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AN EXPONENTIAL AUTOREGRESSIVE-MOVING AVERAGE PROCESS EARMA(p,q)

DEFINITION AND CORRELATIONAL PROPERTIES

A. J. Lawrance
University of Birmingham

Birmingham, England

and

P. A. W. Lewis
Naval Postgraduate School
Monterey, California

ABSTRACT

A new model for pth-order autoregressive processes with

exponential marginal distributions EAR(p) is developed and an

earlier model for first order moving average exponential processes

is extended to qth-order, giving an EMA(q) process. The correla-

tion structure of both processes are obtained separately. A

mixed process, EARMA(p,q), incorporating aspects of both EAR(p)

and EMA(q) correlation structures is then developed. The

EARMA(p,q) process is an analog of the standard ARMA(p,q) time

series models for Gaussian processes and is generated from a

single sequence of independent and identically distribution

exponential variables

.





1. INTRODUCTION

The first-order autoregressive sequence, EAR(l), was

introduced by Gaver and Lewis (1975-1978) with the primary aim

of generalizing the Poisson model for point processes to one in

which the intervals between events were correlated but still had,

marginally, exponentially distributed intervals. The EAR(l)

sequence is a simple random linear combination of independent

exponential random variables whose properties are relatively

simple to derive. This is in contrast to previous attempts to

generalize the Poisson process via Markov dependence which led

to intractable models (see e.g. Wold, 1948 and Cox, 1955).

In Lawrance and Lewis (1977) another sequence of dependent

exponential random variables was introduced. This sequence,

called EMA(l), was again a random linear combination of independent

exponential random variables, but had the dependency properties

of a first order moving average process . The first-order moving

average and autoregressive processes were combined by Jacobs

and Lewis (1977) to form the EARMA(1,1) sequence. Jacobs and

Lewis (1977) gave stationary initial conditions and mixing

properties of the sequences, these results applying to the EAR(l)

and EMA(l) processes as special cases.

In the present paper we extend these results and describe

a mixed pth-order autoregressive, qth-order moving average process

with exponential marginal distributions which we denote as

EARMA(p,q) . The process is again a random linear combination



of independent exponential variables, and as such is simple to

generate on a computer; it will thus be useful, for example, in

simulation studies of queues with correlated interarrival times

or service times (see Jacobs, 1978). The process is not unique,

but its correlation sequence {p } does satisfy equations like

the Yule-Walker equations which arise in the study of linear

processes (see e.g. Feller, 1966, or Box and Jenkins 1970).

It is perhaps well to reiterate the essential difference

between the EARMA(p,q) process and the ARMA(p,q) process; this

is that the EARMA(p,q) process is defined to have an exponential

marginal distribution. It is not known how one would pick the

error sequence in the ARMA(p,q) sequence to make it have, even

approximately, marginal exponential distributions. In fact the

marginal distributions would tend to be approximately normally

distributed for most error sequences (Mallows, 1967); the catch

in this result is that the distribution of the error sequence be

independent of the parameters of the moving average and auto-

regression. This is not so for the EARMA(p,q) process.

This paper will be limited to definitions and to description

of the correlational properties of the EARMA(p,q) process. In

Section 2 the EAR(p) model is introduced and an explicit solution

for the required error process for autoregression of order 2 is

given. In Section 3 we describe the extensions of the EMA(l)

model to the EMA(g) model; these are relatively straightforward

and are indicated in Lawrance and Lewis (1977) . The general



EARMA(p,q) model is introduced in Section 4, and specific results

are obtained for the EARMA(1,1), EARMA(2,1) and EARMA(1,2) models in

Section 5.

In deriving correlational properties it is assumed that

the EARMA(p,q) process is stationary. The question of stationarity

,

stationary initial conditions and mixing properties will be con-

sidered elsewhere, as will be questions of distributions of sums

of the dependent variables and spectra of point processes with

EARMA(p,q) interval structure. There are also open questions of

estimation of parameters and fitting to data.

We note too that there is a mild degeneracy to the EAR(p)

process in that one obtains runs in which the variables are

scaled versions of the previous variables. This disappears when

the moving average component is introduced. Another drawback is

that, unlike the ARMA(p,q) model, only positive valued serial

correlations can be obtained from the EARMA(p,q) model and while

much data appears to be of this type (see e.g. Lewis and Shedler,

1977), it is a drawback. This can be overcome by considering

antithetic processes but this aspect of the model is beyond the

scope of the present paper.



2. THE EXPONENTIAL AUTOREGRESSIVE EAR (p) MODEL

2a . Definition .

The standard linear, first-order autoregressive model

for a stationary sequence of random variables {X.} is defined

by the equation

X. = pX. , + e. , i =
f +l,+2, ... , (2.1)

l l-l i — — '

where p is a constant which is less than 1 in absolute value

and {e.} is a sequence of independent and identically distributed

random variables. Gaver and Lewis (1975-1978) showed that if

the {X.} sequence were to have an exponential marginal distri-

bution with parameter A , then the parameter p should be greater

than or equal to zero and less than one, and e. should be zero
l

with probability p and an exponential (A ) random variable, E.,

with probability 1-p. Thus

X
i

= pX
i-l

+ e
i

i = °'±1 't2 > " ,

pX
i _ 1

w.p. p ,

pX
i _ 1

+ E^^ w.p. 1-p,

i = 0,+l,+2, . . . , (2.2)

where {E.} is an i.i.d. sequence of exponential (A ) random

variables. Note that for this EAR(l) model the distribution of

the £. depends on p, the multiplicative weight of X._,.



This violates an assumption which is implicit in many applica-

tions of (2.1), the so-called AR(1) model. In particular standard

results showing that the {X.} sequence becomes a normal process

as p -* 1 for any {e.} sequence are invalid; in the EAR(l)

process the X. 's always have, by construction, an exponential (

-

)

marginal distribution.

Generalization of the usual higher-order autoregressive

models AR(p) based on extensions of (2.1) to higher order

autoregressive exponential processes is difficult. This is

because it is not possible to solve the defining equation for the

distribution of the e. ' s, if it exists. We present here a

different type of p-th order autoregressive models with

exponential marginal distributions. They share with the AR(p)

models the same correlation structure, are p-th order Markov

processes, and are (autoregressively) functions of at least one

of the previous p variables.

The second-order model, EAR (2), takes the form

a, X . , w .p . 1-a
1 l-l ^ 2

X. =
j

(
+ e. 2.3

a„X . _. w .p . a~
2 i-2 ^ 2

where a, and a„ are constants (0 < a,, a„ < 1) and we show

later that the distribution of the e . is uniquely determined

by the requirement that the X. 's have exponential marginal

distributions. The second-order autoregressive nature of the

model is evident; X. is always a function of one of
l 2



the previous two values X. , and X. _. This is in contrast^ l-l 1-2

to the AR(2) model in which X. is a function of a linear com-

bination of X
i-1

and X

.

i-2

The third-order model is given by

a , X . ,

1 l-l

X. =
{ a X.

l I 2 i-2

06 <-> X • ->

3 i-3

w.p 1 - a,

w.p. a
2

(
1-a

3
)

[
+ £

i
•

w.p. ct2»3

(2.4)

The p-th order model is similarly constructed and may be

written

fVi-i

x. =
i

w.p . a.

a
2
X
i-2

W - P '
a
2

a X. w.p. a
P i-P P

+ £ (2.5)

where

and

a
z

= n a. (l-aul ) ,

a^j^ = d-ot
2

) ,

I = 2 , . . . ,p-l

a = II a . .

P j-2 ^

(2.6)

The mixing probabilities and the weights on the auto-

regressed variables are to some extent a matter of choice (other

parametrizations are clearly possible) and we have been guided

by two considerations; having a minimum number of parameters,



preferably the same number of parameters as the order of the

autoregression , and by the need for the autoregression in the EAR(p)

model to reduce in order by one when the last coefficient, a ,

P

is set to zero. In the present parametrization this implies the

weak restriction that it is not possible to suppress intermediate

autoregressions , i.e. dependence of X. on X. in a EARMA ( 2

)

model

.

With regard to the question of parametrization, one could

in (2.3) replace the probabilities a,= (1-a ) and a = a„ by (1-p

and p and there is then no need for the weights a, and ot-

to be less than or equal to one. But if they are not, the process

will not reach equilibrium unless p is suitably chosen, i.e.

be stable. Again, even if the process is stable it is not clear

yet that the additional parameter adds any generality to the

process. We consequently consider only the parametrizations

given in (2.6).

2b. The error sequence {e.}
a

3_

We now Obtain the distribution of the i.i.d. {c.}
l

sequence which will ensure that the {X.} sequence in the EAR(2)

model has an exponential marginal distribution. Let $ (s)
x •

i

and $ (s) be the Laplace-Stielt jes transforms of the marginal
i

distributions of the X.'s and the e.'s:
i l

-X.s -f; . s

$ (s) = E(e X
) ; <J>

(s) = E(e 1
) . (2.7)

X. 4
l

7



Then from Equation (2.3) we have

4) (s) = [(l-a
2

) $ (c^s) + a
2

(})

x
(a

2
s)] 4> (s) , (2.8)

X. i-1 i-2
l

where we have used the fact that expectation of the mixture of

two dependent random variables is the mixture of the expectations

of the marginal random variables, here X. , and X. „. Thus^ l-l i-2

we avoid the joint Laplace-Stietl jes transform which comes in

when one tries to solve the usual linear AR(2) equations to

obtain an exponential process. Assuming marginal stationarity

for the process, we have

X
(s) = [(l-a

2
) <|) (a

1
s) + a

2 <J>x
(a

2
s)]

(J>
(s) . (2.9)

To show that such an error sequence { e . } exists we solve (2.9)

directly and invert the transform. We have for the EAR (2) model,

using the key requirement that the marginal distribution of the

X.'s be exponential (A) , and thus $ v (s) = A/(A+s), that
1 x

*x (s)

'e
(s) =

(l-a
2

) (J)x
(a

1
s) + a

2 <J>x
(a

2
s)

(2.10)

( A+a, s) ( A+a s)

(A+s) [ (l-a
2

) (A+a
2
s) + a

2
(A+«

1
s)]

(2.11)

Then by a partial fraction expansion



(S) = TT„ + 7T n t4~ + TT,v
e 1 A+s 2 A+Ss

where S = (1+a. -a
?

)

a

2
. Using the fact that a, and a are

probabilities, it is easily verified that tt-, tt. , and tt
2

are

positive, and since their sum is equal to 1, we have

<_ 7T
n

, tt. , 7T_ £ 1. Thus e is a convex mixture of a discrete

component and two exponentials, and thus has a proper distribution,

This distribution is also unique, by the unicity theorem for

Laplace-Stielt jes transforms. The complete specification of

e. is, for i = 0, + 1, +_ 2 ' ...

w.p . a, /{ 1+a, - a
2

]

,

= < E
i

w.p. (l-o^) (l-a
2
)/[l-a

2
(1+o^-a ) ] , (2.12)

E
i
/S w.p. (l-a

2
) ( a;L -a 2

)

2
/[ (l + a;L -a 2

) (1-S)
] ,

where {E.} is again an i.i.d. sequence of exponential ( A

)

random' variables . It is obvious from (2.12) that the mean and

variance of e. depend on a and a , the multiplicative

weights of X -, and X_ 2
respectively, as well as on A.

As in the EAR(l) model there is a non-zero probability

of e. being zero; otherwise it is E. or a scaled version of

E. . The higher order models can in principle be similarly

treated, although above the third order there will be difficulty

with the partial fraction expansion.



2c. Correlation structure

The correlation structure of the stationary EAR(p)

models can be obtained by the usual device of multiplying the

defining equations for X. by X. , for r = 1,2,..., and

taking expectations. What results are difference equations

which are entirely analogous to the Yule-Walker type equations

obtained for the standard AR(p) model.

Thus taking the EAR (2) case as a typical example, we

have from (2.3) that

E(X.X. ) = (l-a ) [a,E(X. ,X. ) + E(X. ) E(e.)]
l l-r 2 1 l-l l-r l-r i

+ a [a E(X._„X._ ) + E(X._ ) E(e.)] . (2.13

-1 -2
Using the fact that E(X.) = A , var (X. ) = A , because the

process has an exponential marginal distribution, and from (2.3

that

E(e) = (l-a ) (l-a,+a ) E(X) , (2.14)
2 1 2

we obtain for the correlations p = Corr(X.,X. ) the equation,K r l l-r ^

2
Pr

= a
1
(l-a

2
)p

r _ 1
+ a

2
p r _ 2

(r >_ 1) (2.15)

with p = p_ and p
fi

= 1. For the general EAR(p) process

there is the corrasponding equation

10



p = a,a,p -, + a a„p v + ••• + a a p (r > 1). (2.16)h r 1 1 r-1 2 2 r-2 p p^r-p —

Equation (2.15) is a system of second order difference

equations from which we can obtain the following results.

(i) The solution of the difference equation (2.15) is (see,

for example, Box and Jenkins, 1970, pp. 58-59)

P r
= y^l + y

2
*
r

2
(r > 1) (2.17

Z
1
(1 " Z

2
)Z

1
" 2

2
(1 - z

l
)z

2

(z-j-z ) (1+z, z )

(2.18)

where z, and z are reciprocals of the roots of the

characteristic equation

1 - a
1
(l-a

2
)B - a^B

2
= ,

2 2 2and the roots are real since a, (l-a
9

) + 4a
?

> . Also

<_ z- < z, < 1. An implication of these results is that

the serial correlations are positive and eventually decay

geometrically, i.e. like Y-jzf. We have assumed that a
2

> 0;

otherwise we have the EAR(l) model,

(ii) The correlations p, and p can be uniquely defined in

terms of the parameters a, and a , and vice versa; this

follows from (2.15) for r = 1 and r = 2. We have

11



a
l 2

p
i

= rr^r ; p
2

= a
1
d-a

2
)p

1 + a
2

; (2.19)

and

1/2
p 2" p l

a
2

= \ T~l '
a

i
+ ~ p "- (2.20)

1-P-L

if a ^ 0. If a„ = the model reduces to the EAR(l)

model of Gaver and Lewis (1975-1978), and p, = a .

Equation (2.20) may be used to obtain Yule-Walker estimates

of a and a from estimates of the first two serial

correlations

.

2
(iii) If a„ ^ then, unlike the EAR(l) case in which p_ = p.,

2
we have p_ > p, . This can be seen from (2.19) , which can

be written as p
2

= p ^ + u
2
(1 _ p

2
} ^ p

2^ Note tQQ

that there are values of a, and a_ for which p > p, ;

thus the additional degree of autoregression produces, at

least for the first two serial correlations, a broader

correlation structure than is possible with the EAR(l)

process (a„ = 0)

.

(iv) One way to measure the amount of correlation which is intro-

duced into the sequence {E^} by the autoregression is by

an index of dispersion (Cox and Lewis, 1966, p. 71). This

is just the limiting value of the variance of the sum of

k adjacent to X. 's, standardized by its value for independent

exponential variates

:

12



J = lim var (X)

k -> «, (E(X)}

k-1
1 + 2 I

j-l

(1 -
*>Pl

= 1 + 2 I

j = l
Pj . (2.21)

and is proportional to the initial point of the spectrum

of the process {X.}. For the EAR(2) process this is,

using (2.17) ,

J = 1 +
2Y 1

Z
1

2y
2
z
2

(l-z
1

)

+ d-z
2

)

• (2.22)

This becomes very large as the roots z, and z» approach

1, indicating that the process has very long term dependence

in it

.

Some other properties of the EAR (2) process which are

of interest are that the regression of X. on X. , and X. „^ l l-l i-2

is linear in the given values x. , and x. of X. ,^ l-l 1-2 l-l
and

X
i-2

E(X.|X
i _ 1

= x._
i;

X._
2

= x._
2

)

(l-a„)a,x. , -f a„x. _ + A (l-a_ ) (1-a. +a_ ) ,

2 1 l-l 2 1-2 2 12 (2.23)

and that the conditional correlations of X. and X. „ , given
l i-£ ^

x
i-i-

• , X. . , , are zero for £ = 3,4,i-£-l

13



We note too that the EAR (2) model, like the EAR(l) model,

is slightly degenerate in that one obtains runs of X. 's which

are fixed multiples of the previous X. , or X. „.l-l i-2

Joint distributions, higher-order joint moments and partial

sums of the {X.} process will be considered elsewhere,
l r

3. THE EXPONENTIAL MOVING AVERAGE EMA(q) MODEL

The EAR(l) model of Gaver and Lewis (1975-78) led to the

development by Lawrance and Lewis (1977) of a corresponding first-

order exponential moving average model; this took the form, in

the backward case, of

X. =
l

3E. w.p. 3

(0 £6<_1; i= 0,+l,+2, ...) (3.1
BE. + E. . w.p. (1-3)

,

i l-l c

where the {E.} is again a sequence of i.i.d. exponential ( A

)

variables. The X.'s have an exponential marginal- distribution

and are only serially dependent for lag one; this model is highly

tractable and a full account of the statistically useful properties

was obtained. The forward model is defined as a random mixture

of 3E. and 3E . + E. , , instead of RE- and RE- 4- E- , .
i l i-i-l i l l-l

Lawrance and Lewis (1977) pointed out briefly that exten-

sions to second-order moving-average models are possible; thus we

replace E. , in (3.1) by another EMA(l) variable, a random

linear combination of 3 n E. , and 3, E . -. + E. „, which will still
1 l-l 1 l-l i-2

be exponentially distributed and independent of the E. variable.
14

1



Thus the second order backward model, EMA(2), becomes

3
2
E. w.p. S-

X. =
l

;

2
E
i

+ 3
l
E
i-l

w.p. (1-3
2
)3

1
(3.2)

:

2
E
i

+ 3
l
E
i-l

+ E
i-2

w,p - (1-3
2

) (1 " 3
i

)
'

where < 3 , 3
?

<_ 1 ; i = 0,+l,+2, ... . The serial dependency

of this model clearly stops at the second lag and

p
l

= (1_6
2

) 3
1
U " (1 - 6

2
)3

1
}; p

2
= 3

2
(1 " 3

1
) (1 " 3

2
)# (3 ' 3)

This model reduces to the independence case and the EMA(l) model

for various values of 3-, and 3
?

. The general EMA(q) model takes

the form

X. =
l

3 E.
q i

; e. + 3 ,e. ,

q l q-1 l-l

3 E. + 3 ,E. . +
q l q-1 i-l

3 E. + 3 ,E. , +
q l q-1 i-l

+ 3-.E. ,,
1 l-q+l

w.p . b
q+1

w.p . b

w.p . b.

+ 3 E. ,. + E. w.p. b,
1 i-q+1 l-q 1

(3.4)

for £ 31# 3
2

, ... , 3 < 1; i = 0, +1, +2, and

i = q+1 ,

b. =
l

(1-0 ) (l-3
i
)3

i _ 1 q > i >_ 2, (3.5)

(1-3 ) • (l-3
i

)

15
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Note that the 3- 's can be obtained uniquely from the b. • s ; there

are q+1 b. 's, but only q 3's, since the sum of the b. 's is equal

to one. It is simple to see that the {X.} have exponential

marginal distributions. The serial correlations for this model

clearly have the cut-off property associated with moving average

schemes; they can be obtained without recourse to difference

equations. Premultiplication of (3.4) by X._ (r >_ 1) and then

taking an expectation gives

El¥i-r' = Wl + ••• + b
l>

E(¥i-r'

+ Vl <b
q

+ "" + b
l

) E(E
i-l

X
i-r»

+ • • •

+ B
1
(b

a
+ b

1
) E(E._

q+1
X._

r
) + blE (E..

q
X..

r
). (3.6)

This simplifies since there are the relations

3
i
(b
i+1

+ ••• + b
±

) = b
i+1 (q > i > 1) . (3.7)

Thus on converting (3.6) to covariances we have

:. ,X. ) = Y b _,, Cov(E. ,X.
l l-r L

n q+l-m l-m l-
Cov(X.,X. ) = ) b ,, Cov(E. ,X. ) . (3.8)

l l-r L
n q+l-m i-m' l-r

m=0 ^

The covariances on the right-hand side of (3.8) follow from (3.4) as

b , , Var (E. ) < m < qq-m+1 i-m — — ^

Cov(E. ,X. ) =
< (3.9)i-m i
|

otherwise

.
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Thus (3.8) becomes

Cov(x.,X
i _r

) = I b b
q_m+r+1

Var(E..
m+r ) (l<r<q) (3.10)

m=r

with

q-r+1
[ b b ^ (1 < r < q)L v v+r — — ^

v=l

(q+1 < r < oo)

p
(c3 } = Corr(X.,X. ) =< t 3 ' 11 *

r l l-r

Thus the serial correlations are just lagged products of the bj_

sequence and the formula (3.11) is completely analogous to the

formula for the serial correlations of the standard MA(q) process;

see Box and Jenkins, 1970, p. 68. It can be seen from (3.11) that

all the correlations are nonnegative and it may further be shown

that they are bounded above by 1/4. Note too that since the .:
^ 's

are lagged products of the b. sequence, it is not possible to

determine the b. 's uniquely from the p
g 's. Therefore it is

not possible to uniquely determine the 3- 's from the p ^ 's.

Consider now the index of dispersion J, defined at (2.21)

.

It can easily be shown, from (3.11), that for the EMA(q) process,

this is given by^
<3 + l

J - 2 -
J b (3.12)

P = l

This is maximized when all b s are equal and thus 6 = 1/(1+2.) ,

I = 1,2, ...,q. These values of 3
p

have the property that they

give equal weights to the q+1 possible linear combinations which

can make up an X., that is b. = l/(l+q), i = 1,2,..., q+1.

17



The maximum values of J are then, as q increases, 1.5, 1.666,

1.750, 1.8000 and generally, 1 + q/(l+q) with 2 as limiting value;

thus beyond a certain point, increasing the order of the moving

average (which can conceptually go to infinity), has little effect.

This implies that the over all dependence in the process, as

expressed by J, is bounded and that very high values of q do

not substantially increase dependence.

A convenient notation for the EMA(q) sequence {X.} is

M.^ , meaning that X. has a moving average structure of order q

over E., E. ,, ... , E. using the parameters 3,3 ,,...,$,
l l-l l-q 3 r

q q-1' 1

In this notation, M. g can be expressed in terms of M. by

the recursion

M.(q) = 3 E. + if^M.^: 15
, q = 1,2,... (3.13)

i q i i i-l

where {I. } is an independent sequence of binary variables

taking value zero with probability b , = 3 •

4. THE EXPONENTIAL AUTOREGRESSIVE-MOVING AVERAGE PROCESSES

EARMA(p,q)

.

4a . Definitions

We have defined both autoregressive processes and moving-

average processes in exponential variables of any specified orders,

p and q. Here we bring them together into a single process,

18



EARMA(p,q), although it will be seen that the method of combination

is not unique. We will then have a process of great flexibility

in modelling dependent exponential variables, bearing favorable

comparison with the standard ARMA(p,q) process in modelling dependent

Gaussian variables. Jacobs and Lewis (1977) linked the two first

order exponential processes EMA(l) and EAR(l), giving an EARMA(1,1)

mixed model and obtained the serial correlations, some higher

order explicit results and discussed central limit and mixing

properties. For the general mixed process we shall give two types

of model but restrict ourselves to their correlational properties,

and in particular derive the difference equations satisfied by

the serial correlations; these are similar but not identical to

those of the standard ARMA process. The special process EARMA(2,1)

and EARMA(1,2) will be considered in more detail.

In seeking exponentially distributed mixed autoregressive-

moving average processes we will work from the pure (backward)

moving average process EMA(q) given in (3.4) . One reason why

the exponential moving average and exponential autoregressive

models are appealing and tractable is that they are expressed

in terms of independent exponential variables. If this property

is to be carried over into the mixed models, then the autoregressive

contribution should enter without violating this feature; thus,

to construct the EARMA(p,l) process we replace the E._, variable

in the EMA(l) of (3.1) by &_-,, an EAR(p) variable. This is
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independent of E. in (3.1) because it is a function only of

E. , , E._
9 , ... . The defining equation for the EARMA(p,l) process

is thus

X. =
1

BE.
i

BE. + AJP}

w.p

w.p. 1-6

(0 <B< 1; i=0,+l,+2, . . .) (4.1)

which is the model treated by Jacobs and Lewis (1977) when

p = 1. Similarly, (3.4) leads, on replacing E
i _q

by A^
to the EARMA(p,q) process, with equation

3 E.
q i

l E. + 3 iE. ,

q l q-1 l-l

w .p. b ,,r q+1

w.p . b

X. =
l

q l q-1 i-l 1 i-q+1

(P)

w.p. b.

3 E. + 3 iE. , +•••+ 3..E. .- + A.^' w.p. b,
q l q-1 i-l 1 i-q+1 l-q 1

(4.2

for i = 0, +1, +2,..., where the b^'s are defined at (3.5) and

(p.q)
< 3

X
, ,3 < 1. Writing X

q - i
as a variable in the

EARMA(p,q) process based on the moving average parameters

3 , 3 _-, , ... / 3-, , the mixed process can be defined recursively as

x:
i
(P/q) _

3 E.
q i

3 E. + X.
(p ' q - 1}

q l i-l

w.p 6

w.p. l-l

(i=0,+l,+2, . . .

)

(4.3)
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This class of models will sometimes be written as EARMA (p,q)

to signify that it is based on a backward moving average.

Consider further the structure of the mixed model; for instance,

X. depends on E. , E . _, , ... and not on E -,-i/ E -.9' ••• >

paralleling the standard model ARMA(p,q) model. In contrast

to the standard model it is also possible that the autoregressive

aspect could be absent in stretches of the process when one of

the pure moving average selections is chosen each time. Dependency

would still be retained in the model by the moving average part

(apart from the q = 1 case of course) ; while this is not at

all unnatural there can be other situations when it is desired

to always have autoregressive dependency. Such considerations

lead to alternative mixed models; initial concern at the non-

uniqueness of these models is best allayed by realizing that

there is nothing unique about the standard Gaussian mixed

ARMA(p,q) models. In an alternative formulation of the general

mixed model, to be denoted by EARMA (p,q), the shifted form of

the forward moving average, briefly mentioned in Section 3 is

used. The retention of independence between successive terms

in the model then leads to the EARMA (p,l) process as

'B-jAJPJ w.p. £
1

,

X. =< (i = 0,+l,+2, ...) (4.4)
1

f
B
l
A
i-l

+ E
i

W * p * 1_e
i'
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and to the EARMA (p,q) as

> A.(p) w.p. b , ,

q l-q r q+1

3 A.(p) + 3 ,E. ,. w.p. b ,

q l-q q-1 i-q+1 q

X. = / I (4.5)
\

6 A.(p) + 3 ,E. „,, +•••+ e,E. -,
w.p. b ,

q l-q q-1 l-q+1 1 i-l ^

3 A.(p) + 3 n
E. ,. +•••+ 3-.E. , + E. w.p. b ,

q l-q q-1 l-q+1 1 i _ l i 1

for i = 0, +1, +2, . . . . It can be seen from (4.5) that this

has the structure

(Vi-q W ' P
-

6
q

x{P ' q)
= \

( P ) (q_i)
(i=0 /±l, ±2,...) (4.6)

1
13 a: p; + x: q ; w.p. 1-3
I q l-q i * q

where X. q is a variable in the shifted forward moving average

model of order q-1 using the parameters 3 i / ... , 3-1 . Thus

the autoregressive dependence is always present, and is lagged

q values in arrears; the moving average variable gives greater

flexibility to the initial form of the dependence, and differs for

the two models. In EARMA (p,q) the most recent E. is always

included; then with probability (1-3 )3 -• a linear combination

of E. and E. , is included, and so on moving back; thus
l l-l ^

because of the certain addition of a new E. each time there
l

cannot be runs of scaled values; further, this is a back progression,

natural in many cases. The price of these features is that the

model can exhibit patches of independence when only the E. is

chosen, i.e. the autoregressive tail is not chosen. This cannot
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happen in the EARMA (p,q) where the autoregres sive dependency

is always present; however, complicated but weak runs of scaled

values are just possible in the EARMA (p,q) model, arising from

a low order autoregressive contribution sucessively being chosen

on its own. Such a situation would be extremely rare. Our general

feeling is that in practice there would not be much to choose

from between the two types; a third type, more similar to

EARMA (p,q) than the other can be formed by interchanging the

processes in (4.6) with a suitable shifting of scale. This is

not considered here.

4b . Correlations for the backward mixed model EARMA (p,q)

We next derive equations satisfied by the serial

correlations of the EARMA (p,q) process, denoted here simply as

EARMA(p,q). Multiplying each side of the defining equations

(4 2) bv X. (r ± 0) and taking expectations, gives
l-r

E(X
i
X
i _ r

) = 6
q
(b
g+1

+ ••• + b
x

) E(E
i
X
i _ r

) r = +1, +2, ...

+ 3
q _ x

(b
g

+ ... + b,) E(E._
i
X
i _r

)

+ ..- + &1 (b
2

+ b
x

) E(E._
q+1

X
i _r

)

+ b
1
E(A.(p) X. ) (4.7)

1 l-q l-r

This equation is not valid for r = since the expectation of

the mixture is not the mixture of the expectations when the

2?.



variables are identical. Following equations (3.6), (3.7) and

(3.8), the covariance form of (4.7) becomes

Cov(X
i
,X

i _r
)

q-1
b Ll Cov(E. ,X. ) + b. Cov(A.(p) ,X. ) .L

n q+l-m l-m l-r 1 i-Q i-r
m=0 ^ ^

(4.8)

It now becomes easier to work mainly in terms of correlations and

to define

p = Cov(X.,X. ) and K = Corr(E.,X. ) (4.9)
'r l l-r r i l-r

for r = , +1 , + 2 , ... . Since the E. and X. variables have

the same marginal exponential distribution, (4.8) becomes

q-1
(P)K + b

n
Corr (A.^' , X.u ~ q+l-m r-m 1 i-q i-r

m=0 ^ ^
(4.10)

for r = +1, + 2, ... . To calculate the cross-covariances

between the autoregressive and mixed process, we first note

that

I . (d) w.paA ( P|
1 l-l-q

(P)_
l

i-q

2 i-2-q

p i-p-q

w.p

w.p

+ e
i-q

i = 0,+l,+2,

(4.11)
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following the notation at (2.5) and (2.6). The r . -term in (4.11)

has a distribution which depends only on E., such as was determined

for p = 2 in Section 2. Multiplication of (4.11) by X._ in

order to calculate correlations leads to

Corr(A.(p) ,X. )l-q l-r

= 7 a„a n
Corr(A. . X. ) + Cov(e. ,X. )/Var(E) ,

j^, £ I i-£-q l-r i-q l-r

r = 0,+l,+2, ... . (4.12)

We now wish to substitute from (4.10) for the correlations in (4.12)

and so obtain a difference equation for p . However we do not

have (4.10) in the case r = 0. Thus in (4.12) when i-r-(i--q) =q

this substitution is not possible, that is when £ = r if

r <_ p. In this case

Corr (A.
(p)

,X. ) = b, , (4.13)
l-q l 1

as may be seen from (4.2). Thus (4.10) and (4.12) lead to

q-1
y

r L _ q+l-m r-m
m=0 ^

P. I *> + i. K

P* q
-1

2
Y a a {p V b ,, K

n
+ a a b

n

n
L

, £ £ r-£ L
n q+l-m r-£-m r r 1

£=1 m=0 ^

+ b Cov(e
i _

,X
i _ r

)/Var(E) (4.14)
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2
for r = l,2,...,p; if r > p then the term a a b is omitted.

The asterisk denotes that the I = r term is omitted from this

summation when r <_ p . The equation simplifies on defining

p
Q

= b^ and C
r_g

= Cov ( £
i _q

/^
i _r ) /Var (E) ; (4.15

equation (4.14) may then be written

B 9; 1 p*
p = ) a.a

n p „+./*>,, {K - X K- . . }+ b,C . (4.16
r /, I lr- I L ~ q+l-m r-m L

, r-£-m 1 r-q1=1 m=0 ^ 1=1 M

This is the desired general result.

Noting that K. = for j >_ 1 , we see that for r > p+q,

(4.16) reduces to an rth order difference equation

p = a,a,p , + a a_p „ + ••• + a a p (r > p+q) , (4.17r 1 l K r-l 2 2 r-2 p p^r-p — * ^ '

which is the same as (2.16) for the EAR(p) process. To calculate

the initial p+q-1 serial correlations, n., . ...n , , we needr -a ' M l ' Mp+q-l

K
Q

, K_
1

, ... , K_ and C
Q

, C_ lf ... , C_ 1#
- explicit

expressions for these quantities are given in the Appendix. The

correlation structure of EARMA(p,q) processes is thus similar to

that of the standard ARMA(p,q) processes; the only difference is

that initial calculation of the first p+q serial correlations

are needed to start the difference equation (4.17), rather than

the first p as in the ARMA(p,q) case. Note finally that (4.16)

is only strictly true when p >_ 1 , q >_ 1 , although similarities

with the equations for the (p = 0, q) case and (p, q = 0) case

are apparent

.
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These results all apply to the backward model, EARMA(p,q);

for the forward EARMA (p,q) model (see (4.5)) slightly

different correlation equations apply. The main difference is

that (4.8) is now

(n) 9
Corr(X.,X. ) = b - Corr(A. F ',X. ) + Y b . K . (4.18)

l l-r q+1 i-g i-r _-. q+l-m r-q+m

Using (4.12) we then find, corresponding to (4.16), that

? ? ?*
p = ) a.a n p „ + ) b

, , {K - ) b „ )+b
,
,r

5=1 r-l f;, q+l-m r-q+m .£, r-£-q+m q+l^r-q

(4.19)

for r = 1,2,... with p = b
,

, ; as before explicit calculation
q+1 ^

of K n , K ,,..., K j0 and C. f C ,, ... , C ,. are
-1 -p-q+2 -1 -q+1

required to obtain the first p+q serial conditions. Further

comparisons between the two types of model will be dealt with

elsewhere

.

5. SPECIAL CASES OF THE EARMA (p,q) PROCESS

We shall give the explicit versions of the correlation

equations (4.16) in the cases (p = 1, q = 1), (p = 2, q = 1)

and (p = 1, q = 2); these are considered to be potentially the

most useful.
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(i) EARMA(1,1)

This model will be written in the notation

X

w.p. 3

BE. + A. , w.p. 1-6
1 l-l

where

A. = pA. , + £
.

,

l l-l l
E . =
1

w.p

E . w.p. 1-p

The correlation equations, from (4.16), are then

p l
= a

l
a
l
b
l

+ b
2
K
l

+ b
l
C

'
p r

= a
l
a
l pr-l '

(r - 2)

giving

Pl = p(l-3) + (1-p) 3(1-3), P r
= PP r _i,

(r > 2

This agrees with the result (2.4) of Jacobs and Lewis (1977).

(ii) EARMA(2,1)

Using (4.16) to obtain the results for p, and p we have

p l
= a

i
a
i
b
i

+ a
?
a
2
p -l

+ b 2^ K l ~ K
-l^

+ b
l
C

'

Thus
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(l-a
2
a
2

) p^

2 -1 -1
= a

1
a
1
(l-6) - a

1
a
1
3(l-3) (tTj^ + tt

2
S ) + (i,+ S i ) 3(1-6)

and

2
P
2

= a
1
a
1
p
1

+ a a (1-3)

with

p r
= a

l
a
l
p r-l

+ a
2
a
2
p r-2 (r > 3)

(iii) EARMA(1,2)

In this case (4.16) gives

and

2
p, = a,a,b, + b_K, + k

2
K + ^ i c _ i

'<

P
2

= a
1
a
1
p 1

+ b
3
(K

2
-K

1
) + b

2
(K

1
-K

Q
) + b^,

p = a, a, p , (r > 3) .

r 1 1 r-1 —

These simplify to

p
±

= p(l-6
1

)

2
(l - 3

2
)

2
+ 3

1
3
2
(l-3

2
) + (tt

1
+ S

_1
tt

2
) 3

]
_
(1-B

]
_) U-B 2

)

2
,

P
2

= PPl - $
1
B
2
(1-S

2
) + (tt

1
+ S

_1
tt

2
) (l-6

1
) 3

2
(1-B

2
) ,

and

p = a
n a, p , (r > 3

)

r 1 1 r-1 —
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6 . FURTHER DEVELOPMENTS

There are many facets and properties of the EARMA(p,q)

process which will be investigated in later papers. Some of these

properties have been investigated for the EAR(l) process, the

EMA(l) process and the EARMA(1,1) process by Gaver and Lewis

(1975-78), Lawrance and Lewis (1977) and Jacobs and Lewis (1977)

respectively. They include mixing conditions, infinite divisibility,

stationary initial conditions, joint distributions, distributions

of sums, spectra and higher order correlations. It should also

be emphasized that all the serial correlations in the EARMA(p,q)

process are positive; this aspect of the process can be broadened

by considering antithetic processes and will be discussed else-

where .

Another important question which arises is whether there

are non-normal distributions other than the exponential for which

mixed autoregressive , moving average structures can be defined

analogous to EARMA(p,q) . The general question is difficult and

has been considered by Gaver and Lewis (1975-78) for the first

order-autoregressive process. However it is clear that by adding

two independent EARMA(p,q) processes, say {xf
1
^} and {X (2 ^},

i i

we obtain a process which has Gamma (2) marginal distributions,

P{X. < X (1)
+ X (2)

< x} = / v e"
V

dv ,
i — i i — J1
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and ARMA(p,q) correlation structure. Some analysis shows that

this process is generated directly as a mixture over two independent

i.i.d. exponential (A) sequences, {E. '} and {E, ), possibly

scaled. It would be interesting to extend this process to the

fractional Gamma case, i.e. k not an integer but it is not

clear whether this process exists or how to construct it.

For the first-order autoregressive case, it is simple to

show that the random variable e. defined at (2.12) is infinitely

divisible and therefore that the solution of (2.4) for e. exists
1

when X. is Gamma (k, A) and has a Laplace-Stiel jes transform

which is just (2.11) raised to the power k,

E(e x
) = (p + (1-p) T—r) , k > 0, A > (6.1)

AtS

However it is difficult to invert this transform, or to generate

the random variable on a computer unless « is an integer.

This should give an indication of some of the interesting

theoretical questions which are raised by the EARMA process.
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APPENDIX: Calculations of {K_ , r = 0,1,2, ...} and

{C_ , r = ,l,...,q-l} for EARMA(p,q) models

By definition

K = Corr(E.,X.^ ) = Corr(E. ,X.) . (A.l)
-r 1 i+r l-r 1

By the usual process of multiplication and expectation it is found

that

Var(E. ) < r < q-1 ,

1 "r X
b, Cov(E. ,A.

( P'
I 1 i-r i-c

Cov(E. ,X.) = v , . (A. 2)

and in terms of correlations

b - < r < q-1 ,q-r+1 — — ^

b
1
Corr(E

i _r
,A{^) q <_ r <

The calculation of the cross-correlations between the independent

exponential sequence and the derived autoregressive sequence

proceeds in the usual way, and gives

Corr (E. ,A.(p) ) = Cov (E. , e . ) /Var (E) = d ; (A. 4)

min(j,p) ()
Corr(E. .,A^ pJ

)
= I a„a„ Corr (E

.

. ,A )
yJ ) . (A. 5)

± —
J 1 n _-| XX X J X X,
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We only need (A. 5) when p >_ 2 and for j = l,2,...,p-2.

Recursively then (A. 4) and (A. 5) give

Corr(E. .,A.(p) )

= (a
1
a
1
)d

Q
(j=l)

2
= { (a a.^ + (a

2
a
2
)>d (j=2)

= {(a
i
a
1

)

3
+ 2(a

1
a
1

) («
2
a
2

) + ( a
3
a
3
)^ d (j= 3 ) (A. 6)

4 2
= { (a, a,) + 3(oua,) (a

2
a
2

) + 2 (a, a, ) (a^a.,

)

2
+ (a

2
a
2

) + (a
4
a
4
)}d

Q
. (j=4)

Further expressions will be evident based on the fact that the

sum of the suffices equals j , that all possible such groups

of terms are present, and that the coefficient of a particular

term is the number of distinct orders of a term of that type.

By definition we have

C_ = Cov(e . ,X.
+r

)/Var (X) = Cov ( e
i _r

, X^ /Var (X) . (A. 7)

As at (A. 2) above we have

Cov(e. ,X.) = b ,, Cov(e. ,E. ) , < r < q-1 . (A. 8)
l-r i q+l-r l-r l-r — — M

Hence
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C.
r = Vl-r d

•
(A - 9 »

The calculation of (A. 8) depends on the form of the error random

variable £. as a function of the random variable E. . For
1 1

example, in the EAR (2) case,

d =
^l

+ 7T

2
//S

'
(A. 10)
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