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4
A 0(h ) Cubic Spline Collocation Method for Quasilinear

Parabolic Equations *

1. Introduction . Consider the quasilinear parabolic equation

(1.1a) c(x,t,u) u - u = f(x,t,u,u ) , 0<x<l, 0<t<T
L XX X

(1.1b) u(0,t) = b (t) , u(l,t) - b-CO , < t < T ,
o i

(1.1c) u(x,0) = g(x) , < x < 1 .

Let A = {0 = x < x < • • • < x = 1} be a partition of I = [0,1] , with

I. = [x. .. x.l, h. =x. -x. . , and h = max {h.: 1 < i < N} . Then define
l i-l, ill l-l l — —

II, (J) = V: {V is a polynomial of degree < k on J}

and

IT, = {V: V e n, (I.) , 1 < i < n) .

k,A k i — —

For -1 <£< k-2 let

s(A,k,£) = n
k A

n C
l

(I)

be the space of piecewise polynomials of degree < k (order = k) on A with

continuity I . Note that S(A,k,£) has dimension d[S(A,k,£)] = kN - (l+l) (N-l)

In this paper we shall be primarily concerned with S, e S(A,4,2) , the usual
h

cubic spline space on A .

This research was supported in part by the National Aeronautics and
Space Administration (NASA).
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Recently Douglas and Dupont [ 10, 11 ] have studied collocation procedures

for (1.1) based on the spaces S(A,k,l) for k > 4 . Their main result is

that collocation at the images of the k Gauss-Legendre points in each sub-

interval I. yields uniform errors of order 0(h) and superconvergence

2k-

4

results at the knots {x. } of order 0(h ) if the solution of (1.1)

k+2
u £ H (I) . These estimates (but not the analysis) are essentially the

same as those of deBoor and Swartz [ 7 ] for ordinary differential equations.

The analysis of [11 ] is based on certain discrete innerproducts as is the

analysis presented in this paper.

Several authors [4 ,16 ,20 ] have studied collocation techniques for

ordinary differential equations using smoother spaces S(A,k,£) with t > 2.

k-2
The general result obtained is that the convergence rate is 0(h ) , a

suboptimal rate of convergence for such spaces. However, the procedures of

Russell and Shampine [20 ] will provide 0(h) convergence (and superconvergence

2k-

6

at the knots of order 0(h )) for k > 6 if the collocation takes place at

the images of the k-2 Lobatto points on each subinterval. Hence, it is ex-

pected that these procedures can be extended to parabolic problems through

careful mimicing of the arguments in [ 11]. These procedures will be studied

in a later paper.

2
In [ 8 , 19] cubic spline methods with 0(h ) accuracy have been studied

for linear versions of (1.1). Also, in [18 ] a cubic spline collocation pro-

cedure for the heat equation has been proposed (but not analyzed) ; for a partic-

4 2
ular explicit time discretization 0(h + (At) ) convergence obtains. However,

this procedure is essentially the standard explicit finite difference method

for the heat equation and the high accuracy does not readily generalize to more
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difficult problems or other time discretizations.

In [ 2, 3] a variant of the usual cubic spline collocation method yielding

4
0(h ) convergence rates for nonlinear ordinary differential and quasilinear

parabolic equations was studied. In this paper we describe the high-order pro-

cedure and provide continuous time estimates for (1.1). Two types of boundary

4
collocation will be considered, yielding uniform estimates of 0(h ) and

7/2
0(h ) respectively. In a subsequent paper we shall investigate the effect

of various boundary collocation techniques for high-order smooth spline approx-

imations to (1.1).

It should be noted that the particular approximation used here is essentially

the same as that of Daniel and Swartz [ 9 ] for two point boundary value problems.

The procedures were developed independently, the derivation of [2 ] preceeding

that of [ 9 ]• The finite-difference method discussed by Hirsh [13 ] can

be interpreted as a cubic spline method, and as such, it is quite similar to the

present technique.

This paper has four parts. In § 2 the basic notation of the paper is developed,

Some discrete innerproducts for cubic splines are then defined and studied. The

basic approximation technique used here is developed in § 3 from consideration

of a simple two-point boundary value problem. In § 4 the main results are pre-

sented (Theorem 4.1).
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2. Notation . We shall use the standard notation [ 14] for L (I) spaces

and Sobolev spaces H. (I). In particular, |v|j
9

= (v,v) with
L
Z
(I)

(f,g) = / f(x)g(x)dx . Also, H
1

(I) = {V e H
I
(I): v(0) = v(l) = 0} ,J

l
°

with |v| , =
|
Dv

I

r, . Also, we use W (I) = {v: D v is abs. cont.

it (i) i/d)
o

m oo 2
< j < m-1 , D v e L (I)} with Ivl = Y Id v|J * % ' ''I'm i-t I I I I ao

W (I) l<m L (I)

The spaces L [0,T; X] are defined as usual for normed linear spaces X [ 14 ]

.

If v e L (I) is defined on A , then write

Let | v| v = max v. .

OO I I ^ ' ' „00 ' I I

I 0<i<N

v = v(x ) and v = (v ,v , "-.v )l i ~ o 1 ' N
y

Define the difference operators Vv. = h. (v. - v. .) , Vv. = Vv.... , andr ill l-l i l+l '

2 —
A v. = VVv. . In case v = v(x,y) , denote the differences with respect to a

particular variable as

(V v)(
X;L ,y)

= h. (v(x ,y) - v(x
1_ 1> y)) ; etc.

In the following A is uniform; i.e., A = {x. = ih : < i < N} . Then

define the discrete innerproduct

h
N

[v.w] = ^ I(Vl"i-l + V
i
W
i

)

i=l

i
N-l

i

with norm |v| = [v,v] . Also, let < v,w > = h I v.w. and |v| = < v,v >

N
1=1

Additionally, let < v,w ] = h £ v w.

i=l
X

Recall the summation by parts formula:

(2.1) < Vv,w > = - < v,Vw ] + v w - v w
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The following results are easily established for cubic splines. Let

S° = Su n H
1

(I) .

h ho
Lemma 2.1 If v,w e S, , then

h

2 4 2

(2.2a) - < v",w > = (v\w') + lL(v",w")+ ^ (v' ! ' ,w" ' ) - j- B(v" ,w' ) ,

2 4 ' 2

(2.2b) - < v" +^2 a2v" ,w > = (v\w') + j^ (v"\w'") - ^2 B(v",w') ,

h
4

h
2

(2.2c) [v\w«] = (v\w') -
j2o

(v" , ,w"') + ^2 {B(v'\w') + B(w'\v')} ,

.2

(2. 2d) [v'\w»»] = (v",w") +j- (v"\w'") ,

where

B(v,w) = v„wXT
- v w

N N 00

Note that v,w e H (I) is not necessary for (2. 2d).
o

PROOF : We prove (2.2a-b); the remaining results are similar. Recall the

corrected trapezoidal rule

d 2

C <Kx) dx = 5_£
[(j) ( c ) + ^(d) ]_ -

12 ] + *J$~ *
(4)

CO , 5 e- (c,d) .

c

Applying this rule one interval at a time and summing yields

2
i

12

,4 2

(v",w) [v",w] £- < Vv",Vw ] +^ (v"\w'") - ^ B(v",w')

for all v,w e S, . Summation by parts and v,w e H (I) imply that

2 4 2

(2.3) (v'\w) = [v",w] +~ < A
2
v",w > +^ (v"',w'") - ^ B(v'\w')

which is (2.2b). It is easy to show that

(2.4) (v",w") = B(v",w') + < A
2
v",w >

;

hence, (2.2a) follows from (2.3) and (2.4).



2-3

To apply these results, we need the inverse relations (not assumptions

for splines).

Lemma 2.2 [ 21 ] If v e II with h/ min h± < o , then
l<i<N

(2.5) |Dv| < Ch~
1
||v| ,

1 _ 1

(2.6)
|

|v|

|

< Chq p
|
|v|

|

, l<p<q<» .

Lq (I) LP (I)

Let |v| = max |v(x)| . Then for v e S,
,

3 x-0,1
h

(2.7) |b(v",v')| < 2 |v"| Jv'l < Ch"
2

Mvll
2

.

8 3
H
1
(I)

o

Hence, by (2.2c)

(2.8) |v|
2
+

|

v *

|

2
< C| |v|

|

2
,

H
1

(I)
o

Since B(v ,,
,v') is not definite, the left sides of (2.2a) and (2.2b)

(with v = w) are not norms equivalent to the H (I) norm on S, in general
o n

Of course, if v is periodic, B(v ,l
,v

l

) = and the forms in question are

actually equivalent to the H (I) norm.
o

It is not generally true that |v| and |v| ~ are equivalent;
L
Z
(I)

however, it is the case that

(2.9) |v| < c| |v[

'

It is true that

L
2
(I)

(2.10) c, l|v!|
2

? £ |v|
2
+ h

5
|v"|

2
,£C.J|v||

2

21
L
Z
(I) L

Z
(I)
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For this note first of all that the exponent of h is correct by Lemma 2.2.

Als °' if
, ,2 .5, ..,2

I

2
+ h

5
|v"|

then

and

v. =0 , < i < N

V'' - , i = 0,N

/ 1 ^ O \

It is then clear that v = . Hence, ||v| = liv| +h |v' '

| J
is a norm

on S. and (2.10) follows,
h

We shall also use the following notation

< v,w > = < v + — A v , w > ,

for mesh functions v and w .
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3. A Two-Point Boundary Value Problem . In this section we consider a cubic

spline approximation to the two-point boundary value problem

(3.1a) u" (x) = f(x) , x £ I

(3.1b) u(0) = b
Q

, u(l) = b
1

.

It is well-known 4 that collocation at the knots {x.}. n in
l i=0

S, ; i.e., finding U e S, such that
h c h

(3.2a) U" (x .) = f(x.) , < i < N
c 1 1

(3.2b) U
c
(0) = b

Q
, U

c
(l) = b

1
,

2
has a convergence rate 0(h ) (and no better) in general. However, defining

U e Su by
n

,2

(3.3a) U"(x.) = f(x.) - -^r f"(x.) , 0<i<N
l l 12 i

(3.3b) U(0) = b
Q

, U(l) = b
1

leads to the following results.

Theorem 3.1 Suppose u e w (I) is the solution of (3.1) and U e S is

defined by (3.3). Then the following estimates hold for e = u - U :

(3.4a) llD^eM < Ch^MuM , < j < 3 .

L (I) W°(I)

The following super convergence results are also valid for 1 < i < N :

(3.4b) |e.'| < Ch
4
||u|

|
,

1
W°(I)

(3.4c) le! , I
< Ch

4
I lul I ,

W
6
(I)

00

(3.4d) |e"(C.,)| < Ch
3
||D

5
u|| ; j =1 , 2 ,

1J L (I.)

(3.4e) |e'!
,

1
I : Ch

2
I |d

5
u|

|

1 2
L (I.)
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where

(3.4f) x . = (x + x )/2
1—5 1 — X 1

and

(3.4g) g = x . + (-1)
J -^—

, j - 1,2 .

6+k
Additionally, if u £ W (I) for < k < 2 , then

(3.4h) U 1
! + ^r (A

2
U"). = U'.' + 0[h

4+k
||D

6+
u|| ), fo

1 12 X X
\ L"tt)/

r 1 < i < N-l
L~(I)

'

Proof: Expand e' ' about x. , on I. to obtain for ^ T ^ h :

l-l l

(h
4
llf

iv
ll ) .+ h F

Then it is straightforward that

(3.6)
| J e"(x)p

2
(x) dx| £ Ch

5
||u| , , 1 < i < N ,

I. W (I.)
1 1

for any p e IT bounded independently of h .

Let G (x;£) be the Green's function for v' ' = g on I subject to

v(0) = v(l) = , and define G, (x ;£) = (
— G )(x;£) . Since

l y 8x o/

G
q
(x; •) e W

1
(I) and G (x.; •) e 11. for < i < N , j = 0,1 ,

we have
Dj e(x.)| = |/g.(x. ; OeM (0 d£

i '£ J ±

N /"

i I L/Yx
i

s

n=l I
J

C)e"(C) dC

n

(3 ' 7) 5 ? ,, ,,
i ch

D
j; | mi

n=l W (I )
n

1 Ch |u|

W
6
(I)

10
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The stability results of [ 22 ] and (3.7) imply

(3.8) ||D
J
e|| < Ch

4_j
|

|u|| , < j : 3 .

L (I) W (I)

Integration of (3.5) from x. to x.
j

yields (3.4c). Estimates
i— -L i — "2

(3.4d-e) follow immediately from (3.5).

Since for 1 < i < N-l and < k < 2

2

(3.9) (A
2
U"). = [A

2
(f -£- f ')] = f.' + o(h

2+k
||D

4+k
f||

)i 12 i x \
L
-
(I)

/

estimate (3.4h) is established, and the proof is complete.

We now consider defining W e S, by (3.4h) neglecting the

(4+k i
i 6+k

i
i \

h D u ) terms. More precisely, define W e S. by
L(I)' h

h
2

(3.10a) W"(x) = f(x) - — f"(x) , x = 0,1

,2

(3.10b) W|' + ^r (AW"). = f. , 1 < i < N-l
l 12 7

i l

(3.10c) W(0) = b , W(l) = b. .

The following results then obtain .

Corollary 3.2 Let u , U be as in Theorem 3.1. Define W e S, by

(3.10). Let z = U-W and e=z+e=u-W. Then

(3.11a) ||D
J
z|| Ch

4+k
||D

6+k
u|| , < j < 2 .

L (I) L (I)

(3.11b)
|
Iz'"

|
|

< Ch
3+k

|
|D
6+k

u||

L (I) L (I)

6+k
if u e W (I) , < k < 2 .

Furthermore, all the inequalities of (3.4) hold with e replacing e

11
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and the norm of u on the right side of each inequality being changed

to

w
6
(i)

Proof : Equations (3.10a-b) yield an (N+l x N+l) linear system for W,

(3.12)

where

A H" = f = f " |f
(f '

'
'•••'

' fN
, )T

A =
12

12

1 10 1

1 10 1

10 1

12

i i
-1

1 i 3
Since A is diagonally dominant with

|

|A
|

| _f_
—

, W 1
' (hence W)

is uniquely defined by (3.11). By (3.4h) U' ' satisfies

(3.14) A U" = f + 6 ,

where

and

i = (0,5
1

,•••,
$x-l'

0)

.
|

., 4+k
|

|
6+k

6 . < Ch u
l '

—
'

'

, 1 < i < N-l
L (I)

Subtracting (3.12) from (3.14) yields

(3.15) A z" = 6

12
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from which

(3.16) |||z"||l - II*" | I
< |||6|| < Ch

4+k
||D

6+k
u||

I I loo l~ Mr - 2 "~"r - ll

L
-
(I)

Since z is piecewise linear

(3.17) ||«"
|

|
< IN*"! I I

= Ch
4+k

||D
6+k

u||

L (I)
'

L (I)

Finally, the Green's function representation leads to for j = 0,1

(3.18) |D
J z(x)| = \f G (x ; Oz"(0 dc| £ ||G (x ; -)||

I
J J L (I) L (I)

which along with (3.17) establishes (3.11a). The remainder of the Corollary

follows from homogeneity in h and the triangle inequality applied to

e = z + e

13
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4_. Continuous Time Estimates . In this section we consider the continuous-

in-time approximation to the solution of (1.1) by cubic spline methods.

Define U : [0,T] -> S by

2

(4 ' la)
(

U
xx

+
12

C(U)U
xxt )

(x > t} =
(\ (U)U

t
" VU)U

xt
" F

h
(U ' U

x
}
)
(x ' t}

'
X = °' 1

'

(4.1b) (c(U)U
t

- [U
xx

+ \-
2

A
2

u
xx

] )( x ., t) = (f(U,U
x))

(x.,t) , l<i<H,

(4.1c) U(0,t) = b (t), U(l,t) = b.(t) ,

o 1

(4. Id) U(x,0) - g(x) - "small" , x e I .

In (4.1a) we have used (supressing (x,t))

h
2

?
(4.2a) ^(40 - c(4>) - j^ D^ [c(<j>)]

h
2

1

(4.2b) B
h

(4>) =
f-

D£ [c(4»)J

h
2

2
(4.2c) F

h(<Mx) - f(*,<j>
x) "

^2
D
h t f ^'* x

)J

where

(4. 2d) D^](x) =

|(V
x

^)
1
-|(V

x ^)
2

, x=0

!
(V
x *>N "

2
(V
x *Vl '

X = X
•

14
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and

(4.2e) D
h

[<|,](x) =

(
2(A

2 ^ -
(A

2
#) , x =

2(Ax^ N-i- (A
x n^2- *

= 1

2+k
Note that for ip e W (I) , < k < 2

(4.3a) Rj 0|>) = D i|» - D* M = o(h
k
||D

k+
%|| )n x h

\
x

L°°(I) /

(4.3b) R^ ty)
= D^ - D *

[*] = O^llD^M M )
•

In the following we shall assume that c and f are smooth functions of

their arguments with c subject to the bounds

(4.4) < m 5 c(x,t,<t>) <_ M < °°

x e I , t e [0,T] and
<J>

e R = (-»,<») .

The choice of this particular approximation is motivated by the results

of §3, specifically Corollary 3.2. Later U(x,0) will be chosen to provide

4
the desired 0(h ) convergence rates. It is also possible to use a different

collocation procedure at the boundary, namely

(4.1a)' (c(U)U -U Wx,t) - f(x,t,U,U ) , x = 0,1 ;
\ t XX / X

7/2
however, the analysis here will provide only 0(h ) rates of convergence.

The analysis of (4.1) will proceed along the same lines as that in [ 11 ]

and will employ the discrete inner products of §2 . Before beginning the

error analysis, we establish the existence and uniqueness of the solution of

15



(4.3)

(4.1). For this, we consider the equivalent matrix formulation based on the

B-spline basis {V ,V ,...,V } on the knot set

1
= t. (1< i < 4), t

4+
.

- x. (1 £ i < N-l), x
N+3+

.
= 1 , (1 <_ i <_ 4) J;

N+3

see [5, 6 ]. Let U(x,t) = \ a.(t)V.(x) . Then (4.1) b

j-1 J J

ecomes

(4.5a) £(oOa'(t) -^a ~J-(a) , t e (0,T]

(4.5b) a
x
(t) = b

Q
(t) , a

N+3
(t) = b^t) , t e (0,T]

(4.5c) a(0) = given ,

where a(t) = (a
1
(t),a

2
(t) , . .

. ,a (t)) , and for 1 < j < N+3

C( I \ \ (xi ))V
j
(x

i) 1 < i < N-l

(4.6a) [£,(a)] =t («:
— c( £ aR

V
k
(xi ))v!'(xi ) - A^C I a

k
V (x

±
))V (x£ )

k J k J

+ B ( I a
k

V
k
(xi ))V'(xi ) , i = 0,N

k J

(4.6b) ljhi

V!'( Xi ) +^ (A
2

V'.')(xi) , 1 < 1 < N-l

-vj'(Xl ) , i = 0,N

(4.6c) UCcOLit

f( I \\(Xi ) , I a V»(x± )) , 1 < i < N-l
k k

"F
h

(
^ \ \ (x

i }
'

E \ K (x
i-
})ti = °' N

k k

16
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The assumption that f is Lipschitz continuous with respect to its

last two arguments implies that ^(ot) is likewise Lipschitz continuous.

Thus, the local existence (in time) of the solution to (4.1) will be es-

tablished in case

(4.7) G?(a)£ = and Q
±

= 6
N+3

=

N+3
implies that 3=0. Let cj) (x) = £ a, V (x) and suppose that

k=l
R R

N+3

iKx) = I B, V (x) with 8 satisfying (4.7). Then
k=l

k k

(4.8a) ^( Xi ) =0
,

< i < N ,

and

(4.8b) {c(4>H + 2D^ [c(<J>)]ij> }(x.) =0 , i = 0,N .

xx h x i

By the standard cubic spline identities [15 ], (4.8) is equivalent to

(4.9a) *xx(Vl } + ^xx (x
i } +

*xx
(x

i+l>
= ° > 1 i

^
N-l ,

(4.9b) {c(<|>) -
f-

D* [c(<|>)]} (0)^(0) -^dJ [c(<|.)](0)i/;
xx

(x
1

) =0
,

(4.9c) {c(40 +Y»l [c(<j>)]}(D*
xx (D

+^D^ [c(«J.)](1)^xx
(x

1^ 1
) = .

Assuming that

(4.10) \~- [c(x,t,<J>)]| L for x e I , t e (0, TJ, <j> £ R ,

dX

we find from (4.3a) that {D. [c(<f>)]}(x) is bounded for x = 0,1 . Thus,
h

for sufficiently small h , (4.9) corresponds to a diagonally dominant, homo-

geneous linear svstem for \b (x n- ) . Hence, \b '- and $ = .

XX 1 XX ~

17



4-5

Lemma 4.1 If (4.10) holds then for h sufficiently small there exists a

unique U e S, solving (4.1) for t e (0,T] .

Lemma 4.

2

If

(4.10a)' |-j~ [c(x,t,cj))]| £ L , x e I , t e (0,T] , <j> e R ,

and

(4.10b)' |~ [f(x,t,*,V)]| £ L , x £ I , t £ (0,T], <j>,ijj e R,

then for h sufficiently small, there exists a unique solution U, 6 S

of (4.1) with (4.1a)' replacing (4.1a) for t £ (0,T] .

Proof : Similar to the above. Just differentiate (4.1a)' with respect to t

to obtain an analogue of (4.9) which is diagonally dominant for h small enough,

We now turn to the convergence analysis of (4.1). Note that (4.1b) is

equivalent to the discrete Galerkin formulation

(4.11) < c(U)U ,V > - < U ,V > = < f(U,U ),V > , V € S, .

t xx A x h

For the analysis define the comparison function W . [0, T] > S, by

h
2

(4.12a) W (x,t) =u (x,t) - —-u (x,t) , x = 0,l ,

xx xx 12 xxxx

h
2

2
(4.12b) CW^ + yj ^WJdi.t) -u^Cxi.t) , 1 < i < N-l ,

(4.12c) W(0,t) = b
Q
(t) , W(l,t) = b

1
(t)

4
Note that Corollary 3.2 implies that W (W ) is a 0(h ) approximation to

u (u
t

) .

18



4-6

Let z = W - U £ S , e=u-W, and e=z+e=u-U . Ourh

plan is to estimate z in terms of e and then to bound e using the bounds

on z and the triangle inequality. In the following analysis, we shall often

2 2
require the inequality ab < ea + (l/4e)b for a,b :1 , any e >

.

From (4.12b) and (1.1) we find

< c(W)W ,V >-< W ,V > = - < c(W) e ,V >
t xx A t

(4.13)

+ < [c(W) - c(u)]u .V > + < f(u,u ),V >
, V e S,

t x h

Subtract (4.11) from (4.13) and apply the assumed smoothness of c and

f to obtain

< c(U)z ,V > - < z ,V > = < [c(W) - c(U)]W ,V > - < c(W)e ,V >

+ < [c(W) - c(u)]u
t
,V >

+ < f(u,u ) - f(U,U ), V >
X X

(4.14) = < c zW ,V > - < c(W)e ,V >
u t t

* ~
- < c e u ,V > .

u t

a ~ a ~>

+ <fe+f e,V>
u U X

X

+ <fz + f z,V> ,

U U X
X

where the partial derivatives c ,f ,f are evaluated as required by the mean
u u u

x
value theorem. Now use Cauchy-Schwarz, the boundedness of the derivatives of

c and f , and the trivial inequality mentioned above with V = z :

2

(4.15) < c(U)z .z > - < z ,z > < C(|z|'
:

+ |z
l

+
I Te

|
) + 6 I z^ '

, 5 >
t t xx t A x 1 t

1

19
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Here

(A. 16)

If

(4. 17)

~,2 ,~|2 ,~ ,2 ,~ ,2
Te = e + e + e I

i ii i x i i 1 1

u,u
t

e L
2
[0,T;W

6
(I)] ,

Corollary 3.2 Implies that

(4.17b) / |Te|
2
dx < Ch

8
(|

|u|
|

2

fi
+ ||u||

2

fi ) .

V l/[0,T;W°(I)]
t

l/[0,T;W°(I)]

Choose 6 so that n = m-6 > and use (2.8) to obtain

(4.18) n|z.|
2

- < z ,z >
A lC(||z||

2
+|Te|

2
) .

t xx t A
H
l

o

To complete the estimate, it is necessary to consider the boundary terms

(4.1a). A straight-forward computation using (4.12a) and (4.3) yields

h
2

{W + —- c(W)W )(x,t) = {A. (u)u - B, (u)u - F, (u,u )}(x,t)
xx 12 xxt h h -x-t- h x

h
:

xt

{c(u)e
xxt

}(x,t)

(4.19)

+ R^x.t) , x = 0,1 ,

where
2

(4.20a) R^x.t) = - j2 {R^ [ c (u^ ~ 2R
J t°(u )J " ^ [f (u,u

x
) ] } (x, t)

No te that if I
h

= [0,x
3

] u [^ ,1]

(4.20b) c(x,t) = c(x,t,u) € W
4
^)

and

(4.20c) I(x,t) = f(x,t,u,u ) e W
4
(I ) , t e (0,TJ

x n

then by (4.3)

(4.20d) l\l
3
Wl Ch

4
(||D*7 ll

L
.
(Ih)

+ ll»?ll
L
. )

Ct)

20
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In the sequel, we assume that

(4.20e) K. =
|

|d
4
7|

I

+ I Id
4
71

1

< oo
.

L [0,T;L (I
h
)]

x
L [0,T;L (1^)

]

Subtract (4.1a) from (4.19) to obtain

h
2

Z
xx

+
l2

C(u)z
xxt

= K (u) " \ (U)K

"
(
B
h
(u) " B

h
(U)Kt

" (VU) (Z
xt

+ •«?)

(4.21) - (F, (u,u ) - F, (u,U ))
h x h x

" <VU'V "
F
h
(U ' Ux»

h
2

- 12
C(U) e

xxt
+ \

We now estimate the terms on the right side of (4.21). The treatment of all

but one of the terms is somewhat rough.

- I^(l D
h

[c(u) - C(W]I
3
+

l

D
h

[c(w) " c(u)
l

3 )

* Cdllelll + IIUIIL)

B, (u) - B, (U) L < Ch(| le | + z )
h h ' 3 — M

' x M 'o° i i i x i i i w /

F, (u,u ) - F,(u,U )L : C(|||e ||| + ||z ||| )
h x hx'3— '" x 1 "" i i i x i i I*

F
h
(u,U

x
) - P

h
(U,U

x)|
< C(|||e||| w + IIWHJ •

21

Similarly,

(4. 22b)

(4. 22c)

ancI

(4. 22d)
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Recalling (4.10) and (4.3a) with k = ,

l

B
h
(U)

I

a
< Ch

2
•

Thus,

(4.22.) IV^xt +^U^Kt^ l«xtU )

Now multiply (4.21) by z , integrate in t , and apply (4.22)

to obtain

-t

4 |«
|

2 (t)+yh
2
f|z J

2
dx < Ch"

2
J

(
|||z| ||

2
+ |||z Ml

2
+ h

4
|z

2 ' xx '3 J ' xxt ' 9 —
o ^

IMII| oo i i i x i i i M i

2

xt'9

(4.23)
^

+ |T^|
2
+ l^l^dt

+ \ KA^ >

where y >

(4.24a) |Te|
2

=
|

|

|e|
| |

2
+

| |
|e

|
| |

2
+ h

4
(|e I

2
+ |e J

2

I 13 I I I I I loo I 1 I x l I loo \' xt'3 ' xxt '5

(4.2440 f |Te|
2
dx : Ch

8
/ ( |

|u|
|

2
, +

|
|
u I

|

2
,

\
dx , if (4.17a) holds,

3
> W

b
(I)

fc

W
b
(I)/

It is clear from (4.21) and the bounds (4.22) that

2

l

z L TT- l

z L + C(| I |'z| I I + I I
|z I I I +h2

|z L
1 xx 1 3— 12 ' xxt '8 \

MI
'
M °° 1

1 1 x i

1 loo ' xt'3

(4.25)

l\la)+
l

Te
l

3
+ KU) »

t e (o,t] .

Use of (4.23) and (4.25) permits the completion of the estimate (4.18).

From (2.2b) ,

1 _d_ / I I M 2 _h_ ,, I ,2
'

Z
xx'

Z
t A "

2 dt \
'

|Z|
! H^(I) 180 ' ^xxx 1 ^2

(4.26) h
2

_, .

"12 B(z
xx'

Z
xt

) *

22
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Observing (via Lemma 2.2) that for any e >

fJ|B( Zxx , Zxt)li.eh
3

| Zxt
|2 + ch

| Zxx
,2

(4.27)

" £ Nz
t M

2

2
+ Ch|z

\

2
,

t
L
Z
(I)

xx 9

and adding (4.27) to both sides of (4.18) yields

4

t
i

2 4i(iNi;
V)
^n^ii;

2(l) )

l\\ II
2

(INI !
\ H i

+ h|z
|

2
+ | Te|

2

, . xx a

o

+ -ll-
t

l|

2

2
L (I)

I I

2
Integrate (4.28) with respect to t , apply (4.25) to bound the h|z

|XX o

term, and apply Lemma 2.2 to produce

2
n/ |i

J

2
dx +|||z||

2
(t) 1 C S {\\z\\\ +

fc 2
1^(1) ° l H

Te

(A. 29)

+ h(|Te|
2
+ |Hj*>}dT

5 t 2

+ Kh / I z L dx
' xxt '

3

+ (e + K h
2

) f\ \z\
|

2
dx

V /0 fc

L
Z
(I)

+ c
|

|z||
2

(0) .

H (I)
o

23
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5 f
t

i 1

2

(n + K)h I |z J di to (4.29) using the estimateNow add
xxt ' 3

of (4.23) . Thus, proceeding as in (4.29)

j;
2 . .

!,,_,, 2 -"",11* + ItSn/ MI..IM
2

dT + I||z|| 2
(t) <cj\,

o
c i r(i) t) I h

x
(d

o o

+ h(|le|^ + 1^1*)
j

dT

(4-30) , „*,2. /^
| |

I
1

2

+ (e + K*h ) I z dx
^0 c

l
2
(I)

+ C llzH
2

, (0)

H
X
(I)

o

24
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By (2.10) and Gronwall's inequality with e and h sufficiently small,

we obtain our basic estimate

H ztH
2

2 2
+ I!»M

2

- 1
l/[0,T;l/(I)] L [0,T;H^(I)]

<*»> £ c/jlTel^htlTel^lRj^

+ C||z||
2

(0) .

IT (I)
o

If (1.1) is smooth enough that (4.17a) and (4.20e) hold, then the use of

(4.17b), (4.20d), and (4.24b) in (4.31) implies the estimate

MM 2
II I I

2

l/[0,T;l/(I)] L°°[0,T;h\i)]

^0 '

u
t'

2

(4 - 32) "
\

t
L
2
[0>T;W

6
(I) j l

2
[0,T;W

6
(I)]

+ hK?) + cllzH
2

. (0) .^> V(I)
o

There are a variety of interpolation schemes which produce U(x,0) such

that |z| -, (0) = 0(h ) . See [15] for several possible choices. Here we

o
(I)

choose the interpolation studied in [9]; namely, define U(x,0) by

(4.33a) U(x.,0) = g(x.) , < i < N

(4.33b) U (x,0) = g"(x) - ^rg (iv)
(x) , x-0,1.

xx 12

It is then easy to see (compare with Corollary 3.2) that if g e W (I)

(4.34) ||z || (0) £Ch 4
||g||XX

L (I) W (I)

25
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Our final estimate is then

(4.35) ||i || 2 2
+

|

|z|| M x
£Ch4

(||,u || 2 6C
l/[0,T;l/(I)] L [O t T;H:(D]

V l/[0,T;W°(I) ]

+
I
sl I f,

+ \ ) »

w
6
(i) N

2
after using the fact that for

<J>
e L [0,T;X] , <J>(0) e X ,

IMI
2

2
< c IU t ll

2

2
+

1 1*1 lx (0) •

l/[0,T;X] IT[0,T;X]

00 6
The further assumption that u e L [0,T;W (I) J , and Corollary 3.2 imply that

(4.36) I lei I Ch
4
||u|| ,x '

' I
' ' 00 oo — II I' 00 h
L [0,T;L (I)] L [0,T;W (I)]

Using (4.35), (4.36), the triangle inequality and the embedding of H (I) in
o

L°°(I) ; i.e.,
| <J)

| .S C
|

| <J> | i » <J>
e H (I) , we obtain the uniform

L°°(I)
' H

X
(I)

°

o
estimate

e
| |

1 Ch
4

(, ,

L
ro

[0,T;L°°(I)] L°°[0,T;W
b
(I)]

llu
l iu,i;l, u;j

(4.37)

\)'+ lu.l
2

, +
l/[0,T;W

D
(I)]

Theorem 4.1 Suppose that c, c , f, f , f are uniformly bounded mde-rr
u u u

x

pendently of their arguments and that (4.10) and (4.20b,c) hold. Then for

h sufficiently small there exists unique U solving (4.1) and (4.33). If

u , the solution of (1.1), satisfies

(4.38) ue L
a5

[0,T;W
6
(I)] , ty L

2
[0,T;W

6
(I) ] ,

then

(4.39)
|

|u-U|

|

1 Ch
4

( |

|u|
| 6

L"[Q,'T;i."(I)]
'

L°[0,T;W (I)]

+ M u
t

ll 2 6
+K

h) *

L [0,T;W"(I)]

9A
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We now show that the use of the simpler boundary collocation (4.1a)'

yields 0(h ) estimates; suboptimal in L (I) or L (I) norms, but

optimal in H (I) . This loss of accuracy is not believed to be actual;

rather, it is just a function of the particular analysis employed. We

proceed as before with U defined by (4.1), (4.1a)
1 and W by (4.12).

Then the error analysis is unchanged through (4.18). Note that for x = 0,1

(4.41) c(W)W^ - W = f(u,u ) + e
t XX X XX

where

h
2

(4.42) e (x,t) = — u (x,t) , x = 0,1 .

xx 12 xxxx

Subtract (4.1a)' from (4.41) and use the boundary values to find

(4.43)

-z = f(u,u ) - f(U,U ) + e
XX X X XX

* ~ ~
= f (z + e ) + e

u x x xx
X

Thus,

- B(z ,z J = B(f z ,z J + B(f e + e ,z )

XX Xt u x xt U X XX Xt
X X

(4.44)

1 * d 2 * ~ ~ s

= ^ B(f z ,— z ) + B(f e + e ,z )

2 u x dt x u x xx xt
x x

Integrate by parts

-f'BU ,z ) dT
.-A(*,(L.( £

*
).z

2
)dT + -iB(f\*Mr

J
Q

xx' xt
y

2 J \ 3t \ u
x

/ x / 2 \ u
x

x / |

o

(4.45) -f b(|- (f* e +e )z )di
' Jn V 3t \ U X XXn X /

u X

I t

+B(t e+e,z)
\ u X XX x

/ I

o

27
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Now assume that

,3
2

f
(4,A6)

Iftlu" CXft,*,*>| £L<» , x £ I
,

t e [0,T],<M e R.

x

Then

Jr
fc

i
-1 f t

i .2 f fc

i ~i2
! B(z ,z Jdi (C + eh ) L z L di + Ch J Te ' di

xx xt '
— '•'O ' x'9 *0 ^

(4.47) + (C + eV 1
) |z |*(t) + Ch|Re|^ (t)

X d a

+ C(h
_1

|z
|

2
+ h|Re|^ )(0) ,

X o d

where,

i~i2 ,~i2 ,~i2 i~i2 i~ i

2

(4.48a) Te r = e r + U U + e \Z + e J*
1 '5 'x'9 ' xx '9 I xt'9 ' xxt'9

and

(4.48b) \Re\l = \e
\

2
+ |e

|

*
1 '9 'x'9 ' xx '

9

Integrating (4.18) with respect to t and applying (4.26) and (4.46) yields

/t 2 1 i i i i2 1**711112
z I dx + - z (t) < C j .(. z -

E
1
(I)

V h
1

!

)

+ ItSI
2

(I) H (I)
o o

3. ~i 2
h iTelg 1

r
+ (Ch + eh) Jjzjg di

* 2 *
1

2

+ (C h + e h)|z
|

(t)
X o

+ Ch
3
|Re|^ (t)

+ c/h|z + h
3
|Ref'

+ z

x'9 '
' 9

2

i, >>
H <I)

28
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Apply Lemma 2.2 several times and take h so small that ( ^- C h - e ) >0

Then

/'
l

z
t |

2
dx + ||z||

2
(t) < c/'dlzH

2
. + IT^I

2
+ h

3
|Te|

2
)dT

H (I) H'd)

(4.50)

+ c(h
3

( max |Re|
2
)+ ||z||

2
(0)

)

0<x<t H (I)
o

Gronwall's inequality implies that

J |z I dT + |Z,

L [0,T;h'(I)]

(4.51) icf ( |Te|
2
+ h

3
|Te|

2
)di

d

:(h
3

( max |Re|
2
)+ ||z||

2
(0)

)
V n<t-<T d p-v-n

'

+ C

0<t<T H (I)
o

Note that

// con u 3
l I

2 h
i I

2
, 3i~ i2 h

|
i2

(4.52) he I —7-7 iu ; h e L = --
,, u

1 xx '3 144 ' xxxx'3 ' xxt ' 3 144 ' xxxxt '

3

Hence, under assumption (4.17a) and the choice of U(x,0) given in (4.33), we

obtain

T
2 , 1,1,2

f
L°°[0,T;H^(I)]

(4.53) ± Ch
8
(||u

t
||

2

2 6
+ ||g||

2

6 )K } t
L
Z
[0,T;W

b
(I)] W°(I)>

+ Ch (J, Iu L d: + max Iu )
y

' xxxxt '3 n „
' xxxx ' 3 /

29
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3
This estimate leads easily to the optimal 0(h ) estimate in the

1 7/2 2
H (I) norm; however, it implies only 0(h ) estimate in the L (I)

oo

or L (I) norm. Of course if

(4.54) u (x,t) = , x = 0,1 , t e [0,T] ,

4
the estimate becomes 0(h ) . Similarly, if u is periodic, i.e.,

(4.55) D^ u(0,t) = D^ u(l,t) , £ j £ 2 , t e [0,T] ,

4
then making U similarly periodic results in 0(h ) estimates since

B(z , z ) = 0. Note that in this case (4.1a) is replaced by (4.55) as
xx xt

applied to U .

Theorem 4.2 Under the assumptions of Theorem 4.1 , with (4.10)' and

(4.46) replacing (4.10) and (4.20), let U be defined by (4.1) with (4.1a)'

replacing (4.1a). Then,

(4.56a) ||u-u|| , lCh3
(||u|| , +

|
|u

| | 2 ,

L°°[0,T;H
o
(I)] V L°°[0,T;W (I)] L [0,T;W°(I)]

(4.56b) II U-U|I LOO[0>T;L
-
(I)1

iCh
4

(||u|| m 6
+ Mu

t
ll 2 6L IU,i,l u;j \ L [o,T;W°(D]

t
L [0,T;W°(I)]

)

7/2/
, i /f

T
,

i

2
\
l/2

\+ Ch '
( max u L+jl u „L
\0<t<T

XXXX 3 Vo xxxxt '

3
/ /

If, in addition, (4.54) holds

(4.56c) ||u-u|| <_ Ch (
|

]
u

| |

, + ||u || _ ,

L"[0,T';L"(I)i
" V L°°[0,T;W

b
(I)]

t
L
Z
[0,T;W

b
(I) ].

Furthermore, if (4.55) holds, and U is also required to be periodic, then

(4.56c) obtains.

30
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