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Performance Analysis of a Buffer under Locking Protocols

E. G. Coffman, Jr. and Leopold Flatto

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

D. P. Caver. Jr.

Department of Operations Research

Naval Postgraduate School

Monterey, California

1. Introduction

We examine the behavior of a buffer system that acts as an intermediate storage facility in a

computer system. We speak of inputs from a source and outputs to a sink as being messages

consisting of data. The function of the buffer is to hold temporary accumulations of messages that

arise because of irregular or randomly occurring input and output.

The source alternates between states when it is at the buffer entering a message at rate r~ , and

states when it is away from the buffer. The loading of messages requires random time periods

denoted generically by T. After a message is entered, the source leaves the buffer for a random

rest period, R, before returning. Symmetrically, the sink alternates between states when it is away

from the buffer and states uhen it is at the buffer removing data at rate r~ . The sink always

completely empties the buffer before leaving; it returns following a rest period S The sink

immediately leaves on another rest period whenever it encounters an empty buffer.

We assume that there is no limit to the amount of storage that can be made available to the

buffer. However, several styles of interaction between the source and sink will be considered.

Styles in the class of interest in this paper are called locking protocols. According to such protocols,

source and sink activities can not occur simultaneously; one activity locks out the other. Within

this class of protocols, variants are determined by the reaction of the source or sink wishing to

enter or remove dat3 uhen it encounters the buffer in use. The taxonomy of models to be studied

is

(i) Source no wait, sink no wait (NW.NW)

(ii) Source no wait, sink wait (NW,W)
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(iii) Source wait, sink no wait (W.NW)

(iv) Source wait, sink wait (W,W)

Under the no-wait options an arriving source or sink encountering a buffer in use is assumed to

leave the buffer for another source or sink rest period that is stochastically identical to and

independent of the previous one. Under the wait options an arriving source or sink simply waits

for the start of the next rest period, at which time it immediately begins entering or removing data,

respectively. Depending on the application, it may be assumed that the message of a source turned

away from a busy buffer is lost, and a new message is generated in the next rest period, or it may

be assumed that the source attempts to enter the same message after the next rest period. The

wait/no-wait options are also known as blocking/non-blocking options.

A primary (NW.NW) application motivating this paper requires the source and sink to be taken

as autonomous processes. The buffer may be thought of as a mailbox where from time to time the

source deposits mail and the sink collects mail. Message-based operating systems provide an

important example. The computer system may be centralized or distributed, with the degree of

coupling arbitrary; the coupling influences parameter values rather than model structures. The

assumption r" = r~ would frequently apply; the source and sink operate on identical machines.

This assumption usually simplifies formulas without affecting the underlying analytical approach.

In a (NW, W) or (W,W| application, the source messages may be viewed as the intermediate

products of a complex computation being passed on from one sub-process to another. In general,

applications requiring one or both wait options imply a greater input or output dependence between

source and sink; synchronization may be one of the functions being performed, along with message

passing.

This paper contributes to a substantial literature on the analysis of buffer models. While there

appears to be no recent survey, the extensive reference lists in a book by Aven, Coffman and

Kogan (1987) and a recent paper by Mitra (1987) will be useful to the interested reader. We

remark that this literature focuses chiefly on systems in which the sink is a slave process; the sink is



always at the buffer either removing data or ready to do so. A notable exception is the recent work

of Mitra (1987), where a multiple-source multiple-sink system without locking is analyzed; each

source alternates between rest states and states when it is entering data into the buffer along with

any other sources currently at the buffer. Each sink visits the buffer after successive rest periods

until it finds a non-empty buffer, at which point it remains at the buffer removing data, along with

any other sinks currently at the buffer, until the buffer is empty.

The following questions concerning buffer behavior are of interest, and are addressed in later

sections:

• What is the characteristic occupancy level, e.g., the mean, or the probability distribution, of the

buffer contents X(r), or waiting time at a fixed time r, or in the long run, i.e., as ;
-*°

• What is the mean, or probability distribution, of the time of first passage from an idle state

(X(r) = 0) to a state x > 0, or from a busy state, x > to idleness? In particular, what is a busy

period duration

It appears that such questions are often answered conveniently by thinking of the buffer process

as alternating between idle periods of generic duration I, and busy periods of duration B. In fact,

it is often possible to proceed by restricting the analysis to the busy-period process, {Xb (l), t>0\,

where the latter refers to the content process {X(D, t 2 0} over periods during which the latter is

positive. Under convenient and natural initial assumptions the sequences of idle periods and busy

periods are composed of mutually independent random variables, and are themselves independently

and identically distributed, and so renewal-theoretic arguments and theorems (particularly the key

renewal theorem) can be applied; see Smith (1955, 1958). Feller (1971) or Karlin and Taylor (1975).

First-passage time results can be found by exploiting the ideas of terminating renewal processes and

large deviations: see Feller fl971), and also Gaver and Jacobs (1986) in a different context.

Similar and complementary results can often be obtained, and more intuitively, by application of

renewal-reward theorems derived from the strong law of large numbers; see Ross (1983).
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2. The Model

We present below a standard probabilistic formulation, but specialize it in later sections in order

to obtain explicit solutions.

Message loading periods form a sequence of independent, identically distributed (i.i.d.) random

variables {7",, ( = 1,2, ...} with distribution function (d.f.) F(t) and density /(/)• Between-

message rest times, or message interarrival times {R,\ i = 1, 2, ...} are also i.i.d. random variables

with d.f. G(i) and density g{t). Idle times, {/,}, form a sequence of i.i.d. random variables,

although often it is natural to think of them as being the same as source rest times. Sink

interarrival times are i.i.d. with d.f. K(t) and density k{t). All processes are assumed independent.

In later sections, the above model, with C(t) and K{t) exponential, gives rise to simple

formulas that promise insights. The phase-type formulations, cf Neuts (1987), among others,

should also provide explicit, although awkward formulas in terms of elementary functions; we do

not consider such elaborations here.

In what follows we adopt the following notational conventions. F'(Q) denotes the Laplace-

Stieltjes transform of the d.f. F(t), F {n]
(t) denotes the d.f. of a sum of n i.i.d. random variables

with d.f. F(t), and F(t) = 1 - Fit) denotes tail probabilities.

Regenerative Structure and Renewal-Theoretic Results — Let X(t) 2: denote the state of the buffer

process (e.g., the number of bits stored) at time /. The state space is tft" , so we deal in the usual

fluid approximation. The process {X(t). / a 0} has a regenerative property, describable in terms of

a cycle sequence {C,}, made up of i.i.d. random variables, C, = /,
~ B,, /, being the i* idle period

and B, the ensuing busy period, during which the buffer contents are positive The sequence {C,}

comprises a renewal process. Let {N(t), 1^0} be the number of cycle completions in (0, t], and

let the renewal function of {.V(/)} be denoted by

n(t) = 2 Pr

;-]
£ C,£f

Li-i

= 2 F^(t),
7-1

where F[J) (t) denotes the d.f. of the sum of; cycles. Let H(t) be the d.f. of idle periods.
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For x > 0,

(2.1)

pb {{dx).t) = ?:{x^Xb{t)^x+dx \Xb {$) = 0}

= Pr {x ^ X{t) < x -dLx , X(t)>0 Vt:0<t<[ |X(0) = 0}

provides the probability element for the busy period process. It is convenient to say, informally,

that pb ((dx),t) gives the probability that X(t) is at x. Then we can express the probability that

X(t) is at x at any time, given X(0) = and an idle period just beginning, as

(2.2)

where

(2.3)

p((dx),t) = pe ((dx),t) + f p((dx),t-T)Fc(dT),

Pc((dx),t)

l-tf(r), x = 0,

/ Pb {{dx),t-i) H{di), x>0,

which represents the probability that X(t) is at x during the first cycle. Note that (2.2) is formally

solved in terms of the renewal function as

(2.4) p((dx), t) = pc ((dx), t) - f p c ((d.x), t-r)n(dr) ,

the first term being the probability that X{t) is at x and t belongs to the first cycle, and the second

being the probability that X{t) is at x and t belongs to some later cycle. For the point mass at

.v =0, we write

(2.5) p (t) = ?t{X(i) = |X(0) = 0} = Hit) - / H(t—r)n(dr)

In terms of Laplace transforms on r, with n'(s) =
J

e " n (di).

(2.6) p'(tdx), s) = f e~" p((dx), i)dt
H'(s)pl((d.x),s)

1 ~ n'(s)
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(2.7) pgo- jvpowi -
[l

:
H
y,

)] ' s
-

o I - n (s)

which can occasionally be inverted explicitly, given a nice form of the busy-period transform

pl((dx), s). One can also interpret sp'((dx), s) as the probability that X(z)=x, with : having the

density se~", i.e., the probability of state x when viewing the system at a random (exponential)

instant.

Long-run (r- x ) information is often available from the key renewal theorem, or from

Tauberian/Abelian theorems for Laplace transforms; see Feller (1971) or Widder (1946). For

example, if pb {{dx), t) is directly Riemann integrable, then

x

(2.8) p(dx) = limp((<£c),r) = —\— f pb ((dx),t)dt.
t-x E[C] J

For pb ((dx), t) to be directly Riemann integrable, it is sufficient that it be positive, non-increasing

and integrable; see Ross (1983). These conditions will be verifiable in particular cases. For

another useful result let \b(x) be any function such that

(2.9) 0,
fc
(r) = f t,(x)Pb ((dx),t)

o

is directly Riemann integrable. Then

x

M0)-E[1)- f & b (t)dt

(2.10) limEM*(f))] - TTTTT

In particular, the long-run expected buffer content is

/ fxp b «dx),t)
o

dt J E[Xb {t)\dt

(2.11) Ii» £[*(,)] = ^

Because of positivity (Fubini's theorem),

f E[Xb (t)] \Xb (0)dt = EU Xb (:)dt\,



B being the length of a busy period, so to calculate the long-run expected buffer contents it is

enough to calculate the expected area under the random function Xb (t), OsisB. As will be seen,

such expectations are often straightforward for specific buffer models. In addition,

* ?r{Xb (t)^x)dt
lim ?r{X(t)*x} = /

b

EU x{Xb {t),x)dt

(2.12)

E[C]

where the indicator function \(Xb ,x)=\ if Xb ^x, and \(Xb ,x)-0 otherwise. Interpret the

numerator as the expected time in a cycle during which buffer contents do not exceed x.

Cumulative Process or Renewal-Regard and Strong Low Results — Suppose a buffer process operates

over a time t, and view each cycle as carrying with it a reward, V,, so that {C,, V,} is a sequence of

i.i.d. pairs of random variables. In the present context, rewards are illustrated by

• the total bit-seconds of delay incurred by message components present in the buffer over the

busy period,

ft,

V, = Jxb {t)dt;

o

• the total message-seconds of delay at the buffer over the busy period,

8,

(2.13) V, = jMb (t)dt,

o

where Mb (t) denotes the number of messages (or parts thereof) in the buffer at time t after the

start of a busy period;

• the total number of seconds during uhich there were fewer than x bits present in the butter

during the busy period

(2.14) V, = f X(Xb O),x)dt.
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Now let V(r) - 2 v
t
denote the total reward accumulated in (0, r]. Then the following result

is available. If V and C are a typical reward and its cycle length, and if E[V] < * and E[C] < *,

then it follows from the strong law of large numbers that as t -x

V(t) E[V]
(a) - —-—- with probability one, and
k

i E[C]
V }

E[V(Q] E[V)

i E[C]'

Further, from a central limit theorem on {C,}, we have as t -*

(c)
v (0-tE\y]/E[C]

__ V(Qi ]} (the standardized norma i distribution),
Vrp

i.e., for large t V(t) is approximately normally distributed with

Var[V] ^ Var[C]E[V] _ 2(Var[C] Var[V] 1 2 Corr{C, V)E[V]

E[C] (E[C]) 3 (E[C]) 2

provided the above quantities are finite and other natural conditions hold; cf Smith (1955), and

Ross (19831 for (a) and fb).

3. The Buffer with No Source or Sink Waiting

We analyze the CNW.NW) system under exponential assumptions for the source and sink rest

periods:

(3.1) git) = \e~ x '

, r >0

(3.2) k(t) = y.e-»' , t>0.

The process of buffer contents, {X(t)}, evolves as follows. Suppose X(0) = 0; then after an idle

period of duration I, a busy period begins; buffer contents at time t following the beginning of the

busy period, and before it ends, are Xb (t). At some time after the beginning of the busy period,

the sink arrives. If it arrives while the source is at rest, it is said to be effective and immediately

begins depleting the buffer; otherwise, the sink commences a new (i.i.d.) rest period. We let L

denote the time from the start of the busy period to the moment buffer emptying begins, and we let
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5(1) denote the time required to empty the buffer, once emptying begins. A message arrival

during S(L) is turned away; the source commences a new (i.i.d.) rest period, at the end of which it

returns with the message. (Observe that L is not simply a sink interarrival time, i.e., it does not

have the density (3.2), but must be derived from scratch.) At busy period termination a new idle

period of duration / begins, and so the process continues. For this model, / has the distribution of

a rest period, i.e., it has the density (3.1).

We now discuss various random quantities characterizing the above processes; see Fig. 1.

(a) For the time from the beginning of a busy period to an effective sink arrival (SA), we write

(3.3) l = r, +/?; +r 2 + /?i + ••• + rw _, +*;,_, +rw + *;,'.,

.

where M denotes the number of messages in the buffer at the time of an effective sink arrival,

and R' (respectively, R") is a rest period that is not (respectively, is) interrupted by an SA.

By the exponential assumptions R' and R" are equal in distribution. We look upon these

modified source-rest periods as i.i.d. exponentials with parameter X-p.; at the end of such a

period, depletion begins with probability jjl '(X — n > , and a new message begins entering with

probability X (X-y.). Since M is geometrically distributed,

?:{M=m} =
\ m -

1

X-u. X-u
, m > 1 ,

we can represent L as

(3.4) L =

T - R" ,

r, -*; -l #

uhen M = 1 (first SA effective),

i.e. with probability u. (X — p.),

when M>\ (first SA ineffective),

i.e. with probability \ 7X — p.).

with L* independent of L and having the same d.f. Now introduce transforms to find

6J6) = E[e-*L
]
= F*(6) / (X- ^e'^-^'^'dt

X - (JL X -
fJL

*; ( 6 )

so that



(3.5) <M8) ^^

From (3.5), wc obtain

(3 6) E[L] = |x-'[l + (X + n)£(D],

and

_.. £[7] -£[*]

as is intuitive. It is possible to show that L = LIE[L] will tend weakly to the unit exponential

d.f. as n-0.

(b) Next, consider the maximum level reached during a busy period

(3.7) X{L) = r*(Ti ~T 2
-

• • • + TM )

.

In terms of transforms again, <t>x(L)W = £[e _Wf(Z,)
] is given by

(3.8) *xa) (6) = £[{£'(r-6)}"] = t^iLl§i---,
M-
- X[l-£ (r 9)j

from uhich

(3.9) E[X(D] = jx
_1 (X-^)r-£[7],

and

(3.10) ji£[^(L)] - r*X£[7] a:r pi-0.

For jjl small, ue correctly anticipate

These results are applied trivially to the buffer emptying time, by means of

(3.12) SlL) = X(L) r~ .

i'c) For an analysis of busy periods,
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(3.13) B - S(L) + I,

we first refer to (3.3)-(3.7) and (3.12) to see that

E[e
-*SS(L)-%LL Af,R[,...,R'M .

l ,R'u)

(3.14)

= (E[e~
iSsir ~ ' r

~
)
^ f>L)T

]}

M
e'* 1

'*'
1

' R w - i
* Km 1

Removing the rest-period conditions (recall R' and R" are i.i.d.), we obtain

(3.15) E[e
9sSiD-tL L

|
a/] = [F'(Q s (r

+
/r-) + QL ))

M X + i

\-f |JL
"

M

Then, we remove the condition on M,

<t>su.U.(e s ,et ) = 2 E [e-'
sSlL) -*LL \M=m\

m 2 1
X-PL

m -1

\ + n

to find a result similar in form to (3.5) and (3.8)

6s(n.z.(9s. $0 -
^F*(e 5(r*/r-)^e L )

|jl - 6^ - X[l-F*(9 5 (r* "r")-e L )j

By (3.13), ue have 6
fl
(8) = E[e~*a ]

= 6sai .z.(8, 9), and hence

(3.16) <t>
fl
(8) = jiF'dr^/r-'im

».-Q~k[l-F'((r~ Ir~ ~])Q)}

with

. £[fi" = — (X-ji)£[7";

fd^ In order to evaluate the long-run expectation of buffer contents we proceed to find the

expected area under X(t) during a busy period. Begin with the filling portion; a glance at

Fie. 1 shows that the area of random triangles and rectangles is

AIL) = — a] -n
2

-Tit)

(3.18)

- r'[TiR\ - -{Ti-Ti- -Tm -ORm-i ' (7"
;

TM )R\i

}



- 12-

but a closer look provides the more convenient form

(3.19)

A(L)
(r + {j\l2 + T

x
R\') when M = 1 (first SA effective)

r
+
(7*?/2 * 7,/?!) ~A(£) # + (r'T^L* when M > 1 (first SA ineffective)

where the regenerative properties of {X(t)} have been fully exploited; i.e., both A (Li* and L* have

the same distributions as A(L) and L, respectively.

Now take expectations in (3.19),

E[A(L)) = r
+ jE[T 2

]
- E[T]E[R'}

(3.20)

+ ?t{M> 1H£[A(L)] + r*£[r]£[L]},

then substitute (3.6), £[/?'] = , and Pr{M > 1}= to obtain
\ + fl X-r ^

(3.21) £[A(£)] = r
+ X + u.

|£[7- 2]--E[r](i-x£[rj)
2 m-

Turning now to the area under the emptying portion of a busy period, we have

(3.22) -TV;A(S(D) = 4" X(L)S(L) = — X :
(Ii = (J—L- (T-

2 2r~ 2r~

Focusing on y = 7] - • • - TM , we write conditionally

Y =
(T, ,

if A/ = 1

7"i
- y # . if M > 1 .

so

"
l
r'-

if M - 1

27
-

]K# _
(
y*)2

( if .Vf > 1

where v and K #
are independent and equal in distribution. Remove conditions to find

E[Y] = E[T) - T^— E[Y] = £—& E[
X-n



and hence
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E[Y Z
]
« E[T2

} + -£— (2E[T]E[Y] + E[Y 2
))

\->-fj. 2X£[TV- -(£[r]) s

(3.23)
r u. I 2 ji

We assemble previous results and deduce expected long-run buffer constants from the key renewal

theorem or the strong law of large numbers (c/(2.10)):

(3.24) E[X) = lim E[X( t ))
= E[ML)) + E[A(S(L))]

where E[C] = — - E[B). Substitution of (3.17), (3.21) and (3.23) yields
A,

(3.25)

E[X) =
( \

c- r

£" [T
]

2
+ 1 + -£[7] 1 + X

r
E[T]

E[C]

with

(3.26) £[C] =
l
- -+1

r

(x-^L)£[r]

4. Results on Wait Protocols

In genera!, wait protocols complicate matters, however, the principles of the analysis remain the

same. This can be seen in the following treatment of the source no-wait, sink wait protocol

Because of space limitations, the analysis is necessarily somewhat condensed.

Figure 2 illustrates the two types of busy-period sample functions that can arise in the (NW.W)

model; the peaked ones occur when an SA encounters an active source, and waits until it finishes,

while the remainder occur when an SA encounters a source rest period. The analysis of the random

variables in the preceding section proceeds as follows.
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(a) Wc can express the time until emptying begins, measured from the start of a busy period, as

(4.1) L =

T' ;
M 1 , SA during first loading period

T" +r M = 1 , SA during first source-rest period

T" *R' + L*\ M>\
,

where L* is independently distributed as L,

(4.2)

Pr{rs7"' 3.t +dt} = (l-e~ >u )F(dt)/[\-F
m

(iL)]

Pr{t*T" 3t+dt} = e-^'F{dt)IF*(\i),

R' has the same distribution as in section 3, and M has the geometric distribution

(4.3) Pr{A/=/n} = ^F'(jL)

\ + jx

m-1

X + m.

Note that F"()j.) = E[e _M,r
] is the probability of no SA during a message entry. Then the

transform becomes

(4.4)

<M6) = J e- 9'(\-e-^)F(dt)

- /<-- (^ 9)T(^)/u.e-^ +e)'[l-f- x']^-6 L(e)/\£-
(X --- eu^

lo

so after simplification,

(4.5) a re) = (x^-e)f(e)-(x~9),r(iJL~e)
L

pL-(x + e)[i-F'(n-e)]

For the expected value we find

(4.6)
(X- K)E[TW»

^-rX[l-F'(^)]

and )j.E [L ]
— 1 as jjl — 0, for there are no re-tries, and the time to begin emptying after an SA

is asymptotically the exponential SA time. In fact, expansion of (4.6) shows thai, as y. -0,

1 E\T 2
]E[L]~ — - l J

1 J

y. 2E[T]

E[T)

E[T)-E[R.
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which is intuitively appealing (note that E[T2 ]/(2E[T]) is an expected residual message

loading time and E[T]I(E[T] + E[R]) is asymptotically the fraction of L spent loading

messages).

(b) For the maximum level reached in a busy period, we have in agreement with (3.7)

X(L) = r
+
(7

1

and consequently,

or

(4.7)

E[S{L)} = E[X{L)]/r- = — E[T)E[M\
r

E[S{L)] = Li (WE[T)
r~ n*X[l-F'(u.)]

This together with (4.6) yields for E[B] = E[L] + E[S(L)],

(4.8) E[B] =

(X + PL)|— + 1 E[T] + F'{y.)

,x-X[l-F'(fJL)]

and, as jjl -0,

(4.9) E[B] -E[L] 1- E[T)

E[T]-E[R,

as would be anticipated for rare SA's.

ci To obtain E[X], we star:, in close analogy with (3.19). by expressing A (L) as

r"(r"^2;

r-[(T\r 2-VRl'];A{L) =

A/ = l, SA during first loading

period

M =
1 , SA during first source-rest

period

, r -[{T\)
l :2-T\R\)~A(L*)-(r^T\iL*\ M>\

Taking expectations, a calculation shows that

(4 .10) E[A(D] = r-(\-|jL)
E[T 2l -» E\Te~» T

][\ -\(E[T) - f(|x) (\- ^>>i

u.-Ml-F"(n)] {pL-Xtl-F^K)]^
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and that as n-0,

VlE[A(L)] ~ r*(E[L}) : IE1
E[T)*E[R\

Next, write

A(S(D) = | £l- Sl

where

Su =

T\'

\

A/ = l, first SA during first loading period

T{ ; M = \, first SA during first source-rest period

T\ + SJ&; M>\.

A straightforward calculation leads to

:? .1 =E[SU]
:

= (X + n)

pi + X[l-F-(u.)]

E[T : _ + 2\E[Te-»T)E[T]F'{».)

[h + X[1-F'(,jl)] {^\[1-F'(u.)]} 2

so that

4.11) E[A(S(L)>] = (r-y
(X-»i)

E[T 2
}/2 kE[Te-* T]E[T}F'(>i)

n-\[i -/"•(>)] {|a-x[i-/-(jd:;

whereupon £[X] = F[A(L)] -£[A(S(L))] follows by substitution of (4.10) and (4.11).

We conclude with brief observations on the source-wait models. The burden added to the

analysis of these models results from a new idle period d.f., uhich now has an atom at (see

Fig. 3). Clearly, Pr{/ = 0} is the probability that the source arrives uith a message during S(L).

To preserve regenerative structure, it is convenient to deal with composite busy periods, and idle

periods that are residual source rest periods, as in Section 3. A composite busy period, B, consists

(uith probability 1) of a sequence of busy periods B, , fi, _j 5,-,, where B
:
. begins when fi;

ends, i </<_/'- 1, and B, and B, __, are preceded and followed, respectively, by idle periods of

positive duration (in particular, with density Xe _x
'); see Fig. 3. The statistics of composite busy

periods are easily derived. For example, write
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with probability e
kS(L)

(4.12) B " \B+B*,

*

with probability \-e XS(L)
,

where B and B" are independent and equal in distribution. Then,

E[B] = E[B] + E[B]E[\-e- KSlL]
]

and

(4.13) E[B) =
£[r" ai

]

By lines already well established, an analysis of the (W.NW) system leads to an expression for

E[e~ XS{L)
]
having a familiar form:

(4.14) E[e~ KS(L)
]
- \tEllhl

.

H + X[l-f(X)]

Then £[B] is determined from (3.17) (with r* = r~ = 1), (4.13), and (4.14). The analysis of the

renewal process C, = £, + /,, i = 1, 2, .... continues in analogy with Section 3.

5. Conclusions and Extensions

The models presented and analyzed represent in a simple way many situations encountered in

computer science. To a degree, they resemble continuous polling models (cf. Coffman and Gilbert

1986), but they have their own unique features. Of course, there are many extensions to be

considered, an important one being to recognize the finiteness of the buffer, i.e. there is a capacity

b so that X{t) £ b < *. This means that protocols must be established to deal with message inputs

colliding with the capacity b. Possibilities include' (i) split such messages, sending the overflow

and all subsequent messages before the next SA to an effectively unlimited secondary buffer, or

(ii) reject such messages and close the buffer until the sink reappears; see Gaver and Jacobs (1980)

for some partial but relevant results. Design questions concern the determination of b, as a

function of source and sink rates and message statistics, so js to achieve a suitably small probability

of overflow.

More complete information than the simple expectations exhibited here is desirable. Transforms

of the time-dependent distributions of buffer contents are available, from which the tail behavior
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and its dependence on F(t) can frequently be derived; the tool is large deviation theory. The

present analysis can also be extended to multiple sources. Results have been obtained and will be

reported in the full-length paper.
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