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Abstract

The Blaschke-Lebesgue theorem states that of all plane sets of

given constant width the Reuleaux triangle has least area. The area

to be minimized is a functional involving the support function and

the radius of curvature of the set. The support function satisfies a

second order ordinary differential equation where the radius of

curvature is the control parameter. The radius of curvature of a

plane set of constant width is non-negative and bounded above. Thus

we can formulate and analyze the Blaschke-Lebesgue theorem as an

optimal control problem.





Int roduct i on

The width of a closed convex curve in a given direction is "the

distance between two parallel supporting lines perpendicular to that

direction. A set of constant width b has the same width in all

directions. Besides circle, the best known closed convex curve of

constant width b is the Reuleaux triangle of width b, i.e. a set in

R whose boundary consists of three congruent circular arcs of radius

b. See Figure 1. The Bl aschke-Lebesgue theorem states that the

Reuleaux triangle has the least area of all plane convex sets of the

same constant width b. The minimum area is ^ . This theorem

was first proved independently by Blaschke [2] , and Lebesgue [IT]

.

Besicovitch [1] , Chakerian [9] . and Eggleston [10; 11] contain a proof

of the Bl aschke-Lebesgue theorem.

Optimal control theory can be applied to geometric extremum

problems for plane curves as follows: The functional for which

extrema are examined are geometric invariants such as area or

perimeter. The system of ordinary differential equations for the

control theory formulation is derived from the Frenet-Serret

formulas, and the control parameter is curvature.

Klotzler [16] has used optimal control theory to study n-

orbiforms. These are convex planar domains which can be rotated

inside a regular n-gon under tangential contact on all sides. Plane

sets of constant width can be rotated inside a square with tangential

contact on all sides. Our approach to plane sets of constant width



is different "than that in Klotzler in the choice o"f the functional to

be minimi zed

.

In the following we discuss preliminary definitions related to

sets of constant width and include necessary background from the

theory of optimal control. We then formulate and analyze the

Blaschke-Lebesgue theorem as an optimal control problem.

Prel iminaries

By a convex body in Rn we mean a compact convex subset of Rn with

nonempty interior. For each direction u £ S n ~
, where S n ~ is the unit

sphere centered at the origin in Rn
, we let h(K,u) denote the support

function of the convex body K evaluated at u. Thus,

(1) h(K,u) = sup{u-x: x G K}
,

which may be interpreted as the distance from the origin to the

supporting hyperplane of K having outward-pointing normal u. The

width of K in direction u is given by

(2) W(K,u) = h(K,u) + h(K,-u) .

A convex body K is said to have constant width b if and only if

W(K,u) = b, for all u G S""
1

.

For a plane convex body K we shall use the notation h(K,0) =

h(K,u) , where u = (cos 6, sin 8) . In this case equation (2) can be

written as

(3) W(K,0) = h(K,0) + h(K,0+rr) .



A result that we shall find useful is "the formula of Cauchy for the

Euclidean length of K, namely

(-27T

•0
(4) L(K) = W(K,0) dd

From (4) we can obtain Barbier's theorem which states that all plane

sets of constant width b have the same perimeter nh . An elementary

proof of Barbier's theorem is given in Honsberger [15]

.

The area of K is denoted by A(K) and is given by

(5)
_ 1A(K) =

g
h(K,0) p(K,0) 60

where p(K,#) denotes the radius of curvature of K at the point with

outward normal u = (cos # , s i n 9) . As a consequence of the Frenet-

Serret formulas we can obtain the following second order ordinary

differential equation involving radius of curvature p(K,#) and the

support function:

(6) h(K,0) + h(K,0) = p(K,0)
,

where dot denotes differentiation with respect to 6. Detailed

discussion of (4) , (5) and (6) can be found in Flanders [12] , or the

monograph on convexity by Bonnesen-Fenche 1 [5]

.

For a plane convex body of constant width b we can use (3) to

obtai n

(7) h(K,0) + h(K,0+7r) = b

Substituting by 9+w in (6). we obtain

(8) h(K,0+7r) + h(K, 6+w) = p(K,0+jr)

Using (7) we have



(9) h(K,0) + h(K,0+7r) = .

Adding both sides o"f (6) and (8) and using (9) we conclude that for a

plane convex body of constant width b the radius of curvature

sat isf ies

(10) P(K,0) + p(K,6+n) = b .

Since the radius of curvature p(K,0) is nonnegative for a plane

convex curve, we use (10) to obtain (11) for a plane convex body of

constant width b.

(11) < p(K,0) < b .

The idea of using optimal control is simply to minimize the area

A(K) given by (5) subject to differential equation (6) and conditions

(7) , (10) and (11) .

In R , the generalization of Barbier's theorem is the fact that

the total mean curvature M(K) for a set of constant width b is

constant. That is

(12) M(K) = 27rb .

We also have the following remarkable relationship for a set of

constant width b:

(13) 2V(K) = bS(K) - ^ b3
,

where V(K) denotes the volume of K and S(K) the surface area.

Chakerian [8] contains derivation of (12) and (13). The problem of

minimizing the volume of a convex body of constant width in R is

apparently unsolved. Using (13), minimizing the volume is equivalent



to minimizing the surface area.. The analogues of formulas (5) and

(6) for volume and the support function of a convex body in R3 are

given in Blaschke [3] . The support function H of a convex body in R 3

sat i sf ies

(14) AH + 2H = R
x

+ R2 ,

where Rj and R2 are principal radii of curvature and A is essentially

the Laplacian restricted to the unit sphere. See Bonnesen-Fenchel

[5].

Chakerian [9] gives the following lower bound for n-d i mens i onal

volume V(K) of a convex body K of constant width 1 i n R n
:

(15) V(K) > Aw ft (i - ^fZiy, n > 3 .

k=3

where w n is the volume of the unit ball in R n and A = 7T->[3

L'tt
The

volume of n-d imens i onal unit ball in terms of the Gamma function is

given by

(16) Wn =
r(i + B)

Chakerian and Groemer [7] give an interesting survey article on

sets of constant width. Bonnesen and Fenchel [5] , Eggleston [11]

,

and Yaglom and Boltyanskii [20] have good treatment of required

background material from the theory of convex sets. These books also

contain properties of sets of constant width.



Optimal Control

In the following, we sketch the theory of optimal control and

give Pontryagin's maximum principle. Boltyanskii [4] , Leitmann [18]

,

and Pontryagin [19] are some interesting books on the theory of

optimal control. Gelfand and Fomin [13] also contains an

introduction to optimal control. Hermann [14] , and Brockett [6]

contain differential geometric treatments of calculus of variations

and control theory.

We will consider control processes that can be described by a

system of ordinary differential equations

dx :

(17) i _
dt '

= f,(xlt . . . ,xn ,u 1 , . . . ,u r ) , i = 1,2,. ..,n

where Xj , . . . , x n are space coordinates which characterize the process

and UpU,, . .
.
,u r are control parameters which determine the process.

In order to determine the process in a given time interval

[tQjtjJ , it is sufficient to give the control parameters as functions

of time on this interval, that is

(18) u
j
= "jCt) J = 1

>

Assuming that the problem is well posed, for a given initial

state

(19) xi(t ) = Xj°
,

the solution of (17) is uniquely determined

Consider the functional

,t,

(20) J = f (x1 ,...,xn ,u 1 ,...,u r ) dt



For each control (18) on [tojtjj , the process is determined and the

functional J assumes a certain value. Assuming that there is a

control (18) which transfers the object from a given initial state

(19) to a final state

(21) XjCtj) = Xj
1

,

the object is to find

(22) Uj(t) , j = 1, . . . ,r

which transfers the object from (19) to (21) in such a way that the

functional (20) has a minimum. In general there are restrictions on

control parameters U: . Thus we shall assume the vector u belongs to

a region U in 2-d imens ional Euclidean space called the control

region, that is

(23) u e u .

An admissible control is an arbitrary piecewise continuous

control in the control region U.

We now state Pontryagi n
' s maximum principle. As a good start for

understanding, one may study the shortest time problem for a phase

point moving from an initial point x° to the origin in accordance

with —v—^ = x , —r-- = u, lul < 1. This problem is studied in many
dt z dt ' '

—

books including Boltyanskii [4]

.

Max imum Principle

Let u(t), t < t < t
x , be an admissible control such that the

corresponding trajectory x(t) which begins at the point x° at the

7



time t passes at "the "time t, "through a point x . In order that u(t)

and x(t) be optimal it is necessary that there exists a nonzero

continuous vector function V'('t) = (V'o('k) > • • • ?V,n('t)) corresponding to

u(t) and x(t) satisfying

f24"> ——
'
- - ^- i - 1 2 n^z^) dt ~

<9xj
' i - u,i,^,...,n,

where

(25) H(V>,x,u) = £ t/>afa ,

such that

(a) for every t, t < t
x , the function H(i/>(t) ,x(t) ,u) of the

variable u 6 U attains its maximum at the ponit u = u(t)

:

(26) H(^(t) ,x(t) ,u(t)) = m(V(t),x(-t)) = sup H(tf,x,u) .

uGU

(b) At the terminal time t, , the relations

(27) tfo(ti) < 0, m(r^(t
1 ) ,x(t x )) =

are satisfied. It turns out that if V'("t) , x(t) and u(t) satisfy

systems

( 28 > a? = f§ •
; = o.i.---.»

.

< 29 > at = " ^ •
i - 0,l....,n ,

and condition (a) , then the time functions ^ (t) and m(^(t) ,x(t)) are

constant. Thus (27) may be verified at any time t , t < t < tj , and

not j ust tj .

8



Formu 1 at i on

The Blaschke-Lebesgue theorem states that the Reuleaux triangle has

the least area of all plane convex sets K of the same constnat width

b. The minimum area is -=> . In the following, without loss of

generality, we assume b = 1. We also write our formulas concerning a

plane convex body K without specifying K. For example (6) will be

written as

(30) h(0) + h(0) = p(9)

Thus we can rewrite formulas (5) , (6) , (7) , (10) and (11) as follows

(31)
in

h{6) P {6) de ,

(32)

(33)

(34)

(35)

h(0) + h(0) = P (6) ,

h(0) + h(0+7r) = 1

p{6) + p(e+n) = 1 ,

< p(0) < 1

We also have the following formula for any convex body K which

can be derived from Frenet-Serret formulas (Flanders [12]).

h(0) = x(0) • t(0) ,

where x denotes the position vector and t unit tangent vector at the

point where the outward unit normal is given by (cos 0,sin 6).

Through the endpoints of any diameter of a set K of constant

width there are support lines of K perpendicular to that diameter.

9



Furthermore "there is a diameter for which the corresponding support

lines are tangent to the curve (Eggleston [11] , P. 126) . Let one

endpoint of such a diameter be taken as origin. Using (33) and h (0)

we obtain

(36) h(0) = 1, h(7T) = ,

(37) h(0) = , h(jr) =

Substitute (33) and (34) in (31) to derive

(38) A - iA - 2 [1 + 2h(0)p(0) - h(0) - p{6)-\ d(

Let

(39) Xl (0) = 2h(0) - 1 ,

(40) x2 (0) = xj(tf) = 2h(0), and

(41) u(^) = 2p(0) - 1

If we now substitute (39), (40) and (41) in (32), (35), (36), (37)

and (38) , we obtain the following approach to proving the Blaschke-

Lebesgue theorem:

(42)

subject to

M i n imize 4 (1 + Xl (0)u(0)) d0
,

(43) x
l
— x 2 '

(44) X 2 = U - Xj ,

(45) x
x (0) = 1, x^tt) = -1

,

10



(46) x 2 (0) = 0, x 2 (tt) = ,

(47) u I < 1

Anal ys i s

The Blaschke selection theorem states that every infinite

sequence of; closed convex subsets of" a bounded portion of Rn contains

an infinite subsequence that converges to a closed nonempty subset

(Eggleston [11] > P. 64) . The Blaschke selection theorem implies that

the minimum area exists.

Minimizing (42) subject to (43)-(47) is equivalent to minimizing

(48) x
1
(^)u(fl) d6

under the same constraints. We proceed to use Pontryagin's maximum

principle to minimize (48)

.

Let

dx f

(49) d6
= X!(0)u(0)

Let rp(0) = (^o (0) >^i(0) > V'2 (^) ) be the auxiliary vector. Use (25) to

obtai n

(50) H = ^o^iU + V;
i><2 + V'2( u_x l) = (V'oXi + V :

2 ) u + 4> l
x2 " ^2X 1

We then use (24) to write down differential equations for 4>

(51)
dxpo

de
dn _
<9x

,

(52)
dj^

i^l = *2 *1«

11



(53) ^ - - ^H_ - -tfi

There exists a nonzero continuous vector tp(6) satisfying (51)-(53)

such t h at

(54) max H (x (0) , u , V (<?) ) = H (x (0) , u (0) , xj> (9) ) .

|u|<l

Now we consider cases to analyze the maximum of H given in (50)

as a linear function of u.

Case 1(a) : ipo ^ and ^> x
i + ^2^0 (not identically equal to

zero) lead to a contradiction.

In this case

Ul if

1 if V^i + ^2 >
(55)

^ox i + ^2 <

Using (43) and (44) we obtain Xj = u 4- A sin(#-a) for some A and a.

Continuity of ij> , Xj and V !

2 imply that ^ox i + ^2 = ^o ( u + A sin (r-a))

+ i>2 is continuous at a switching point r. Continuity at r implies

(56) ^o + V'o A sin(r-a) + ^(O = _
^'o + V>o A sin(r-a) + i'2( T )

Hence using (56) we conclude that ipQ = which is a contradiction.

Case 1(b) : Assume xpQ £ and V'ox i + ^2 —

In this case V'2 = -V'ox i • Hence i/> 2
= -

V'ox i — -
^i = ~^ox2 » and

(57) t/'! = ^2 - ^ou = V>ox 2 - V'oCu-Xi) •

Hence

-^ox i - V'ou = V'ou - V'ox i >

12



which implies u = 0. Using (41) we conclude p(0) = k which

corresponds to a circle of radius ^ giving the maximum area rather

than the minimum.

Case 2 . Suppose ^o = .

In this case rp 2 ^ 0. Since ip2 — and (53) imply \p x
= 0. But

we know that V is a nonzero vector. Hence using (55) we obtain

(58)

Differential equations (52) and (53) reduce to

f
1 if V>2 > o •

u =
l-l if V'2 < o •

(59) d6 " *'2 '

(60 ) -^ = -^ .

An analysis similar to Pontryagin [19, pp. 27-35] will give the

switching curve in Figure 2 where

{-1
above the cuve

+1 below or on the curve .

We can now interpret the system of differential equations (43)

and (44) as equations of motion. Our objective would be to get from

(1,0) to (-1,0) in such a way that we minimize (48). One can show

that this is equivalent to minimizing the action of the moving

obj ect .

Optimal trajectory starts at (1,0). Since (1,0) is above the

curve in Figure 2, we use u = -1 until the trajectory intersects the

switching curve on the x 2 axis. We will then use u = +1 which will

lead to (-1,0). If we interpret 6 as time, then the total time from

13



2n We realize "that x, = 1 and Xj = -1 are^1 iUj to ( — 1 5 l) J IS -g- . n c i c <x .l j. ^, tr oiiclu ->\.i

solutions of (43)-(46) in neighborhoods of = and — -n

respectively. Hence in order to use the total time suggested by

functional (48), the object starts at (1,0) and waits there for time

a < 5. Then the object goes to (0, -n3) and then to (-1 ,0) . During

the time interval (^ + a,7r) the object waits at (-1,0) for a period

of S-a. In this way the total time would be it. See Figure 3.

We use differential equations (43)-(46) and (62) below to obtain

(63).

(62) u =

1 , < 6 < a

-1 , a <

-1,

< 3 + Q

g + a < 6 < ^ + a

«+£ £ < n

(63) h( , = Lt|i(!) =

i,

cos (0-a) ,

< 6 < a

a < 6 < -A + a- 3

1 + cos(0 + g-a), g + a < 6 < ^ + a

0, o +%E < e < *

However (63) gives the support function of a Reuleaux triangle of

width 1. The angle a corresponds to the fact that a rotation of a

Reuleaux triangle by angle a will result in a new support function

where 6 is replaced by a+5, < a < 5. We can now calculate (42) to

obtai n

14



(64) Minimum area, = 44

.0Z7T

(1 + Xl (0)u(*)) ^0 =
T "

2
^

Hence by comparison of case 1 and case 2 we choose the minimum, which

k - ^3
1 s as des i red
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Figure 1. Reuleaux Triangle

x.

A

Figure 3. Dotted curve is optimal path
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