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ABSTRACT

The decision as to whether a medical doctor, or other
expensive specialist, should be carried aboard ship depends upon
demand for service, consequences of not providing this service,
and cost of providing the service. We supply a simple preliminary
mathematical model to aid in making this decision wisely.
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DOCTORS ON SHIPS?

Donald P . Gaver
Naval Postgraduate School

1 . Introduction .

The purpose of this paper is to initiate study of the question:

should expensive specialists, e.g. medical doctors, be assigned to

ships or submarines on patrol? The issues that arise are as follows.

(1) If a man is injured or becomes seriously ill while a

mission is in progress, and if no doctor is present, it may be necessary

to transfer the individual from the ship to a hospital for treatment.

Presence of a doctor will, at least in some cases, permit the treatment

to take place on the ship. Thus the cost of the transfer may be

eliminated—at, of course, the expense of maintaining the doctor.

Similarly, but not entirely analogously, breakdown of key

equipment entails loss of military effectiveness and may require that

the mission be prematurely terminated. If a skilled specialist is

aboard such events may be forestalled.

(2) The cost of retaining doctors or other trained specialists

is very high. The cost for such a specialist may rightfully include

some of the expense of his original recruitment and training.

One subsidiary purpose of this paper is to show that the use

of simulation methods is not always essential when dealing with problems

of some complexity, and, in particular, those that involve chance

effects.



2 . The Occurrence of Demands .

Basic to the question of whether a doctor or highly trained

and expensive repairman should be added to a ship's complement is the

likelihood of demand for services that he alone can supply. We pro-

pose some probability models for this question. Actually, a complex

variety of sources may conspire to cause demand.

Model 1 . Simple Chance Demand, Caused by Accidents or Sudden Disease.

Imagine that a ship has n individuals aboard when it sets

out on a mission of duration M. Each individual is thought to have

a constant probability Xdt of experiencing an accident or sudden

severe illness between t and t + dt, dt being a small number.

The occurrence of accidents or illness is first assumed to be independ-

ent from individual to individual. Then our simple model implies that

each individual experiences his demanding event at time T. (i = l,2,...,n)

measured from the start of the mission, T. being distributed in

accordance with an exponential distribution with rate parameter A:

P{T. a! t} - 1 - e~
At

^ t < »

(2.1)

- t < 0.

Next, the occurrence of the smallest T. on the ship of crew size
l

n is the distribution of the minimum of a sample of n independent



T.'s, which is exponential with parameter n . Let us call this

time t ; then
n

P{x > t} - e"
nXt

<; t < «
n

(2.2)

= 1 t <

According to this model, if no doctor (or repairman) is present:

(A) The probability that the mission does not terminate during M

for the cause associated with A is

P{x
n

> M} = e
nXM

(2.3)

(B) The expected time to the scheduled end of a mission that

involves a rescue (or terminates early) is

Q
(M-x)e nAdx

E[M - t t < M] =
n ' n n -nAM

1 - e

M

(2.4)

- -nAM nA
1 - e

It is of interest to see what this formula approaches as A becomes

small, a condition likely to be true in practice. Write (2.4) as

-nAM
T-r™ I vm e - 1 + nAM
E[M - t t < M] = —

n ' n , , W1 -nAM.
(nA)(l-e )



and then expand in Taylor's series to obtain

(nXM) 2
,

^
9

. h o (nXM)
PTM - t t < Ml = —

—

1 n ' n J nX(nXM+o(nXM))

M
"2

(2.5)

This states that in the limit of vanishingly small accident or disease

rate and average of one-half the mission time will be lost, provided

that the probability is very small of an accident or breakdown of the

sort envisioned (e.g. a heart attack, stroke, severe injury, in the

medical case)

.

Model 2 . Chance Demand, Differing Demand Rates.

We can realistically generalize Model 1 to the situation for

which each individual has a different characteristic rate or probability

of requiring the vital service: X.dt is essentially the demand

probability for individual j (j = 1,2, . . . ,n) . Then the overall

demand rate is, assuming independence, equal to

X(n) = X, + X + ... X (2.6)
i 2. n

and the distribution of t is still exponential, with X(n) replacing
n

nX in (2.2). All this is well-known; see Feller [1].

Practically speaking, one might consider classes of individuals

who are more or less susceptible to disease or accident, and who can

be characterized by the same failure or catastrophe rates within the



class. For example, the older officers (ship captain, executive

officer, etc.) are probably less prone to incur an appendicitis outbreak

than would a younger man; on the other hand, an older person might be

more prone to heart attack. This sort of consideration would compel

us to put individuals into classes, with characteristic rates

{A', u = 1,2, . . . , c } ; then
u

c

X(n) =
I n(u)A' (2.7)

u=l
U

where n(u) is the number of individuals in the u— class.

BuMed data might well be available to provide estimates for

the above rates. For equipments, 3M data might well be interpreted

for the same purpose.

Model 3 . Simple Chance Demand, Demand Rates Randomly Selected from a

Population.

An interesting and realistic generalization of Model 2 involves

the assumption that each individual's "failure" or demand rate is

itself randomly and independently drawn from some fixed population.

An immediate generalization, in the spirit of Model 2, is that

certain classes of individuals' demand rates come from different

populations.

To explore this sort of assumption we first write down the

survival probability of the group (crew), given their failure rates.

This turns out to be, by independence, equal to



P{t > x \ , X , ..., X } e
n l / n

n >

Now by assumption each X . is independently drawn from a population

with distribution H(y) , and density h(y). Consequently, removal

of the condition on the X's amounts to integrating:

P{x > x}
n

n

n e~
yx

h(y)dy = [h(x)

]

n

where h(x) represents the Laplace transform of the density h,

Example . Let h be a Gamma density:

h(y) = e
ay

(ay)
e X

a
nKy)

r(3)
(2.8)

Then

h« - (i)a+x ;
(2.9)

and the chance that a mission proceeds with no demand is

P<T > M} = [-£-)

6n

orl-M J
(2.10)

It will also be interesting to derive the expected lost mission time

under this model. It is
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X(n)x
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= M[l - e"
A(n)M

]
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X(n)M
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"X(n)M

X(n) U e J (2.11)

Next the conditions on the X's must be removed. This can be done

easily in terms of our gamma density illustration.

Example , h is Gamma.

Then X(n) is Gamma with parameters a and $n. Consequently,

we need

|_X(n) J

, , v gn-1
I e

"ay isZi a dy
y

e
r(0n)

a ay

= a ray -to) a dy

gn-1 (2.12)

and
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[(orHOy] dy = e^l^ (2<13)y(a+M) r(Bn)

Assembling the expression for the expectation of (2.11) we find that

K[(M-t
n)
+

] ^-^r + ^n^M)
3n

(2.14)

A generalization can be carried out for the case in which several sub-

groups of crew members are described by their specific gamma distribu-

tions, but this step will be postponed.



3. Costs and Decisions .

Armed with various models that describe demand for service by

a medical doctor or other specialist we can formulate decision analyses.

Our demand models provide inputs to these analyses, as do certain costs.

Decision Model 1 .

Suppose ship missions are of approximately constant duration

M. Let D be the (dollar) cost per unit time of maintaining a

medical doctor aboard ship. Then MD is the dollar cost per mission

of keeping the doctor aboard ship while the ship is engaged in an

active mission.

Let R be the cost of the evacuation or rescue operation

necessary when an emergency arises and no doctor is present. Think

of R as being an average cost; clearly this cost will vary with the

location of the ship, and hence the individual, that is the recipient

of the rescue attempt.

Let p(n;M) denote the expected number of emergencies that

arise when a crew of n individuals embark on a mission of duration

M. Our models of Section 2 provide various bases for evaluating

p(n;M).

Model 1 implies that the number of demands during a mission is

-AM
binomially distributed with mean p(n;M) = n(l-e ). Suppose that

each emergency requires a separate rescue or evacuation operation.

Then the expected cost of rescues or evacuations in p(n;M)R per mission

if a doctor is not aboard. Presume that if a doctor is aboard all of
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these can be avoided, but at cost MD . The optimal decision rule is

then

-XM
Carry a doctor if MD < n(l-e ' )R

-XM
Do not carry a doctor if MD > n(l-e ' )R

(3.1)

If X is quite small, as should often be true, this becomes a good

approximation!

Carry a doctor if D < n X R

(3.2)

Do not carry a doctor if D > n X R.

Of course if there is equality (D = nXR, for example) then other

considerations must settle the matter.

Decision Model 2 .

This model simply recognizes the differences between demand

(injury, accident, or sickness) rates between individuals, as in Demand

Model 2. For that model the expected number of demands is

n -X.M
p(n;M) =

I (1-e 3
)

J-l

Hence our decision rule becomes

n -X.M

Carry a doctor if MD < R J (1-e J
)

.

j=l (3.3)

n -X.M

Do not carry a doctor if MD > R £ (1-e ^ )

.

j=l
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Some additional comments may be made on these models.

(A) The models tacitly assume that R, the cost of a rescue

operation, is the same regardless of mission. In fact, one can assign

a cost that depends upon the mission and then decide on the basis of

our various decision models whether a doctor can be justified.

(B) The same comment as in (A) above holds for the rates or

X-values likely to prevail on different missions.

(C) The above decision rules, derived for ships, can apply

also to groups of ships. The doctor can be located on one ship of

the group, and emergencies will then be transferred to that ship when

they occur.

(D) In the above discussion the X-values are taken to be

known. To make the decision we must obtain estimates, and then treat

these estimates as equal to the parameter values actually prevailing.

A more sophisticated approach explicitly recognizes that estimates

are uncertain; one standard way of handling that situation is by

means of Bayesian decision theory. We shall apply these ideas in a

later report.

The above decision models assume that emergencies generate

rescue costs, but do not shorten missions. In other situations, perhaps

having to do with the failure of a major weapon system, this might not

be the case. It may well be that if a major system goes out on, say,

a submarine, the latter must return to port prematurely. We set up a

simple and tentative model for this situation, anticipating that refine-

ments in the model may suggest themselves.
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Decision Model 3 .

Suppose the initial cost for a copy of the ship in question is

S (dollars) , and that the anticipated life is equivalent to L missions

g
of length M. It is reasonable to assess a penalty of — dollars

per unit time that the ship is not carrying out its assigned task

during a mission, owing to lack of specialized repair personnel or

spare parts.

The expected lost time per mission of length M is obtained

for Demand Model 1 by multiplying (2.4) by the probability of at least

one demand during M, namely 1 - e . Thus

E[max(M-x ,0)] = M -
n

1-e
-nXM

nX
(3.4)

Thus the expected cost of lost service if a specialist, or requisite

spares, are not carried over the life of the ship is

Expected cost = Q L E[max(M-x ,0)
n

nXM
(3.5)

The optimal decision rule is then derived from the principle that one

should carry the specialist if his total cost over the life of the

ship, MLD, is less than the expected cost of curtailed missions:

-nXM
Carry specialist if MLD < s|l - -

Do not carry specialist if MLD > S<1 - —

}•

}•

(3.6)
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A very similar formula can be written down if Demand Model 2 is invoked,

Note that n now refers to the number of failure-prone equipments

to be serviced by the specialist.

One qualitative fact that emerges from (3.6) is that for fixed

total mission time ML = T one can reduce the need for a specialist

by shortening mission time, M, (and correspondingly increasing L)

.

By indefinitely shortening M the right-hand side of (3.6) can be

brought very close to zero, which guarantees that our decision rule

will recommend that the specialist be left ashore. Of course, indefi-

nite shortening of the mission time is impractical, but the tendency

is of interest and can be quantitatively assessed by use of formulas

like (3.6).
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