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ABSTRACT

To help understand the stability of cold, viscous boundary layers in
geophysical contexts such as lava lakes and mantle convection, the following
model problem is analyzed: Beneath a shear-free horizontal boundary, a thin
layer of very viscous fluid overlies a deep layer of less viscous, less dense
fluid. The initial unstable equilibrium is perturbed, and the growth of the
disturbance is followed, including the nonlinear effects of large amplitude,
by a long-wave analysis. The result shows that in the final catastrophic
growth the peak thickness of the upper layer approaches infinity inversely
proportional to the remaining time. (This conclusion also applies to fluids
with power-law rheology.) Thus nonlinear effects greatly enhance growth.
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Summary of notation

Pi, ui, P2, M2» A P> g» x » z » t, u, w : see Figure 1

P : local density ( Pi or P2)

v : either kinematic viscosity

k : characteristic wavenumber

dj, d2 : equilibrium depths of each layer

6(x,y,t) : interface location

P : local pressure (Pi or P2)

p : local reduced pressure (reduced by pg(z-di))

o_
: stress tensor

t^j
: deviatoric stress tensor (without pressure contribution)

a = U2/V1 : viscosity ratio

B = d 2/d 1 : depth ratio

£ = kdj : dimensionless wavenumber

Fij : reduced force tensor, 2D

F(t) : reduced force for ID disturbance

de (t) : current "equilibrium" thickness

xq : initial position of fluid cross section

<5()(xo) : initial thickness profile

a(x,t) : disturbance amplitude (dimensionless, = 6-1)

ao(xo) : initial amplitude

t* : singular time for any cross section to reach infinite thickness

T - t-t* : time relative to singular time

L : length of layer, or wavelength of periodic disturbance

Lq : initial length or wavelength

n(xo,t), f(ri), C(n) : for similarity solutions describing plume

x*(t) : "initial" position of fluid section currently at plume position



a
: arbitrary power for peak profile

c
: small remainder

° : linearized growth rate

t(6) = t*-t : time until singularity for power-law fluid layer

a(t), A(t), C(x,t), f(0, g(0 : for large-amplitude similarity solution
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1. INTRODUCTION

This work describes the circumstances under which the motion of a

buoyantly unstable horizontal film of viscous fluid is limited by normal

viscous stresses, and gives an analysis showing how the growth of disturbances

to the interface becomes greatly enhanced when the disturbance amplitude

becomes large, leading to the formation of plumes in a finite time. A

companion work will show that in certain cases this same dynamic balance

controls the structure of the cold boundary layer in Benard convection with

strongly temperature-dependent viscosity. The behavior described here thus is

of geophysical relevance to such flows as those in lava lakes, the thermal

convection of planetary mantles, and possibly also in convection in the

Earth's solid core. The Rayleigh-Taylor problem considered here is the

simplest example of this dynamic balance.

The problem is illustrated in figure 1. Two layers of immiscible fluids

are confined between shear-free boundaries, with the upper fluid layer being

denser and much more viscous than the lower, and both fluids are so viscous

that neither inertia nor surface tension is significant. A linearized

analysis (appendix A) shows that the most unstable wavelength is long compared

to the upper layer thickness. And scaling the problem shows that this fastest

growth occurs in a broad range of wavelengths for which the lower fluid is

effectively passive and hydrostatic. Thus we give a long-wave analysis, where

the lower fluid is treated as inviscid, that exploits the fact that, for long

waves, the disturbance amplitude can get very large (compared to the average

layer thickness) while the slope of the interface remains small; this follows

from mass conservation.
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The results of this analysis show the nonlinear effects of large

amplitude. In particular, it predicts that thickness maxima in the layer will

reach infinite thickness in finite time, with the final catastrophic growth

inversely proportional to the time remaining before the singular time. This

conclusion is not unique to a Newtonian rheology; the corresponding analysis

for a power-law fluid (appendix B) shows the same catastrophic inverse-time

growth of large peaks.

The small-slope analysis predicts that at the singular time, a peak will

locally have the shape ° * jx|' , but that afterward, as the plume acts as a

sink of fluid, the shape will change to 6 a |x|~
1/2

.

Of course the small-slope approximation must fail before this, but we

argue that the failure is only local; the slope remains small everywhere

except in an asymptotically small neighborhood around each developing

singularity. Furthermore, these small regions where the small-slope

approximation breaks down have only an asymptotically small effect en the

dynamics of the rest of the layer. Therefore the small-slope equations will

continue to apply almost everywhere, even after the singular time, when peaks

form downwelling plumes. (There is a family of similarity solutions, given in

appendix C, that describe plume behavior.) Thus the same equations describe

the disturbance from the initial linear growth through the rapid large-

amplitude growth to the final draining of the layer by the plumes.

In the companion paper on the analogous thermally driven buoyant

instability, there is a family of steady solutions (with plumes), and we use

the small-slope equations to follow the development from initial conditions

through to the final steady state.



3

2. PROBLEM STATEMENT

Two horizontal layers of distinct Newtonian incompressible fluids are

bounded above and below by horizontal shear-free boundaries (see figure 1).

The upper fluid (of density Pi and viscosity Ui) is denser and much more

viscous than the lower fluid (of density P2 < Pi and viscosity U2 << Pi), and

the upper layer is very thin (di << d2). Both fluids are assumed to be so

viscous that we can neglect both surface tension and inertia. The latter

assumption requires

ApgL
3 /pv 2 « i

where L is the largest length scale, Ap = P1-P2, g is gravity, P is either

density, and v is either kinematic viscosity; this is easily satisfied in

mantle flow.

Initially both fluids are at rest in unstable equilibrium. Then at t =

the interface is slightly disturbed; thereafter the interface position is

given by ^(x,y,t). (Later we will assume that the disturbance varies only in

the x direction; a one-dimensional disturbance allows some remarkable

simplifications, and illustrates the physical behavior more clearly.)

A reduced pressure p is defined by:

P(x,y,z,t) = n(x,y,z,t) + Pg(z-di) (2.1)

where p is the local density (
p 2 or Pi). Then the governing equations are:

vp = ^ v2 u (2.2a)

v 'u_ = (2.2b)

and the boundary conditions are:
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at z = and at z = (di+d2): w = u z
= (2.3a,b)

at z = 6 (x,y,t): [u_] = 0_, (2.3c)

[no] = Ap
g (6_dl )^ 5 (2.3d)

6
t + u<5x + v6y = w (2.3e)

where LJ indicates the change in the enclosed quantity across the interface

(downward), °_ is the reduced stress tensor, and the unit normal to the

interface n has components:

n = (
-«
x ,

-6
y , 1 )/*

/
(l+6x

2+6
y
2

) (2.4a)

Physically, the conditions (2.3a-d) are that the boundaries are impermeable

and exert no shear, and across the interface both velocity and stress are

continuous, while (2.3e) is the kinematic condition that the interface moves

as a material surface.

These equations and boundary conditions, along with specification of the

initial interface position ^(x,y,0), define the problem without approximation.

To facilitate analysis, however, we limit attention to the development while

the slope of the interface remains small, i.e., &
x and ^ are both small.

Then in the interface stress conditions we can approximate the unit normal, to

lowest order, by:

n =
<

" 6
x> ~V l } (2 ' 4b)

and neglect any resulting terms quadratic in &
x ancj 6 it should be noted

that the resulting small-slope equations still retain the leading nonlinear

terms due to slope and are still applied at z = <$(x,y,t), in contrast to the

linearized conditions used for the small-amplitude analysis (appendix A).

The small-slope approximation applies trivially to small-amplitude

disturbances. But more importantly, the small-slope approximation applies to

long-wavelength disturbances even when the amplitude becomes large (until the
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amplitude is comparable to the wavelength). Thus we can use the simplified

equations to analyze the large-amplitude, nonlinear effects in long-wave

instabilities, which we do in the next section.

3. LONG-WAVE ANALYSIS

The disturbance can grow in a variety of different ways, depending on the

viscosity ratio, the depth ratio, and the dimensionless wavenumber:

a = M2/P1, B e d 2 /di, e e kdi (3.1)

(where the disturbance has a characteristic wavenumber k). The linearized

analysis in Appendix A gives the small-amplitude growth rates for the full

range of all parameters. A scaling analysis (see Canright, 1987, App. B)

shows that the same growth regimes apply even for large amplitudes, as long as

the slope of the interface remains small.

Here we focus on the case where the lower fluid layer is much less

viscous and deeper than the upper, so:

a « 1, 3 » 1 (3.2)

Then there is a range of wavelengths, which includes the fastest growing

wavelength, over which the growth rate is nearly constant (see fig 6):

max( a
,
Aa/B) ) « e « 1 (3.3)

In this range, the growth is limited by normal stresses in the upper fluid,

which moves nearly horizontally, while the lower fluid is passively moved by

the interface. Outside this range, for waves short compared to di, the growth

is reduced because only a fraction of layer 1 is mobilized, and for long

enough waves the viscous resistance of fluid 2 slows the growth.

We examine the finite-amplitude growth of long-wave disturbances in this

fastest-growth regime, exploiting the fact the slope of the interface remains

small even for large amplitudes (until the disturbance grows to the order of



the initial wavelength). What follows is the leading-order asymptotic

analysis; since the growth rate is constant to within 0( e ), we cannot expect

this analysis to predict the single wavelength giving maximum growth.

For wavelengths in this range, the interface motion is controlled by the

dynamics of the upper fluid, while the lower fluid is effectively inviscid and

hydrostatic; the error we make in neglecting the viscous resistance of the

lower fluid is much smaller than 0( e ). Hereafter we refer only to fluid layer

1 and drop the subscript 1 where clear. The motion is quasi-horizontal as

both surfaces of the layer see no shear. It is driven by the horizontal

variations of the buoyant pressure and resisted by the normal viscous

stresses.

We now estimate the scales of the different terms, assuming for this

purpose that the disturbance varies only in the x direction. Then there are

two length scales, x ~ k" l

, z ~ dl, and 5
X

~ e
. From continuity (and the

impermeable boundary), w/u ~ e
. Consequently, comparing vertical and

horizontal momentum equations shows that p z /px
~ e

, and the interface shear

stress condition (2.3c) implies u z
~ wx , so u z /ux

~ e
. The last scaling in

turn implies that the variation of u across the layer is 0( e
) smaller than u

(similarly for p), though u zz UXX"

When the initial disturbance to the interface varies in two dimensions,

over a length scale long compared to the thickness of the upper layer but not

so long that the resistance of the lower fluid becomes important, then the

above scaling still applies. That is, u, v and p are independent of z, and:

w = -z(u x+Vy) (3.4)

all within an error of 0(e 2
). From the normal stress condition, to 0(e ):

"P + T
zz - A Pg( 6-dl) (3.5)
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where t^. i s the deviatoric stress tensor.

Consider a force balance in the x direction on a small column of layer 1

(see figure 10). We reduce the force on all surfaces by the hydrostatic

pressure gradient due to fluid 2; this does not affect the balance. Recalling

(2.1) and from (3.5), the difference in total pressures is:

P1-P2 = P + Apg( z-di) = t zz - Apg(6- Z ) (3.6)

Then the reduced force balance involves only the sides of the column, since

the boundary is shear-free and the reduced force on the interface is zero, so:

Ay AX

J [Fxx (x+
Ax) - Fxx (x)] dy + J [Fxy

(y+A
y ) - Fxy (y)] dx = (3.7)

Y 6
x

Fxx = / [-(P1-P2) + \x ] dz ~~ [APg6 2
/2 + H\x - \ z )\

°6

F = / T 67 a
f
5t I

xy J xv u ^ ' xy J

where Fj^ is a 2-D tensor representing the reduced force in the layer: any

vertical plane through the layer defines a horizontal normal direction, and

the product of that normal and the tensor F^4 gives the reduced force vector

acting on that plane. Dividing by Ax Ay and taking the limit as Ax
}
Ay > 0:

3/3x(Fxx ) + 3/3y(Fxy ) = (3.8)

Indeed, a force balance in the y direction shows:

a/VjCFij) = (3.9)

Fij = 6 ("P 6
ij + T

ij)

p = -Ap
g
6 /2 + x

zz

where P is the average (reduced) pressure and °j4 is the Kronecker delta.

The kinematic interface condition becomes:

D 6 /Dt " 6
t
+ u 6

x + v 6

y
= - 6 (u x + v

y ) (3.10)

These two equations (3.9-10) govern the growth of long-wave disturbances.
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Note that the above derivation is independent of the rheology of the fluid

layer; any constitutive relation could be specified.

The analysis simplifies considerably for a one-dimensional disturbance;

we develop only this case. In general, the reduced force Y^a is a two-

dimensional tensor with zero divergence, reflecting the balance of buoyant and

viscous forces in the layer. However, when the disturbance is one-

dimensional, then only one component of F^ is nonzero; we call this scalar F.

Then (3.9-10) become:

9
/
8x F = (3.11)

D 6/Dt = 6
t + u«x = -<$u x (3.12)

the former of which integrates directly to give:

4<5ux + (Apg/y)6 2
/ 2 = F(t) (3.13)

This says that the force on any cross section of the layer, reduced by

the hydrostatic pressure force due to the lower fluid, is the same everywhere

in the layer, i.e., F(t). (This result is not surprising, in that the only

outside force on the layer is just the external hydrostatic head.) F(t)

depends on the conditions specified at the ends of the layer, e.g., if the

layer had abrupt ends with no applied force, surrounded by fluid 2, F would be

zero. Arbitrary end conditions can thus be incorporated via F(t).

We will treat three cases where F is simple to evaluate. In the first

case, the layer is of Infinite extent, but the disturbance is localized, so

that far away the layer remains in (unstable) equilibrium, and F is constant.

This case has a simple analytic solution that illustrates clearly the

nonlinear effects of finite amplitude. The second case is a periodic

disturbance (or equivalently , a layer with shear-free end walls). Here, the

requirement that u = at both ends of a period determines F(t) as an integral
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property of the shape of the layer. In the last (and simplest) case the layer

is of finite extent so F = 0; this solution also applies approximately when

is large and F can be neglected.

In dimensionless form, the governing equations (3.12-13) become:

DtyDt = 33/3E + u3S/3x = -^u/Sx (3.14)

S8u73x + S 2 = F(t) = d e
2 (t) (3.15)

which can be combined to eliminate u by adopting a Lagrangian formulation,

where the fluid "particle" in this case is a material cross section of the

layer, to give:

D3/DE = I 2 - d e
2
(t) (3.16)

Here D/Dt = 3/3t + u3/3x is the time derivative following a fluid cross

section, 5 - <Vdl, t - at, a E A Pgdl/(8^) is half the small-amplitude growth

rate, x = kx, u - ku/°, k is the wavenumber, and d e (t) =
[ F( t )/

(

A Pgdl
2
/2)

1

l/

2

is the current (nondimensional ) equilibrium thickness, i.e., that thickness

with no tendency to grow or shrink, so d e (0) = 1. Equation (3.16) is a

Ricatti equation, and can be integrated analytically for several different

forms of d e (t), or numerically for arbitrary d e (t).

This result shows that the vertical motion of the interface depends only

on the local layer thickness and the current equilibrium thickness (which may

depend on the overall shape of the whole layer). Thus any fluid cross section

does not care what its immediate neighbors are doing, and the growth is

insensitive to wavelength, as expected. Of course, the horizontal motion of

any cross section depends on the shape of the whole layer.
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4. SOLUTIONS

4.1. LOCALIZED DISTURBANCE

The most illustrative case is an infinite layer with a disturbance of

finite extent. Then the force on the ends of the disturbed region remains

constant: d e = 1 . This has a simple solution (drop tildes):

S(x
Q ,t)

- (1 + A(x
n
)e2t\

A(XQ )
- (ja.(x n ) - 1)

(4.!)
(1 - A(x )e2t) (6 (x ) + 1)

where 6q(xq) e 6(x ,t=0) and x identifies a particular fluid cross section by

its initial position. This becomes singular in finite time: when

t = t* = In
|
1/ A | the thickness 6 goes to «> or 0, depending on whether 6q was

greater or less than 1. (When the minimum thickness in the layer first

reaches zero, then de becomes zero, and the above solution becomes invalid for

the entire layer.)

When the initial perturbation amplitude a
Q
(x ) = 6 (x )-l is small, the

solution reduces to:

6 „ L±_£n?li/2 + O(ao 2 e 2t) (A. 2a)

1 - a e2t/ 2

and while the amplitude a(x
Q
,t) e 6(x ,t)-l remains small:

a * a e2t (i + a (e2t_i)/ 2 ) (4.2b)

Initially this gives the exponential growth of the linearized solution, and as

nonlinearities become important the perturbation growth accelerates for peaks

(a>0) and retards for troughs (a<0). As a result of this and volume

conservation, the peaks get narrower and sharper while the troughs broaden and

flatten. We can roughly estimate the duration of the linear behavior by when

this small-amplitude solution gives a ~ 1: At ~ ln|l/a |.
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As the amplitude gets large, the growth becomes algebraic in the time

remaining before the thickness becomes singular (°° or 0):

6 > 1: <5 - l/(t*-t) (4.3a)

6 < 1: 6 * t*-t (A. 3b)

which shows that the rapid nonlinear growth occurs over a time At ~ 1 , or,

dimensionally, 8y/Apgd,.

The catastrophic growth shown by the inverse relation (A. 3a) between peak

thickness and remaining time is strikingly different from the exponential

growth of small amplitudes. For large peaks the relevant time scale is the

time remaining before the singularity, which is inversely proportional to the

current dimensional peak thickness 6max : t ~ u/ApgSmax . This shows that

large-amplitude effects drastically enhance the growth of peaks.

To see the shape of the layer requires Eulerian coordinates. As x is the

integral of the strain dx/dx
Q , and because volume in the layer (and in each

fluid cross section) is conserved, dx/dx = 6 /6:

x
x(x ,t) = / 6 (x )/6(x ,t) dx (A. A)

where the x origin is chosen at some stationary fluid cross section.

We find that, at least initially, the overall strain increases, i.e., the

perturbed section stretches out in the x direction, for any initial

perturbation with a zero mean. To see this, we take the time derivative of

the position L of the end of the disturbed region:

Lo
DL/Dt =

/ 6 (i- 6 2)/ 6 2 dxQ (4.5a)

Then at t = 0, in terms of the amplitude a(x,t):

L L

DL/Dt = / (-2a + a 2/fi) dx = f a2/6 dx > (A. 5b)

since /a dx = 0. That the disturbed region stretches out in the x direction



12

is surprising, but is entirely consistent with the assumption that the force

on the ends remains constant.

For example, if the initial perturbation is sinusoidal we get:

6g = 1 - b cos x (4.6a)

6(x ,t) = 2 - b (l+e2t) cos Xn U6b)
2 - b (l-e 2t

) cos x

x(x ,t) = bC sin x + (D-C)x

2CD . /(E 2-b 2
) tan(x D /2) ,. , ,

+ arctan ~ - —^—

-

(4.6c)
/(E 2-b 2

) E - b

C = (e 2 t-l)/(e 2t+l), D = 4e 2t /(e 2t+l) 2
, E E 2/(e 2t+l) (4.6def)

and the overall strain is D-C + CD//(E 2-b 2
) , which increases monotonically

with time. This solution is graphed as 6(x) for various times in figure 2.

When the initial amplitude b is small, the solution simplifies:

6 «
1 + A C0S X

"
, A(t) = b e 2V2 (4.6g)

1 - A cos Xq

x - - tan~l[ /(1 'A)
tan(x /2) ]

- x (4.6h)
/(1-A 2

) /(1+A)

4.2. CONSTANT WAVELENGTH DISTURBANCE

For the second case, we consider the more physically reasonable situation

of a layer of finite extent bounded by fixed (shear-free) end walls (or the

equivalent situation of a periodic disturbance of infinite extent). Then the

end forces must vary with time to give u = at both ends. Integrating (3.9)

in x shows that fixed ends require:
L L

de
2
(t) - (/ 6 dx) / (/ 1/6 dx)

K *' n
where L is the entire length of the layer (or one wavelength), so the

numerator is just the total volume of fluid in the layer, a constant. Thus
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the thinnest parts of the layer have the greatest effect on d e (t). We find

that, as a result of (A. 7), d e (t) decreases in general, although the effect is

small for small amplitude. As the disturbance grows and the troughs deepen

and broaden while the peaks become narrower, de can only decrease with time.

Combining (4.7) and (3.10) (using dx = (6 /6)dx ) gives a single partial

integro-dif ferential equation that can be solved numerically for 6(x
Q
,t) given

an arbitrary initial profile 6 (x
Q ):

L L

D6/Dt = 6 2 " ( f 6 dx ) / (f 6 /<S 2 dx
Q ) (4.8)

For large amplitude, the main effect of fixed wavelength is to slow the

growth of troughs; in fact, 6 is prevented from reaching zero. In contrast,

peak growth is only slightly accelerated. When peaks become large, then d e

becomes negligible in comparison, as in the constant d e case, but sooner here

since d e decreases. Thus large peaks show the same catastrophic growth to

infinite thickness, given by (4.3a). Therefore the growth of large peaks,

where d e is unimportant, is insensitive to (reasonable) end conditions, and

our previous conclusion, that the growth of peaks is dramatically enhanced by

large-amplitude effects, applies in general.

Qualitatively this case is very similar to the previous, as shown by the

profiles in figure 3, except that the wavelength remains constant. Figure 4

compares the growth of the peak for fixed wavelength with that for constant

end forces, each for an initial sinusoidal disturbance.

4.3. LARGE-AMPLITUDE BEHAVIOR

Where 6 >> d e , we can approximate (3.16) by

D6/Dt = 6 2 (4.9)

(This would apply without approximation if the layer were of finite extent,

surrounded by fluid 2.) This integrates to:
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6(x
,
t ) = l/(l/6 (x ) - t) (4.10)

where again 6q(xq) is the initial profile. Thus each cross section reaches

infinite thickness at time t* = 1/6q; this is the same growth as (4.3a).

For this case, (3.15) simplifies to:

6 + ux = (4.11)

so

X
u(x,t) = - / 6(s,t) ds (4.12)

where the origin is assumed to be stationary. As long as 6 remains finite

everywhere, we can use 6 dx = 6 dx
Q ,

so:

x
u(x ) = - / 6 (s) ds (4.13)

which shows that each cross section moves at a uniform speed until the maximum

thickness reaches the singular time. These results (4.10,4.12) apply locally

around any large peak where de is negligible.

5. PLUME FORMATION

Here we examine what happens to a thickness maximum as it approaches the

singular time (t*). We will show how the peak becomes a plume, where the

dense, viscous fluid drains down. We argue that the small-slope equations

still describe the behavior of the fluid, except in an asymptotically small

neighborhood of the plume. This is possible because that neighborhood has

only an asymptotically small effect on the stress in the layer. Thus we can

describe the shape of the layer around the plume, and the small-slope

equations can be used all the way from initial conditions through the final

draining of the layer.

As the maximum grows, clearly the small-slope assumption must break down

locally before the peak reaches infinite thickness; at what thickness it

breaks down depends on the initial wavelength of the disturbance. Since the
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initial disturbance wavelength is asymptotically long, or equivalently , the

layer is initially asymptotically thin (e = kdj << 1), then when the peak

reaches infinite thickness, that portion of the layer around the peak where

the physical slope of the interface is 0(1) or greater will be asymptotically

narrow compared to the whole wavelength. This follows from mass conservation,

and from the shape near the peak approaching (as we will show) an integrable

negative power of x (where for convenience we have chosen x = at the peak).

This point is illustrated in figure 5. So the small-slope approximation

continues to apply almost everywhere in the layer; what is needed is a

description of the effect of the peak or plume on the rest of the layer

In a companion paper, we give a large-slope analysis appropriate to the

region around a peak where the small-slope approximation no longer applies.

There the flow is extensional, nearly vertical, driven by buoyancy and limited

by normal viscous stresses. We find that large-slope effects do not slow down

the growth, they only affect the detailed shape of the peak. Specifically, we

find that the catastrophic behavior described by (4.3a) still applies (except

for a numerical coefficient close to 1). Physically, there is nothing to

prevent the fluid from flowing down. In this way, the peak extends to become

a plume, where the viscous fluid continues to drain down. Of course, at some

point the fluid will reach the lower boundary or the extending peak will

become so long that the viscous resistance of fluid 2 becomes important. In

the former case, only the details of the plume shape are changed, but in the

latter, the driven flow In fluid 2 could affect the dynamics of the upper

layer.

To the rest of the layer the plume appears as an isolated singularity, a

sink of fluid. The horizontal force balance must still apply even to the
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plume, and so the reduced force in the layer F(t) is continuous across the

plume. Recall that F(t) is an integral property of the whole layer; for a

fixed-wavelength disturbance the dimensionless form is given by (4.7).

Because the region where the small-slope approximation fails is integrable (as

it must be, since no new mass is created) and asymptotically thin, its effect

on F(t) is negligible. Equation (4.7) shows that where 6 is largest has the

smallest effect on F. (Even after fluid starts draining out of the layer, the

numerator in (4.7) still just gives the volume of the layer, regardless of its

shape.

)

As an example, consider what happens near the maximum when the initial

disturbance is a small-amplitude sinusoid. (For simplicity, we assume the

constant-force end conditions, but as F has little effect on a large peak the

results apply to more general end conditions.) The previous solution (4.6g,h)

shows that the peak becomes singular as A = be 2t /2 approaches unity. Then in

(4.6h) the argument of the inverse tangent approaches zero (for x
Q
away from

tt), so near the singular time (4.6h) becomes:

x « 2tan(x /2) - x (5.1a)

for (1-A) « 1, and (1-A) 1/3 << (tt-x
q ). Then near the peak (x « 1):

x m x
Q
3/i2 (5.1b)

Setting A = 1 in (4.6g) gives the thickness profile at the singular time:

5 - cot 2 (x /2) (5.2a)

and near the peak:

6 « (x /2)~2 m (3/2 x)"2/3 (5.2b)

This shows that at the singular time the peak becomes proportional to an

integrable negative power of x.
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In fact, any smooth initial peak results in the same power of x. For

x << 1, the smooth (symmetric) initial peak is asymptotically:

6 • 1 + b(l - cx
Q
2/2) + OCbxQ 4

) (5.3)

where b is the (small) initial amplitude and c is some positive constant.

Then from (4.2a):

. 1 + A(l - c x n 2/2)
6 * u (5.4a)

1 - A(l - c x
Q
2/2)

where again A(t) = be2t/2. Near the singular time, A - 1 and:

6 + (5.4b)
(1-A) + c x 2/ 2

From continuity, dx/dx
Q

= 6 /6 « 1/6 (for small initial amplitude), so for

Xq << 1 and as A •> 1

:

x + (l-A)x /2 + c x 3 /12 (5.5)

At the singular time, A = 1, and near the singularity:

6 « 4/(c x 2) M c-1/3 (3x/2)"2/3 (5.6)

For the sinusoidal disturbance, c = 1 and (5.6) reduces to (5.2b).

As the singular time is approached, the peak can be described by a

similarity solution. Defining n(* ,t) by:

(1-A(t))n 2 = c x 2/ 2 (5.7a)

reduces (5. 4b, 5. 5) to:

f(n) = (l-A)6/2 = l/(l+n 2
) (5.7b)

£(n) = 3/(2c)(l-A)"3/2 x = n 3 + 3n (5.7c)

This is a particular case of the general similarity solution for large 6 given

in appendix D. The comparison is clarified by noting that:

A e e 2 i, T = t-t* (5.8a)

so that as A > 1 , t -»
, then to leading order in t:
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(1-A) + 2t (5.8b)

The general similarity solution shows that a peak of the more general form

6 " 1 + b(l - c

|

Xq
I

n
) , where n > 0, gives a singularity of the form

S(x,t*) <r |x| -m , where m = n/(n+l). In other words, any (reasonable) initial

peak becomes , at t*, a singularity proportional to an integrable negative

power of x.

After the peak becomes singular (i.e., a plume) the shape of the layer

around the plume can be calculated using the large-amplitude forms of the

equations given in section 4.3. For simplicity, we assume 6 is symmetric in

x, decreasing monotonically away from the origin, and we only consider x > 0.

Also, we choose the time origin such that the "initial" amplitude 6 >> de in

the region of interest. Then the large-amplitude equations apply:

6(x ,t) = l/(l/6 (x ) - t) (4.10)

x

u(x,t) = -
/ 6(s,t) ds (4.12)

The peak becomes infinite at t* = 1/

6

(0) . Thereafter, the layer must

move in such a way that each fluid cross section reaches the origin at the

same time that it reaches infinite thickness. In other words, if for t > t*

we designate the fluid element x
Q

at the singularity by x
Q

= x*(t), so

x*(t*) = 0, then 6o( x*(t))
= l/t> and since <$ is an invertable function by

the assumptions above, this uniquely defines x*, and thus also determines the

strength (

6

(x*)dx*/dt ) of the sink at the singularity, as a function of time.

With these large-amplitude equations we can determine the shape around the

singularity for all time.

Now we consider the fate of the inverse power of x singularity that forms

at t*:

at t = 0: 6 (x ) = 5(x=x ,t=t*) = b x
-

ct, < a < 1 (5.9a)
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where we have chosen the reference time at t*, when T = t - t* = 0, and b is

some positive amplitude. Then the fluid cross section x
c at the origin is

specified by x = x*(x), where:

x*( T ) = (bi) 1 ^ (5.9b)

Using (A. 10) shows that:

6(x
, T ) = b/(x

Q
a - x*a) (5.9c)

so:

x

x(x
, T ) =

/ 6 (s)/6(s, T ) ds
x*

= (x - x*) - (x*a/(l- a ))(x l-a - x*l
_
a) (5.9d)

Far away from the plume (x
Q

>> x*), the profile is still the starting profile

from t = (x « Xq, 6 * bx~c). However, very close to the plume:

x = x*(l+ £ ), e « 1 (5.9e)

x « ox-Ae 2/2 (5.9f)

6/b * l/(aex*a) « (bx) l >< 2a )~ 1 //( 2ax) (5.9g)

This shows that asymptotically near the plume, the singularity goes like

l//x, with a scale that varies in time. This asymptotic x dependence is

actually independent of the starting conditions (as shown by Canright, 1987,

App. C). From (5.9g) it is clear that whether 6 near the plume grows or

shrinks is determined by whether a < 1/2 or a > 1/2, respectively. The

special case a = 1/2 gives a steady solution. For a > 1/2, the fluid drains

away down the plume faster than it comes in from the sides, and the square-

root singularity diminishes with time as it spreads out, to match onto the

nearly undisturbed profile x~ a . This would be the eventual fate of an

initially (t = 0) smooth maximum, which gives a = 2/3. Conversely, if

a < 1/2, the square-root singularity grows as it spreads, fed from the sides

faster than it can drain fluid away. (To get a < 1/2 would require a cusp-
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like initial maximum, which may not be physically realistic.) This solution

(5.9a-g) is again a particular case of the general large-amplitude similarity

solution of appendix D. To see this, define ti(x ,t):

n(x ,i) e x /x*( T ), n > 1 (5.10a)

f(n) = t6 = l/(n a - 1) (5.10b)

5<n) E x/x*( T ) = n - (n 1_a-a)/(l-a) (5.10c)

With the above description of how a plume first forms and how it behaves

afterward, the small-slope equations can be used to follow the development of

the instability from initial conditions through rapid large-amplitude growth

all the way to the draining away of the fluid down the plumes. The results

will be inaccurate wherever the physical slope of the interface is not small,

but such regions comprise only a small fraction of the domain. The only

assumption is that a plume does not exert any net horizontal force on the

surrounding layer. This assumption may break down if a plume's length becomes

so much greater than the initial wavelength that the flow it drives in fluid 2

becomes dynamically significant.

6. CONCLUSIONS

The central concern of this work is the nonlinear interactions between

buoyant forces and normal viscous stresses that occur in a buoyantly unstable

viscous layer under a shear-free horizontal boundary and over a much less

viscous fluid, for long-wave disturbances in the range where the lower fluid

is dynamically unimportant. After the initially uniform thickness of the

layer has been perturbed slightly, the early growth of the (small)

perturbation is exponential; the perturbation keeps its shape while it grows.

But when the nonlinearities become important, the thicker parts of the layer

thicken more rapidly while the thinner parts thin more slowly, giving in
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general sharp peaks with broad, flat troughs in between. The accelerating

growth of peaks leads to infinite thickness at some time t* (which depends on

initial conditions), and the final catastrophic growth of the peak thickness 6

is algebraic: 5 = u/Apg(t*-t). (In fact, this same sort of inverse-time

catastrophic growth is also predicted for a power-law fluid, though the

coefficient is different.) This shows how large-amplitude growth is

fundamentally different from small-amplitude growth; large-amplitude effects

dramatically enhance the growth of peaks.

These are the results of a small-slope analysis; of course, where the

peaks become very large the small-slope approximation breaks down and there

the flow becomes fully two-dimensional. But as a companion work that employs

a large-slope analysis will show, the growth of the disturbance at large

slopes is essentially the same as that predicted here, with catastrophic

inverse-time peak growth; although the details of the peak shape do change,

this only changes the prediction by a numerical factor of order 1.

Furthermore, the small-slope equations will continue to apply to the

layer even after the formation of downwelling plumes, except in an

asymptotically narrow neighborhood around each plume. This is possible

because the plumes do not change the horizontal force balance (unless the flow

they drive in the lower fluid becomes dynamically significant). Applying the

equations up to the singular time shows that the first singularity should have

the local shape 6 <* |x|~ 2/3 , but that afterwards, as the plume drains the

layer, the singularity changes shape to 6 « |x|~ 1/2
. This behavior is

clarified by a family of similarity solutions, appropriate where 6 is large.

Thus the small-slope analysis can be extended to describe the development
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of the layer for all time, except in those narrow regions where the physical

slope of the interface becomes large.

APPENDICES

A. LINEARIZED SOLUTION

Here we calculate initial growth rates for the general problem with

arbitrary wavelength, depths, and viscosities. Initially the perturbations

are small, so the problem can be linearized by applying the interface

conditions at z = dj and assuming the slope remains small, but of course

including the buoyant pressure term due to the perturbations. (This is an

extension of the analysis given by Whitehead and Luther, 1975, to include the

effects of finite depth in fluid 2.) Thus the interface conditions (2.3c-f)

become

:

at z = dj: [u] = [u(u z+wx )] = (A. la)

[-p + 2 uw z ]
= Apg(6-d

1 ) (A. lb)

6 t
= w (A.lc)

where again indicates the jump in value from fluid 1 to fluid 2. Then the

equations are separable, and a simple analytical solution is possible. The

perturbation is assumed to be sinusoidal, but as the problem is linear, any

(small) initial condition can be constructed by superposition.

The solution is given below, where the subscripts '2 and 1 refer to the

two fluids, k is the wave number, a(t) is the dimensionless amplitude,

Z e z - (dj+d
2 ) is the coordinate in fluid 2, a = U2/yi * s tne viscosity

ratio, and in the coefficients A, B, E, F, and their common denominator D

these abbreviations are used : k e 2kd 1? K = 2kd
2 , c e cosh(k), C e cosh(K),

s e sinh(k), S e sinh(K).
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6 - dj [1 + a(t) cos(kx)] (A.2a-j)

Vj = (Apgd!/ Ul k2) a(t)/2 sin(kx) [A sinh(kz) + B kz cosh(kz)]

Y 2 - (Apgdi/pjk 2
) a(t)/2 sin(kx) [E sinh(kZ) + F kZ cosh(kZ)]

Pi = (Apgdj) { -a(t) B cos(kx) cosh(kz) }

P 2
" (Apgd

x ) { -a(t) aF cos(kx) cosh(kZ) }

A E (-1/D) { [2(S-K) + ak(C-l)] sinh(kd
1

) +

[k(S-K) + a(kK + 2(C-1))] coshd^) }

B e (2/D) { (S-K + aK) sinhCkd^ + a(C-l) coshdcdj) }

E = (1/D) { [2a(s-k) + K(c-l)] sinh(kd
2 ) +

[aK(s-k) + Kk + 2(c-l)] cosh(kd 2 ) }

F e (-2/D) { [a(s-k) + k] sinh(kd
2 ) + (c-1) cosh(kd

2 ) }

D e (S-K)(s+k) + 2 a (Cc-l+Kk) + a 2 (S+K)(s-k)

Then from 6 t
= w(z=d

1
) we get the growth rate:

a(t) = a(0) eat (A. 3a)

a = (Apgdj/yj) o (A. 3b)

1 (S-K)(c-1) + q(s-k)(C-l)
(

. . v

a = — \h.5c)

k (S-K)(s+k) + 2a(Cc-l+Kk) + a 2 (S+K)(s-ic)

The symmetry of the problem is apparent in the solution. Had we chosen

fluid 2 as the reference rather than fluid 1, the solution would have the same

form. Thus we can, without loss of generality, assume that fluid 2 is the

deeper layer: K > k.

This solution is governed by three independent dimensionless parameters:

the non-dimensional wavenumbers, or depths, k and K (or equivalently k and the

depth ratio 6 = d 2 /di), and the viscosity ratio a = y 2 /u 1
. It should be noted

that a is a monotonically decreasing function of a, i.e., if we increase y 2
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while iij stays constant the growth rate can only decrease. Also note that if

6 » then (A. 3c) reduces to:

5-1 (c-» + ° (S -g)
. (A. 3d)

ic (s+ic) + 2ac + a 2
( s-k)

which is just the result of Whitehead and Luther (1975). Figure 6a shows the

effects of viscosity ratio on c(k) for 8 = °°; figure 6b shows the effects of

finite depth for a « 1

.

When 6 >> 1 there are well defined regimes of growth where different

force balances are dominant. These are shown schematically, with the

corresponding growth rates, in figure 7. As we discuss the various growth

mechanisms below, it should be kept in mind that the same mechanisms continue

to apply as long as the slope of the interface remains small, which for long

waves includes large-amplitude growth. (This point is supported by the

scaling argument in Canright, 1987, App. B.)

For sufficiently short waves (k >> min( 1 ,max(
B"

1
,

a"
1 / 3

) ) ) the disturbance

sees neither boundary and
~

a + [k(l+a)] _1
, so if one viscosity is much larger,

that one limits the growth. The dominant mechanism here is that the vertical

motion of the interface is resisted by normal viscous stresses in the more

viscous fluid, and the growth rate diminishes with decreasing wavelength.

At the other extreme, for sufficiently long waves

(k << min(6-1 ,/( 6/a) ,/(a8) )) the boundaries confine the flow to be mainly

horizontal, limited by shear stresses at the interface. Then

a - k2(l+g/ a )/l2, and the controlling viscosity depends on if a > g or not.

Between these extremes, the waves are long compared to layer 1 so the

motion of the interface is primarily horizontal, and there are four different

regimes. In one (a-1 « k « a~ 1/3
, 1 « a << B

3 ), fluid 2 is relatively
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immobile and the growth is limited by the shear across layer 1, giving the

same growth rate as the previous case, i.e., k 2 /12. (This possibility was

apparently overlooked by Whitehead and Luther.) In another

(B
-1 << k << min(a,a-1 )), the slight resistance of fluid 2 (the rate-

controlling viscosity is y 2 ) gives a small shear gradient across layer 1,

which over the long wavelength is sufficient to balance the buoyancy, giving

a •* k/4a.

In the other two regimes, the less viscous fluid is effectively passive,

and the primarily horizontal motion of the more viscous layer is limited by

normal viscous stresses. The resulting growth rate is nearly independent of

wavelength, and includes the maximum growth rate possible for a given

viscosity contrast a where this behavior occurs. (For other a, i.e.,

1 << a << B
3

»
we expect the fastest growth at the crossover between short- and

long-wave behavior, at kmax * 2.9/a 1/3 , Omax a 0.23/a2/3 .) When fluid 2 is

much more viscous (a >> B
3 )> this regime (Ab/cx) << k << B~ 1

) gives a -» BMa,

while for fluid 1 more viscous ( a << D this regime (max( a , A aB) ) << k << 1)

gives a + 1/4.

In the last case, consideration of higher-order effects shows that, for

B" 5 « o « 1, a - ( 1/4) ( 1 - (a/k + kV720)). This broad maximum peaks at

^max * (180a) 1/5 = 2.8 a 1/5 and omax « ( 1/4) ( 1 - 0.44 ct
k/b

). As an indication

of the flatness of this peak, for the range ak/5 < k < 5.2 a 1/2 °, a > ( 1/4) (

1

- a 1/5 ). When a << B
-5

, the finite depth modifies the maximum growth rate

giving o « ( 1/4) ( 1 - (3a/Bk 2 + k^/720)) with a broad peak at

kmax * 3.2(a/B) 1/6 and omax - (1/4)(1 - 0.44(a/B) 2/ 3
)

.

The present work is only concerned with the case of a thin, viscous layer

over a less viscous, deep layer, so a << 1 and B >> 1 . We further restrict
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our consideration to the mechanism giving the fastest growth, i.e., the last

regime considered above, where a ~ 1/4. The lowest-order finite-amplitude

analysis (section 3) therefore predicts that the growth is independent of

wavelength.

B. POWER-LAW FLUID

The long-wave quasi-one-dimensional analysis of section 3 is not limited

to Newtonian rheology; any constitutive relation can be accomodated. The

important point is that both surfaces of the layer are shear-free (in the

wavelength range where the lower fluid is passive), so throughout the layer

shear stresses are 0(e) smaller than normal stresses, and the latter are

independent of z to 0(e 2 ). For a one-dimensional disturbance (3.9-10) become:

Apg6 2 /2 + 26txx = F(t) (B.l)

D6/Dt = 5 t + u6x = "6u x (B.2)

where x^j is the deviatoric stress tensor.

Below, we consider the particular case of a fluid with a power-law

rheology. In mantle convection, the oceanic lithosphere makes up most of the

cold, stiff upper thermal boundary layer. The lithosphere behaves like a

rigid plate rather than a viscous fluid layer, so the results for a Newtonian

fluid may be a poor model for destabilization of the lithosphere and the

initiation of subduction. A better model might be a fluid where the stress

depends on some power of the strain rate. This will not accurately describe

fracturing, but can at least incorporate weakening at high rates of strain.

For a power-law fluid In quasi-one-dimensional flow:

Txx = yrl"x|
n (B.3)

where y r has the appropriate units. Combining (B.l-3) we get a single
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(dimensionless) Lagrangian equation describing the evolution of the thickness

of the layer as we follow a material cross section:

D6/Dt = sgn(6-de (t)) 6 [ |

6

2-d e
2

( t ) | / 6]
m (B.4)

where m = 1/n, § E <s/h, t 5 (Apgh/8 Pr )
m t, and d e (t) is the nondimensionalized

current equilibrium thickness as before. For the special case of a Newtonian

fluid (n = m = 1) this reduces to (3.10). When d e (t) is specified, (B.4) can

be integrated numerically from the initial thickness 6 (x
n ). (Now drop

tildes.)

For an infinitely long layer with a localized disturbance (i.e., constant

end forces: d e = 1) and m an odd integer:

D6/Dt = (6 2 -l) m /6m
~

1 (B.5)

This can be integrated by parts. For example, if m = 3:

t(6) = l/4[ 6/(6 2 -l) 2 + l/2[ 6/(6 2 -l) + 1/2 In
|
( 6-1 )/(6+l

) | ]] (B.6)

where t(6) = t*-t is the time remaining before the thickness of the fluid

cross section goes to 00 or 0. Profiles (6(x) for various t) are shown in

figure 8 for m = 3 and m = 9, from an initial sinusoidal disturbance, using

solutions of the above form.

The effect of increasing m is seen to be concentration of the deformation

into narrow regions at the centers of peaks and troughs, while elsewhere the

profile becomes linear in x. The growth remains slow initially, then suddenly

becomes catastrophic after a certain threshold has been reached. A trough

reaches this threshold and necks off much sooner than a peak of equal initial

amplitude blows up. This can be seen in figure 9, which shows the growth of

positive and negative perturbations over time.

When the amplitude a = 6-1 is small, the approximate solution is:

a - a /[l - (m-l)(2a )
m -lt] l/(m-l) (B.7)
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where a
Q is the initial amplitude. This slow growth lasts for a period of

roughly At ~ 1/ f (m-1 ) ( 2a )
m_ 1

] . For large amplitudes, the growth again

becomes algebraic in the time remaining before the singularity is reached at

t = t*:

6 > 1: 6 - l/(m(t*-t)) (B.8a)

6 < 1: 6 « m(t*-t) (B.8b)

This catastrophic growth occurs over a time scale At ~ 1/m (dimensionally

(8yr /Apgh)
m /m).

As for the Newtonian fluid, a disturbed region under constant end forces

will tend to stretch out to some extent in the x direction. To keep the

wavelength constant, the end forces must vary in time to give:

L

f [(s2-d e 2(t))/ 6 ]

m
6 dx = (B.9)

While we have not done a numerical calculation for this case, we speculate

that enforcing constant wavelength does not significantly alter the

qualitative behavior, except to inhibit the layer from necking off. (When a

fluid cross section reaches zero thickness, locally the strain must become

infinite; for smooth initial conditions, this is incompatible with constant

overall strain.) Also, peak growth may be slightly enhanced.

The main point is that when peaks get large (compared to the current

equilibrium thickness), the large-amplitude effects still produce catastrophic

growth of the form 6 <* l/(t*-t), as for a Newtonian fluid, where t*-t is the

time remaining before the singularity.

C. LARGE-AMPLITUDE SIMILARITY SOLUTION

The equations appropriate to large-amplitude disturbances admit a rich

family of similarity solutions, which illustrate a variety of behaviors.

While such solutions demand particular initial conditions, nonetheless these
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solutions can be interpreted as good local approximations for situations

arising from arbitrary initial conditions. Two cases are of particular

interest, in light of section 5: one describes how a smooth finite peak

evolves to an infinite singularity, the other describes how that first

singularity changes shape as the plume evolves.

Where 6 >> d e (in dimensionless terms), we can effectively set de
= to

get the large-amplitude equations, valid locally. In fact, the same equations

would apply everywhere if somewhere the layer has zero thickness; for the case

of constant end forces, minima in the layer (if initially less than d e ) reach

zero thickness in finite time. Then:

6 t + (u6) x = (C.la)

5 + ux = (C.lb)

We assume a similarity solution of the following form:

x = a(t)C, 6 = A(t)fU), u = a(t)A(t)gU) (C.2)

Then the system (C.l) becomes:

(A'/A2)f - (a'/(aA))£f + (fg)' = (C.3a)

f + g' = (C.3b)

Similarity then requires that A'/A 2 be a constant. If that constant is

not zero we can normalize it by choosing the scale of A, and by a suitable

choice of time origin:

A(t) = 1/t (C.Aa)

Then, because 6 must be non-negative, solutions where f > will apply for

t > 0, when A is decreasing, and where f « will apply for t < 0, when A is

increasing catastrophically to t = 0.

Also, a'/(aA) must be constant, say X. (As X is insensitive to the scale

of a(t), it cannot be normalized.) Then let:
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a(t) = | t
|

A

(C.4b)

For t > 0, positive X gives a profile that spreads out in the x direction,

while for negative X the profile contracts; the converse is true for t < 0.

Combining (C.3a,b):

(gg')' " KZ" - g* « (C.5)

which integrates to:

(g-xe)g' + (X-l)g - C (C.6)

where C is an arbitrary constant. By a translation, corresponding to moving

the origin to a different part of the layer moving at a different speed, the

constant can be removed:

?M- C/(X2-X), q(c) = g(0 ~ C/(X-1) (C.7a)

(q-Xc)q' + (X-l)q = (C.7b)

as long as \ # 0,1. Then the equation becomes separable for:

Q(?) e cq( c )

(Q-x)cQ' + (Q-DO = (C.8)

Integrating by partial fractions and substituting back gives:

Z,
= q + sgn( ?

-q)D|q|k (C.9a)

f = -1/[1 + sgn(q(c-q))kD|q|k-l] (C.9b)

where k = X/(X-1) and D > is the second arbitrary constant of integration.

This is the general solution; though the differential equation is nonlinear, a

phase-plane analysis verifies that this gives all solutions (for A(t) not

constant, X * 0,1) except the trivial solutions f = and f = -1.

The solution describes a variety of behaviors, depending primarily on X

and on which branch of the solution is chosen. The constants C and D affect

the x origin and scale, respectively.



31

For example, consider \ > 1 (so k > 1), C = 0, D = 1, and the particular

branch:

% = g + sgn(g)|g| k (C.lOa)

f = -1/[1 + k|g|k-l] (C.lOb)

Since f < 0, this solution only applies for t < 0; it describes the growth of

a peak up to the singular time when 6 at the peak becomes infinite. The

asymptotics in £ reveal the behavior:

as
| 5 |

+ 0: 6 + ! t
j

~
1 [ 1 - k| 1

1

~

k
|

x
|

k "l
]

, u + -x/ 1 1

1

(C.lOc)

as |^| + »: 6 - |x|"l/X/k, u + -sgn(x) | x |
l/ k (C.lOd)

The first (C.lOc) applies for x near the origin, as long as t is non-zero.

The peak is of fairly general shape, but for the peak to be analytic in x,

X must be 3/2 (k = 3). The second (C.lOd) applies far from the origin early

on (t << 0), but applies ever nearer until at the singular time, it applies

for all x (# 0). The asymptotic shape (C.lOd) is independent of time; as the

peak grows it fills in the integrable negative power of x shape. For a smooth

peak, X = 3/2 and at the singular time 6 a
| x

|

— 2 / 3 (for any D)

.

As another example, X > 1, C = sgn(^), D = (X-l) k /X, and the branch:

£ = g - sgn(g)X-l[((X-l)|g| + l) k - 1] (C.lla)

f = l/[((X-l)|g| + l) k"l - 1] (C.llb)

which describes a plume, symmetric in x, for t > 0. Asymptotically:

as |c| + 0: 6 + l/[ t l -A/2/( 2 |x
|
) ] , u + -sgn(x)/( 2 |x

|

)/0~ x^ (C.llc)

as |s| + oo: 6 + (x|x|)"l/A, u + -sgn(x) ( X
|
x

|
) 1 / k /(X-l ) (C.lld)

At the singular time (t = 0), the profile (C.lld), which is independent of

time, applies everywhere. In other words, this example shows what happens to

an initial profile proportional to an integrable negative power of x; by a

different choice of C and D, the profile (C.lld) could be made to match
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(C.lOd) exactly. For t > 0, (C.llc) applies near the origin; regardless of

the starting x dependence, the shape around the singularity (plume) becomes

proportional to l//|x|. If X < 2 then the square-root singularity and the

corresponding strength of the sink at the origin decay with time, as the layer

drains away. (This would be true for an initially smooth profile like (C.lOc)

with X = 3/2.) Conversely, for X > 2, the singularity grows, as fluid comes

in from the sides faster than it can be disposed of. The special case X = 2

gives a steady plume:

6 = l//(2|x|), u = -sgn(x)/(2|x|) (C.lle)

Also, there are related solutions for X=0, < X < 1, and X = 1, which have

the same asymptotic shapes (C.llc,d), except that, for
| £ |

* °°, the forms for

u are different, and for X = 0, 6 * e~l x l/t as
| £ |

+ °°.

Briefly, the other behaviors governed by the similarity solution are as

follows. For t < 0, i.e., profiles growing to the singular time, there are

four: a minimum thickness of zero like |x|^, k > 0, locally time-independent,

that far away levels off to approach l/|t|; a profile that approaches zero as

x - -oo and l/|t| as x -)- +»; a symmetric finite minimum flanked by plumes

(which could be extended periodically); and a plume whose sides level off to

approach l/|t| (rather than 0). For t > 0, where the profile starts at the

singular time and diminishes thereafter, there is only one other case: a zero

minimum flanked by plumes (which could extend periodically). The special case

of A(t) = 1 , so a(t) = e^t, gives either an isolated plume, or a zero minimum

where
|
6X |

-> °° surrounded by plumes (possibly periodic). All cases with

plumes show the l//|x| shape. And solutions with the same A(t) and X but

different C and D can be "cut and pasted" together to give other similarity

profiles; if g and g" are continuous this will produce reasonable results.
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Figure 1. Raylelgh-Taylor Problem. A layer of fluid 1 over a layer

of a different fluid 2, between shear-free boundaries, where Po < Pi •

Interface position given by z = 6(x,t). Equilibrium (unstable; depths
of upper and lower layers are dj and d2« Growth rate of instability
depends on viscosity ratio a = uj/u2> thickness ratio 8 = dj/d2, and
wavenumber k (dimensionless e = kdj).



Figure 2. Viscous Layer Profiles 6(x) for various times t, from
initial sinusoidal perturbation of amplitude 10~4, for constant end-
force conditions (d e =1). Each profile represents one wavelength;
the overall strain increases with time.
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Figure 3. Viscous Layer Profiles <5(x) for various times t, from
initial sinusoidal perturbation of amplitude 10"^, for constant
wavelength conditions (de (t) decreases with time). Similar to Fig. 2,
except troughs not as deep, and the peak reaches °° slightly sooner.
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Figure 4. Peak Disturbance Growth: «max (t)-l (logarithmic) vs. time,
from initial sinusoidal perturbation of amplitude 10

-
4.

(solid): for constant end force
(dashed): for constant wavelength
(dotted): exponential (linearized) growth, for comparison
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Figure 5. When small-slope approximation fails, it does so only in a
region of width 0(e)

.
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Figure 6a. Linearized Growth Rate: o(k) (logarithmic scales)
(a) Infinite depth (&+">), for various viscosity ratios a. This

shows that when the film is much more viscous than the fluid below

(
a<<l), the maximum growth rate applies over a broad range of

wavelengths (to lowest order).
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Figure 6b. Linearized Growth Rate: a(k) (logarithmic scales)
(b) Finite depth (various 6), for a = 10~ 5

. This shows how
finite-depth effects give a large-wavelength cutoff to the maximum
growth regime for o«i.
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Figure 7. Rayleigh-Taylor Growth Regimes. The various (dimension-
less) asymptotic growth rates o (from Eq. k._2>c) are shown in the
regions of the parameter plane (wavenumber k and viscosity ratio a,

logarithmic scales) where they apply, assuming the depth ratio 6>>1.
(Divisions between regions, shown as lines, are actually broad areas
across which the growth rate varies continuously.) These growth
regimes apply while the interface slope remains small, which for lonj

waves (k<<l) includes large amplitudes.
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Figure 8a. Power-Law Fluid Layer Profiles: 6(x) for various times t,
from an initial sinusoidal perturbation of amplitude 0.02, assuming
constant end-force conditions,

(a) for power m «= 3

(dotted): initial, t =

(dashed): t = 129

(solid): t = 153
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Figure 8b. Power-Law Fluid Layer Profiles: 6(x) for various times t,

from an initial sinusoidal perturbation of amplitude 0.02, assuming
constant end-force conditions,

(b) for power m * 9

(dotted): initial, t =

(solid): t = 8.8*109
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Figure 9a. Power-Law Fluid Disturbance Growth: 6(t) (linear scales)
following a fluid cross section, from an initial perturbation
amplitude of 0.02, assuming constant end forces. Growth is shown for
both positive and negative perturbations,

(a) for power m = 3
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Figure 9b. Power-Law Fluid Disturbance Growth: <5(t) (linear scales)
following a fluid cross section, from an initial perturbation
amplitude of 0.02, assuming constant end forces. Growth is shown for
both positive and negative perturbations,

(b) for power m = 9



z = 6(x,y)

Fxx (x) f > F YV (x+Ax)

Figure 10. Force balance on a differential column of fluid (z

upward)

.
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