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MULTITYPE MULTIPROGRAMMING:

PROBABILITY MODELS AND NUMERICAL PROCEDURES

*
Donald P. Gaver

George Humfeld

1 . Introduction

It has long been recognized that a multiprogramming computer

system may be represented by some form of cyclic queueing model,

and many papers have been, and continue to be, written on this

theme; see Gaver [4], Buzen [2], Baskett [1], Chandy [3]. Of con-

siderable influence in this area was the paper by Gordon and Newell

[6] which effectively demonstrated a simple structure for the joint

stationary distribution of numbers of program segments (jobs) present

at each of several servers: e.g. one or more CPUs and several disc

drives. See also the work of Whittle [10] and of Kingman [7] in

this connection. The basic assumption that has been made is that

specification of a total number, J, of jobs actively being proc-

essed is given, and that a random vector (Nrpu ,N, ,N
2

, . . . ,N )

denotes the number of jobs at the CPU, and also the number of jobs

at each peripheral processor. Once a job quits any processor it

reports to another with a given routing probability, independently

of previous history. In short, the system is modelled as a vector-

state Markov process—one that is nearly explicitly solvable owing

to the special structure of the equations of probability balance.

Recognition of literal deficiencies in the above models have led

to changed formulations. For instance, Baskett and co-workers [1]

have noted that "processor sharing," i.e. a limiting form of time

*
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slicing, preserves the Markov property when jobs with several

burst time distributions are simultaneously present at a server;

again a convenient algebraic form of solution is available from

which numerical values may be obtained to be used for assessing

configurations and suggesting changes. Other studies with the

goal of reducing dependence upon Markov-type assumptions (e.g.

exponential burst times) have also been made, cf. Gaver and

Shedler [5] , and Reiser and Kobayashi 18]

.

The purpose of the present paper is to study systems in

which different job types are present at the various servers and

are processed according to a variety of scheduling disciplines,

in particular in "first-come, first-served" order. Our approach

is numerical, and is applied to an example which is also analyzed

by means of the Gordon and Newell (GN) model. Using a plausible

method of fitting the latter provides a reasonably satisfactory

approximation to the "true" multitype system parameters.



2 . Multi-Job-Type Markov Model Formulations and Solution Method s

In this section we present a model that explicitly recognizes

the presence of jobs of different types (i.e. requiring different

resources) in a multiprogramming computer system. Furthermore,

the model does not specify a particular, convenient, order of service

at the various processors, but rather allows that order to be

specified within limits, in order to allow the effects of scheduling

to be studied. For instance, one can permit jobs to be handled

"first-come, first-served" at all, or a subset of processors (per-

haps just at the peripherals); on other processors, processor

sharing or some other form of priority may be the scheduling pro-

cedure of choice. In this paper we concentrate on "f.c.,f.s." for

definiteness.

In order to carry out the above analysis it becomes necessary

to (a) describe system states, (b) represent the equations of

probability balance in terms of those states, (c) solve the equa-

tions of (b) in order to yield useful numbers, and (d) combine the

resulting numbers into measures of system performance. In order

to describe our procedure we shall deal with simple examples.

2 . 1 Assumptions

The system of interest consists of a single CPU and C = 2

peripheral processors (disc drives). The core capacity is J jobs,

J considered fixed. Programs of two types inhabit the system:

J
1

of type 1, and J
2

of type 2. The types exhibit different

burst time and routing behavior: the rate of CPU burst completion

for type i is A
.

, and of peripheral or channel completion is



y. . for type i on channel or device j. The probability that

type i request peripheral processor j , abbreviated PP j upon

completion of CPU burst is a. ., and j> a. . = 1. Note that the

above structure still involves Markov-like assumptions, for burst

times are exponentially distributed (memoryless) within types. But

clearly a simple compilation of numbers present at CPU and periph-

erals does not define a Markov process unless special service rules

are followed. In particular, f.c, f.s. rules do not permit such

a simplification, for the exact order of the types at each server

must be known. A convenient method of state description follows.

2. 2 State Description: System of CPU and Two Peripherals

The system state is given by

(i) the number of jobs of each type present at each processing
unit,

(ii) the identity (type) of job in process at each processor,

(iii) the order of the jobs enqueued at each processor.

A system state can be specified as a J+ 2 * 1 (row) vector. The

first J components of the state vector are, stored in some order,

J, "ones" and J
2

"twos" representing the job segments of type 1

stand type 2. The J+l— component enumerates the jobs at periph-

eral processor 1, and the J + 2— component enumerates

stthose at PP2. If the J+l— component equals N, , and the

J+2— is N
2

then, reading from left to right, the first N,

components of ISTATE, the state vector, are the jobs present at

PP1, the second N
2

are those at PP2, and the remaining J - N, - N
2

jobs are present at the CPU. Reading from left to right in ISTATE



the jobs at any processor are listed in the reverse of their order

of arrival (the line forms to the left) , and hence, in the case

of f.c.f f.s. discipline, in the reverse of their service order

at that processor. For a single processor at each point, the right-

most job is the one in service, and the others are enqueued.

An example follows.

Example 1. J, =3, J
2
=4, J = 7.

ISTATE = {2,1,2,1,2,2,1,3,2}

N, = 3 in PP1, N~ = 2 2 in CPU N = N, = Number
1 2 a b

pp2
(right most in in PP

2
number

service) at PP1

There are three jobs at PP1, a 2 is in service followed by a 1 and

a 2; there are two jobs at PP2, a 2 is in service followed by a 1

;

there are two at the CPU, a 1 is in service followed by a 1

.

Example 2. Same as above but with the following arrangement of

jobs

.

ISTATE = {2,1,2,1,2,2,1,0,0}.

since components J+ 1 and J+ 2 are zero, no jobs are present

at PP1 or PP2, and a job of type 1 is in CPU service.

Example 3. Same as above, but

ISTATE = {2,1,2,1,2,2,1,7,0}.



Here all 7 jobs are at PP1, and the J— component represents the

job type in PP1 service, rather than in CPU service as before.

2 . 3 Sequential Numbering of States

It is convenient to re-name the states in the system by

lexicographic ordering of the ISTATE vector. This is accomplished

as follows for the two peripheral case; all others are treated

analogously.

Example 4. J, =3, J~ = 4, J = 7.

The smallest (lexicographically speaking) vector represent-

ing a possible state is seen to be

{1,1,1,2,2,2,2,0,0},

meaning that all jobs are at the CPU, with the 2's lined up ahead

of the ones. Next comes

{1,1,1,2,2,2,2,0,1}, i = 1,2,. ..,7,

then

then

U,l,l,2,2,2,2,l,i}, £ i £ 6,

{1, 1,1, 2, 2, 2, 2, 2, i}, £ i £ 5,

• • •

{1,1,1,2,2,2,2,7,0},

{1,1,2,1,2,2,2,0,0}

• • • • • •

{1,1,2,1,2,2,2,7,0}



{1,1,2,2,1,2,2,0,0}

{1,1,2,2,1,2,2,7,0}

• • • • •

up to, finally,

{2,2,2,2,1,1,1,7,0}.

The above scheme, and its generalizations, has been programmed in

FORTRAN. It can now be applied at the next stage to generate and

solve the equations of probability balance.



3 . Generation of Balance Equations

After the system states have been placed in lexicographic

order we may speak of states i and j , where i and j are

integers, and of p., the long-run probability that the system is

in state i. The probabilities p., i = 1,.. .,1 satisfy the

system of probability balance equations

p. • Rate of Transition from state i = 7 p. • Rate of Transition
1

tfi : (3.1

from j to i

Referring to the above as the i— balance equation, where the

sequence {i} enumerates the states in the lexicographic order

outlined, the balance equations are generated one at a time.

The rate of transition from state i is seen to be the

sum of three numbers: the rate of transition of the appropriate

job type from (a) PP1, (b) PP2, and (c) the CPU. If state i does

not permit an occupant of a server, the particular rate is zero.

Example 5. ISTATE = {1,1,2,2,1,2,2,3,3}

in the same setup as before. The state number could be determined

according to our rules, but whatever the number the rate of leaving

the state depicted is simply y 21
+ y 22 +X ?

.

The rate of transition to state i from j is obtained

similarly.

Example 6. If, in the previous setup the i— state is

ISTATE = {1,1,2,2,1,2,2,3,3,}.

then this state may be reached from the following states in one

transition:
8



j 1
= {1,1,2,2,1,2,2,3,4}

or

j 2
= {1,1,2,2,2,1,2,4,3}

or (3.2)

j 3
= {1,1,2,1,2,2,2,3,2}

or

j 4
= {1,2,2,1,2,2,1,2,3}.

j, * i when a type 2 at PP2 proceeds to the CPU; the rate is

^22' Jo "*" ^ when a type 2 at PP1 goes to the CPU; the rate is

U2 -i / jo -*" i when a type 2 at the CPU goes to PP2; the rate is

A^ou-, and finally j* -* i when a type 1 at the CPU goes to PP1,

with rate A, a, ,

.



4. Iterative Solution of the Balance Equations

The i— balance equation, (8.1) , may be expressed as follows

p i
= f

i (pl' p 2'
* '

'

,P I*
(4.1)

where I is the total number of states—typically very large.
I

Also, the normalization condition prevails: \ p. = 1. The f.

i=l
may be derived by simply dividing the right-hand side of (3.1) by

the Rate of Transition from state i, although other prescriptions

are also worth considering. The above system represents a large

system of linear equations with an exceptionally sparse matrix,

as indicated by Example 6. Hence, an iterative solution is sug-

gested, and the following variants of Gauss-Seidel iteration, [9]

have proven to be effective.

Procedure 1

(a) Choose a set of non-negative initial gueues, p. , for

the probabilities p.. Sometimes conveniently p. = I ,

although approximate solutions, e.g. those derived by

Gordon-Newell models, may also be useful.

(b) Compute the first iteration

q
(2) = f

, (1) (1) (1)

(4.2)

and then

(2) . , (2) (1) (1).
q^ = f

2 (qi /P2 / • • • /Pj )

(2) _ f , (2) (2) (2) (1) (1)
qi i (q l ' q 2 ' * ' '

'

qi-l'pi /---/Pj

(2) . , (2) (2) (IK
q I

= f
I (ql ' q 2 '•••'?! >

'

Pl
2)

= 4 2)
/ l qf (4.3)
i=l

10



(c) In general,

(n+1) . , (n+1) (n+1) (n+1) (n) (n) . , ,

q i
= f

i (q l ,q 2 '••" <

3i-i 'Pi "-"Pi ) <
4 - 4 )

and thence

p
(n+ l) =q (n+l)/

I q
(n+l)

f ± m x<2 , (45)
i=l

provides the new, improved approximate probabilities. The above

procedure is carried out until the difference |p. -p. | is

sufficiently small. Mathematical convergence properties of the

above procedure have been substantiated in work with J. P. Lehoczky.

Procedure 2

This alternative procedure may also be used effectively,

and is the one that gives rise to the numerical examples to follow.

(a) Same as above.

(b) Compute the first iteration

(2) . , (1) (1) (1),
p 2

= f
2
(p l /P 2 "•• ' p i '

(4.6)

(2) -
, (1) (2) (1) (1),

P 3
= f

3
(p

l ' P 2 ,P 3 '---'Pi )

• • •

(2) -
, (1) (2) (2) (1) (1),

p i
= f

i (p l /P 2 '••"Pi-i'Pi '""Pi )

(2) , , (1) (2) (1),
P I

= f
I (p

l /P 2 '' '

'

,P I
} '

and finally I
p* (2) + max(l- I p{

2)
,0)

p{
2)

=
2
~ (4 ' 7)

where

pi
(2)

-'iCpJ
1'^ 2 '

p^
2)

»- «- 8 >

11



(c) In general,

(n+1) _ , (n) _(n+l) n ( n+1 > n < n ) n ( n )^ (a as

for i = 2,3,.. .,1/

and finally I

(n+1)
p-'"+1 ' +max (l-.I

2
p^',0,

p£
n X; = -i- 2 — = (4.10)

where

Pl
<n+1>

" ^(pl
n)

'P2
n+1)

?i
n+1)

>- f 4 - 11 '

12



5 . Numerical Comparisons

Our techniques have been used to compute long-run operating

characteristics for a system, these being for present purposes,

(i) the fraction of time spent idle at CPU, and at the individual

PP units,

(ii) the expected number of jobs present at the CPU, and

(iii) the expected number of jobs present at the PP stage as a

whole. We have been particularly interested in comparing

our results with those obtained by fitting a Gordon and

Newell cyclic model to a situation with multi-type jobs.

Comparison 1

Suppose it is known that

y
i;L

= 1.0 y 21
= N.A, a. , = 1 . , a,

?
=

U,
2

= N.A. y 22
= l.o a

2]_
= 0.0, a

22
= 1.0

\
1

= 0.526 X
2

= 0.339

Case 1.1 There is one type 1 job, and 1 type 2 job, so J = 2.

If one fits a GN model by assuming

p
l

=
X
l
a
ll

p 2
=

X
2
a
22

y.
(5.1)

l

ll ~ K 22

then the following system characteristics are predicted.

TABLE I

Idleness Probabilities Expected Number at Processor

GN MM GN MM

PP1 0.60 0.80 PP1
& 0.82 0.39

PP2 0.74 0.81 PP2

CPU 0.23 0.06 CPU 1.18 1.61

13



GN MM

(1,2) (2,1)
n

PPI: 0.54 0.87 0.71 PPI
&

PP2: 0.70 0.75 0.85 PP2

CPU: 0.12 0.013 0.018 CPU

Case 1.2 Here J = 3 , both 2 type 1 , and 1 type 2 , and 1 type 1

,

s type 2

:

Idleness Prob . TABLE 2 Expected Number

GN MM

(1,2) (2,1)

1.09 0.43 0.50

1.91 2.57 2.50

Both the present examples and others unreported here indicate that

the simple GN model, fitted as described, does not agree closely

with our more complex (and realistic) model.

However, model fitting can be carried out in various ways,

of which the following is a practical example when monitor data

is used. Taking the job stream overall, continuity conditions

lead to our equating net flow into and out of each peripheral:

Xa • • Fraction of Time CPU Busy = y. • Fraction of Time PPj Busy.

Or
Xa

_ j_ _ Fraction of Time PPj Busy
m (c. ~\

p
j y.

" Fraction of Time CPU Busy
'*

l
'

j = 1,2,. ..,c, c being the number of peripheral processors. Now

the GN theory furnishes the joint distribution of the number of

jobs at, say, the peripherals (N .
= random number at PPj) in the

form
n
l

n
2

n
cP{N

1
=n

1
,N

2
=n

2
, . . . ,Nc

=n
c

> = Kp
x

,p
2

,...,p
c

(5.3)

where n, + n~ + . . . n ^ J. Consequently we can calculate the idle-

ness probabilities and expected number present at the processors

explicitly in terms of the p.'s.

14



Comparison 2

Let us now suppose that observations have been made of the

following multi-type multiprogramming system:

TABLE 3

PP1: y,, = 10, a. . = 0.75 y 21
= 20, a

21
= 0.25

PP2: u
2

= 20, a
12

= 0.25 y 22
= 10, a

22
= 0.75

CPU: X =15 X
2

= 25

Case 2.1 There is one type 1 job and one type 2 job (abbreviated

(1,1)), and thus J = 2. If one observes (monitors) the system

for a long time one will observe

Fraction of time PP1 Busy ~
fl

.

Fraction of time CPU Busy

and (5.4)

Fraction of time PP2 Busy _ n 04
Fraction of time CPU Busy

The latter figures are obtained by computing the long-run idleness

probabilities of the processors by means of our iterative procedure

applied to the full set of balance equations, i.e. the full-scale

MM model

.

Now compare the system characteristics obtained by thus

solving the correct model (MM), and those obtained by applying GN

,

using p, = 0.81, and p~ = 0.84; the figures appear in the top-

most panel of Table 4. Perhaps not surprisingly, the agreement

seems usefully good.

15



GN MM

J=2 (1,1)

PPI .54 .52 PPI
&

PP2 .53 .50 PP2

CPU .44 .41 CPU

TABLE 4

Idleness Probabilities Expected Number

GN MM

J=2 (1,1)

1.22 1.17

0.78 0.83

GN MM GN MM

J=3 (1,2) (2,1)

1.80 1.83 1.66

1.20 1.17 1.34

GN MM GN MM

J=4 (1,3) (2,2) (3,1) J=4 (1,3) (2,2) (3,1)

PPI .39 .56 .37 .25 PPI
& 2.35 2.56 2.22 2.16

PP2 .37 .16 .35 .59 PP2

CPU .25 .31 .22 .22 CPU 1.65 1.44 1.78 1.84

J=3 (1,2) (2,1)

PPI .45 .54 .34 PPI
&

PP2 .43 .28 .57 PP2

CPU .32 .34 .28 CPU

16



Case 2.2 Basic setup the same, but expand the jobs by one: one

type 1 and two type 2 (1,2), and alternatively two type 1 and

one type 2 (2,1). Compare the exact results to those obtained

from GN with the above p.'s and J = 3. Thus this case, and

the one to follow, exhibit the accuracy of prediction of effects

of system changes (in this case number of jobs) when the system

is not a GN (simple Markov) system. The results appear in the

middle panel of Table 4, and again GN agreement is satisfactory,

if more so for the CPU idleness probabilities than for those of

the peripherals.

Case 2.3 Still the same parameter values, but additional jobs

are added, to reach a total of four. Once more the GN fit seems

to steer a middle course, providing about the correct impression

of the effect of adding additional jobs (an approximation to adding

more core storage capacity, at least in some cases)

.

17



6. Summary

We have presented models for multitype job traffic in a

simple cyclic queueing model of a multiprogramming computer system

(termed MM models) , and have shown how such models may yield

numerical results by use of a variation of the Gauss-Seidel itera-

tion algorithm. Lastly, we have indicated the manner in which a

simple Gordon and Newell Markov model may be fitted to MM data,

and have shown that satisfactory predictions of some system

characteristics may be obtained thereby.

18
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