

Calhoun: The NPS Institutional Archive DSpace Repository

Automatic factorization of generalized upper bounds in large scale optimization models

Thomen, David S.; Brown, Gerald Gerard

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/29736

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

mess-80-003
 NAVAL POSTGRADUATE SCHOOL Monterey, California


```
AU'IOMATIC FACTORIZATION OF GENERALIZED UPPER BOUNDS IN LARGE SCALE OPTIMIZATION MODELS
```

by
Gerald G. Brown
and
David S. Thomen
January 1980

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral T. F. Dedman
Jack R. Borsting
Superintendent
Provost

This report was prepared by:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMEER NPS 55-80-003	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER

16. DISTRIBUTION STATEMENT (Of this Roport)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the absiract entored in Block 20, If different from Roport)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Contlnue on reverse side If neceseary and Identlity by block number)

Generalized Upper Bounds
Large Scale Optimization
Basis Factorization
Computational Complexity
Mixed Integer Optimization
20. AbSTRACT (Continue an revorso oide tif neceoeary and ldentity by block number)

To solve contemporary large scale linear, integer and mixed integer programming problems, it is often necessary to exploit intrinsic special structure in the model at hand. One commonly used technique is to identify and then to exploit in a basis factorization algorithm a generalized upper bound (GUB) structure. This report compares several existing methods for identifying GUB structure. Computer programs have been written to permit comparison of computational efficiency. The GUB programs have been
20. ABSTRACT CONT.
incorporated in an existing optimization system of advanced design and have been tested on a variety of large scale real life optimization problems. The identification of $G U B$ sets of maximum size is shown to be among the class of NP -complete problems; these problems are widely conjectured to be intractable in that no polynomial-time algorithm has been demonstrated for solving them. All the methods discussed in this report are polynomial-time heuristic algorithms that attempt to find, but do not guarantee, GUB sets of maximum size. Bounds for the maximu size of GUB sets are developed, in order to evaluate the effectiveness of the heuristic algorithms.

AUTOMATIC FACTORIZATION OF GENERALIZED UPPER BOUNDS

IN LARGE SCALE OPTIMIZATION MODELS

Gerald G. Brown
David S. Thomen

Naval Postgraduate School
Monterey, California

To solve contemporary large scale linear, integer and mixed integer programming problems, it is often necessary to exploit intrinsic special structure in the model at hand. One commonly used technique is to identify and then to exploit in a basis factorization algorithm a generalized upper bound (GUB) structure. This report compares several existing methods for identifying GUB structure. Computer programs have been written to permit comparison of computational efficiency. The GUB programs have been incorporated in an existing optimization system of advanced design and have been tested on a variety of large scale real life optimization problems. The identification of GUB sets of maximum size is shown to be among the class of NP-complete problems; these problems are widely conjectured to be intractable in that no polynomial-time algorithm has been demonstrated for solving them. All the methods discussed in this report are polynomialtime heuristic algorithms that attempt to find, but do not guarantee, GUB sets of maximum size. Bounds for the maximum size of GUB sets are developed, in order to evaluate the effectiveness of the heuristic algorithms.

1. INTRODUCTION

Contemporary mathematical programming models are often so large that direct solution of the associated linear programming (LP) problems with the classical simplex method is prohibitively expensive, if not impossible in a practical sense. It has been found that most of these problems are sparse, with relatively few non-zero coefficients, and usually possess very systematic structure. These problems exhibit inherent structural characteristics that can be exploited by specializations of the simplex procedure. Various types of regularity are often described as, for instance, block angular, staircase, and so forth; terms all chosen to describe the visual appearance of the non-zero ceofficients when the rows and columns of the problem are suitably ordered. There are profound economic, managerial and mathematical motives for this special structure, which are not examined here.

Methods to exploit special model structure can be categorized generally as indirect (e.g., decomposition), where a solution to the original problem is achieved by dealing with related models which are individually easier to solve, or as direct, when the original problem is solved by a modified simplex algorithm.

Among the direct methods, the most frequently used technique is called basis factorization [6], where the reflection of special problem structure appears and is used to good benefit in the intermediate LP bases. Basis factorization can be dynamic, where the algorithm deals with each basis sequentially and/or independently in an attempt to extract as much specialized basis structure as possible, or static, where the algorithm depends upon certain types of special structure being present in all bases.

Static basis factorizations include simple upper bounds, generalized upper bounds (GUB), and embedded network rows, among many others. Simple upper bounds are a set of rows for which each row has only one non-zero coefficient. Generalized upper bounds are a set of rows for which each column (restricted to those rows) has at most one non-zero coefficient. Network rows are a set of rows for which each column (restricted to those rows) has at most two non-zero coefficients of opposite sign.

Each of these factorizations permits the simplex algorithm to deal with the static subsets of the rows (and columns) of all bases encountered with prior knowledge that they will satisfy very restricted rules. Most of these methods work best when logic can be substituted for arithmetic (as is the case with the coefficients ± 1). For this reason, static factorizations of ten restrict the special structure to possess only ± 1, or to be scaled so as to produce an equivalent result.

The concept of generalized upper bounds was introduced in 1964, the result of work by Dantzig and Van Slyke [4]. The name is derived from analogy to the simple upper bound structure. Graves and McBride [6] refer to Static Signed Identity Factorization as a term more suggestive of the implied basis structure. Since their introduction, some form of GUB has been implemented in many commercial LP systems. There is often confusion between the mathematical characterization of GUB and these various, widely used implementations of GUB, in that the latter of ten restrict the GUB set membership rules to permit uncomplicated simplex logic. All of the methods reported here address the full generality of GUB sets but can be modified to produce restricted GUB sets as necessary.

The details of how GUB can be exploited to reduce the computations of the simplex algorithm are not discussed here. See $[1,4,6,10,12]$. The underlying concept is that the GUB structure enables the simplex algorithm to manipulate the GUB rows implicitly, with logic rather than floating point arithmetic, thus reducing the effective size and solution time for the problem. The more rows one is able to GUB, the fewer rows one has to explicitly carry through the simplex operations. If the original problem has m constraints (of which p are GUB rows) and n variables, then at most only an ($m-p \times m-p$) submatrix of the basis is needed for the explicit simplex operations. This contracted explicit basis means that many of the calculations are replaced with logical operations, yielding faster results and less numerical rounding error.

Many problem types have natural GUB structures embedded in them.
a) "Transportation problems (pure, bounded and capacitated networks)
b) Multi-product blending
c) Raw material and/or production resources allocation (forest management, machine loading, plant scheduling)
d) Operations planning (combined production/inventory/distribution planning)
e) Resource assignment (i.e., freight cars, personnel)" [14].

To illustrate, Figure 1 presents a transportation type problem. Note that a GUB set has been marked. For problems similar to this, a large GUB set can be found quickly by visual inspection. Likewise, in a particular class of models, knowledge of the model structure can lead to problem-independent specification of GUB sets (e.g., one can always

GUB all the sinks of a pure network). But for many general models this technique cannot be used, and due to the large size of the problems, visual inspection may be limited to adjacent rows or patterns. This is very dependent on how the problem is written. Most contemporary problems for which GUB factorization may be crucial are so large that an explicit "picture" of the coefficient matrix is impractical. (One notorious example has been encountered with a "picture" measuring 10 by 300 meters!) It is therefore highly desirable to have an automatic procedure whereby a GUB set can be identified efficiently.

$$
\text { Sources }\left\{\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]\right\} \text { a GUB set }
$$

Detached coefficient array for a transportation problem

Figure 1

In large problems there exists a huge number of subsets of rows that satisfy the GUB criteria. It is generally regarded that those subsets with more rows are "better" GUB sets since they imply a more contracted explicit basis. The implied problem, then, is to find the maximum GUB set.

Integer algorithms to find a maximum GUB set do exist.
These usually entail enumeration schemes and cannot be guaranteed to be efficient in a practical sense. Conceivably, $2^{m}-m$ sets of rows might have to be searched before a maximum GUB structure is found. As the problem size grows, the number of possible sets that need to be checked increases exponentially. As will be shown later, the hope of finding an efficient algorithm to find the maximum GUB set for any general problem is dim.

Therefore, researchers and practitioners have concentrated on constructing efficient heuristic algorithms that attempt to identify, but do not guarantee, a maximum GUB set. A few of these methods showing great promise have been reported, but they have not been tested with large scale problems.

This report outlines several automatic heuristic GUB finding procedures that have been developed and published in the recent literature. These procedures are tested on a suite of large scale, real life optimization problems, and are modified to impiove their behavior. Comparative performance of the methods is given both in terms of the computational effort to identify a GUB set, as well as the size of the GUB set achieved.

Identification of GUB sets of maximum row dimension is shown in Section 7 to be among the class of $N P$-complete problems. However, an easily computed upper bound on the size of the maximum GUB set is developed and used to evaluate objectively the quality of heuristic GUB algorithms, showing that very nearly maximum GUB sets are routinely achieved.

2. PROBLEM DEFINITION AND REPRESENTATIONS

The Linear Programming problem is defined as
(L) $\quad \operatorname{Min} c^{t} x$

$$
\begin{aligned}
\text { s.t. } \underline{r} \leq \mathrm{Ax} \leq \overrightarrow{\mathrm{r}} & \text { (ranged constraints) } \\
\underline{b} \leq \mathrm{x} \leq \overline{\mathrm{b}} & \text { (simple bounds) }
\end{aligned}
$$

where \underline{r} and \bar{r} are mevetors, x, c, \underline{b} and \bar{b} are n-vectors and A is an m $\times \mathrm{n}$ matrix. The constraints are sometimes defined as equations, but for the general case of GUB treated here constraints can be equations, inequalities or a mixture. The immediate discussion will be directed at (L); integer and mixed integer problems are treated later.

For identification of a GUB set of rows, only the matrix A is used and since the actual values of the non-zero elements of the matrix A are not required the associated matrix K is defined.

$$
K \equiv\left(k_{i j}\right): k_{i j}= \begin{cases}0 & \text { if } \quad a_{i j}=0 \\ 1 & \text { otherwise }\end{cases}
$$

An an example, consider the following linear programming problem.

$$
\begin{aligned}
& \text { Min } x_{1}+3 x_{2}-x_{3}+3 x_{4}+x_{5}-2 x_{6} \\
& \text { s.t. } \quad \begin{aligned}
x_{1}+2 x_{2}+x_{3} & =4 \\
6 x_{1} & =2 x_{5}+5 x_{6}
\end{aligned}=15 \\
&-3 x_{2}+2.7 x_{3}=7 \\
& 6 x_{4}+4 x_{6}=8 \\
& 2 x_{1}
\end{aligned}
$$

The corresponding matrices A and K are:

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 1 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 2 & 5 \\
0 & -3 & 2.7 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 4 \\
2 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

There are several ways one can model the maximum GUB problem. Three approaches are presented to aid in the understanding of the theoretical context of the heuristic methods examined and to highlight the formal complexity of the original problem.

Two rows of K (or A) are said to conflict if there exists at least one column with non-zero coefficients in both rows. The GUB problem can be restated as that of finding a subset of the rows that do not conflict.

Graph Theory Representation
Consider the matrix K of the linear programming problem (L). A graphical representation of this matrix can be constructed through the following mapping rule, f. Let each row of K be a vertex of the graph. Should two rows of K conflict then the two vertices of the graph are joined by an edge. This mapping retains all the necessary conflict information.

The graph associated with the example is presented in Figure 2. Note that it has five vertices, one for each row. Since row 1 conflicts with rows, 2,3 , and 5 , edges connect vertex 1 to those vertices. The other edges represent the remaining conflicts. If two vertices, a and b, are joined by an edge, e, then a and b are adjacent, and a (or b) is incident with e. Since vertices 2 and 3 are not adjacent, this indicates that the corresponding two rows in K do not conflict.

Figure 2

This introduces the notion of independence. Given a graph $G=(V, E)$, a subset $V^{\prime} \in V$ is said to be an independent set if no two of its elements are adjacent. It follows that if an independent set of vertices can be found in G then the corresponding rows of the matrix K do not conflict and thus define a GUB set. Conversely, a GUB set for \mathbb{K} defines an independent set for the graph G. It is also clear that an independent set for G is maximum if and only if the corresponding GUB set for K is maximum.

In the example problem, the maximum independent set is $3,4,5$. These are also the rows of the maximum GUB structure.

Consider the set K_{m}, the set of all K-type matrices having m rows. The above mapping factors this set into a finite number of classes. Two matrices, K_{1} and K_{2} are said to belong to the same class, C , if and only if each is mapped into the same graph, G_{c}.

Figure 3

Thus, an independent set of vertices of G_{c} correspond to a GUB row set for every matrix in the class C.

The incidence matrix N is defined as follows

$$
N \equiv\left(n_{i j}\right): n_{i j}= \begin{cases}1 & \text { if vertex i is incident with edge } j \\ 0 & \text { otherwise }\end{cases}
$$

For the example problem N would be:

There exists one, and only one incidence matrix for each graph of G, where G is the set of all graphs having m vertices.

Since the set of all N-type matrices with m rows is a subset of K_{m}, every class of K_{m} contains one and only one incidence matrix. In general, for the GUB problem, every m row matrix is equivalent to one of a finite number of incidence matrices. Superficially this may seem to be a simplfication. But as shown in Section 7 the GUB problem on N is as difficult as the independent set problem on G. The equivalent statements of the GUB problem do, however, offer different views of the problem which are helpful in considering algorithms for and analysis of the problem. [Note: In Garey and Johnson [5] it is shown that two other graph problems, the "vertex cover" and the "clique" problem, are equivalent to the independence problem, and hence the GUB problem. These problems do not seem to offer any additional insight for the GUB problem.]

Conflict Matrix Representation

The first heuristic approach is developed around a conflict matrix. This is a square matrix of dimension m, defined by:

$$
M \equiv\left(m_{i j}\right): m_{i j}= \begin{cases}1 & \text { if row i conflicts with row } j \text { in (L) } \\ 0 & \text { otherwise. }\end{cases}
$$

For the example problem:

$$
M=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Note that this matrix is symmetric. The sum for any row (or column) indicates the number of other rows it is in conflict with, plus one.

This sum is important in that it indicates for any particular row how many other rows would be subsequently excluded from a GUB set by its addition.

The rows of a GUB structure can be rearranged to form an embedded identity matrix in M. Note that this is the case for rows 3, 4, and 5 in the example problem.

Vector Space Representation

The second heuristic approach can be modeled using vectors in an n-dimensional vector space, where n is the number of variables in the problem (L). Consider each row of K as a vector in this space, having unit length in those "dimensions" corresponding with its non-zero coefficients. In the example problem, row 1 is represented by the following vector:

$$
(1,1,1,0,0,0)
$$

R, the resultant vector from the sum of all vectors of the rows of K, indicates the number of conflicts, plus one, associated with each variable of (L). A hypercube in n-space situated in the first orthant at the origin with length 1 in all positive directions denotes the feasible GUB region. Should R extend beyond this area, then the set of rows corresponding to the vectors determining R does not constitute a GUB structure.

A gradient vector can be calculated indicating the direction of the shortest distance to the feasible region. It can be used to determine which row to remove from the set to obtain the largest movement on the desired direction. When R falls within the feasible region, the set of rows determining R constitutes a GUB set.

3. EARLIER LITERATURE

Two papers dealing with efficient GUB finding methods are worthy of special note.

Brearley, Mitra and Williams [2] establish a very useful framework for study of methods for finding GUB structure, as well as an insightful discussion of these methods and a taxonomy for their classification.

They define three sets consisting of the rows of the technological matrix A. The first set, the eligible set, is made up of every row of A that is individually eligible to belong in the GUB set. The structure set is a subset of the eligible set and includes all those rows currently considered as members of the GUB set. The candidate set consists of those rows of the eligible set that are candidates for inclusion (or reinclusion) in the GUB set. Every one of the methods examined in [2] is described in terms of manipulation of these sets.

Each method of building a GUB set employs one of two basic strategie: The type I (row addition) strategy begins with an empty structure set. Then, based on a particular type I criteria for inclusion, rows are removed from the candidate set and either added to the structure set or dropped from further consideration. This procedure continues until the candidate set is empty. The rows in the structure set form an admissible GUB structure.

The type II (row deletion) strategy takes the opposite approach and is divided into two phases. Methods of this type initially place all eligible rows in the structure set. This normally leads to an infeasible GUB set with many conflicting rows. Based upon the particular type II
decision rules, rows are removed from the structure set and placed in the candidate set. The first phase of this strategy ends when a feasible structure is obtained.

The second phase involves examining the removed rows in the candidate set. Those that do not conflict with any of the members of the current structure set are taken from the candidate set and reincluded in the structure set. Those that do conflict are deleted from the candidate set and dropped from further consideration. The second phase ends when the candidate set is empty. At this point the rows of the structure set constitute an admissible GUB set.

Brearley, Mitra, and Williams examine over 18 different methods. These approaches differ in the primary and secondary decision criteria for including (or removing) a row in the GUB structure set. The heuristic decision rules examined are based on the following model entities and combinations thereof:

Include or remove a row based upon:
a) the number of non-zero elements in the given row,
b) the number of rows in conflict with the given row,
c) the number of non-zero elements in rows that conflict with the given row,
d) the row's relative weight obtained by the inner product of a vector representation of the row and a directional gradient.

Type I methods, using all these rules were tested, as were Type II methods using rules a, b and c. As an example, I.l (type I strategy, method number 1) has as its primary decision rule for adding rows to the structure set: choose a row from the candidate set with the minimum number of non-zero elements. Method II.I removes rows from the structure set based upon the maximum non-zero element count for each row.

These methods were implemented with an ALGOL program run on an ICL 4130 computer. Twelve linear programming problems ranging in size from 12 rows up to 166 rows were used for computational tests.

The results show that those (Type I) methods using heuristic (d) above "consistently performed very well" [2]. Similarly, those methods using heuristic (b) were found to perform nearly as well as (d).

McBride [15] compares the directional gradient method (d) with an approach suggested, but not tested by Greenberg and Rarick [7]. The latter method uses the conflict matrix as does heuristic (b). However, it focuses on finding a maximum embedded identity matrix within the conflict matrix, rather than using the conflict matrix to determine conflict counts, applying a specialization of the preassigned pivot procedure (P^{3}) normally used for reinversion [8]. McBride's results indicate that heuristic (d) is significantly faster. However, neither method consistently achieves a larger GUB set.

McBride also comments on the notion of a "good" GUB set. He finds merit in selecting a set of GUB rows that minimizes the non-zero build-up in the representation of the inverse transformation of the explicit basis, during actual optimization. Results are also given for a restricted GUB set selection that gives priority to equality constraints. Since equality constraints are always binding in feasible solutions, the subset of the basis associated with binding constraints, or kernel [6] is expected to have fewer explicit non-zero elements.

Based upon the results in these papers, and on independent computational experience with automatic GUB factorization reported by Brown
and Graves [3], the present research initially concentrated on those approaches utilizing the two most successful heuristics, based on conflict (I.2, II.2) and directional gradient (II.9, II.10).

The models studied in this report are of a larger scale and include mixed integer problems as well as models for which prior GUB row sets have been manually specified.

Most of the notation and labels of [2] have been retained here.

4. DETERMINATION OF THE ELIGIBLE SET

The implementation of GUB in simplex algorithms usually admits only ± 1 as non-zero coefficients in the GUB rows. In linear programming, a column scaling can make each non-zero element in a GUB row ± 1. For variables of an integer or mixed integer programming problem, the colums of matrix A that correspond to integer variables cannot be scaled without inconvenience for other optimization functions depending upon the integralit condition. Therefore, non-zero elements in colums corresponding to integer variables will be modified only by row scaling. If it is impossible to obtain the necessary ± 1 non-zero coefficients by row scaling and column scaling of columns corresponding to continuous-valued variables, the row is deemed not eligible for inclusion in a GUB set.

It is an objective of this research that the procedures examined for locating a GUB set in a linear programming problem be designed to be incorporated as an automatic, integral part of a contemporary optimizing system of advanced design.

Each method is implemented as a feature of the read routine (written to accept input in the standard MPS format, as well as editing information indicating integer variables, scaling, and known prior GUB structure). Each method automatically examines the rows of the input and specifies a GUB set. The appropriate rows and colums are then scaled as necessary to obtain the proper GUB structure, and passed on to the optimizing portion of the system. (Note that the editing information places conditions that must be satisfied for any achievable GUB set.)

In determining the set of eligible rows, the following factors have to be considered.
a. Through the editing process, have some of the rows been dropped from the problem? If so, these "masked" rows are not eligible for inclusion in the GUB structure and are thus dropped from the set of eligible rows.
b. Through the editing process, have any rows been predesignated to be in the GUB structure? (As previously mentioned, large segments of the constraints can often be selected for the GUB set either visually or by recognition of a member of a convenient class of models.) Any rows that conflict with these rows are not eligible for subsequent inclusion.
c. All rows designated "nonconstrained" (which include the objective function) are ineligible for inclusion in the GUB structure. All such rows, other than the objective function, are subsequently handled independently of the optimization.
d. If there are any integer-valued variables, an additional check is performed. A row in the GUB set must eventually be capable of being scaled to ± 1 non-zero coefficients. This is achieved, if necessary, through a combination of row and column scaling. However, with integer variables, column scaling is no longer advisable. Therefore any row with a non-zero element in integer colums that is not a +1 or -1 , or capable of being rendered into a ± 1 in those positions through row scaling alone, ust be marked as ineligible for inclusion in the GUB structure. Figure 4 gives the flow chart of how this procedure is implemented.

Once the above restrictions have been considered, the resulting set of eligible rows is then available for search in order to construct the desired GUB structure.

Conflict Methods
The approaches I. 2 and II. 2 employ the notion of a conflict measure for each row. Consider the conflict matrix, M, of the corresponding technological matrix A, for which a GUB set is to be found. An individual element, $m_{i k}$ is 1 if row i and row k of the original matrix have at least one column j such that $a_{i j} \neq 0$ and $a_{k j} \neq 0$. If the two rows have no non-zero coefficients in a common column then the corresponding $m_{i k}$ of the conflict matrix is 0 . Summing across a row of the conflict matrix can thus give the measure of the number of rows plus one that are in conflict with a given row. For a given row, this sum less one indicates exactly how many other rows would be immediately excluded from the GUB set by inclusion of this row, called the row's deletion potential.

Method I. 2 initially places all the eligible rows on a candidate
list. From the candiate list, individual rows are selected and removed to be added to the structure set. Other rows that are in conflict with the selected row are immediately removed from the candidate list and dis-. carded.

The heuristic selects those rows on the candidate list with the minimum deletion potential to be added to the structure set first. The selection of rows for the structure set and the discarding of conflicting rows continues until the candidate list is exhausted. The resulting structure set forms a GUB set.

A modification to the above heuristic is possible which breaks ties among rows sharing the minimum deletion potential by selecting the row having the most non-zero elements for inclusion into the GUB structure set.

The program used to test this heuristic approach is adapted from an earlier version made available by Graves. A step by step description of the method is given below.

Step 1. Identify Eligible Rows. Set $\beta_{i}=1$ if row i is an eligible row, and equal to 0 otherwise.

Step 2. Determine Deletion Potential. Scan each eligible row i and increment β_{i} by the number of other eligible rows k where $a_{i j}$ and $a_{k j}$ are both non-zero for at least one column j. $\left(_{i}\right.$ is the deletion potention, plus one.)

Step 3. Stopping Condition. If all the $B_{i}=0$, stop. Otherwise, go to the next step.

Step 4. Row Selection. Select row i having the minimum positive ("deletion potential') β_{i} and add it to the structure set.
Step 5. Exclude Rows in Conflict with Selected Row. Locate the ($\beta_{i}-1$) rows in conflict with the selected row i. For each of these rows k, locate the ($\beta_{k}-1$) rows that they are in conflict with and decrement β_{i} for those rows by one.

Step 6. Marking Selected and Excluded Rows Ineligible for Further Consideration. Set β_{i} and the β_{k} 's equal to zero. Go to step 3 . Only rows with $\beta_{i}>0$ are eligible. In step $1, \beta_{i}$ is set to 1 for eligible rows. In the next step the β 's for these rows are modified by each row's deletion potential. Assuming there are still some eligible rows, the one with the smallest deletion potential is selected in stép 4
for inclusion in the structure set. In the next step all the rows conflicting with the one selected are identified for discard and the deletion potentials of the remaining rows are updated. In the last step, both the selected row's weight and those of the discarded rows are set equal to zero. When all rows have either been selected or discarded the β array will be all 0^{\prime} s. At this point the selected rows from a GUB structure. Methud II. 2 (row deletion) initially places all the eligible rows in the structure set. From this set individual rows are selected and placed on the candidate list in order of maximum deletion potential. During Phase 2, Brearley, Mitra, and Williams drop all rows from further consideration that conflict with the structure set and attempt to reinclude remaining candidate rows (that do not conflict with the structure set) in LOFI order. A modification of phase 2 is used in this research which simply excludes from further consideration all conflicting rows, reincludes any remaining candidate rows, and repeats phase 1 , until no further nonconflicting candidates remain.

Gradient Methods

The second method (II.9, II.10) employs a heuristic method put forth by Senju and Toyoda [17] for approximate solution of certain linear programming problems with 0, 1 variables. The general problem they address is that of choosing a most profitable combination (or portfolio) of orders subject to resource constraints and an all-or-nothing ($0-1$) restriction on the orders (i.e., an order is not allowed to be only partially filled).

This same format can be used to express the search for a maximum GUB structure in (L). The rows of the technological matrix A are treated
like the orders in the Senju and Toyoda model in that they are to be either included with or excluded from the GUB set. The objective is to obtain a maximum number of rows in the GUB structure while satisfying the stipulation that the GUB rows be disjoint. This last restriction can be expressed as a set of resource restrictions in the sense of Senju and Toyoda.

In mathematical terms, the GUB finding problem can be formulated as follows:
(S) $\quad \operatorname{Max} Z=x_{1}+x_{2}+\cdots+x_{m}$

$$
\text { s.t. } \sum_{i} k_{i j} x_{i} \leq 1, j=1, \ldots, n
$$

where $X_{i} \in\{0,1\}$
m is the number of candidate rows in (L),
n is the number of variables in (L),
$k_{i j}$ is the (i, j) element of the matrix K, which in turn
is the 0,1 matrix assuciated with the matrix A,
x_{i} is the variable which determines whether row i is in the GUB set or not,

2 is the objective function.

Senju and Toyoda outline a heuristic approach for obtaining a near-optimal solution for the problem they examine. Adapting their approach to the specialization (S) given above, a type II strategy results, with all the rows initially being included in the GUB structure set. Using the vector space viewpoint outlined earlier, consider each row of (S)
as a vector in n-space. A resultant vector R is determined by the sum of all the included rows and, in general, extends beyond the feasible space denoted by the unit hypercube. A gradient vector is calculated from this infeasible point in the direction of the shortest distance to the feasible region. In Brearley, Mitra and Williams [2] this vector is labeled $\sigma^{I I}$. An inner product of this gradient with each of the row vectors results in a relative weight for each row. These weights, which are stored in a vector labeled $v^{I I}$ can be viewed as indicating the relative contribution that the removal of the corresponding row would have towards obtaining a feasible structure set.

Rows are removed from the structure set according to their relative weight, the largest weight being removed first. This process is continued until a feasible set of GUB rows has been obtained. (The gradient vector is not recomputed as the method proceeds.)

Next, a phase 2 procedure is implemented which examines each of the initially removed rows to see if any can be reincluded into the structure set without violating the bounds of the unit hypercube. Upon completion of phase 2 , the selected rows constitute a GUB set.

A variation on the above procedure recalculates the shortest distance to the feasible region after the removal of each row. With the new gradient, a new set of relative weights for the remaining rows is then calculated and used, if necessary, to determine which of the subsequent rows will be removed. This method is named II.9.

Another modification is possible if two rows are found with equal weights. As a tie-breaking rule, the row found to have the least number of non-zero coefficients is discarded first.

A step by step outline of the heuristic approach II. 10 follows:

Phase 1: Deletion of Infeasible Rows

Step 0. Initialize Sets. Add all eligible rows to the structure set. The candidate set is empty.

Step 1. Determine the Vector R. For each column j, define ρ_{j} as the number of rows in the structure set having non-zero elements in column j.

Step 2. Determine Relative Weight of each Row. For each row i, define v_{i} as the sum of $\left(\rho_{j}-1\right)$ of every column j, for which $a_{i j} \neq 0$. Step 3. Feasibility Condition. If for every column, $\rho_{j} \leq 1$, then go to step 6; else find a column j such that $\rho_{j}>1$.
Step 4. Determine Row for Exclusion. Examine the rows in the structure having non-zero elements in column j. Select the row i with the largest v_{i}.
Step 5. Remove Selected Row. Remove row i from the structure set, decrementing ρ_{j} by one for every column j with $a_{i j} \neq 0$. Add row i to the candidate set and return to step 3 .

Phase 2: Improve Feasible GUB Set Found by Re-including Excluded Rows Step 6. Eliminate Rows in Candidate Set that Conflict with the Feasible For every row i of the candidate set that has at least one $a_{i j} \neq 0$ in a column with $\rho_{j}=1$, remove that row from the candidate set. Step 7. Re-inclusion of Rows. If any rows remain in the candidate set, then find row i having the smallest v_{i}. Remove row i from the candidate set and re-include it in the structure set. Increment ρ_{j} by one for every column j where $a_{i j} \neq 0$.
Step 8. Stopping Condition. If the candidate set is empty, stop; else go to step 6.

In Step 1, the vector ρ is calculated as the colum counts of nonzero coefficients. Step 2 calculates the relative weights that result from the inner product of the gradient vector with each of the row vectors. These are stored in the array v. The next step examines ρ to see if the vector is within the feasible region. If not, a row with the largest relative weight is removed from the structure set and the ρ vector is updated to reflect the sum of the row vectors remaining in the structure set.

Once a feasible structure has been obtained, the candidate set (which consists of those rows initially removed) is scannedin Step 6. Any of those rows found to still be in conflict with the rows of the structure set are discarded. Among those rows which remain, that with the smallest relative weight is re-included in the structure. This cycle of discarding and reinclusion is continued until the candidate set has been emptied. The resulting rows of the structure set constitute a feasible GUB set.

To modify the algorithm in order to compute a new gradient vector after the removal of each row in phase 1, step 5 is changed as follows (II.9): Step 5.* Remove Selected Row. Remove row i from the structure, decrementing ρ_{j} by one for every column j such that $a_{i j} \neq 0$. Locate each row k that is in conflict with row i. Decrement ν_{k} by the number of conflicts between the two rows. Add row i to the candidate set and return to step 3 .

Now when a row is removed from the structure set, the v_{i} contain the new relative weights equal to the inner product between the vector for row i and the new gradient.

These two basic methods have been implemented as integral modules of a large scale optimization system. Therefore, explicit conflict matrices are not built. (To have done so would have consumed too much computer time and space.) Instead, all the information is stored in the vectors β, ρ, and v. Logical flags associated with each row indicate whether it is eligible, and whether it is in the candidate set or in the structure set.

As mentioned previously, the problem data is read in MPS format and expressed internally in terms of only the non-zero elements. This input is stored in a doubly linked list having both a row and a column thread. Thus, along with any non-zero coefficient $a_{i j}$, the location of adjacent non-zero elements in both the row i and column j are also immediately available. This crucial feature permits efficient row access for various operations (e.g., to locate all rows that conflict with a given row at a particular column).

6. COMPUTATIONAL RESULTS

The heuristic methods have been tested on 15 real-life problems that vary in size from 92 constraints to 4,648 constraints. A description of each of the problems is given in Figure 5. As can be seen, four of the problems are mixed integer and two are pure integer.

Problem	Number of rows	Number of columns	Integer Columns	Non-Zeros
VANN	92	1,324	1,324	2,648
NETTING	103	247	103	494
AIRLP	171	3,040	0	6,023
COAL	171	3,753	0	7,506
TRUCK	239	4,752	4,752	30,074
CUPS	415	619	145	1,341
FERT	606	9,024	0	40,484
PIES	663	2,923	0	13,288
PAD	695	2,934	0	13,459
ELEC	785	2,800	0	8,462
GAS	799	5,536	0	27,474
FOAM	1,017	4,020	1,425	0
LANG	1,236	3,849	4,683	0

Figure 5

The results of these experiments are given in Appendix A. The first two columns give the rows and non-zero column elements, respectively, of the GUB structures found. The time given in colum three is the time required to locate the GUB set once the set of eligible rows has been determined. The final columns give additional information relating to the two versions of the gradient methods examined and represents total time in phase 1 and the number of rows re-included in the GUB structure during phase 2. All execution times reported are expressed in actual CPU seconds, accurate to the precision displayed, for IBM $360 / 67$ and FORTRAN H (Extended).

As with the earlier work cited, the Senju and Toyoda method was found to be consistently the fastest. In general this holds true for both method II. 9 and II.10. II.9, which updates the gradient after each row is removed, takes longer in phase 1 than its counterpart. However, it so selectively deletes the rows, that few if any rows are ever added back into the structure during phase 2. This suggests the possibility of implementing II. 9 as only a one phase method.

All methods are robust in that they consistently find large GUB sets. The conflict approaches generally find a larger number of variables with non-zero coefficients in the GUB rows. However, this approach definitely becomes inefficient when larger problems are analyzed, regardless of the relative size of the GUB structure in the problem.

There is some discrepancy between these results and those published earlier [2], especially with regard to the times of the other methods compared to II.10. The wide discrepancy between II. 9 and II. 10 has not been observed in the current experiments. It is hypothesized that this is due partially to differences in implementation of the various approaches and partially to problem size and structure variations between these studies.

7. PROBLEM COMPLEXITY

The complexity of a problem is said to be polynomial if an algorithm exists for which the fundamental operations are limited by a polynomial function of intrinsic problem dimensions. Such an algorithm would be called a polynomial time or good algorithm. The class of all problems for which such algorithms exist is denoted (P). If an algorithm is not polynomial time, then it is defined to be an exponential time algorithm. The disadvantage of an exponential algorithm is the explosive growth of the maximum solution time as the dimensions of the problem increase [13].

A problem x is said to be reducible to a problem y if each good algorithm for solving y can be used to produce in polynomial time a good algorithm for solving x [11]. Note that this does not necessarily require that a good algorithm for x and y actually exist. This requires only that if one exists for y, then one also exists for x.

An intractable problem is one for which it is known that no polynomial time algorithm exists. In between this class of problem, and the class P, is a vast number of problems whose status is uncertain. Among these is a class of nondeterministic polynomial-time problems (NP) for which a polynomial time algorithm can be shown to exist that can verify a guessed solution, but for which the existence of a (deterministic) polynomial time algorithm to actually solve a problem has not yet been demonstrated.

If every problem of the class $N P$ is reducible to the problem y, then y is said to be NP-hard. In addition, if y itself belongs to $N P$, then y is NP-complete [5,11].

The following problem is known as the independent set decision problem (ISD). It belongs to the set of NP-complete problems.
(ISD) Given a graph $G=(V, E)$ and an integer t, decide whether G contains an independent set of size t or more.

The GUB decision problem (GUBD) can be defined as follows:
(GUBD) Given an $m \times n 0,1$ matrix K and an integer p, decide whether K contains a set of p or more rows i_{1}, i_{2}, \ldots, i_{q} such that
(*)

$$
\sum_{e=1}^{q} k_{i_{e}} \leq 1 \quad \text { for every column; } q \geq p
$$

Given an instance of the ISD problem, the incidence matrix N can be constructed. This matrix along with the integer t is an instance of the GUBD problem. The following theorem proves the correctness of this reduction:

Theorem: The incidence matrix N has t rows satisfying (*) if and only if there are t vertices in G that are independent.

Proof.
a) Assume there exists t rows of N that satisfy (*). They correspond to vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}$ in G. If any two of these vertices are adjacent, then

$$
\sum_{e=1}^{t} n_{i_{e}}=2
$$

where j is the colum in N that corresponds to the edge connecting the two vertices. This is a violation of the assumption, hence the t vertices in G are not connected to one another.
b. Assume there exists t vertices $V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{t}}$ in G that are independent. Since no two are adjacent, the corresponding rows in N satisfy (*) [20]. Q.E.D.

Since the ISD problem, a problem known to be NP-complete, is reducible to the GUBD problem, it follows that the GUBD problem itself is NP-complete. (It is clear that the reduction is polynomial time and it is also clear that GUBD is in NP.) The related problems of finding a maximum independent set and a maximum GUB set are not in NP, however, they are NP-hard. It is therefore unlikely that a polynomial-time algorithm will be found for these problems. Only exponential-time algorithms are presently available.

The above analysis of GUB algorithms has only addressed the worst case bound. No conclusions are made about the average performance of an algorithm. In other words, the possibility of the existence of an algorithm with good average performance, but having an exponential worst case bound, has not been ruled out.
8. AN UPPER BOUND FOR THE SIZE OF MAXIMUM GUB SET

The intrinsic difficulty of identifying a maximum GUB set has been shown to be exponential, making this task essentially impossible for problems of the scale at hand. However, the efficient heuristic procedures have been shown to provide very large GUB sets, whose size appears to be relatively stable for each problem regardless of the particular method applied. This suggests that these large GUB sets may be, in fact, very nearly maximum, although there is no practical way to verify this directly.

Although the problem of determining the size of the maximum GUB set is also NP-hard, it is possible to develop an easily computable upper bound on the maximum GUB set size. This bound can then be used to objectively evaluate the quality of the GUB sets produced by heuristic algorithms.

It is clear that the number of rows of a GUB set can be no greater than the number of rows in the problem. Also any one row by itself can form a GUB set. But these bounds are of little practical use where considering the problem of identifying a maximum GUB set. Utilizing information that is already available in the heuristic procedure, it is possible to construct in polynomial time an upper bound on the size of the maximum GUB set. (It is also possible to construct a lower bound on the size of the maximum GUB set, but that topic is not pursued in this report.)

For the purpose of developing a better bound, the incidence matrix representation (N) of the problem is used. Let s_{i} be the number of l's in row i. Note that s_{i} is the number of edges incident to vertex i in G. Also note that $s_{i}=\beta_{i}-1$. The number of columns in N represents the number of distinct conflicts that exist between the rows of the original problem. This number is denoted as c, and can be found by the following formula.

$$
c=\frac{\sum_{i=1}^{m} s_{i}}{2}
$$

If c is greater than 0 , all the rows of N cannot simultaneously belong to a GUB set, which implies the cardinality of the GUB set is less than m. As c becomes larger, the following argument shows that the upper bound of the maximum GUB set decreases.

If c is positive, but strictly less than m, it is possible for all the conflicts to involve one row. Removal of that row would then leave $m-1$ rows that form a GUB set. Thus for c in the range from 1 to $m-1$, an upper bound on the size of the maximum GUB set is m-1. Since one row can conflict with at most $m-1$ other rows, once $c \geq m$ at least two rows have to be removed to form a GUB set. For $m \leq c \leq[(m-1)+(m-2)]$ it is possible to construct a incidence matrix such that all the conflicts are between a pair of rows and the remaining set of rows. Removal of the pair would result in a GUB set of $m-2$ rows. This constructive argument continues until $c=[(\mathbb{m})(m-1)] / 2$, which occurs when each row conflicts with every other row. At that point, the max maximum $G U B=\min$ maximum $G U B=$ one row.

A graph of an upper bound on the maximum GUB for a five row problem such as the example problem is given below:

Figure 6

For the example problem, $m=5$ and $c=5$. From the above graph the upper bound on the maximum GUB for that problem is 3 . Since a GUB set containing three rows has already been identified, that set is a maximum set.

In general, for any problem with an $m \times c$ incidence matrix, the largest maximum GUB set that can be obtained is:

$$
u_{1}=\lfloor .5+\sqrt{.25+(m)(m-1)-2 c}
$$

where \lfloor indicates truncation to an integer.
The above bound is problem-independent and a sharp bound in that matrices with a GUB set the size of the bounding value can be constructed.

With additional information about a specific problem a better bound can be constructed. Since s_{i} is the number of other rows that conflict with row i, removing row i from the set of rows reduces the number of conflicts, c, by s_{i}. Let IMAX denote max s_{i}. Since IMAX is the largest row conflict count, c can be reduced by no more than IMAX with the removal of each row. The minimum number of rows that would have to be removed to reduce the number of row conflicts to 0 , is $\lceil c / I M A X$. Therefore, given m, c and IMAX, the bound can be improved to

$$
u_{2}=\left\{\begin{array}{cl}
m-\left\lceil\frac{c}{y},\right. & c \leq(m-y) y \\
\lfloor .5+\sqrt{.25+y(2 m-y-1)-2 c}, & c>(m-y)(y)
\end{array}\right.
$$

where $\mathrm{y}=\operatorname{IMAX}$ and Γ indicates the next higher integer.
In order to determine IMAX, the entire β vector must be examined.
A third, even better bound can be obtained with additional information on the frequency of the conflict counts from 1 to IMAX. The procedure is the same as above, in that when a row is removed with IMAX conflict count,
c decreases by IMAX. However, instead of continuing to afcrease c by IMAX, it is decreased by the next largest s_{i}. This procedure continues until once again, c becomes zero. Tris bound is named u_{3} 。

Each tighter bound requires more information about the particular problem. However, all the information is readily available since it is generated by the heuristics using the conflict measure.

The bounds developed can be used to objectively evaluate the size of a GUB set found by heuristic methods. In two problems examined, VANN and AIRLP, the number of rows in the GUB set equal an upper bound on the maximum GUB set for the problem. Therefore, for those problems, the heuristic methods are verified to have located maximum GUB sets.

Manual specification of a GUB set from visual inspection can utilize these bounds as an excellent measure of the maximum additional rows to be found. This information is also an aid in deciding whether to subject the problem to additional automatic searching for GUBs.

9. EXTENSIONS

The upper bounds developed in this report vary from a problem-independent bound to tighter problem-dependent bounds. It is speculated that additional information can be easily extracted from the actual conflict structure of the problems that can be used to tighten the existing bounds even further. This is strongly suggested by manual analysis of problems with particularly loose bounds for which the conflict structure seems to have higher order pathology. In addition, lower bounds have been developed by similar meth

Another area that warrants further study is the special structure of the incidence matrix representation of the original problem. It is noted that for an incidence matrix, N, the relative weights generated for each row are (except for a constant) identical for the methods studied. This implies that for a matrix N, and the same strategy (i.e., II, deletion), the two heuristics would identify the same GUB set.

As things now stand, GUB finding demands far less cost than the benefits derived during model optimization. Better GUB finding methods may result from simple extensions arising from relaxations of (S), use of conflict information of higher order, limited application of backtracking enumeration, or exploitation of conditioned bounds on the remaining candidate rows to allocate heuristic effort.

Finally research is continuing on automatic location of network row structure (e.g., Sarquis [16] and Wright [19]). As one illustration of an immediate generalization of the GUB results, a GUB set for a problem can be identified and then another GUB set of an eligible subset of remaining rows can be found. Thus, a bi-partite network row factorization can be achieved (e.g., transportation or assignment rows).

10. CONCLUSIONS

The computational benefits of a large GUB set for an LP problem are widely recognized. This report shows that the identification of a maximum GUB set is a difficult problem, essentially as hard as many other widely known difficult problems.

An alternate approach is the use of an heuristic. This report has examined two promising methods (with two versions of each) with application to a series of real life, large scale models. All versions are robust in their ability to find large GUB row sets. However, the two versions (II. 9 and II.10) that use the Senju and Toyoda method are consistently the fastest. These two methods are essentially equal in their efficiency and effectiveness. Since version II.9 (which recalculates the gradient after the removal of each row) so selectively removes the rows during the first phase that few if any rows are re-included in the GUB set during the second phase, it suggests the possibility of implementing this version as only a one phase (row deletion) method.

The representation of an infinite number of m-row matrices by a finite number of incidence matrices offers a powerful and concise way of examining the GUB problem. Under this representation, both basic heuristic methods investigated assign (within a constant) the same relative selection weights to each row.

Finally, the ability of defining upper bounds on the maximum size of the GUB set gives a new powerful tool in this area. It enables one to evaluate the quality of GUB sets found even in very large problems, for which the algorithmic identification of a maximum GUB set is probably impossible
in general. In some cases, verification of a heuristically achieved maximum GUB set is now possible. Further, the bounds developed may be further enhanced in future research, and may be applicable to related problems of equivalent complexity.

ACKNOWLEDGMENTS

The authors wish to thank Gordon Bradley and Shmuel Zaks for their insights on complexity, and also Glenn Graves and William Wright for their considerable assistance.

APPENDIX A

This appendix contains the computational results for the fifteen linear, mixed integer and integer models examined. All execution times reported are expressed in actual CPU seconds, accurate to the precision displayed for IBM $360 / 67$ and FORTRAN H (Extended).

For clarity, the following terms are defined:

Eligible rows: The number of rows of the model initially eligible for inclusion in a set of GUB rows.

Conflict count: The number of columns of the incidence matrix for the problem.

Conflict density: The ratio of the conflict count to the maximum conflict count for that problem size [i.e., $m(m-1) / 2$].

Time to find Elig: The time in CPU seconds to determine the set of eligible rows.

Problem	VANN	Description	Fleet Dispatch	Model	
Rows	92	Eligible rows	69	IMAX :	0
Columas	1324	Conflict count	0	U1	69
Integer	1324	Conflict density	0	U2	69
Non-zero	2648	Time to find Elig	. 141 sec	U3	69

I.2	69	1324	.237		
II.2	69	1324	.125		
II.9	69	1324	.202	.198	0
II.10	69	1324	.202	.198	0

Problem	NETTING	Description	Currency Exch	ge M	
Rows	103	Eligible rows	71	IMAX	5
Columns	247	Conflict count	46	U1	70
Integer	103	Corflict density	1.85\%	U2	59
Non-zero	494	Time to find Elig	. 022 sec	U3	46

Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in

I.2	36	84	.169		
II.2	36	84	.164		
II.9	36	77	.047	.042	0
II.10	36	72	.042	.037	0

Problem	AIRLP	Description	Fleet Dispatch	Model	
Rows	171	Eligible rows	170	IMAX :	150
Columns	3040	Conflict count	2983	U1	151
Integer	0	Conflict density	20.77\%	U2	150
Non-zero	6023	Time to find Elig	. 076 sec	U3	150
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	150	3000	1.16		
II.2	150	3000	.761		
II.9	150	3000	.645	.639	0
II.10	150	3000	.444	.439	0

Problem	COAL	Description	Energy Devel	ent M	
Rows	171	Eligible rows	170	IMAX :	111
Columns	3753	Conflict count	3753	U1	146
Integer	0	Conflict density	26.13\%	U2	136
Non-zero	7506	Time to find Elig	. 106 sec	U3	121

Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	111	3753	1.38		
II.2	111	3753	1.24		
II.9	111	3753	.920	.912	0
11.10	100	2568	.641	.631	0

Problem	TRUCK	Description	Fleet Dispatch	Model	
Rows	239	Eligible rows	221	IMAX :	171
Columns	4752	Conflict count	10438	U1	165
Integer	4752	Conflict density	42.94\%	U2	159
Non-zero	30074	Time to find Elig	: .116 sec	U3	144
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

1.2	32	1069	6.88		
ח.2	30	1099	7.095		
П.9	30	857	5.00	4.95	2
П.10	32	986	1.70	1.58	8

Problem	CUPS	Description	Production Scheduling Model		
Rows	415	Eligible rows	390	IMAX :	48
Columns	619	Conflict count	744	U1	388
Integer	145	Conflict density	. 98%	U2	374
Non-zero	1341	Time to find Elig	: 042 sec	U3	294
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	213	494	2.96		
II.2	214	442	3.15		
II.9	214	466	.212	.194	0
II.10	200	394	.384	.132	24

Problem	FERT	Description	Production \& Distribution Model		
Rows	606	Eligible rows	605	IMAX :	580
Columns	9024	Conflict count	: 16455	U1	577
Integer	0	Conflict density	9.01\%	U2	576
Non-zero	40484	Time to find Elig	: $\quad .257 \mathrm{sec}$	U3	567
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2
1.2	559	9024	15.8		
II. 2	559	9024	10.5		
II. 9	559	9024	6.73	6.71	0
II. 10	559	9024	2.52	2.50	0

Problem	PIES	Description	Energy Produc	on \& C	tion Model
Rows	663	Eligible rows	662	IMAX :	21
Columns	2923	Conflict count	4116	U1	655
Integer	0	Conflict density	1.88\%	U2	466
Non-zero	13288	Time to find Elig	.866 sec	U3	422
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	180	1848	10.8		
II.2	169	1693	13.5		
II.9	172	1811	2.82	2.77	1
II.10	177	1761	1.31	.788	28

Problem	PAD	Description	Energy Produ	O \& C	ption Model
Rows	695	Eligible rows	694	IMAX :	23
Columns	2934	Conflict count	4416	U1	687
Integer	0	Conflict density	1.84\%	U2	502
Non-zero	13459	Time to find Elig	. 104 sec	U3	449
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	200	1864	13.1		
II.2	189	1771	16.6		
II.9	188	1708	3.34	3.26	2
II.10	189	1275	-1.35	.928	21

Problem	ELEC	Description	Energy Production \& Consumption Model		
Rows	785	Eligible rows	784	IMAX :	22
Columns	2800	Conflict count	6167	U1	776
Integer	0	Conflict density	2.01\%	U2	503
Non-zero	8462	Time to find Elig	. 089 sec	U3	492

Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added
		in Phase 2			

1.2	309	2461	11.4		
11.2	210	2791	16.1		
II.9	309	2641	1.15	1.12	0
II.10	309	2605	.842	.579	14

Problem	GAS	Description	Production Scheduling Model		
Rows	799	Eligible rows	789	IMAX:	608
Columns	5536	Conflict count	22220	U1	760
Integer	0	Conflict density	7.15\%	U2	752
Non-zero	27474	Time to find Elig	: . 151 sec	U3	652
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Thime in Phase 1	Number added in Phase 2

I.2	583	5102	16.2		
П.2	639	5536	10.4		
I.9	608	5309	3.79	3.77	0
II.10	639	5533	1.47	1.44	1

Problem	FOAM	Description	Production Scheduling Model		
Rows	1017	Eligible rows	1006	IMAX:	261
Columns	4020	Conflict count	8186	U1	997
Integer	42	Conflict density	1.62\%	U2	974
Non-zero	17187	Time to find Elig	225	U3	934
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

L.2	932	4020	23.4		
II.2	932	4020	9.47		
II.9	917	3981	1.73	1.71	0
II.10	917	3981	.902	.879	0

Problem	LANG	Description	Equipment \&	,	
Rows	1236	Eligible rows	1235	IMAX :	184
Columas	1425	Conflict count	46424	U1	1196
Integer	0	Conflict density	6.09\%	U2	982
Non-zero	22028	Time to find Elig	. 072 sec	U3	973

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

I.2	382	1207	46.2		
II.2	338	908	54.2		
II.9	342	923	14.9	14.8	2
II.10	342	922	12.4	1.13	234

Problem	JCAP	Description	Production Scheduling Model		
Rows	2487	Eligible rows	2446	IMAX :	488
Columns	3849	Conflict count	16578	U1	2439
Integer	560	Conflict density	.55\%	U2	2412
Non-zero	9510	Time to find Elig	. 265 sec	U3	1812
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	529	2072	104		
II.2	512	2186	153		
II.9	529	2087	2.23	1.87	5
II.10	523	1393	3.98	1.10	59

Problem	ODAS	Description	Manpower Planning Model		
Rows	4648	Eligible rows	4647	IMAX :	4194
Columns	4683	Conflict count	5220	U1	4645
Integer	0	Conflict density	.05\%	U2	4645
Non-zero	30520	Time to find Elig	.263 sec	U3	4024
Method	Rows in GUB set	Columns in GUB set	Time to find GUB set (sec.)	Time in Phase 1	Number added in Phase 2

I.2	751	3116	369		
II.2	721	3846	651		
II.9	749	4436	7.12	6.88	0
II.10	751	3020	3.01	2.57	2

REFERENCES

[1] Beale, E. M. L., "Advanced Algorithmic Features for General Mathematical Programing Systems," Integer and Nonlinear Programming, ed. J. Abadie, North-Holland/American Elsevier, 119-137, 1970.
[2] Brearley, A. L., Mitra, G., and Williams, H. P., "Analysis of Mathematical Programming Problems Prior to Applying the Simplex Algorithm," Mathematical Programming 8, 54-83, 1975.
[3] Brown, G. and Graves, G., 'Design and Implementation of a Large Scale (Mixed Integer) Optimization System," paper presented at ORSA/TIMS Las Vegas, Nov. 1975.
[4] Dantzig, G. B. and Van Slyke, R. M., "Generalized Upper Bounding Techniques," Journal of Computer and System Sciences 1, 213-226, 1967.
[5] Garey, M. R. and Johnson, D.S., Computers and Intractability; A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, CA., 1979.
[6] Graves, G. W. and McBride, R. D., "The Factorization Approach to LargeScale Linear Programming," Mathematical Programming 10, 91-110, 1976.
[7] Greenberg, H. J. and Rarick, D.C., "Determining GUB Sets via an Invert Agenda Algorithm," Mathematical Programming 7, 240-244, 1974.
[8] Hellerman, E. and Rarick, D., "Reinversion with the Preassigned Pivot Procedure," Mathematical Programming 1, 195-216, 1971.
[9] Hirshfeld, D. S., "Generalized Upper Bounding (GUB): Theory, Applications and Performance," paper presented at Share XXXV, Mathematical Programming Project, August 1970.
[10] Kaul, R. N., "An Extension of Generalized Upper Bounded Techniques for Linear Programming," (ORC65-27) Operations Research Center, University of California, Berkeley, 1965.
[11] Klee, V., "Combinatorial Optimization: What is the State of the ART?" paper presented at SIAM Applied Mathematics Conference, Monterey, CA, February 1978.
[12] Lasdon, L. S., Optimization Theory for Large Systems, The MacMillan Company, New York, N.Y. 1970.
[13] Lewis, H. R. and Papadimitriou, C. H. " "The Efficiency of Algorithms," Scientific American 238, No. 1, 96-109, 1978.
[14] MPSIII-Mathematical Programming System User Manual, Sec. 7, Management Science Systems, Inc., 1973.
[15] MeBride, R. D., 'Linear Programming with Linked Lists and Automatic Guberization," Working Paper No. 8175, University of Southern California, School of Business, July 1975.
[16] Sarquis, J., "Converting Linear Models to Network Models," Ph.D. Dissertation, UCLA (December 1979).
[17] Senju, S. and Toyoda, Y., "An Approach to Linear Programming with 0-1 Variables," Management Science 15, B196-B207, 1968.
[18] Thomen, D., "Automatic Factorization of Generalized Upper Bounds in Large Scale Optimization Problems," M.S. Thesis, Naval Postgraduate School (September 1979).
[19] Wright, W., M.S. Thesis, Naval Postgraduate School (in preparation).
[20] Zaks, S. (Private Communication, September 1979).
Defense Documentation Center 2
Cameron Station Alexandria, VA 22314
Library, Code 0142 2
Naval Postgraduate School Monterey, CA 93940
Dean of Research 1
Code 012
Naval Postgraduate School
Monterey, CA 93940
Library, Code 55 1Naval Postgraduate SchoolMonterey, CA 93940
Naval Postgraduate SchoolMonterey, CA 93940
Attn: G.G. Brown, Code 55 10
R. J. Stampfel, Code 55 1
U190186

