

Ling [33] has given a version of this algorithm which was purportedly

designed especially for 32 bit accuracy, and yields the quotient in 3

multiplication times. Ling's method is to first transform the divisor,

—8 —8
x = .15-6... ,6_ + 2 (.6 a ...& ) into a form x = ,d....d_ ± 2 (.dQ ..d ), i.e.,

2. 5 o y n 1/ yn
with the eighth bit equal to zero. We see that if 6 _ = 0, the plus sign is

taken, and d. =6.. If 5 n = 1, the minus sign is taken, and ,d...d_ =
l l 8 17
— 8

• 1
tS
2
...6

g
+ 2 ,

.dg...d = (1 - .5g...6 ). If 6 2
=

5 3
= "" = 5 8

= **

there is an apparent difficulty here, which washes out later on. Ling

implements the above via logical circuits rather than by actual addition

y(2k)
and complementation. The initial transformation is then y/x l prrt , where
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k = l/2-(.d ..d )
" is obtained by table-look-up. We then have x(2k) =

1 ± 2 k(.dg...d ), the ± having been determined previously. Ling indicates

— ft — T?
that the denominator is within 2 of one, thus within 2 ' ' of one after

two Newton iterations. This is not the case however, as can be seen by

considering x = . 1000000011. . .1, whence k = 1, and 2xk = 1 + 2~ 7
(. 111. . . 1)

.

Thus Ling's algorithm is good for at least 28 bits, but one cannot be sure

of more than 28 bits.

4.1.5 Other Methods

Dean [10] proposes a reciprocal generator which forms the reciprocal

of a number in a controlled register as the number is entered serially into

a shift register. Formation of the quotient bits is done by means of logical

circuits. He gives complete information for four, five, and six bit numbers.

The logic would seem to become quite complicated for high precision numbers.

However, if, as Dean says, the size of connectors negates the possiblity

of components becoming much smaller, but rather their complexity increasing

to take up (some of) the available space, such a device might be feasible

where speed is the main consideration. However, I am assuming the logical

circuits could be implemented so as to be very fast.

4.2 Arctangent

Several authors have directed their attention to calculation of the

arctangent. While it is not readily apparent when glancing through the

literature, it is in fact true that only one algorithm has been developed,

so far as this author has been able to determine. The CORDIC method was

the first to appear, followed by Meggitt [40] and Sarkar and Krishnamurthy

[55], Specker [61], and DeLugish [16]. The algorithms differ mainly from

the CORDIC algorithm in that not all of the rotations are performed.
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Meggitt keeps z. > 0, Sarkar and Krishnamurthy minimize |z.|, Specker's

method coincides with the CORDIC algorithm, and DeLugish uses a decision

process similar to that for division.

We assume that tan y/x is to be computed, where x 4= 0. We will generally

assume that a first quadrant angle is to be computed, hence an initial trans-

formation using the identity tan (-y/x) = - tan y/x may be necessary. For

the CORDIC algorithm, we must have x > 0, so the sign is attached to whichever

of x or y is appropriate. If the result of the calculation must be in the correct

quadrant, additional care must be taken with that step, and furthermore, an

additional rotation through it radians may be necessary. In the CORDIC

algorithm this can be accomplished with no post-manipulation of the data.

4.2.1 CORDIC Algorithm

As Table 1 indicates, tan y/x is obtained by the algorithm with m = 1

in the vectoring mode. Since we have discussed the general procedure in

some detail in Section 3.1, we need only to discuss the truncation error

bound for this particular calculation. As we indicated, the magnitude of

2 2 1/2
y„ ... can be as large as x„ a in vectoring mode. Now x_. ~ K. (x + y )
•'N-.+l N

l
N

1
N, 1 o y o

r\ O 1 /O Ml
so IYv, ^i I

- Ki (x + y ) 2 . Consideration of equation (6) and some
N

1
+l 1 o o

yN +1

algebraic manipulation yields tan a = y /x -
. Thus we have° r ooxK, cosa

o 1

-1 ~1 Y
a = tan [y/x - y] = tan y/x '—- ,; o o o o

1
2

1 + r

where r is between y /x and y/x - y • Thus the truncation error is
o o o o

2 2,2
1 + r 1 + y /xJ o o
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2 __ ., 2, 2,1/2 -N-l -N-l
x . K. (x +y ) 2 x 2

Then I 1 _| < _° 1 o yo
s m __o

2
/

2 v / 2j. 2
, ,2. 2,1/2

1+y /x x K. cos a(x +y ) (x +y ) cos a; o o o 1 o •'o o J o

X

But —5
? i /?

~ cos a > hence the truncation error is no more than
(x

o ^o }

-N-l
(approximately) 2 . Roundoff error is likewise bounded, hence total

error is no more than 2

We will consider the problem of initializing for both principal values

of the arctangent and for values in the correct quadrant, the quadrant

determined by the signs of y and x.

For principal value we let

x = x sign x

y = y sign x
o

z = .

o

For the correct quadrant to be obtained, we take

x = x sign x
o

yQ
= y sign x

z =
o

7T if sign x <

if sign x > .

One can also accomplish the initialization by always doing an initial

rotation of tt/2 radians, clockwise if y > 0, and counterclockwise if y < 0.

This will also force x > 0. Then
o

x = y sign y
o

y = - x sign y

z = tt/2 sign y
o
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4.2.2 Modified CORDIC Algorithm.

We will discuss the various modifications of the CORDIC algorithm in

a unified manner. Basically, all of the modifications can be put in the

same form as equations (3) - (5), except that the decision for s is different,

This will change the radial distortion constant, but it does not enter sig-

nificantly in this case, anyway.

Meggitt takes

s .
=

l

sign y. if y. ^ 5
4 x -

i ' i i

otherwise

Sarkar and Krishnamurthy take

sign y. if y. - sign y.*6.x. < ly.
1 ' 1 1X1 i

s .
=

i

otherwise

-1
DeLugish considers tan x, ^ x < 1, and takes

+1 if y. < - 3/8 2
l

-l

s. =
i

-1 if y > 3/8 2

otherwise.

-i

with the initialization procedure

x_
x

= 2
p
(x - 1) , y_ 1

= 2
p
(x + 1) ,

with 3 chosen so that x is in [-1,0).

Then y. is in [1,2). We set z = tt/4,

x = x . t , y =y.t , where
o -1 o o -1 o
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3/4 if < x < 1/4

t = (5/8 if 1/4 < x < 1/2
o

k

1/2 if 1/2 < x < 1

Note that the sign of the s. is different because x. < for his initialization.

The error bounds for all of the above are the same as for the CORDIC

algorithm, and the roundoff error will probably be smaller in practice because

the average number rotations is less than N+2. For the DeLugish method the

average number of rotations (number of non zero s.) is about N/3.

4.3 Cosine/Sine

As with the arctangent algorithms, all of the algorithms for cosine/sine

reduce to the CORDIC algorithm, or a variation of it. We consider that the

angle, 9, could be any angle. This is then reduced to the range [0,2ir).

Let the reduced angle be denoted by Z. Then we can find z in [0,tt/2) so

that Z = tt/2 • Q + z, where Q = 0,1,2, or 3. We compute sin z and cos z,

and then

(
sin z if Q =

cos z if Q = 1

-sin z if Q = 2

-cos z if Q = 3

sin Z = sin 9 = \

and

cos Z = cos

cos z if Q =

-sin z if Q - l

-cos z if Q = 2

sin z if Q - 3
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The proper values can be obtained either by pre - or post - manipulation

of the data.

4.3.1 CORDIC Algorithm

By Table 1 we see that if one enters the algorithm with m = 1, x = K
,

y = 0, and z in the rotation mode, one obtains cos z and sin z for |z| < it/2.

From equation (6)

x^ ,, = K- (K cos a) = cos a

y„ ,, = K (-K sin a) = - sin a .

Now z + a = z„
,
, < a„ , thus

'
' ' N- +1 ' N

1

x^
,

1
= cos (z - y) = cos z + sin z* • y.

1

y +1
= sin (z - y) = sin z - cos z • y*

where z* and z are each within lyl of z, and IyI - a« = tan 2 ~ 2
N-.

Then, since sine and cosine are bounded by one, the truncation error is

-N-l -N-l
bounded by 2 .If roundoff error is also bounded by 2 , total error

-N
is bounded by 2

4.3.2 DeLugish Modification

Because the distortion constant K depends on the rotations performed, e„
1 R

x

the usual DeLugish [16] modification will not work. Recall that the distortion

in the step

x. M = x. + s.6 .y

.

l+l l ill

J i+l i i i i

2 1/2
is (1 + 6 . ) . A correction to remove the distortion would require
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2 1/2
division of each variable by (1 + 6 ) . This is not feasible, of course.

1/0 A

But (1 - S
i

) = 1 - 1/2 5
±

+ 3/8 6
±

..., and if 6 is small enough for

-N-l 2-1/2 2
the third term to be less than 2 , we have (1 + 6 . )

' = 1 - 1/2 6. ,

rounded to N digit accuracy, and such a correction could be made with a

2 -1/2
shift and subtract, since 6 . is a power of two. Eventually, (1 + 6 ) = 1,

rounded to N bit accuracy, and then no correction is required. This idea

is used by DeLugish to introduce redundancy into the cosine/sine calculation.

We consider ^ z < tt/2 . The initialization is

z if z < tt/4

then

z =
o

tt/2 - z if > tt/4

V

(x
l» yl>

=

and z = z - tt/4,
1 o

(1/K* , (1/K*) tan tt/8) if z < tt/4

((1/K*)tan tt/8, 1/K*) if z > tt/4

where
*

K = (1 /$n l/2
N -j+1.1/2

+ tan tt/8) II (1 + 2 )

j=0

Here N = [—7— ] + 1, the number of iterations to be performed before shift

and subtract corrections can be made for the radial distortion. The iteration

equations are = (x. - s.y.2
X 1

)T,L

i+1 1 1

y-j-n = <y- + s -
x.2"

1" 1
)!.

1+1 1 11 1

_ -l -i-l
z,,, = z .

- s . tan 2
l+l 1 1

where s . is determined by
i
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for i = 1,2,. .
, N ,

s. =

for i = N + 1,. .. , N

and

*'-

i

i
=

<

1 if z. <
i

1 if z >

1 if z. < - 3/8 2
-i

1 if z
±

> 3/8 2

otherwise

-i

1 for i = 1,2,. ..,N

2 -(2i+3} * **
T. 1 - s. 2

U1 J;
for i = N +1,..., N

**
for i = N +1,..., N .

** N-3 2 -1/2
Here N = Hr-

] + 1, the point at which (1 + 6 . ) = 1, to N bit accuracy.

The above was as given by DeLugish. DeLugish, however, did not consider

the effects of roundoff error, and his examples were done with N = 40, and

at least 13 guard bits. For purposes of roundoff error control, the values

of N and N should be determined on the basis of N + J bit accuracy, rather

* ** N+J-6,
than N bit accuracy. Thus, one should take N and N to be [—7— ] + 1

A rN+J-3 -, . .. -
and [

—-— J + 1, respectively.

The truncation error is similar to the CORDIC algorithm. The roundoff

N+J
error bound is complicated by the fact that about —7— iterations are performed

which may require corrections T., with T. + 1. It is conceivable that nearly

all rotations (all s.) will be non-zero, thus the roundoff error bound will

be about 25% larger. However, the avarage number of s. equal to zero should

3N
be about —r , so on the average, roundoff error will be smaller.
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4.3.3 An Alternate Procedure

We have seen in the previous section that the radial distortion

constait complicates the usage of no rotation at any step. If one were to

use a scheme such as the DeLugish scheme for computing the tangent (See

fan 2
Section 4.7.2), the sine could then be computed from sin z =

2 1/2
*

(1 + tan z)
'

This type of algorithm was implemented in the Hewlett-Packard HP-35 calculator

[6], In addition to the fact that the calculations are radix 10, the goal

there was compactness of the program, rather than speed. The above identity

is certainly not likely to achieve high speed.

4.4 Exponential

The calculation of the exponential function has been treated by several

authors. Normalization is the principal technique, although the other unified

algorithms also can be used.

We will generally allow the argument to be any number, X. The range

will be reduced by the transformation X = Q log2 + x, where Q is an integer,

and < x < log 2. Then e
X

= e
Q l0g 2 + X

= 2
Q
e
X

. Note that 1 < e* < 2.

4.4.1 CORDIC Algorithm

Table 1 yields the information that entering the algorithm with m = - 1

in the rotation mode, taking x = 1/K_
1

, y = 0, and z = argument, the result

of the calculation will be x^ ,- ~ cosh z, y z sinh z. Then e =

cosh z + sinh z z x^
+1

+ YN +1
•

We will use log u to denote log u = In u, while any other base will be

specified by subscript.

-37-



The truncation errors are given by

at. ,, - cosh z = cosh a - cosh

= cosh (z - z„ . , ) - cosh z
o N -+1

= - (sinh z ) z
N +1 ,

and similarly,

N_..+l - sinh z = - (cosh z) z - , where z and z are between

z and z - z. T ., . Then, the truncation error for e is the sum,
N_ .. +1 *

* z ii -N—

1

- z.
T ,. (sinh z + cosh z ) z - e z XT . Since z„ ,, < 2
N_,+l N_i +1 N -+1 1

-N-l -N
and ^ z < log 2, the bound is 2* 2 =2 . Roundoff error in each is

-N-l -N
2 , hence the total roundoff error could be as large as 2 , giving

-N+l
a total error of no more than 2 . However recall that a right shift is

-N
necessary to normalize the result, thus the error is then bounded by 2

4.4.2 Pseudo-Division/Multiplication Methods

From Table 4 we see it is first necessary to recode the exponent in

in the variable radix log (1+2 ) This is accomplished by the modified

divider discussed in Section 3.2. Let us first investigate the error in

the process of recoding the exponent. Without rounding error, and chopping

after N bits it is easily seen that the truncation error in the process is

-N -N
bounded by log (1+2 ) = 2 . The roundoff error is introduced solely

through the divisors, and is left shifted in the new dividend at each

iteration. If the error in divisor d. is e., we have error
i i

2
N

2
N_1

e - 2 £
^o o ^11 q„ N in D„,,. Thus the error accumulation in

^N N+l
N+l

remainder is the above, divided by 2 . Assuming correct rounding of the
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divisors the roundoff error accumulation is bounded by

2"N-1
(2
N
+ ... + 2)2-N

-1
S = a"""

1
.

-N-l
Thus if no guard bits are used, roundoff error is less than 2 . Thus

_N -N-l
the total error in this procedure could be as large as 2 +2 If we

p—Y i
I —

N

take y = x = 1 in the procedure, we obtain e , where |y| < 3/2 • 2

*
P P—Y P A

Thus the error here is e - e = e y , where p is near p. Thus the

error is bounded by e |y| < 2 • 3/2 2 =3*2

Now in the pseudo-multiplication, roundoff can occur only in the

calculation of the pseudo-multiplicand, x.. The error propogated to the

N-l N
pseudo-product z...,, then is 2 q a + 2 q.e

n + ... + 2q„e v , where e. isr r N+l ^o o 1 1 ^N N* i

i i

_N
the error in x,- . e = 0, and e. < 2 , so the total error is bounded by1 o ' 1 '

N N-l -N
(2 +2 + ... + 2)2 < 2. Because the accumulation is in a double

length register (the least significant part being N+l bits), we see that

_N-1 _n
the actual error is no more than 2*2 = 2 .

-N -N
Thus the total error in the procedure is bounded by 3 • 2 +2 =

-N+2
2 . Recall that a right shift is necessary for normalization which

o-N+1
reduces the error to 2

We note that the above was accomplished without guard bits, and one

double length register. The inclusion of one guard bit would reduce this

-N
error to 2 . However it would be necessary to include an additional

quotient bit in the modified division to recode the exponent, since this

was the largest source of error.

4.4.3 Normalization Methods

The basic algorithm has been described previously, the choice of a.

being the issue to be decided. Specker [61] and later Perle [46] use the

criterion

-39-



1 + 2
x 1

if x. - log(l + 2
i~ 1

) ;> o

"•
1

.

otherwise.

.-i
Then x. > for all i, and it is easy to show that x. < 2 , thus after N

iterations x^^ < 2 . Then we have y ^e = y e , and taking

x . r , *N+1 ,s „ x -N-l
yN+1

s e gives an error of yN+1
(e - 1) - yN+1

. x^ < e • 2

-N
Since < x < log 2, the truncation error is seen to be bounded by 2

-N-l
Roundoff error is bounded by 2 , assuming a sufficient number of guard

bits, and since the result must be right shifted to normalize, the total

error xs bounded by 2 +2 < 2

DeLugish [16] initializes by taking

where e =
o

x
l

= x - log e
Q

yl
= e

o
>

' 1/2
e if

*
x > 1/2

<

1/4
e if 1/4 < x < 1/2

h

1 if x < 1/4

Then a. = 1 + s.2 is chosen byli
S
i

=

-1 if

1 if

x. < -3/8-2
l

-i

x > 3/8-2
-l

,-i+l ,-N

otherwise

It is shown that |x
|

< 3/8-2
"L

"ra
', hence |x^-| ^ 3/8-2 ™, so truncation

error is slightly smaller than in the previous case. The number of non-zero

DeLugish actually allows |x| < log 2, and thus two more possible initilization

values are given by him.
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s. is about N/3. One can again show that (for moderate i) that no more than

two successive s. can be non-zero, thus the maximum number of non-zero s
i i

is about 2N/3, decreasing the number of guard bits required. Total error

is bounded by 3/4 •
2~N_1 + 2~N~ 2

= 5/4 2~N~ 1
< 2~N

.

Chen [5] lets p. be one plus the number of leading zeros in x
.

, i.e.,

x. = 2"P i + v., < v. <
2~P

i. Then log(a.) = log(l + 2~P
i) =

2~P i +

0(2 i), and the leading one bit in x. is eliminated. At most N + 1

-N-l
iterations will be required for x. < 2 . The termination algorithm, to

be applied when p > N/2 is e z y + x y . Again, as with division,
n n n n

truncation error can be halved by taking e;y+y(x+2 ). The
n n n

-N
total error bound is again less than 2

4.5 Power Function

yThe power function, x , has not received much attention in the literature,

y y Ior x
This function is usually evaluated by the identity x = e , which

requires evaluating both a logarithm and an exponential, with a multiplication

necessary also.

A direct method was proposed by Krishnamurthy [28]. He assumed the

numbers were in radix r, but we specialize this to r = 2. We first write

y = I + f , where I is an integer and ^ f < 1. x can be evaluated by
n
v — i

multiplications and a division, possibly. Let us write f =
I q . 2 . Then

i=l
X

x
f

= x I ,
q
i

2_1
= n (x

2_1
)
q
i

1=1
i=i

1/2 1/2
If we let z = x ,z tl1 =z. , for i = 1,2,...,N - 1, we have

1 l+l l

f N
q f

x = II z i . We can determine x with the following loop.

i=l
i
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Let p = 1, z = x, then
o o

for i = 1,2,. ...N

1/2
Z
i

= Z
l-1

P
i

= P i-1 '
Z
i
q±

'1-1

'i-l"i

if

If q±
-l

Then x
'N

This method would seem to be a rather time consuming procedure, since

N square roots and up to N multiplications are necessary for only the

fractional part of the exponent. It seems unlikely that it would compare

favorably with the conventional method, unless a square root operation

were available, and a logarithm/ exponential routine was not.

Roundoff error would be able to come in both during the square rooting

operation and during formation of the product, and would thus require more

guard bits than usual.

4.6 Logarithm

Since the logarithm is the inverse of the exponential, it seems reason-

able that the inverse of methods used for the exponential could be used for

the algorithm. This is essentially true. Most routines are for any base

logarithm, depending on the stored constants, but one due to Philo [48] and

Dean [15] is for base 2 logarithms.

We will consider the logarithm of X, where X is any positive number.

We then write X = 2° • x, where 1/2 < x < 1, and then log X = a log 2 + log x,

It is then necessary to discuss the computation of log x.
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4.6.1 CORDIC Algorithm

-1 w-1
Here we will make use of the identity log w = 2 tanh " —— . If

w+1

1/2 < w < 1, then -1/3 < 7777- < 0, a region for which the CORDIC algorithm

converges. We enter the algorithm with m = - 1 in the vectoring mode, with

z = 0, x = w+l and y = w - 1. The value of z„ , .. must then be leftN-+1

shifted to obtain the result.

Truncation error is found by consideration of equation (6) , by a

procedure similar to that for the inverse tangent, and we obtain the bound

6 . Roundoff error is of similar size, however, these bounds are for the
-1

hyperbolic tangent, which must be left shifted to obtain the logarithm

j j o-N+1
thus the error bound is 2

4.6.2 Pseudo-Division/Mulitplication Methods

This is a pseudo-division process, and can be carried out in one

pass, as is seen from Table 3. Normally, log z is required, and this can

1-z
be obtained by setting y = 1 - z, x = z. This gives log(l + y/x) = log(l + ~~T~)

- log z. This particular transformation keeps x and y small and non-

negative, as is desirable and necessary.

N+l
Using no guard bits, we find that the error in z .. is -2 q e

-

N 1 1 -N
2 q-e, - ... - 2q e

T . Since e =0, and e. < 2 , we have the error1 1 N N o ' 1

'

N N-l -N N+l
bounded by (2 +2 + .. + 2)2 = 2. The pseudo-remainder is z ../2 ,

-N
hence the error is bounded by 2 . Now the accumulation of the psuedo-

dividend requires the use of guard bits. If it is done in the double length

register, as suggested by Meggitt, roundoff error will be insignificant, and

-N
the total error will be less than 2
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4.6.3 Normalization Methods

Specker [61], Perle [46], DeLugish [16], and Chen [5] have suggested

these algorithms, and the selection of a. is the same as for division, since

in each case it is desired to force x to 1. The error bounds are about

i i
-N-l

i i -N-l
the same. If 1 - x < 2 , then the error is log 1 - x

\
z 2 , as

n' ' n'

-N-l
before. Roundoff error again can accumulate up to 2 for a total error

of 2

Chen's termination algorithm is y + log x ~ y - (1 - x ) , or to
n n

_N-2
reduce the truncation error, y + log x=y - (1 - x +2 ). Again n

n n

is taken so that p > N/2. Comments pertaining to errors, made in Section
n

4.1.3, apply here also.

4.6.4 Other Methods

Philo and Dean suggested the following method for computing log x.

It is the inverse of the procedure described in Section 4.5 for computing

x^. It was discussed by Dean in terms of implementation using cellular

arrays.
N ^

I is
1

i=l
We want to compute digits q. such that x = 2 .We assume

that 1 < x < 2 so that < log
2
x < 1. Then x = 2

1/2 *
q l 2

1/4 '

q2 ... •

1 / 9^ n 9 2
•2 ' qn

. If x > 2, then it is apparent that q = 1. If x < 2, then

q = 0. The following recursion can be seen to generate the q .

x = x, for i = 1,2,..., N,
o

1 if x
1_ 1

2
> 2

q
i

=

if x.
,

2
< 2

l-l
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and

x. =
1

1/2- x
i-1

X
i-1

if q. = 1
l

if q. =
l

-N
The truncation error of the above procedure is 2 if enough guard bits

are carried in the calculation of the x . The error will generally more

than double at each iteration, although a possible right shift will tend

to keep it about the same magnitude. For example, if the error at the

. ,th . .,
l-l stage is £ ._i> then

€ .
=

1

1/2.<2X
1_1

£
±_1

+£
1_1 ,) if q -1

2X
i-l

£
i-l

+ £
i-l

if q. = .

l

1/2 1/2
Considering that q, = 1 or as x, . > 2 or x. < 2 , we have

l l-l l-l

l/2-(2'2«e. , + e. _

2
) = 2e. . + l/2e .

2
- 2e . .

l-l l-l l-l l-l ~ l-l

€ .
<

1
o o 1/2 a.

2
9 3/2 2 3/2^

l-l l-l - i-l

This does not include the error due to chopping after the squaring operation,

-N-J
which would be bounded by 2 , using J < N guard bits. e is zero, so we

,3/2 -N-J ,3/2 /0 -N-Jv -N-J
have leJ < 2

J/Z
-0 + e D = 2

_iN_J
• Then

|
6

|
(2 ") + 2

1 R
x

(2 + 1)2 . Continuing in this fashion, or by induction, one obtains

i„\ <- [(i
S/2

)
M

+ (2
3/2

)

N- 2
+ ... + l]2-

N-J
,

N
or

e
|

< (2
3/2

)

N
-

2"N_J = 2
N/2 " J

. Thus the use of N/2 guard bits
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-N
will prevent buildup of error larger than 2

Because repeated squaring is required, this method is probably not too

attractive, even though it is a simple calculation.

Nicoud and Dessoulavy [45] suggested a method which requires repeated

multiplication. Suppose log x is desired, where 1 < x < 2. Now, for an

-k n
appropriate number u = 1 + 2 , we consider the sequence l,u,...,u , until

u > x. Then we have log x s log u = n log u. The truncation error is

| log u - log x| ^ log u - log u

= log u a 2~\

hence we would probably take k = N + 1. The error introduced by forming

the sequence l,u,...,u is bounded by n 2 . Unfortunately, for x z 2,

we would require

n , 1°JJ a 3.2
N_1

-N-l
log (1+2

N X
)

thus the number of operations required for high precision is excessive.

About N + 1 guard bits would be required.

4.7 Tangent

Several authors have discussed generation of the tangent function,

including Meggitt [40] and DeLugish [16]. Of course, the tangent can

always be generated as the quotient of the sine and cosine, say from the

CORDIC algorithm. Both Meggitt and DeLugish use this idea, with modifications.

We assume that the angle is reduced as in the sine/cosine routines.

Thus we have a first quadrant angle. This is further reduced by the identity

tan z = cot(7T/2 - z) if z > tt/4.

Meggitt' s initial modified division is equivalent to finding which

rotations need to be done to drive the angle to zero, and doing only those

which do not "over-shoot" zero. The arbitrary value, Q, should be approxi-
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mately of full register length, near one. The accumulation in the double

length register renders roundoff error to be insignificant. Error in

recoding the angle is about the same as was discussed in the case of the

exponential function, and one guard bit and N + 1 iterations (n = N + 2)

are required to bring the truncation error bound down to the desired level.

DeLugish use the same initilization as for sine/cosine, and the same

decision process as is used in the latter stages of that procedure. Of

course, the radial distortion correction is not necessary for any of the

iterations.

The errors in calculation of the sine and cosine were found to be

-N
bounded by 2 , and these bounds hold for the modified procedures here. Then

„ . e„
K sin z - e, . /vN /n 2

1 _ (tan z - e.,/K)(l +
K cos z - e„

1 K cos z

e„tan z

tan z - £]/K + —

^

7T

£
2| ,. zr^-N

e n + J '— < (1 + /2)2
1 cos z

However, separate consideration of the truncation and roundoff errors in

K sin z and K cos z will yield a better bound, about (1 + l//2)2 , an error

confined to the last two bits of the result. For angles greater than tt/4,

the reciprocal is taken, and the error becomes arbitrarily large. This is

natural, however, since the value of the tangent also becomes arbitrarily

large.

4.8 Square Root

Computation of square roots has received a great deal of attention
,

Lenaerts [30] was one of the first to discuss the possibility of a build-in

square root operation; his suggestion was for a particular type of existing
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computer, and was an adaption of the usual hand method for extracting square

roots. Cowgill [8] gave a non-restoring version of the usual hand method.

Kostopoulos [26] and others have also suggested adaptions of the basic hand

calculation. Metze [42] gave an algorithm which generates the square

root in a minimally represented redundant form. The pseudo-multi-

plication of Meggitt [40] and Sarkar and Kirshnamurthy [55] will calculate

square roots, as will the CORDIC algorithm. Chen [5] and DeLugish [16] give

normalization techniques for the calculation. DeLugish gives two algorithms

for the square root. One is an additive normalization procedure which is

actually a modified hand method. We will discuss iterative techniques briefly.

We assume that X = 2 . x, where 1/4 < x < 1, then X = 2 . io7, and

1/2 < toe < 1. We concern ourselves with the computation of /x .

4.8.1 CORDIC Algorithm

Suppose rw , 1/4 < w < 1 is to be computed. Then, setting x = w + 1/4,

y = w - 1/4, and entering the algorithm with m = -1 in the vectoring mode

x -y = K •w . Unfortunately, a multiplication

by K is then necessary to obtain /w , taking an additional multiplication

-2
and increasing roundoff error. An initial formation of wK_

1
could be done,

-2 -1
also, but would require that K be stored, as well as K-

The truncation error for the calculation of K w is a lengthy calcu-

i «-• a • - i
K

i
(w

2
-w+3/16) -

lation, and is approximately - _11 6
N where o =

^-1 w - 1/4

(w+1/4) cosh a -1 w + 1/4

-N-2
Hence the truncation error is bounded by K • 2 . Roundoff errors are the

same as for other applications of the CORDIC algorithm, so the error in

K •w is bounded by 2
~ + K_

1
2 . The division (or multiplication)

would introduce additional error.
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4.8.2 "Hand" Methods

The usual hand method for extracting square roots is a matter of

trial and error. Let us outline and review the procedure for radix two.

Suppose we have a number x, 1/4 £ x < 1, and we have computed digits
i-1

q ,q 9
,...,q so that &•_-, =

I 1.2 is as large as possible, and still
j=l J

2
satisfies x-R > 0. Then we take q. to be zero or one, depending

on whether x - (R._- + 2 ) is negative or non-negative. If we

2
let E. = x - R. , then

l l

E. = X - (R. , + q.2
1
)

2
= E. . - q.2"1+1 (R. , + q.2" 1"1

).
l x-1 l l-l l l-l 1

Thus, we see that a trial value of E. can be computed by subtracting

2 (R. - + 2 ) from E. n . If the result is negative, q. = and
l-l l-l l

E. = E . If the result is non-negative, q. = 1, and E. has been computed.

For machine implementation it is more convenient to deal with

M. = 2 E., rather than E.. The calculations can then be arranged asill
follows. Since 1/4 < x < 1, q. = 1J thus we can initialize

M
x

= 2(x - 1/4)

R
x

= 1/2

For i - 2,3,. . .
,N

T. = 2M. . - (2R. . + 2
_1

).
l l-l l-l

Then, if T. >
l

q±
=l

M. = T.
l l

R. = R. . + 2
_1

, or
l l-l

if T.
l

<

q
i

=

M.
l

= 2M.
l-1

R.
i

= R.
l- 1 -49-



This is seen to be a restoring type of process, since a trial value is

computed, and then may be discarded.

-N
It is easily seen that the truncation error is 2 , since we have

computed the first N bits of the square root, and the remainder,

oo

v -i -N
I q.2 < 2 . As we have outlined the procedure, no roundoff error
i=N+l

1

occurs since no numbers are right shifted off the register, and all other

numbers are represented exactly with N fraction bits. We should note that

M. can be large enough to require some bits to the left of the binary point,

however. This might be best handled by scaling and inclusion of an appro-

priate number of guard bits.

The above procedure can easily be converted to a non-restoring square

root routine. The version we give is not generalized the same way as the

non-restoring division routine, however.

Let M = 2(x-l/4)

R
x

= 1/2

For i - 2,3,.. .,N

q i
=

/l if M. >

-1 if M. . <
l-l

V

then R. = R. . + q.2~
l l-l n i

M. = 2M. , - q.(2R. . + q.2"1 ).
l l-l M i l-l ni

The error bounds are the same as for the restoring square root procedure.

Metze has given a non-restoring algorithm which yields the value in

a minimally represented redundant form. As with the Metze division algorithm [41]
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there is overlap in the regions where a digit may be chosen as zero or

non-zero. We outline the algorithm as given, and then discuss the overlap

and a possible compromise. Let

R = x

s
-i - °

2
Here R. will correspond to the partial remainder x-S . , where S. is the

approximation to the square root after i steps.

For i = 0,1,...,

N

±0
K.-

U
= 2 (±5/3. S + 25/36-2" 1

)

K ." = 2
1
(±4/3.s

i_1
+ 4/9-2" 1

)

Determine q. by

q i
=

{

Then

if K."° < R. ,
< K.

+0
1 1-1 X

1 if K.
+1

< R. ,l l-l

-1 if K."
1

> R. ,l l-l

R. = R. . - q.2
1
(2S. , + q.2

1
)

l l-l l l-l n i

S. = S. . + q.2
l l-l ^i

-l

Since K. < K. " < K. <K. , it is not well defined in the above1111
how q. is to be chosen if R._-, is in one of the overlapping regions. It

can be chosen either way one prefers; the representation will still be

±0 ±1
minimal. Since the above values of K. and K are not particularly easy

to compute, a reasonable suggestion would seem to be to compromise at some

point in the regions which is easier to compute. Such a value is

,-i ,-i-l
K. =2 (±3/2 -S +2 ). Actually, in the above there appears to be a
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slight difficulty with the iteration i = since then K 25/36, and

+1
K = 4/9. However, since R > 0, the negative values are not required.

The same difficulty appears in our suggestion, and is resolved the same way.

With our suggested criterion for determining the q. and the replacement

of R. by 2 R., an algorithm for computing minimally represented square roots

is as follows. We remove the apparent difficulty on the first iteration by

initializing differently.

Let

S =
o

1 if x > 1/2

if x < 1/2

and

For i = 1,2,.. .,N

M=x-S =x-S
o o o

K.
1

= ± 3/2-S. . + 2
1 1

%

l i-l

then determine q. by

q
i

=

1 if K. < 2M. ,
i i-l

-1 if K.~ > 2M. .

l i-l

otherwise

Then M. = 2M
l i-l - «i

(2s
i-i

+
«i

2-1)

S. = S. . + q.2
l i-l l

-l

The same comments pertaining to roundoff error made for previous

methods applies here. Metze shows that the remainder R^ is bounded by

±0
K^ , thus we have

,-N. .-N -N ,-N,2"]N

(-5/3.S
N_ 1

+ 25/36-2"™) < x - S^ < 2 "(+5/3.S
N^ + 25/36-2 ).
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-N 2 -N
Now, S XT . ~ S. T , and 2 << S XT , so x - SXT is bounded by about 2 'S/S-S^ <

N-l N N N J N
-N+l

2 S. T . The latter can be shown to be a rigorous bound for moderate
N

values of N. We are interested in a - S^, not x - S„ , but recalling that

S„ ' /x, we have
N

*£ - S
N

X
/

S
N

7x~T~s
N

x - S,
2"N+1

S -N
<

Z b
N = 2

N

2S
N

2S
N

Thus the error is no greater than one in the last bit.

DeLugish gives a similar procedure where the comparison constant is

not a function of the partial result. Let U = x /4, then the initialization
o o

step is

U. = 1/2 (x - r ")
1 o o

R. = r
1 o

where r is given in Table 8.
o

the table.

The comparison constant c is also given in

interval for x

[1/2, 5/16)

[5/16, 3/8)

[3/8, 9/16)

[9/16, 7/8)

[7/8, 1)

o

1/2

9/16

5/8

3/4

1

3/8

7/16

1/2

5/8

3/4

Table 8
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For i = 1,2,..., N-l

s. =
1

1

-1 if U. < -
i

c

4

1

1 if U
±

>
c

4

otherwise

•_9 -i-1
and U.^ = 2U. - 1/2 -s

.
(R. + s . 2

1 Z
) R,

+1 = R, + s.2
l+l i i i i ' 1+1 i i

-N
soDeLugish shows that

|
oc - R . |

^2 , hence
|
Jx - R^

|

< 2 ,

-N
truncation error is bounded by 2 . Because of the way DeLugish initializes,

2 guard bits are required to avoid error in the initial calculation of U
o

and in the latter stages of the U. sequence. This is the same problem

referenced earlier when discussing the magnitude of the partial remainders

and a possible scaling with guard bits to contain the right shift.

4.8.3 Pseudo-Division/Multiplication Methods

Meggitt's method can be used to compute square roots, as Table 3 shows.

The only complication is that the recursion for x . - has three terms, but

this is common to most methods. Roundoff error will occur in the calculation

of x , but as before, the effect is less than 1/2 in the Nth digit, or less

-N-l
than 2 , with no guard bits required.

4.8.4 Normalization Methods

Normalization methods are for the calculation of y/»oc , and toe is obtained

by setting y = x. The procedures are similar to those for division, except

2
that x. is multiplied by a. , requiring a three term sum, as in the hand

methods. We assume 1/4 < x < 1.

DeLugish initializes by x = x , R = y, then
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U = rx - 1
1 o o

R, = R /r , whereL = R Sc
1 o o

r =
o

4 if 1/4 < x < 1/2
o

1 if 1/2 < x < 1
o

For i = 1,2, .. . ,N

' -1 if U > 3/8

i 1 if U.< 3/8

otherwise ,

and then

U
i+1

" 2U
i
+ S

i
+ 2-i

(2V .s.+m-s.
2
) + U lS .

2 -2-2±
-1

h+l " R
i

(1 + S
i
2
"i"1)

In the above, we note that a. = 1 + s.2 and U . , .,
= 2 (x.,.,-1),

l l l+l i+1

where x,,. = x.(l + s.2 ) .

l+l l l

DeLugish gives the error bound Ix^,-, - 1| ^ 3/4*2 , and this gives a

_N -N-l
truncation error bound of about 3/8 .2 < 2 . Roundoff error bounds

are the same as most other DeLugish algorithms. The average number of non-zero

a. is about N/3. It is not known what the maximum number of non-zero s. is,

but in any case log_N + 1 guard bits are sufficient.

The Chen algorithm again counts left zeros in 1 - x. = 2 i
J

+V. ,

< V. < 2 p i "

, and p. is two plus the number of left zeros in 1 - x..
l ' l

Y i

Then a. = 1 + 2
_p

i , and 1 - x. n = 1 - a.x. = 1 - (1 + 2~P i)
2
(l - 2~P i + V.)

i
' i+1 11 i

= V. + 0(2 Pi ), thus, again the leading one-bit is eliminated.

The termination algorithm, again applied when p > t, is y/ni ;:

y +

1/2 -y (1 - x ). For purposes of reducing truncation error, the termination
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-N-2
algorithm y//x ~ y + 1/2 yn

(l - x^ + 2 ) may be used. Truncation error

-N-2
is then bounded by 2 . The same comments about roundoff error made in

other discussions of Chen's normalization algorithms apply here.

4.8.5 Iterative Procedures

2
The classical iteration for the solution of Z - x = is the Newton

iteration, Z., n
= 1/2 -(Z. - x/Z.), with Z given as an initial guess.

1+1 11 o &

Convergence is quadratic. Many papers have been written concerning optimal

starting values and other aspects of the iteration. As written above, a

division is required.

Ramamoorthy, Goodman, and Kim [49] have made a study of iterative

methods which use only multiplication, except for a possible final division.

The iteration

R
±+1

- £ (3 - xR.
2
)

-1/2
converges to x for appropriate R .

Another iteration, involving two variables is

R
1+i - V2 - BiV

B
i+i - 1/2(B

i
+ XIW •

-1/2 1/2
Here {R.} converges to x and {B.} to x

It is interesting to note that if B = N for all i in the first equation,

that this is the iteration for the reciprocal of N, thus if this type of

division were employed, the square root could be implemented easily.

4.9 Product

Unlike many functions, the product is easily implemented in a straight-

forward fashion. A modification of the usual successive shift and add method,

additive normalization, is suggested by DeLugish [16]. Ling [32] has given

a method based on logical circuits to form the product of 8 bit segments of
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numbers. Chen [4] gives another, somewhat similar algorithm, based on

AB = (——) - (—t—) . Logan [36] has a similar proposal using "squaring"

chips. And of course, the CORDIC algorithm will yield a product.

In general we assume that we wish to compute yx, where 1/2 < x < 1 and

y may be any number.

4.9.1 CORDIC Algorithm

Entering the CORDIC algorithm with m = 0, y = 0, in the rotation mode,

yields yN
~ xz, where in this instance |z| <

o
1. We have yXT ,, =

^N +1
o

N N
o o

:(-£ a.) , and
|

z f £ a

i=0 i=0 o o

-N-l

-N-l II ii
Thus, the truncation error is no more than 2

\

x
\

> and if |x| < 1, the

-N-l -N-l
bound is 2 . The roundoff error is also bounded by 2 for a total

-N
error of no more than 2 , or one in the last bit.

4.9.2 "Hand" Methods

The usual shift and add method was outlined in Section 3.2. There is

no truncation error, and N guard bits are required for no roundoff error

(i.e., a double length register), but log~N + 1 guard bits renders roundoff

-N-l
error less than 2 , with chopping.

DeLugish uses the following additive normalization. Let U = x> P = 0,

Initialize U, = 2(U - m )
1 o o

where

m
o

P n
= P + ym

1 o o

1/2 if 1/2 < x < 3/4

if 3/4 < x < 1
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For i = 1,2,. .. ,N

1

-1 if U < -3/8

s . =
1

< 1 if U > 3/8
i

otherwise

u
l+l

=20, - s.
l

then
l+X 1 1

P
i+1

= P
i
+ ^i2

""1
'

-i-1 i
i~1

Letting m. = s.2 ' " for i > 1 , we have U. =2 (x - ) m.), and
3=0 J

i-1

j-0 J

Thus the truncation error is

N
yx " p

n+i = y (x ~ I m
i>'

j=0 J

>-N
N

DeLugish shows that | x - £ m
|

< 3/8*2
N

,

j-0 3

i i
-N -N-l i i

thus the truncation error is bounded by
| y | . 3/8 • 2 < 2 if |y| < 1.

Roundoff error again depends on the number of non-zero s, , which average

about N/3 again. By an argument similar to that for division, it can be

shown that no more than two successive s. can be non-zero, thus at most
l

about 2N/3 of the s. can be non-zero. Hence, about log
?
2N/3 + 1 guard bits

-N-l
are sufficient to bound roundoff error by 2 . Total error is no more than

one bit.

4.9.3 Other Methods

Several methods have been derived for obtaining the product by decomposing

it into a sum of several other terms which are determined by means of logical

circuits. Ling gave a method whereby the product of two 8 bit numbers is

obtained in three additions. For longer word lengths, the idea is applied to
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segments of the numbers in parallel, and then the product found by summing

Time is about 1 + 2k addition times, where the word length is 8 . 2

k > 1.

Basically, the idea is to form

2£ = t = 2
n
± ( 1/2 < ± < i

x-£ = J = 2
n
j , 1/2 < j < 1 .

2

2
2

Then, with S (z) = z - —
, s(i) and S ( j ) are formed by means of logical

circuits. Then it is easily verified that

xy = 2 {2
n
l - 2

m
j - 2

2n
S(i) + 2

2m
S(j)}.

As many as 26 terms involving seven variables occur in the definition of

the bits of S (z ) .

Chen uses the idea that xy = (~^ ) - (~~^ ) » and a decomposition

of the square of a number into the sum of three quantities (for 8 bits;

2
two quantities for 4 or 6 bits), Z = R + S + T.

The expressions for R, S, and T are decided upon by considering the

"squaring parallelogram" that results when forming the square with pencil

and paper. Symmetry can be exploited, and the decomposition given by Chen

results in each bit involving no more than 14 terms and six variables.

Logan [36] has a similar idea using squaring chips [35], except that

2 2 2
he forms 2xy = (x+y) - x - y . This would appear to be more costly in

terms of both time and hardware than using xy = (
^

) - ( o ) •

The above procedures form a double length product, thus there is no

error involved.
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5.0 Conclusion

Several conclusions can be drawn from this study, depending on the

point of view taken. If simplicity and generality is the main objective,

then the CORDIC algorithm of Walther [66] should be heavily favored. If

speed is of principal importance, then the normalization method proposed

by Chen [5] is excellent for its purpose. We note that Chen's algorithm is

the subject of a U. S. patent. For implementation with more conventional

hardware, and a good compromise between simplicity and speed, the set of

normalization algorithms proposed by DeLugish must be highly rated.

The special purpose algorithms usually (although not always) are

faster than those which are part of a unified algorithm. The minimal

representation algorithms by Metze [41], [42] should be excellent for their

purpose. The decomposition schemes for performing multiplication, proposed

by Ling [32], Chen [4], and Logan [36], appear to be capable of high speeds,

As was noted earlier, the only method available for computation of

trigonometric functions is the CORDIC algorithm and variations of it. It

appears that this is one area where some additional study is necessary to

develop faster and more efficient algorithms.
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Appendix A: Block Diagrams
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BLOCK DI GRAM - CC:?DIC ALGORITHM

X.Y. Z.m.mode

rr L .it i An

Register Contents

R

S

X.

T
A

I

z
1

Z. or Y.
i . i

1

Yti^torinn

(T)

sign sensor
* s.=sign c(A)

A*- c(S)

complementor

ms . c ( .J

)

rtii

complementor

-s.c(R)
l

shifter

ms,c(J)2"Pi
i

-P,
shifter

-s.c(R)2~Pi

+%.

adder
R *- c(R)ims.c(3)2"Pi

adder
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BLOCK DIAGRAM - PSEUDO-MULTIPLICATION

x.y.pF=l"gJ.fctn

product, tan

•

^'^f^^P^^^exp, square

II*- 1

I *-

C *- x

Z-y
X^ x

Register Contents

X pseudo-multiplicand, x.

pseudo-product , z

.

multiplicand modifier
x
index,

i

index modifier, ±1

Z

M
C
I

II

*0

product

=0

M«-

fctn

exp

square

tan

M<- c(X) M «- -c(Z)

shifter

M <^c(M)2
-i

-i

M«- -c(C)

I

shifter

M <r c(M)2—r~
• 2i

r2i
shifter

M <r c(M)2
• i+1

hi+1

adder

Z <£-c(Z)+c(X)
X.

1
adder

X*- c(X)+c(M)
asmflffi

shifter

Z «- c(Z)2

c(II)

c(II')

adder

I «- c(I)+c(II)

^0 and j=n^ c (j) ^» =0 or =n

M^ c(C)

fctn

otherwise

shifter

M*- c(M)2
r

-i-1

•i-1

adder

X *• c(X)+c(M)

\ EXIT J
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BLOCK DIAGRAM - PSEUD0-DIVI3I0N

x.y. fctn
J

Q *•

A ^y
B * X
C *- X
I «*-

quotient

M^

Register Contents

A pseudo -dividend, z.

B pseudo-divisor, x.

Q pseudo-quotient, Q.

M dirisor modifier
I index, i

C x

square root

tan

M *- -c(B)

shifter

M * c(M)2"

,-i

M*- c(A) M— c(C)

shifter

M*- c(M)2
-2i

,-2i
shifter

M*- c(M)2
-i+1

•i+1

adder

A*- c(A) - c(B)

shifter

Q ± 2c(,Q)

*0^ :(A) N <\ { ^ 1

1
t f ^^

1

'

adder adder adder

B- c(B)+c(M) Q*-c(Q) + 1 A*-c(A)+c(B)

\ r

>

1 "

r

1
shifter

A*- 2c(A)

£ n

square
root M-*- c(C)

otherwise

c(I)
> n

shifter

M«-c(M)2
• i-1

( EXIT J

ri-1

adder

B*-c(B)-c(M:
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BLOCK DIAGtfhfo - NORMALIZATION METHODd

log
<Tfctn^>

[exp

ratio, square i

.— i L > t

R «- x

J <- y

S «-x
T-y

R *- x
T*-y

l 1

j '

select s . and p.
1 *i

U «- c(R)

complementor

s.c (U)

shifter

c(U)2
-m

-m

adder

R *- c(R)+c(U)2
-m

adder
-Pi

Register
R

S
T
I

S «*- c(S)+( -log(l+8 .2 Kl
))

fctn
otherwise

square
root

j£e$ no

EXIT

adder

I *• c(I)+l

m =
p. ,fctn#square root
p.-l,fctn= square root, I s * time
p.+l,fctn= square root, 2nc* time

Contents
X
i

y
i

or x
t

y
i

l

complementor

siC (T)

shifter
c(T)2"P i

P
i

c(T)+s.c(T)2 ^

±JL

<N
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BLOCK DIAGRAM - DE LUGISH MULTIPLICATION

X,y

w

U— x

P *-0
I ^1

Register Contents

U U,

P
I

T test value

q«e--l *
^ 3/4 c(U) 5 3/4,

q^-0

shifter

-2q

shifter

tL

adder

U«~ c(U)-2
C

adder

P«-c(P)+y2

shifter

U*- 2c(U)

s.^- 1
1

u>0^
c(U)

s^^Q,

S, <r -1

, 1
•

> »

adder

T «-c(T)-3/8

adder

T * 3/8-c(T)

shifter

U * 2c(U]

shifter

Y2-
1 -1

-i-1

complementer 3

adder

U^ c(U) - a,

t
adder

P*- c(P)+ys.2
-i-1
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BLOCK DIAGRAM - METZE DIVISION

it
Register Contents

R *- y
Q«-

I<-

R

Q
t.

I

T

< 39/64 15/16

K-:- 13/32 K *- 1/2

**-

K<- 5/8 K^ 3/4

c(R)
>,0

adder

T*- c(K)-c(R)

I

adder

T«-c(R)-c(K)

q. *• -1
1

q
i
*- 1

}

complementor
q
i

c(T)
<

complementor

"q
i
X

*i

adder

Q«- c(Q)+q.2
-i

adder

R*- c( R)-q
i
X

shifter

R*- 2c(R)

2R.

(3R
i
-J^sign(R.)

adder

I«- c(I) + 1

i N
c(I

>N
EXIT
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BLOCK DIAGRAM - METZE SQUARE ROOT

X
M *- x
I- 1

Register Contents

M
S

I

K
A

partial remainder
approx. square root

i

K
test value

£_i

adder

M*- x+(-l)

S+-

shifter

K^-ic(S)

rl shifter

M*- 2c (M)

adder

K<-c(K)+c(3)

adder

A<-c(M)-2
-i-1

c(K)

q^-1

£

q.-*-l
i

EXIT
complementer

A*--c(A)

adder

K * c(K)+c(A)

complementor

-qjC (3)

-q
complementer a.

shifter

-2q.c (5)

adder

M«- c(MH-2q
<
c(3))

adder

S«- c(S)4q.2
-i

adder

M«- c(M) - 2
-i

adder

I*- c(I) + 1

^^c(I) ^^L <^T)
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Appendix B: CORDIC Simulation Program
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C PRCGRAM C R I C
C
C THIS FFGGPAN SIMLLATES THE GENERALIZED CORCIC ALGORITHM OF WALTHER
C
C PCM VALUES ARE CCi»PUTED WITH ROUNDING TC NPB + NPG BITS ACCURACY
C
C IN THE ITERATIONS, CHOPPING IS USED AFTER MULT IPLI CAT ICNS. THIS
C CCPPESFCNCS TC A PIGFT SHIFT OFF THE END
C
C
C INPUTS ARE AS FCLLCWS
CCM IS P
C MODE IS 1 FCR ROTATION, 2 FOR VECTORING
C NPE IS THE NUMBER CF PRECISION BITS OF THE COMPUTER
C NGc IS ThE NUMBER CF GUARD EITS WITH WHICH THE
C CALCULATIONS ARE PERFORMED (NOTE THAT WITH 32 BIT
C ARITHMETIC THE VALUE CF NPB+NGB MUST BE NO MORE THAN
C 31)
C IC OUTPUT IS GIVEN ON THE ITERATION WHEN I/IO IS ^^
C INTEGER
C X THE 1NPLT VALUE OF X (SHCULD BE LESS ThAN ONE)
C Y THE INPUT VALUE OF Y (SHOULD BE LESS THAN ONE)
C Z THE INPUT VALUE OF Z IS IN DEGREES IF M = 1, ANC
C SHCLLD BE 180 GR LESS IN MAGNITUDE. IF M IS -1
C CR 1 SHOULD BE LESS THAN ONE IN MAGNITUDE)
C

CIMENSICN RCM(2,5C) , NX 1 ( 32 ) ,JMYI ( 32) ,NZI(32)
INTEGER RCM,SFP,SFG,TSF,ZI ,X I , Y I , XT EMP ,0EL I , M, MODE , NP6,D 1 , SZ ,K

1 , REPEAT, XCFtYCR ,ZCRtHSFG
PEAL* 8 D,CATANH,RK,X,Y,Z,PI,ANG,XC,YC,ZC
CATANH(X) = .5DO*CLCG((l.D0 + X)/(1.CC - X))
PI = DATAN( l.DO)*«.CC

100 PEAC 1,M,M0CE,NPE,NGE,I0
IF (NPB.LE.O)STOF
REPEAT = k
SFF = 2**NPE
SFG = 2**NGE
HSFG = SFG/2
TSF = SFP * SFG

C
C INITIALIZE ROM,CCMPLTE SCALE FACTOR
C

RK = l.DO
CI = 1
IF(M.LE.0)C1 = 2
I = C
J = C

ku I = I + 1

J = J + 1
C = l.CO/Cl
PCM2,I) = TSF/C1
IF(M)14C,15C,16C

140 RCM(1,I) = CATANF(D)*TSF +.5D0
GC TC 160

15C RCM( 1,1) = TSF/D1
GC TC 180

16C R0M(1,I) = CATAN(L)*TSF + .5C0
18C RK = RK*(1.CC + M*D**2)
190 IF <M)195,2CC,20C
195 IF( J.NE.REFEAT)GC TC 2C01=1 + 1

REPEAT = 3*REPEAT * 1

RCM1,I) = FCM(1,I-1)
R0M(2,I) = R0M(2, I- 1

)

FK = PK*(1.C0 P*D**2)
2CC IF(D1.GT.SFP)G0 TC 2C1

CI = 2*C1
GC TC 120

201 NMAX = I

IF (NGE .LE.OJNMAX = NMAX - 1

K = CSCRT(RK)*TSF + .5C0
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RE/C 2,X,Y,2
PRINT 5,M,MCLE,NPB ,NGB,X,Y,Z

SCALE INPUTS TC INTEGER (NPE4NGB BITS) AND DO FIRST 90 DEGREE
RC7ATICN

IF(i*.GT.O)GC
11
XI
VI
GO
ANG =
GC TC
SZ
GC
SZ
IF(SZ
ZI =
XI =
YI =
ZI =

XI =
YI =

TC 2C5
= Z*SFP 4 DSIGM .5CC,Z)
= X*SFP/K*TSF * CSIGN(
= Y*SFF/K*TSF
TC 250

Z/18.C1*PI
(21C22C) »

= CSIGNt l.CC,
TC 2JQ
= -CSIGN(l.DCY)

EQ.OSZ = 1

(Z - SZ*90)/1.8D2*PI*SFP

5DQ,X)
4 CSIGN( .5C0,Y)

fCCE
Z)

DSIGN( .5D0,
-SZ*Y*SFP/K*TSF 4 D S I GN ( . 5D0 ,-SZ* Y

J

SZ*X*SFP/K*TSF + DSIGN( .5D0,SZ*X)
ZI*SFG
XI*SFG
YI*SFG

Z - SZ*9C)

NOk START THE ROTATIONS

CO
J
IF
CA
CA
CA
PR
CC
GC
SZ
GC
SI
IF
CE
XT
IC
XI
VI
ZI
CC
CA
CA
CA
PR

4CC
= I

(MCC
LL B
LL B
LL B
INT
NTIN
TC
= I

TO

(SZ.
LI =
E^P
LCSF
= X
= Y
= Z

NTIN
LL B
LL B
LL E
INT

1 = 1
- 1
(J,

I

INAF
INAR
INAP
3, J,
LE
(30C
SIGN
320
IS IG
EQ.C
-SZ

= XI
= T

I 4
I -
I

-
UE
INAR
INAP
INAR
3,NN

280

,NNAX

C).NE.G)GC TC
Y(XI ,NXI, 32)
Y(YI,NYI,32)
Y (ZI,NZI,32)
N>I ,NYI,NZI,XI,YI ,ZI

,310) ,PCDE
(if zn
N(1,XI )*ISIGN(1,YI)
)SZ = 1

*FCM(2, I)

SF/DELI
MYI/ICLCSF
XTENP/ICLCSF
SZ*R0M(I, I)

Y(XI,NXI,32)
Y(YI,NY 1,32)
Y(ZI,NZI,32)
AX,NXI ,NYI ,NZI ,XI ,YI,ZI

SU1-MAPY CF FESLLTS

LPTG = MODE 4 2*(N 4 1)
GC TC (410,420,43C,44C,45C,46G),LPTG
XC = X*DCCSh(Z) 4 Y*CSINH(Z)
YC = Y*CCCSF(Z) 4 X*CSINH(Z)
ZC = C.CC
GC TC 47C
XC = CS^RT(X**2 - Y**2)
YC = C.DO
ZC = Z 4 CATANH(YZX)
GC TC 470
XC = X
YC = Y 4 X*Z
ZC = O.CO
GC TC 470
XC = X
YC = O.CO
ZC = Z 4 Y/X
GC TC 470
XC = X*CCCS(ANG) - Y*CSIN(ANG)

71



460

470

VC
zc
GO
xc =

YC =

ZC =
XI =

VI =

11 =
XCR
VCR
ZCR
FRIN
GC T
FCFN
FCRM
FCFM
FCFM

1 'CD
2 16(

5 FORM
1 27X
ENC

= Y*CCCS(ANG) -» X*£SIN(ANG)
= C.CO
TC 470
= CSCRT(X**2 + Y*<2)
= CDC
= MG +
= (XI +
= ( VI +
= (ZI +
= XC*SF
= YC*SF
= ZC*SF
7 4,SFP
C 100
/>T (1015
AT18D10
fll (13,3
/>T(//'0
ENGMINA
i * **
AT(///«
, 'XI', 3

ZCR

C
c
C
c
C
c

SUERCUTINE EI NARY (M , NG, NO

)

IOC

20C

TFI
THE
THE
IT

DAT
CIC
CC
NC(
IS
IF (

N =

CC
N =

K =

NC(
IF(
IF(
IF(
RET
N =

frET
ENC

S ROUTINE CCNVERTS THE NUMBER NI TC SIGNEC BINARY (BCD)
CHARACTERS ARE STCRED IN THE ARRAY NI
LEAST SIGNIFICANT CIGIT IS STORED IN NKND)

IS ASSUMED THAT M IS NC BIGGER THAN 2**(ND-^) - 1 IN MAGMTUCE

A I

EI^S
ICC
I i

= IM .

IA
200
N/
NC

K)
N.N
P.N
K .G
URN

URN

SP,IS
1CN N
1 = 1,

= ISB
SP
LT.O)
BS(M

I = lt
2
- I

= ISO
E.2*P
E.CJG
T.DN

ftlSBflSlflSO /lK+,11— ,lh flhlflHO/
C(l)
NC

IS =

)

NC

ISP

)NC(K) = IS1
C TC 2CC
C(K-l) = IS
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