
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1980-01

Automatic factorization of generalized upper
bounds in large scale optimization models

Thomen, David S.; Brown, Gerald Gerard
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/29736

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOC
MONTEREY, CALIFORNIA 9394C

NPS55-80-003

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AUTOMATIC FACTORIZATION OF GENERALIZED

UPPER BOUNDS IN LARGE SCALE

OPTIMIZATION MODELS

by

Gerald G. Brown

and

David S . Thomen

January 1.980

Approved for public release; distribution unlimited

FEDDOCS
D 208.14/2:NPS-55-80-003

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral T. F. Dedman Jack R. Borsting
Superintendent Provost

This report was prepared by:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS55-80-003
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Automatic Factorization of Generalized Upper
Bounds in Large Scale Optimization Models

5. TYPE OF REPORT & PERIOD COVERED

Technical

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORr*J

Gerald G. Brown and David S. Thomen

8. CONTRACT OR GRANT NUMBERfa.)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 9 3940

10. PROGRAM ELEMENT, PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

1 1. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

12. REPORT DATE
January 1980

13. NUMBER OF PAGES
49

u MONITORING AGENCY NAME ft AODRESSf// different from Con trolttng Office) 15. SECURITY CLASS, (of thia report)

Unclassified

15*. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribut ion unlimitedi.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceaaary and Identity by block number)

Generalized Upper Bounds
Large Scale Optimization
Basis Factorization
Computational Complexity
Mixed Integer Optimization

20. ABSTRACT (Continue on reveraa aide It neceaaary and Identify by block number)

To solve contemporary large scale linear, integer and mixed integer pro-
gramming problems, it is often necessary to exploit intrinsic special
structure in the model at hand. One commonly used technique is to identify
and then to exploit in a basis factorization algorithm a generalized upper
bound (GUB) structure. This report compares several existing methods for
identifying GUB structure. Computer programs have been written to permit
comparison of computational efficiency. The GUB programs have been

OVER

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014-6601
\

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntarac

UNCLASSIFIED
-U.CUW1TY CLASSIFICATION OF THIS PAGEfWiwi Data Entered)

20. ABSTRACT CONT

.

incorporated in an existing optimization system of advanced design and
have been tested on a variety of large scale real life optimization
problems. The identification of GUB sets of maximum size is shown to
be among the class of NP-complete problems; these problems are widely
conjectured to be intractable in that no polynomial-time algorithm has
been demonstrated for solving them. All the methods discussed in this
report are polynomial-time heuristic algorithms that attempt to find,
but do not guarantee, GUB sets of maximum size. Bounds for the maximu
size of GUB sets are developed, in order to evaluate the effectiveness
of the heuristic algorithms.

SECURITY CLASSIFICATION OF THIS PAGE(Wh«n Data Bnt

AUTOMATIC FACTORIZATION OF GENERALIZED UPPER BOUNDS

IN LARGE SCALE OPTIMIZATION MODELS

Gerald G. Brown

David S. Thomen

Naval Postgraduate School
Monterey, California

To solve contemporary large scale linear, integer and mixed integer

programming problems, it is often necessary to exploit intrinsic special

structure in the model at hand. One commonly used technique is to identify

and then to exploit in a basis factorization algorithm a generalized upper

bound (GUB) structure. This report compares several existing methods for

identifying GUB structure. Computer programs have been written to permit

comparison of computational efficiency. The GUB programs have been in-

corporated in an existing optimization system of advanced design and have

been tested on a variety of large scale real life optimization problems.

The identification of GUB sets of maximum size is shown to be among the

class of NP-complete problems; these problems are widely conjectured to

be intractable in that no polynomial-time algorithm has been demonstrated

for solving them. All the methods discussed in this report are polynomial-

time heuristic algorithms that attempt to find, but do not guarantee, GUB

sets of maximum size. Bounds for the maximum size of GUB sets are developed,

in order to evaluate the effectiveness of the heuristic algorithms.

1 . INTRODUCTION

Contemporary mathematical programming models are often so large

that direct solution of the associated linear programming (LP) problems

with the classical simplex method is prohibitively expensive, if not

impossible in a practical sense. It has been found that most of these

problems are sparse, with relatively few non-zero coefficients, and

usually possess very systematic structure. These problems exhibit inherent

structural characteristics that can be exploited by specializations of

the simplex procedure. Various types of regularity are often described

as, for instance, block angular, staircase, and so forth; terms all

chosen to describe the visual appearance of the non-zero ceofficients

when the rows and columns of the problem are suitably ordered. There

are profound economic, managerial and mathematical motives for this

special structure, which are not examined here.

Methods to exploit special model structure can be categorized

generally as -oictcACC-t (e.g., decomposition), where a solution to the

original problem is achieved by dealing with related models which are

individually easier to solve, or as diAZdt, when the original problem is

solved by a modified simplex algorithm.

Among the direct methods, the most frequently used technique is

called baA-iA fiactoilzcutLon [6], where the reflection of special problem

structure appears and is used to good benefit in the intermediate LP

bases. Basis factorization can be dynamic, where the algorithm deals

with each basis sequentially and/or independently in an attempt to extract

as much specialized basis structure as possible, or -6-&L&.C, where the

algorithm depends upon certain types of special structure being

present in aZJL bases.

Static basis factorizations include i>impL<L ucppQJi bounds,

QinZAjaLLzzd wppQA. botwdi) (GUB) , and embedded neJwoik H.om, among many

others. Simple upper bounds are a set of rows for which each row has

only one non-zero coefficient. Generalized upper bounds are a set of

rows for which each column (restricted to those rows) has at most one

non-zero coefficient. Network rows are a set of rows for which each

column (restricted to those rows) has at most two non-zero coefficients

of opposite sign.

Each of these factorizations permits the simplex algorithm to

deal with the static subsets of the rows (and columns) of all bases

encountered with prior knowledge that they will satisfy v2.xy restricted

rules. Most of these methods work best when Zogtc can be substituted

for arithmetic (as is the case with the coefficients + 1) . For this

reason, static factorizations often restrict the special structure to

possess only + 1, or to be bcaZ&d so as to produce an equivalent result.

The concept of generalized upper bounds was introduced in 1964,

the result of work by Dantzig and Van Slyke [4], The name is derived

from analogy to the simple upper bound structure. Graves and McBride [6]

refer to Stcutic S-ignzd IdZYVtiXy Factorization as a term more suggestive

of the implied basis structure. Since their introduction, some form of

GUB has been implemented in many commercial LP systems. There is often

confusion between the mathematical characterization of GUB and these

various, widely used implementations of GUB, in that the latter often

restrict the GUB set membership rules to permit uncomplicated simplex

logic. All of the methods reported here address the full generality of

GUB sets but can be modified to produce restricted GUB sets as necessary.

3

The details of how GUB can be exploited to reduce the computations

of the simplex algorithm are not discussed here. See [1,4,6,10,12]. The

underlying concept is that the GUB structure enables the simplex algorithm

to manipulate the GUB rows implicitly, with logic rather than floating

point arithmetic, thus reducing the effective size and solution time

for the problem. The more rows one is able to GUB, the fewer rows one

has to explicitly carry through the simplex operations. If the original

problem has m constraints (of which p are GUB rows) and n variables,

then at most only an (m-p * m-p) submatrix of the basis is needed for

the explicit simplex operations. This contracted explicit basis means

that many of the calculations are replaced with logical operations,

yielding faster results and less numerical rounding error.

Many problem types have natural GUB structures embedded in them.

a) "Transportation problems (pure, bounded and capacitated networks)

b) Multi-product blending

c) Raw material and/or production resources allocation (forest management,

machine loading, plant scheduling)

d) Operations planning (combined production/inventory/distribution

planning)

e) Resource assignment (i.e., freight cars, personnel)" [14].

To illustrate, Figure 1 presents a transportation type problem.

Note that a GUB set has been marked. For problems similar to this, a

large GUB set can be found quickly by visual inspection. Likewise, in

a particular cZaAA of models, knowledge of the model structure can lead

to problem-independent specification of GUB sets (e.g., one can always

GUB all the sinks of a pure network) . But for many general models this

technique cannot be used, and due to the large size of the problems,

visual inspection may be limited to adjacent rows or patterns. This

is very dependent on how the problem is written. Most contemporary

problems for which GUB factorization may be crucial are so large that

an explicit "picture" of the coefficient matrix is impractical. (One

notorious example has been encountered with a "picture" measuring 10

by 300 meters!) It is therefore highly desirable to have an automatic

procedure whereby a GUB set can be identified efficiently.

- 1 1 1 1 o-
Sources

1 1 1 1

*

-1
^

-1 -1

Sinks -1 -1 ' a GUB set

0" -1

.
-1

- -1 ^
j

Detached coefficient array for a

transportation problem

Figure 1

In large problems there exists a huge number of subsets of rows

that satisfy the GUB criteria. It is generally regarded that those sub-

sets with more rows are "better" GUB sets since they imply a more con-

tracted explicit basis. The implied problem, then, is to find the ma.XA,mum

GUB set.

Integer algorithms to find a maximum GUB set do exist.

These usually entail enumeration schemes and cannot be guaranteed to be

efficient in a practical sense. Conceivably, 2 -m sets of rows might

have to be searched before a maximum GUB structure is found. As the

problem size grows, the number of possible sets that need to be checked

increases <lx.pone.nJXaZly . As will be shown later, the hope of finding

an efficient algorithm to find the maximum GUB set for any general

problem is dim.

Therefore, researchers and practitioners have concentrated on

constructing efficient kz.uJiL£>£AJL algorithms that attempt to identify,

but do not guarantee, a maximum GUB set. A few of these methods show-

ing great promise have been reported, but they have not been tested with

large scale problems.

This report outlines several automatic heuristic GUB finding pro-

cedures that have been developed and published in the recent literature.

These procedures are tested on a suite of large scale, real life optimi-

zation problems, and are modified to improve their behavior. Comparative

performance of the methods is given both in terms of the computational

effort to identify a GUB set, as well as the size of the GUB set

achieved.

Identification of GUB sets of maximum row dimension is shown in

Section 7 to be among the class of NP-complete problems. However, an

easily computed uppQA. bound on the size of the maximum GUB set is developed

and used to evaluate objectively the quality of heuristic GUB algorithms,

showing that very nearly maximum GUB sets are routinely achieved.

2. PROBLEM DEFINITION AND REPRESENTATIONS

The Linear Programming problem is defined as

(L) Min c x

s.t. r_ _< Ax £ r (ranged constraints)

b. -S x .1 ^ (simple bounds)

where r_ and r are m-vectors, x, c, b_ and b are n-vectors and A

is an m x n matrix. The constraints are sometimes defined as equations,

but for the general case of GUB treated here constraints can be equations,

inequalities or a mixture. The immediate discussion will be directed

at (L) ; integer and mixed integer problems are treated later.

For identification of a GUB set of rows, only the matrix A is

used and since the actual values of the non-zero elements of the matrix A

are not required the associated matrix K is defined.

K = (k. .) : k..

if a. . =

1 otherwise

An an example, consider the following linear programming problem.

Min x1 + 3x2 — x3 + 3x4 + x5
— 2xg

s.t. xj + 2x2 + x3 - 4

15

7

8

1

6x^

—3x2 + 2.7x3

+ 2x5 + 5x,

6x4 + 4x,

2*1 + x5

The corresponding matrices A and K are:

A =

1 2 1

6 2 5

-3 2.7

6 4

2 1

There are several ways one can model the maximum GUB problem.

Three approaches are presented to aid in the understanding of the

theoretical context of the heuristic methods examined and to highlight

the formal complexity of the original problem.

Two rows of K (or A) are said to covifaLLdt if there exists

at least one column with non-zero coefficients in both rows. The GUB

problem can be restated as that of finding a subset of the rows that

do not conflict.

Graph Theory Representation

Consider the matrix K of the linear programming problem (L)

.

A graphical representation of this matrix can be constructed through

the following mapping rule, f . Let each row of K be a vertex of the

graph. Should two rows of K conflict then the two vertices of the

graph are joined by an edge. This mapping retains all the necessary

conflict information.

The graph associated with the example is presented in Figure 2.

Note that it has five vertices, one for each row. Since row 1 conflicts

with rows, 2, 3, and 5, edges connect vertex 1 to those vertices. The

other edges represent the remaining conflicts. If two vertices, a and b,

are joined by an edge, e, then a and b are adjacent, and a (or b)

is yinCA.do.yut \MUth e. Since vertices 2 and 3 are not adjacent, this

indicates that the corresponding two rows in K do not conflict.

Figure 2

This introduces the notion of kMd2.pend2.na2,. Given a graph

G = (V,E), a subset V 6 V is said to be an ind2.p2.nd2.nt i>2£ if no

two of its elements are adjacent. It follows that if an independent

set of vertices can be found in G then the corresponding rows of the

matrix K do not conflict and thus define a GUB set. Conversely, a

GUB set for K defines an independent set for the graph G. It is also

clear that an independent set for G is maximum if and only if the

corresponding GUB set for K is maximum.

9

In the example problem, the maximum independent set is 3, 4, 5.

These are also the rows of the maximum GUB structure.

Consider the set K , the set of all K-type matrices having m
m

rows. The above mapping factors this set into a finite number of c£o642-6.

Two matrices, K_ and K_ are said to belong to the same class, C, if

and only if each is mapped into the same graph, G .

Figure 3

Thus, an independent set of vertices of G correspond to a GUB row set
c

for every matrix in the class C.

The incidence matrix N is defined as follows

.1

(ol

1 if vertex i is incident with edge j

N = (n. .) : n. .
=

(therwise

For the example problem N would be:

10

N

el e2 e3 e4 e5

vl 1 1 1

v2 1 1 1

v3 1

v4 1

v5 _0 1 1

There exists one, and only one incidence matrix for each graph of G,

where G is the set of all graphs having m vertices.

Since the set of all N-type matrices with m rows is a subset

of K , every class of K contains one and only one incidence matrix,
m m

In general, for the GUB problem, every m row matrix is equivalent

to one of a finite number of incidence matrices. Superficially this

may seem to be a simplfication. But as shown in Section 7 the GUB

problem on N is as difficult as the independent set problem on G.

The equivalent statements of the GUB problem do, however, offer

different views of the problem which are helpful in considering algorithms

for and analysis of the problem. [Note: In Garey and Johnson [5] it

is shown that two other graph problems, the "vertex cover" and the "clique"

problem, are equivalent to the independence problem, and hence the GUB

problem. These problems do not seem to offer any additional insight

for the GUB problem.

]

Conflict Matrix Representation

The first heuristic approach is developed around a con^LicX maAxlx.

This is a square matrix of dimension m, defined by:

11

M = (m..) : m..

1 if row i conflicts with row j in (L)

otherwise

For the example problem:

M=

1

1

1

1

1

1

1

1

1

1

1

Note that this matrix is symmetric. The sum for any row (or column)

indicates the number of other rows it is in conflict with, plus one.

This sum is important in that it indicates for any particular

row how many other rows would be subsequently excluded from a GUB set

by its addition.

The rows of a GUB structure can be rearranged to form an

embedded identity matrix in M. Note that this is the case for rows

3, 4, and 5 in the example problem.

Vector Space Representation

The second heuristic approach can be modeled using vectors in

an n-dimensional vector space, where n is the number of variables in

the problem (L) . Consider each row of K as a vector in this space,

having unit length in those "dimensions" corresponding with its non-zero

coefficients. In the example problem, row 1 is represented by the

following vector:

12

(1,1,1,0,0,0) .

R, the resultant vector from the sum of all vectors of the rows

of K, indicates the number of conflicts, plus one, associated with each

variable of (L) . A hypercube in n-space situated in the first orthant

at the origin with length 1 in all positive directions denotes the

feasible GUB region. Should R extend beyond this area, then the set

of rows corresponding to the vectors determining R does not constitute

a GUB structure.

A gradient vector can be calculated indicating the direction of

the shortest distance to the &e.cU>i.b£z n.ZQ-lon« It can be used to determine

which row to remove from the set to obtain the largest movement on the

desired direction. When R falls within the feasible region, the set

of rows determining R constitutes a GUB set.

13

3 . EARLIER LITERATURE

Two papers dealing with efficient GUB finding methods are worthy

of special note.

Brearley, Mitra and Williams [2] establish a very useful framework

for study of methods for finding GUB structure, as well as an insightful

discussion of these methods and a taxonomy for their classification.

They define three sets consisting of the rows of the technological

matrix A. The first set, the zLigtbtz 6&t, is made up of every row of

A that is individually eligible to belong in the GUB set. The 6tA.mcX.uA2.

i><lt is a subset of the eligible set and includes all those rows currently

considered as members of the GUB set. The candidate. 6Zt consists of

those rows of the eligible set that are candidates for inclusion (or re-

inclusion) in the GUB set. Every one of the methods examined in [2]

is described in terms of manipulation of these sets.

Each method of building a GUB set employs one of two basic strategic;

Ihe typt I (row addition) strategy begins with an empty structure set.

Then, based on a particular type I criteria for inclusion, rows are removed

from the candidate set and either added to the structure set or dropped

from further consideration. This procedure continues until the candidate

set is empty. The rows in the structure set form an admissible GUB

structure.

The type, IT (row deletion) strategy takes the opposite approach and

is divided into two phases. Methods of this type initially place all

eligible rows in the structure set. This normally leads to an infeasible

GUB set with many conflicting rows. Based upon the particular type II

14

decision rules, rows are removed from the structure set and placed in

the candidate set. The first phase of this strategy ends when a feasible

structure is obtained.

The second phase involves examining the removed rows in the

candidate set. Those that do not conflict with any of the members of

the current structure set are taken from the candidate set and reincluded

in the structure set. Those that do conflict are deleted from the can-

didate set and dropped from further consideration. The second phase ends

when the candidate set is empty. At this point the rows of the structure

set constitute an admissible GUB set.

Brearley, Mitra, and Williams examine over 18 different methods.

These approaches differ in the primary and secondary decision criteria

for including (or removing) a row in the GUB structure set. The heuristic

decision rules examined are based on the following model entities and

combinations thereof:

Include or remove a row based upon:

a) the number of non-zero elements in the given row,

b) the number of rows in conflict with the given row,

c) the number of non-zero elements in rows that conflict with the given row,

d) the row's relative weight obtained by the inner product of a vector

representation of the row and a directional gradient.

Type I methods, using all these rules were tested, as were Type II

methods using rules a, b and c. As an example, 1.1 (type I strategy,

method number 1) has as its primary decision rule for adding rows to the

structure set: choose a row from the candidate set with the minimum

number of non-zero elements. Method II. 1 removes rows from the structure

set based upon the maximum non-zero element count for each row.

15

These methods were implemented with an ALGOL program run on

an ICL 4130 computer. Twelve linear programming problems ranging in

size from 12 rows up to 166 rows were used for computational tests.

The results show that those (Type I) methods using heuristic (d)

above "consistently performed very well" [2]. Similarly, those methods

using heuristic (b) were found to perform nearly as well as (d) .

McBride [15] compares the directional gradient method (d) with

an approach suggested, but not tested by Greenberg and Rarick [7]. The

latter method uses the conflict matrix as does heuristic (b) . However, it

focuses on finding a maximum embedded identity matrix within the conflict

matrix, rather than using the conflict matrix to determine conflict

3
counts, applying a specialization of the preassigned pivot procedure (P)

normally used for reinversion [8]. McBride's results indicate that

heuristic (d) is significantly faster. However, neither method consistently

achieves a larger GUB set.

McBride also comments on the notion of a "good" GUB set. He

finds merit in selecting a set of GUB rows that minimizes the non-zero

build-up in the representation of the inverse transformation of the explicit

basis, during actual optimization. Results are also given for a restricted

GUB set selection that gives priority to equality constraints. Since

equality constraints are always binding in feasible solutions, the subset

of the basis associated with binding constraints, or kernel [6] is expected

to have fewer explicit non-zero elements

.

Based upon the results in these papers, and on independent com-

putational experience with automatic GUB factorization reported by Brown

16

and Graves [3] , the present research initially concentrated on those

approaches utilizing the two most successful heuristics, based on

conflict (1.2, II. 2) and directional gradient (II. 9, 11.10).

The models studied in this report are of a larger scale and include

mixed integer problems as well as models for which prior GUB row sets

have been manually specified.

Most of the notation and labels of [2] have been retained here.

17

4. DETERMINATION OF THE ELIGIBLE SET

The implementation of GUB in simplex algorithms usually admits

only + 1 as non-zero coefficients in the GUB rows. In linear programming,

a column scaling can make each non-zero element in a GUB row + 1. For

variables of an integer or mixed integer programming problem, the columns

of matrix A that correspond to integer variables cannot be scaled without

inconvenience for other optimization functions depending upon the integrali

condition. Therefore, non-zero elements in columns corresponding to

integer variables will be modified only by row scaling. If it is impossible

to obtain the necessary + 1 non-zero coefficients by row scaling and

column scaling of columns corresponding to continuous-valued variables,

the row is deemed not eligible for inclusion in a GUB set.

It is an objective of this research that the procedures examined

for locating a GUB set in a linear programming problem be designed to be

incorporated as an automatic, integral part of a contemporary optimizing

system of advanced design.

Each method is implemented as a feature of the read routine

(written to accept input in the standard MPS format, as well as editing

information indicating integer variables, scaling, and known prior GUB

structure) . Each method automatically examines the rows of the input

and specifies a GUB set. The appropriate rows and columns are then

scaled as necessary to obtain the proper GUB structure, and passed on to

the optimizing portion of the system. (Note that the editing information

places conditions that must be satisfied for any achievable GUB set.)

18

In determining the set of eligible rows, the following factors

have to be considered.

a. Through the editing process, have some of the rows been dropped from

the problem? If so, these "masked" rows are not eligible for inclusion

in the GUB structure and are thus dropped from the set of eligible rows.

b. Through the editing process, have any rows been predesignated to be in

the GUB structure? (As previously mentioned, large segments of the

constraints can often be selected for the GUB set either visually or

by recognition of a member of a convenient class of models.) Any rows

that conflict with these rows are not eligible for subsequent inclusion,

c All rows designated "nonconstrained" (which include the objective

function) are ineligible for inclusion in the GUB structure. All

such rows, other than the objective function, are subsequently handled

independently of the optimization.

d. If there are any integer-valued variables, an additional check is

performed. A row in the GUB set must eventually be capable of being

scaled to +1 non-zero coefficients. This is achieved, if necessary,

through a combination of row and column scaling. However, with integer

variables, column scaling is no longer advisable. Therefore any row

with a non-zero element in integer columns that is not a +1 or -1,

or capable of being rendered into a + 1 in those positions through

row scaling alone, ust be marked as ineligible for inclusion in the

GUB structure. Figure 4 gives the flow chart of how this procedure

is implemented.

Once the above restrictions have been considered, the resulting set

of eligible rows is then available for search in order to construct the

desired GUB structure.

19

GiSD

X 4-firsc, la*C
non-2«ro In row 1

Delate Row I from
eligible sec

GEO

20

5. IMPLEMENTATION OF AUTOMATIC GUB HEURISTICS

Conflict Methods

The approaches 1.2 and II. 2 employ the notion of a conflict measure

for each row. Consider the conflict matrix, M, of the corresponding

technological matrix A, for which a GUB set is to be found. An individual

element, m., is 1 if row i and row k of the original matrix have at

least one column j such that a. . ^ and a, . ^ 0. If the two rows
13 Hc3

have no non-zero coefficients in a common column then the corresponding

m., of the conflict matrix is 0. Summing across a row of the conflict
lk °

matrix can thus give the measure of the number of rows plus one that are

in conflict with a given row. For a given row, this sum less one indicates

exactly how many other rows would be immediately excluded from the GUB

set by inclusion of this row, called the row's dzZ2.ti.on potzntidi.

Method 1.2 initially places all the eligible rows on a candidate

list. From the candiate list, individual rows are selected and removed

to be added to the structure set. Other rows that are in conflict with

the selected row are immediately removed from the candidate list and dis-

carded.

The heuristic selects those rows on the candidate list with the

minjjmum deletion potential to be added to the structure set first. The

selection of rows for the structure set and the discarding of conflicting

rows continues until the candidate list is exhausted. The resulting

structure set forms a GUB set.

A modification to the above heuristic is possible which bfiQ,aili> tLQJi

among rows sharing the minimum deletion potential by selecting the row

having the most non-zero elements for inclusion into the GUB structure set.

21

The program used to test this heuristic approach is adapted from an

earlier version made available by Graves. A step by step description of the

method is given below.

Step 1. Identify Eligible Rows. Set S. = 1 if row i is an eligible row,

and equal to otherwise.

Step 2. Determine Deletion Potential. Scan each eligible row i and incre-

ment 8. by the number of other eligible rows k where a., and a, . are

both non-zero for at least one column j. (8. is the deletion potention,

plus one.)

Step 3. Stopping Condition. If all the 6. =0, stop. Otherwise, go to

the next step.

Step 4. Row Selection. Select row i having the minimum positive ("deletion

potential") 6. and add it to the structure set.
l

Step 5. Exclude Rows in Conflict with Selected Row. Locate the (8.-1) rows

in conflict with the selected row i. For each of these rows k, locate the

(8,-1) rows that they are in conflict with and decrement 8. for those

rows by one

.

Step 6. Marking Selected and Excluded Rows Ineligible for Further

Consideration. Set 8. and the 8, 's equal to zero. Go to step 3.
l k r

Only rows with 6. > are eligible. In step 1, 8. is set to 1 for eligible

rows. In the next step the 8 's for these rows are modified by each row's

deletion potential. Assuming there are still some eligible rows, the one

with the smallest deletion potential is selected in step 4

22

for inclusion in the structure set. In the next step all the rows con-

flicting with the one selected are identified for discard and the deletion

potentials of the remaining rows are updated. In the last step, both the

selected row's weight and those of the discarded rows are set equal to

zero. When all rows have either been selected or discarded the S array-

will be all O's. At this point the selected rows from a GUB structure.

Method II. 2 (row deletion) initially places all the eligible rows

in the structure set. From this set individual rows are selected and

placed on the candidate list in order of maXAjnum deletion potential.

During Phase 2, Brearley, Mitra, and Williams drop all rows from further

consideration that conflict with the structure set and attempt to reinclude

remaining candidate rows (that do not conflict with the structure set) in

LOFI order. A modification of phase 2 is used in this research which

simply excludes from further consideration all conflicting rows, reincludes

any remaining candidate rows, and repeats phase 1, until no further non-

conflicting candidates remain.

Gradient Methods

The second method (II. 9, 11.10) employs a heuristic method put

forth by Senju and Toyoda [17] for approximate solution of certain linear

programming problems with 0, 1 variables. The general problem they address

is that of choosing a most profitable combination (or portfolio) of orders

subject to resource constraints and an all-or-nothing (0-1) restriction

on the orders (i.e., an order is not allowed to be only partially filled).

This same format can be used to express the search for a maximum

GUB structure in (L) . The rows of the technological matrix A are treated

23

like the orders in the Senju and Toyoda model in that they are to be

either included with or excluded from the GUB set. The objective

is to obtain a maximum number of rows in the GUB structure while satisfy-

ing the stipulation that the GUB rows be disjoint. This last restriction

can be expressed as a set of resource restrictions in the sense of

Senju and Toyoda.

In mathematical terms, the GUB finding problem can be formulated

as follows:

(S) Max Z = x + x
2
+•••+ x^

s.t. J k..x. < 1 , j =1 n

where x. e {0,1}

m is the number of candidate rows in (L)
,

n is the number of variables in (L)

,

k... is the (i,j) element of the matrix K, which in turn

is the 0, 1 matrix associated with the matrix A,

x is the variable which determines whether row i is in
l

the GUB set or not,

Z is the objective function.

Senju and Toyoda outline a heuristic approach for obtaining a

near-optimal solution for the problem they examine. Adapting their

approach to the specialization (S) given above, a type II strategy results,

with all the rows initially being included in the GUB structure set.

Using the vector space viewpoint outlined earlier, consider each row of (S)

24

as a vector in n-space . A resultant vector R is determined by the

sum of all the included rows and, in general, extends beyond the feasible

space denoted by the unit hypercube. A gradient vector is calculated

from this infeasible point in the direction of the shortest distance to

the feasible region. In 3rearley, Mitra and Williams [2] this vector

is labeled a . An inner product of this gradient with each of the

row vectors results in a relative weight for each row. These weights,

which are stored in a vector labeled v can be viewed as indicating

the relative contribution that the removal of the corresponding row

would have towards obtaining a feasible structure set.

Rows are removed from the structure set according to their

relative weight, the largest weight being removed first. This process

is continued until a feasible set of GUB rows has been obtained. (The

gradient vector is not recomputed as the method proceeds.)

Next, a phase 2 procedure is implemented which examines each of

the initially removed rows to see if any can be reincluded into the

structure set without violating the bounds of the unit hypercube. Upon

completion of phase 2, the selected rows constitute a GUB set.

A variation on the above procedure recalculates the shortest

distance to the feasible region after the removal of each row. With the

new gradient, a new set of relative weights for the remaining rows is

then calculated and used, if necessary, to determine which of the subsequent

rows will be removed. This method is named II. 9.

Another modification is possible if two rows are found with equal

weights. As a tie-breaking rule, the row found to have the least number

of non-zero coefficients is discarded first.

25

A step by step outline of the heuristic approach 11.10 follows:

Phase 1: Deletion of Infeasible Rows

Step 0. Initialize Sets. Add all eligible rows to the structure

set. The candidate set is empty.

Step 1. Determine the Vector R. For each column j, define p as

the number of rows in the structure set having non-zero elements

in column j

.

Step 2. Determine Relative Weight of each Row. For each row i,

define v as the sum of (p.-l) of every column j, for which a., i- 0.

Step 3. Feasibility Condition, if for every column, p. £ 1, then go

to step 6; else find a column j such that p. > 1.

Step 4. Determine Row for Exclusion. Examine the rows in the

structure having non-zero elements in column j . Select the row i

with the largest v..° l

Step 5. Remove Selected Row. Remove row i from the structure set,

decrementing p. by one for every column j with a. . ^ 0. Add row i

to the candidate set and return to step 3.

Phase 2: Improve Feasible GUB Set Found by Re-including Excluded Rows

Step 6. Eliminate Rows in Candidate Set that Conflict with the Feasible

For every row i of the candidate set that has at least one a. . j*

in a column with p. = 1, remove that row from the candidate set.

Step 7. Re-inclusion of Rows. If any rows remain in the candidate

set, then find row i having the smallest v.. Remove row i from the

candidate set and re-include it in the structure set. Increment p
j

by one for every column j where a.. ^ 0.

Step 8. Stopping Condition. If the candidate set is empty, stop;

else go to step 6.

26

In Step 1, the vector P is calculated as the column counts of non-

zero coefficients. Step 2 calculates the relative weights that result from

the inner product of the gradient vector with each of the row vectors.

These are stored in the array v. The next step examines p to see if the

vector is within the feasible region. If not, a row with the largest relative

weight is removed from the structure set and the p vector is updated to

reflect the sum of the row vectors remaining in the structure set.

Once a feasible structure has been obtained, the candidate set (which

consists of those rows initially removed) is scanned in Step 6. Any of those

rows found to still be in conflict with the rows of the structure set are

discarded. Among those rows which remain, that with the smallest relative

weight is re-included in the structure. This cycle of discarding and re-

inclusion is continued until the candidate set has been emptied. The result-

ing rows of the structure set constitute a feasible GUB set.

To modify the algorithm in order to compute a new gradient vector

after the removal of each row in phase 1, step 5 is changed as follows (II. 9):

Step 5.* Remove Selected Row. Remove row i from the structure,

decrementing p. by one for every column i such that a.. ^ 0. Locate

each row k that is in conflict with row i. Decrement v by the

number of conflicts between the two rows. Add row i to the candidate

set and return to step 3.

Now when a row is removed from the structure set, the v. contain

the new relative weights equal to the inner product between the vector for

row i and the n&W gradient.

2 7

These two basic methods have been implemented as integral modules

of a large scale optimization system. Therefore, explicit conflict matrices

are not built. (To have done so would have consumed too much computer

time and space.) Instead, all the information is stored in the vectors 8,

p, and v. Logical flags associated with each row indicate whether it is

eligible, and whether it is in the candidate set or in the structure set.

As mentioned previously, the problem data is read in MPS format and

expressed internally in terms of only the non-zero elements. This input is

stored in a doubly linked list having both a row and a column thread. Thus,

along with any non-zero coefficient a.., the location of adjacent non-zero

elements in both the row i and column j are also immediately available. This

crucial feature permits efficient row access for various operations (e.g.,

to locate all rows that conflict with a given row at a particular column)

.

28

6. COMPUTATIONAL RESULTS

The heuristic methods have been tested on 15 real-life problems that

vary in size from 92 constraints to 4,648 constraints. A description of each

of the problems is given in Figure 5. As can be seen, four of the problems

are mixed integer and two are pure integer.

Problem Number Number Integer

of rows' of columns Columns Non-Zeros

VANN 92 1,324 1,324 2,648

NETTING 103 247 103 494

AIRLP 171 3,040 6,023

COAL 171 3,753 7,506

TRUCK 239 4,752 4,752 30,074

CUPS 415 619 145 1,341

FERT 606 9,024 40,484

PIES 663 2,923 13,288

PAD 695 2,934 13,459

ELEC 785 2,800 8,462

GAS 799 5,536 27,474

FOAM 1,017 4,020 42 17,187

LANG 1,236 1,425 22,028

JCAP 2,487 3,849 560 9,510

ODSAS 4,648 4,683 30,520

Figure 5

29

The results of these experiments are given in Appendix A. The first

two columns give the rows and non-zero column elements, respectively, of the

GUB structures found. The time given in column three is the time required to

locate the GUB set once the set of eligible rows has been determined. The

final columns give additional information relating to the two versions of

the gradient methods examined and represents total time in phase 1 and the

number of rows re-included in the GUB structure during phase 2. All

execution times reported are expressed in actual CPU seconds, accurate to the

precision displayed, for IBM 360/6 7 and FORTRAN H (Extended)

.

As with the earlier work cited, the Senju and Toyoda method was found

to be consistently the fastest. In general this holds true for both method

II. 9 and 11.10. II. 9, which updates the gradient after each row is removed,

takes longer in phase 1 than its counterpart. However, it so selectively

deletes the rows, that few if any rows are ever added back into the structure

during phase 2. This suggests the possibility of implementing II. 9 as

only a one phase method.

All methods are robust in that they consistently find large GUB sets.

The conflict approaches generally find a larger number of variables with

non-zero coefficients in the GUB rows. However, this approach definitely

becomes inefficient when larger problems are analyzed, regardless of the

relative size of the GUB structure in the problem.

There is some discrepancy between these results and those published

earlier [2], especially with regard to the times of the other methods com-

pared to 11.10. The wide discrepancy between II. 9 and 11.10 has not been

observed in the current experiments. It is hypothesized that this is due

partially to differences in implementation of the various approaches and

partially to problem size and structure variations between these studies.

30

7. PROBLEM COMPLEXITY

The dompltXAXy of a problem is said to be polynomial if an algorithm

exists for which the fundamental operations are limited by a polynomial func-

tion of intrinsic problem dimensions. Such an algorithm would be called a

polynomial tun<L or good algorithm. The class of all problems for which such

algorithms exist is denoted (P) . If an algorithm is not polynomial time,

then it is defined to be an <LXpon2.n£lal time, algorithm. The disadvantage

of an exponential algorithm is the explosive growth of the maximum solution

time as the dimensions of the problem increase [13].

A problem x is said to be K8.d\XQJJol<L to a problem y if each good

algorithm for solving y can be used to produce in polynomial time a good

algorithm for solving x [11]. Note that this does not necessarily require

that a good algorithm for x and y actually exist. This requires only

that if one exists for y, then one also exists for x.

An 'LwOia.cXabZ.Z problem is one for which it is known that no polynomial

time algorithm exists. In between this class of problem, and the class P,

is a vast number of problems whose status is uncertain. Among these is a

class of nonde£2AmiyiU£l(L polynomial-timz problems (NP) for which a poly-

nomial time algorithm can be shown to exist that can vZhA-fay a guessed solu-

tion, but for which the existence of a (deterministic) polynomial time

algorithm to actually solve a problem has not yet been demonstrated.

If every problem of the class NP is reducible to the problem y,

then y is said to be HV-haAd. In addition, if y itself belongs to NP

,

then y is NP'- complete. [5,11].

31

The following problem is known as the independent i>zt de.cUAJ.on pfuoblem

(ISD) . It belongs to the set of NP-complete problems.

(ISD) Given a graph G = (V,E) and an integer t, decide whether G con-

tains an independent set of size t or more.

The GUB decision problem (GUBD) can be defined as follows:

(GUBD) Given an m x n 0,1 matrix K and an integer p, decide whether K

contains a set of p or more rows i. , i~ , ... , i such that
i I q

(*)) k. . < 1 for every column; q > p.L
, i J

— —
e=l e

Given an instance of the ISD problem, the incidence matrix N can be con-

structed. This matrix along with the integer t is an instance of the GUBD

problem. The following theorem proves the correctness of this reduction:

Theorem : The incidence matrix N has t rows satisfying (*) if and only

if there are t vertices in G that are independent.

Proof.

a) Assume there exists t rows of N that satisfy (*) . They correspond

to vertices v. ,v , ... , v. in G. If any two of these vertices
X
l 2

X
t

are adjacent, then

t

ii V
= 2

i 1
e=

where j is the column in N that corresponds to the edge connecting

the two vertices. This is a violation of the assumption, hence the

t vertices in G are not connected to one another.

32

b. Assume there exists t vertices v. , v. v. in G that are

independent. Since no two are adjacent, the corresponding rows in N

satisfy (*) [20]. Q.E.D.

Since the ISD problem, a problem known to be NP-complete, is reducible

to the GUBD problem, it follows that the GUBD problem itself is NP-complete.

(It is clear that the reduction is polynomial time and it is also clear that

GUBD is in NP.) The related problems of finding a maximum independent set

and a maximum GUB set are not in NP, however, they are NP-hard. It is there-

fore unlikely that a polynomial- time algorithm will be found for these

problems. Only exponential- time algorithms are presently available.

The above analysis of GUB algorithms has only addressed the u)0M>t QJXi>Q,

bound. No conclusions are made about the average performance of an algorithm.

In other words, the possibility of the existence of an algorithm with good

average performance, but having an exponential worst case bound, has not

been ruled out*

33

8. AN UPPER BOUND FOR THE SIZE OF MAXIMUM GUB SET

The intrinsic difficulty of identifying a maximum GUB set has been

shown to be exponential, making this task essentially impossible for problems

of the scale at hand. However, the efficient heuristic procedures have been

shown to provide very large GUB sets, whose size appears to be relatively

stable for each problem regardless of the particular method applied. This

suggests that these large GUB sets may be, in fact, very nearly maximum,

although there is no practical way to verify this directly.

Although the problem of determining the size of the maximum GUB set

is also NP-hard, it is possible to develop an easily computable uppZA bound on

the maximum GUB set size. This bound can then be used to objectively

evaluate the quality of the GUB sets produced by heuristic algorithms.

It is clear that the number of rows of a GUB set can be no greater

than the number of rows in the problem. Also any one row by itself can form

a GUB set. But these bounds are of little practical use where considering

the problem of identifying a maximum GUB set. Utilizing information that

is already available in the heuristic procedure, it is possible to construct

in polynomial time an upper bound on the size of the maximum GUB set. (It

is also possible to construct a lower bound on the size of the maximum GUB

set, but that topic is not pursued in this report.)

For the purpose of developing a better bound, the incidence matrix

representation (N) of the problem is used. Let s. be the number of l's

in row i. Note that s. is the number of edges incident to vertex i in G.

Also note that s. = 8.-1. The number of columns in N represents the

number of distinct conflicts that exist between the rows of the original

problem. This number is denoted as c, and can be found by the following

formula.

34

ra

c = i=l

If c is greater than 0, all the rows of N cannot simultaneously belong

to a GUB set, which implies the cardinality of the GUB set is less than m.

As c becomes larger, the following argument shows that the upper bound of

the maximum GUB set decreases.

If c is positive, but strictly less than m, it is possible for all

the conflicts to involve one row. Removal of that row would then leave m-1

rows that form a GUB set. Thus for c in the range from 1 to m-1, an upper

bound on the size of the maximum GUB set is m-1. Since one row can conflict

with at most m-1 other rows, once c _> m s at least two rows have to be re-

moved to form a GUB set. For m <^ c _< [(m-1) + (m-2)] it is possible to

construct a incidence matrix such that all the conflicts are between a pair

of rows and the remaining set of rows. Removal of the pair would result in

a GUB set of m-2 rows. This constructive argument continues until

c = [(m) (m-1)]/2, which occurs when each row conflicts with every other row.

At that point, the max maximum GUB = min maximum GUB = one row.

A graph of an upper bound on the maximum GUB for a five row problem

such as the example problem is given below:

U,

5 ..

•» .»

3 ..

2 --

1 ._

.

« ©

1 1

Figure 6

35

the example problem, m = 5 and c = 5. From the above graph the upper

bound on the maximum GUB for that problem is 3. Since a GUB set containing

three rows has already been identified, that set is a maximum set.

In general, for any problem with an m x c incidence matrix, the

largest maximum GUB set that can be obtained is:

u = L -5 + A 25 + (m)(m-l) - 2c

Lwhere L indicates truncation to an integer.

The above bound is pfiobZejn-AJid2.p&ndznt and a ikaAp bound in that

matrices with a GUB set the size of the bounding value can be constructed.

With additional information about a specific problem a better bound

can be constructed. Since s. is the number of other rows that conflict
l

with row i, removing row i from the set of rows reduces the number of con-

flicts, c, by s.. Let IMAX denote max s.. Since IMAX is the largest
i i

row conflict count, c can be reduced by no more than IMAX with the removal

of each row. The minimum number of rows that would have to be removed to

reduce the number of row conflicts to 0, is c/IMAX. Therefore, given m,

c and IMAX, the bound can be improved to

-h .

u
2

=

m -
|
—

, c _< (m-y)y

L .5 + /.25 + y(2m-y-l) - 2c , c > (m-y) (y) ;

where y = IMAX and | indicates the next higher integer.

In order to determine IMAX, the entire 6 vector must be examined.

A third, even better bound can be obtained with additional information

on the fiJizquznaj of the conflict counts from 1 to IMAX. The procedure is

the same as above, in that when a row is removed with IMAX conflict count,

36

c decreases by IMAX. However, instead of continuing to decrease c by

IMAX, it is decreased by the next largest s.. This procedure continues

until once again, c becomes zero. This bound is named u„.

Each tighter bound requires more information about the particular

problem. However, all the information is readily available since it is

generated by the heuristics using the conflict measure.

The bounds developed can be used to objectively evaluate the size

of a GUB set found by heuristic methods. In two problems examined, VANN

and AIRLP, the number of rows in the GUB set equal an upper bound on the

maximum GUB set for the problem. Therefore, for those problems, the heuristic

methods are verified to have located maximum GUB sets.

Manual specification of a GUB set from visual inspection can utilize

these bounds as an excellent measure of the maximum additional rows to be

found. This information is also an aid in deciding whether to subject the

problem to additional automatic searching for GUBs.

M

9. EXTENSIONS

The upper bounds developed in this report vary from a problem- inde-

pendent bound to tighter problem-dependent bounds. It is speculated that

additional information can be easily extracted from the actual conflict

structure of the problems that can be used to tighten the existing bounds

even further. This is strongly suggested by manual analysis of problems with

particularly loose bounds for which the conflict structure seems to have higher

order pathology. In addition, lower bounds have been developed by similar meth

Another area that warrants further study is the special structure

of the incidence matrix representation of the original problem. It is noted

that for an incidence matrix, N, the relative weights generated for each row

are (except for a constant) identical for the methods studied. This implies

that for a matrix N, and the same strategy (i.e., II, deletion), the two

heuristics would identify the same GUB set.

As things now stand, GUB finding demands far less cost than the

benefits derived during model optimization. Better GUB finding methods may

result from simple extensions arising from relaxations of (S), use of con-

flict information of higher order, limited application of backtracking

enumeration, or exploitation of conditioned bounds on the remaining

candidate rows to allocate heuristic effort.

Finally research is continuing on automatic location of network row

structure (e.g., Sarquis [16] and Wright [19]). As one illustration of an

immediate generalization of the GUB results, a GUB set for a problem can

be identified and then another GUB set of an eligible subset of remaining

rows can be found. Thus, a b<l-paAZl£<L WLJWonk. fww fcacXosiization can be

achieved (e.g., transportation or assignment rows).

38

10. CONCLUSIONS

The computational benefits of a large GUB set for an LP problem are

widely recognized. This report shows that the identification of a maximum

GUB set is a difficult problem, essentially as hard as many other widely

known difficult problems.

An alternate approach is the use of an heuristic. This report has

examined two promising methods (with two versions of each) with application

to a series of real life, large scale models. All versions are robust in

their ability to find large GUB row sets. However, the two versions

(II. 9 and 11.10) that use the Senju and Toyoda method are consistently

the fastest. These two methods are essentially equal in their efficiency

and effectiveness. Since version II. 9 (which recalculates the gradient

after the removal of each row) so selectively removes the rows during

the first phase that few if any rows are re- included in the GUB set during

the second phase, it suggests the possibility of implementing this version

as only a one phase (row deletion) method.

The representation of an infinite number of m-row matrices by a

finite number of incidence matrices offers a powerful and concise way of

examining the GUB problem. Under this representation, both basic heuristic

methods investigated assign (within a constant) the same relative selection

weights to each row.

Finally, the ability of defining upper bounds on the maximum size

of the GUB set gives a new powerful tool in this area. It enables one to

evaluate the quality of GUB sets found even in very large problems, for which

the algorithmic identification of a maximum GUB set is probably impossible

39

in general. In some cases, verification of a heuristically achieved maximum

GUB set is now possible. Further, the bounds developed may be further en-

hanced in future research, and may be applicable to related problems of

equivalent complexity.

ACKNOWLEDGMENTS

The authors wish to thank Gordon Bradley and Shmuel Zaks for their

insights on complexity, and also Glenn Graves and William Wright for their

considerable assistance.

40

APPENDIX A

This appendix contains the computational results for the fifteen

linear, mixed integer and integer models examined. All execution times

reported are expressed in actual CPU seconds, accurate to the precision

displayed for IBM 360/6 7 and FORTRAN H (Extended).

For clarity, the following terms are defined:

Eligible rows: The number of rows of the model initially eligible

for inclusion in a set of GUB rows.

Conflict count: The number of columns of the incidence matrix for

the problem.

Conflict density: The ratio of the conflict count to the maximum

conflict count for that problem size [i.e., m(m-l)/2]

Time to find Elig: The time in CPU seconds to determine the set

of eligible rows.

41

Problem

Rows
Columns
Integer

Non-zero

Method

VANN
92

1324
1324
2648

Rows in

GUB set

Description : Fleet Dispatch Model

Eligible rows 69 IMAX
Conflict count Ul 69

Conflict density : U2 69

Time to find Elig .141 sec U3 69

Columns in

GUB set

Time to find

GUB set (sec.)

Time in

Phase 1

Number added

in Phase 2

1.2

n.2

n.9

n.io

Problem
Rows
Columns
Integer

Non-zero

Method

69

69

69

69

NETTING
103
247
103
494

Rows in

GUB set

1324

1324

1324

1324

Description

Eligible rows

Conflict count

Conflict density

Time to find Elig

Columns in

GUB set

.237

.125

.202

.202

.198

.198

Currency Exchange Model

71 IMAX
46 Ul
1.85% U2
.022 sec U3

Time to find

GUB set (sec.)

Time in

Phase 1

5

70
59

46

Number added
in Phase 2

1.2

n.2

n.9

n.io

Problem
Rows
Columns
Integer

Non-zero

Method

1.2

n.2

n.9

ilio

36

36

36

36

AIRLP
171

3040

6023

Rows in

GUB set

84

84

77

72

Description

Eligible rows
Conflict count

Conflict density

Time to find Elig

Columns in

GUB set

.169

.164

.047 .042

.042 .037

Fleet Dispatch Model
170 IMAX

2983 Ul
20.77% U2

.076 sec U3

150
151

150
150

Time to find

GUB set (sec.)

Time in

Phase 1

Number added
in Phase 2

150

150

150

150

3000

3000

3000

3000

1.16

.761

.645

.444

.639

.439

42

Problem
Rows
Columns
Integer

Non-zero

COAL
: 171

: 3753
:

: 7506

Description

Eligible rows
Conflict count

Conflict density

Time to find Elig

Energy Development Model
170 H4AX :

3753 Ul :

26.13% U2
: .106 sec U3

111

146
136
121

Method Rows in

GUB set

Columns in Time to find

GUB set GUB set (sec.)

Time in

Phase 1

Number added

in Phase 2

L2 111 3753 1.38

II.2 111 3753 1.24

IX.9 111 3753 .920 .912

11.10 100 2568 .641 .631

Problem
Rows
Columns .

Integer

Non-zero :

TRUCK
239

4752
4752

30074

Description

Eligible rows :

Conflict count

Conflict density

Time to find Elig :

Fleet Dispatch Model
221 IMAX :

10438 ui :

42.94% U2
.116 sec U3 :

171

165
159
144

Method Rows in

GUB set

Columns in Time to find

GUB set GUB set (sec.)

Time in

Phase 1

Number added
in Phase 2

1.2 32 1069 6.88

XL2 30 1099 7.095

IL9 30 857 5.00 4.95 2

n.io 32 986 1.70 1.58 8

Problem
Rows
Columns :

Integer

Non-zero :

CUPS
415
619
145

1341

Description :

Eligible rows :

Conflict count :

Conflict density

Time to find Elig ;

Production Scheduling Model

390 IMAX :

744 ui :

.98% U2 :

.042 sec U3 :

48
388
374
294

Method Rows in

GUB set

Columns in Time to find

GUB set GUB set (sec.)

Time in

Phase 1

Number added
in Phase 2

L2 213 494 2.96

n.2 214 442 3.15

n.9 214 466 .212 .194

n.io 200 394 .384 .132 24

43

Problem FERT Description ; Production & Distribution Model

Rows 606 Eligible rows 605 IMAX 580

Columns 9024 Conflict count :
16455 Ul 577

Integer Conflict density 9.01% U2 576

Non-zero 40484 Time to find Elig .257 sec U3 567

Method Rows in Columns in Time to find Time in Number added

GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

L2 559 9024 15.8

H.2 559 9024 10.5

n.9 559 9024 6.73 6.71

n.io 559 9024 2.52 2.50

Problem
Rows
Columns
Integer

Non-zero

Method

PIES
663

2923

13288

Rows in

GUB set

Description

Eligible rows
Conflict count

Conflict density

Time to find Elig

Columns in

GUB set

Energy Production & Consumption Model
662 IMAX

4116 Ul
1.88% U2
.866 sec U3

Time to find

GUB set (sec.)

Time in

Phase 1

21
655
466
422

Number added

in Phase 2

1.2 180 1848 10.8

n.2 169 1693 13.5 .

n.9 172 1811 2.82 2.77 1

n.io 177 1761 1.31 .788 28

Problem
Rows
Columns
Integer

Non-zero

PAD
: 695

2934

:

13459

Description

Eligible rows

Conflict count

Conflict density

Time to find Elig

Energy Production & C
694 IMAX

4416 ui
1.84% U2
.104 sec U3 ;

onsuroption Model
23

687
502
449

Method Rows in

GUB set

Columns in

GUB set <

rime to find

3UB set (sec.)

Time in

Phase 1

Number added
in Phase 2

L2 200 1864 13.1

IL2 189 1771 16.6

n.9 188 1708 3.34 3.26 2

n.io 189 1275 1.35 928 21

44

Problem

Rows
Columns
Integer

Non-zero

ELEC
785

: 2800

8462

Description

Eligible rows

Conflict count

Conflict density

Time to find Elig

Energy Production & Consumption Model
784 IMAX: 22 .

6167 Ul : 776
2.01% U2 : 503 '

.089 sec U3 : 492

Method Rows in

GUB set

Columns in Time to find

GUB set GUB set (sec.)

Time in

Phase 1

Number added

in Phase 2

1.2 309 2461 11.4

XL2 210 2791 16.1

n.9 309 2641 1.15 1.12

n.io 309 2605 .842 .579 14

Problem .

Rows
Columns :

Integer

Non-zero :

GAS
799

5536

27474

Description

Eligible rows
Conflict count

Conflict, density

Time to find Elig

Production Scheduling Model
789 IMAX :

: 22220 Ul :

: 7.15% U2 :

; .151 sec U3

608
760
752
652

Method Rows in

GUB set

Columns in Time to find

GUB set GUB set (sec.)

Time in

Phase 1

Number added

in Phase 2

1.2 583 5102 16.2

n.2 639 5536 10.4

n.9 608 5309 3.79 3.77

n.io 639 5533 1.47 1.44 1

Problem
Rows
Columns
Integer

Non-zero

FOAM
1017
4020

42
17187

Description

Eligible rows
Conflict count

Conflict density

Time to find Elig

: Production Scheduling Model

: 1006 IMAX :

: 8186 Ul :

: 1.62% U2 :

: 225 U3 :

261
997
974
934

Method Rows in

GUB set

Columns in Time to find

GUB set GUB set (sec.)

Time in

Phase 1

Number added
in Phase 2

L2 932 4020 23.4

E.2 932 4020 9.47

n.9 917 3981 1.73 1.71

n.io 917 •3981 .902 .879

45

Problem
Rows
Columns
Integer

Non-zero

Method

LANG
1236
1425

22028

Rows in

GUB set

Description

Eligible rows

Conflict count

Conflict density

Time to find Elig

Columns in

GUB set

Equipment & Manpower Scheduling Model

1235 IMAX: I84

46424 Ul :
1196

6.09% U2 :
982

.072 sec U3 . 973

Time to find

GUB set (sec.)

Time in

Phase 1

Number added

in Phase 2

1.2

n.2

n.9

n.io

382

338

342

342

1207

908

923

922

46.2

54.2

14.9

12.4

14.8

1.13

2

234

Problem
Rows
Columns
Integer

Non-zero

Method

JCAP
2487
3849
560

9510

Rows in

GUB set

Description

Eligible rows

Conflict count

Conflict density

Time to find Elig

Columns in

GUB set

Production Scheduling Model
2446 IMAX
16578 Ul

.55% U2

.265 sec U3

Time to find

GUB set (sec.)

Time in

Phase 1

488
2439
2412
1812

Number added

in Phase 2

1.2

n.2

n.9

n.io

529

512

529

523

2072

2186

2087

1393

104

153

2.23

3.98

1.87

1.10

5

59

Problem
Rows
Columns
Integer

Non-zero

Method

ODAS
4648
4683

30520

Rows in

GUB set

Description

Eligible rows

Conflict count

Conflict density

Time to find Elig

Columns in

GUB set

Manpower Planning Model
4647 IMAX
5220 ui

.05% U2

.263 sec U3

Time to find

GUB set (sec.)

Time in

Phase 1

4194
4645
4645
4024

Number added
in Phase 2

L2

n.2

n.9

n.io

751

721

749

751

3116

3846

4436

3020

369

651

7.12

3.01

6.88

2.57 2

46

REFERENCES

Beale , E. M. L., "Advanced Algorithmic Features for General Mathematical
Programming Systems," IntcgzA and Uonlinzan. Vhjogsiamming , ed. J. Abadie,
North-Holland/American Elsevier, 119-137, 1970.

Brearley, A. L., Mitra, G. , and Williams, H. P., "Analysis of Mathematical
Programming Problems Prior to Applying the Simplex Algorithm," Mathematical
Ptiog/LCLmrung 8, 54-83, 1975.

Brown, G. and Graves, G. , "Design and Implementation of a Large Scale
(Mixed Integer) Optimization System," paper presented at ORSA/TIMS
Las Vegas, Nov. 19 75.

Dantzig, G. B. and Van Slyke, R. M., "Generalized Upper Bounding
Techniques," JouAnal o& ComputeA. and System Science* 1, 213-226, 1967.

Garey, M. R. and Johnson, D.S., ComputeAA and InViactab-ility; A Guide
to the Tkeonjj 0& NP-Completene64 , W. H. Freeman and Company, San Francisco,
CA., 1979.

Graves, G. W. and McBride, R. D., "The Factorization Approach to Large-
Scale Linear Programming," Mathematical Vh.0ghjmming 10, 91-110, 1976.

Greenberg, H. J. and Rarick, D.C., "Determining GUB Sets via an Invert
Agenda Algorithm," Mathematical Vfiogfyamming 7, 240-244, 19 74.

Hellerman, E. and Rarick, D„, "Reinversion with the Preassigned Pivot
Procedure," Mathematical VKognjxrariwg 1, 195-216, 1971.

Hirshfeld, D. S., "Generalized Upper Bounding (GUB): Theory, Applications
and Performance," paper presented at Share XXXV, Mathematical Programming
Project, August 1970.

Kaul, R. N., "An Extension of Generalized Upper Bounded Techniques for

Linear Programming," (0RC65-27) Operations Research Center, University
of California, Berkeley, 1965.

Klee, V., "Combinatorial Optimization: What is the State of the ART?"

paper presented at SIAM Applied Mathematics Conference, Monterey, CA,

February 19 78.

Lasdon, L. S., Optimization Tho.on.Lj fan. Lange System* , The MacMillan
Company, New York, N.Y. 1970.

Lewis, H. R. and Papadimitriou, C, H. , "The Efficiency of Algorithms,"
Scientific American 238, No. 1, 96-109, 19 78.

MPS I II-Mathematical ?n.ognjmming System U6QA Manujol, Sec. 7, Management

Science Systems, Inc., 1973.

4 7

McBride, R. D., "Linear Programming with Linked Lists and Automatic
Guberization," Working Paper No. 8175, University of Southern California,
School of Business, July 1975.

[16] Sarquis, J., "Converting Linear Models to Network Models," Ph.D.

Dissertation, UCLA (December 1979) .

[17] Senju, S. and Toyoda, Y., "An Approach to Linear Programming with 0-1

Variables," Management Science 15, B196-B207, 1968.

[18] Thomen, D., "Automatic Factorization of Generalized Upper Bounds in
Large Scale Optimization Problems," M.S. Thesis, Naval Postgraduate
School (September 1979).

[19] Wright, W., M.S. Thesis, Naval Postgraduate School (in preparation).

[20] Zaks, S. (Private Communication, September 1979).

48

DISTRIBUTION LIST

NO. OF COPIES

Defense Documentation Center 2

Cameron Station
Alexandria, VA 22314

Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 9 3940

Dean of Research 1
Code 012
Naval Postgraduate School
Monterey, CA 9 3940

Library, Code 55 1
Naval Postgraduate School
Monterey, CA 9 3940

Naval Postgraduate School
Monterey, CA 9 3940

Attn: G.G. Brown, Code 55 10
R. J. S tamp fel, Code 55 1

49

U190186

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01 069328 6

U19018

