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ROBUSTIFYING THE KALMAN FILTER;

Protection Against Symmetrically Straggling Measurement Errors

D. P. Gaver
P. A. Jacobs

1. INTRODUCTION.

Tracking and prediction algorithms based on simple Gaussian (normal

distribution) measurement errors and structural models are commonly used in

practice under the name of KALMAN Filters. If (a) measurement errors are not

suitably Gaussian, e.g., if occasional outliers occur or (b) true structural

behavior is not simple, perhaps displaying apparently discontinuous behavior

caused by unfavorable sensor-target orientation, then traditional filter

performance may dramatically degrade. In this paper, we will propose and

study procedures based on an elaborated model of the KALMAN-type but with

the measurement errors coming from a family of possibly suitable non-Gaussian

distributions (e.g., Student-t) to represent, and suitably compensate for more-

thick-tailed-than-Gaussian measurement error, i.e., distributions with long

straggling tails having the tendency to produce symmetric outliers.

In particular the basic stochastic model considered here is

e n = e n-i+cDn (1.1)

Yn=6n + en 0-2)

where {co n } are independent normal/Gaussian random variables with mean

and variances {xn } and {en } are independent random variables having mean 0.

The random variable 6n is unobservable. The random variable Yn is interpreted

as the observation of n made with measurement error en ; en is not Gaussian,

but controllably long-tailed. The problem is to estimate n from Yi,..., Yn in

the simple recursive fashion that characterizes the classical KALMAN filter.

Expression (1.1) is a simple random walk and does not represent very

interesting dynamics, but does provide suggestive illustrations.

In the next, or second, section, we will describe a procedure, the ALMA
(standing for KALMAN with outliers suppressed), which is based on a model in

which the components of the error sequence {en } have a Student-t distribution.



In the third section, the traditional KALMAN procedure will be

described. It is based on the assumption that components of {en } have iid

normal distributions. Finally, a robust procedure due to West [1981 ] will be

described.

In section 4 results of an extensive simulation experiment will be

presented and discussed. The simulation experiment compares the various

procedures. The results indicate that the ALMA procedure is significantly

better than the KALMAN when the true measurement error distribution is

Student-t. Further, there is not much lost in using the ALMA procedure instead

of the KALMAN when the true measurement error distribution is normal.

2. THE ALMA FILTER AND RELATED PROCEDURES.

While many measurement errors of physical quantities are approximately

normal, especially "in the middle" of their distribution, there can well be

thicker-than-normal/Gauss tails and also occasional extreme outliers; that these

can have seriously degrading effects in regression-like problems has been the

subject of considerable research; we cite books by Mosteller and Tukey (1977),

Huber (1981), Hampel (1986); in the time-series context the article by Martin and

Yohai (1986), which contains many references; also lately the articles by West
and his associates (1981,1985); it is to West's approach that our methodology

should best be compared.

One way to model these features is to extend the tails of the normal by
continuous scale mixing. Such an approach can lead to the Student-t form, and

to many other useful forms as well. We will assume here that {en } are

independent random variables, now having in the Student-t distribution with

mean 0, scale tfn (not the standard deviation) and d degrees of freedom; that is,

pe (u) = c(d)—
d+l

2
(2.1)

Let Vj denote the I
th measurement and y

n = (yj, ..., yn ). Assume that Gn-

ll y
n_1 has a normal distribution with mean mn.j and variance Cn-l. Since co n is

assumed to have a normal distribution with variance xn , 9n l y
n-1 has a normal



distribution with mean mn-i and variance Cn=Cn-i+Tn . Thus, from (1.1), (1.2),

and (2.1)

P {0 ne d6,Yn€ dy I Yi=yi ,...,Yn-i=yn-l

}

= K exp
1 (6-mn-i)2 1 ,. ,._

T -75 y(d+l)ln 1 +(ft£ d8dy (2.2)

-Kcxp^y + ^QCyJdGdy

where the approximation replaces the expression in the exponent by an

approximating quadratic in 6.

2.1 The ALMA Procedure.

The ALMA procedure provides a Gaussian approximation to the

distribution of 9n I y
n

, but one that emphatically differs from the classical linear-

in-observations form. Following an argument in Gaver et al. [1986],

differentiate both sides of (2.2) with respect to to obtain

e-u(y) e-mn_, d+1 e-y 1

"ecyT
o?

1 +
,* x2

(2.3)

Equating the terms involving results in the following equation:

(y)

1
/ x 1

C? a2
(2.4)



where the weight

. , d+l
w(y) =— 1

(2.5)

1 +
(Q-y\

v°ny

1

Furthermore, equating the constant terms results in

Si un

(2.6)

The ALMA procedure approximates 9n I y
n by the normal distribution

having mean

and variance

l-im
n-i -# + w( yn ) yn^ (2.7)

Cn =
r l

, x In
-j- + w(y„) -7
cff

<r
n n

(2.8)

where

w(y„) = d+l

d

1

1 +
re-yn >

|

1

(2.9)

Note that the weight w(yn) involves the unknown 9. One implementation

uses approximate weights of the form

, ,
d+lwk(yn ) = -A-

1

(2.10)

1 + ^n'mn-n

When k=l, mn _i is used in place of 9 in (2.9).

When k=j, 0.5(mn_i +yn) is used in place of 9.



and

The basic ALMA procedure is to evaluate Wk(yn ) and then use it to find

Cn = ^ + w k (y n)-j
n n

(2.11)

(2.12)

The point estimate of Gn given y
n is n=mn and an estimate of the variance

of n is Cn . Thus the procedure provides a particular Gaussian posterior

approximation. In other similar contexts, non-linear filters for example, it has

been suggested that the procedure (2.10) - (2.12) be iterated with the newly-

computed mn , replacing mn .j in (2.10) - (2.12) in each iteration. In the

simulations 0, 1 and 2 iterations were implemented, and the results compared.

2.2 The Biweight.

The ALMA procedure is an iterative reweighting procedure. In the

ordinary regression context another weight has been suggested: the so-called

(Tukey) biweight, cf. Mosteller and Tukey (1977). In our context, the biweight

procedure can replace the weight Wfc(y) in the ALMA procedure with the

biweight

WB(y)=s

-ltfl
2

(y-mn-i) aon-y^j if k (y-mn-i^aan-^^

otherwise.

l\2

<1
(2.13)

The variance of a Student-t distribution with d degrees of freedom and

2 d
scale a is 0^3 if d>3, otherwise being infinite. Hence the (bi)weight wB(y) uses

the measurement y if
I y I

is within a standard deviations ofmn _i, the estimate of

6n_i. The weight is zero if the deviation is greater.

As was done in the basic ALMA procedure, 0, 1, and 2 iterations of

(2.10M2.12) were tried, with wB (yn ) replacing Wk(yn ), for values of a=5, 7, 9

and k= 1,0.25.



2.3 Aspects of the Likelihood Procedure .

It is possible for the likelihood function (2.2) to exhibit two local 9-

maxima. In such a case, the likelihood procedure approximates the local

maxima and chooses the one which globally maximizes the likelihood.

To examine the details let

f(6) = -iLlnP{eede,Y edy)
d0 n n

(
(Q-mn-l) d+1

r#
+

d
1 +

2

y-OA l

V

A

y_e

a?
d0dy. (2.14)

J

Now it is clearly possible for f(9)=0 to have multiple roots. To be

specific, f(6)=0 for those 9 satisfying

= e
3
+6

2
(-2y-m )J n-r (2.15)

+ ero^d + y
2
+(d+ l)C* + 2ym

n_
1
j

+
[-
m
n-l^

d -m
n-iy

2
-(d+1 )yC#n}

The properties of this cubic-in-9 equation can be deduced from classical

results.



Let

D = ^y-mn-lm (2.16)

2 C
#

2d2-5d(d+l)~ -4<d+l)l-£
of

2
]

2 C#

n
>

a2
n

>

-,3

d+(d+l)
a?

then if

D>0 (2.15) has 1 real root and two conjugate imaginary roots;

D=0 (2.15) has 3 real roots, at least two of which are equal;

D<0 (2.15) possesses 3 real and unequal roots.

Note that if d=°° so that en has a normal distribution, then certainly D>0

and (2.2) has a unique maximum. If d<°° and C*a"
n

2
is small enough, then D>0

and once again (2.2) will have a unique maximum. Ifd<°o and CJ|an

2
is large

enough (actually, larger than ^ a+\ H+T^'
tnen ^<(^ ^or an *nterva l °f

values of (y-mn.!) and (2.15) will have 3 real unequal roots; in this case (2.2) will

have two local maxima.



The likelihood procedure computes D. If D>0 it uses the ALMA
procedure with weight

-l

< ^
d+1wk(y) = -j-

<-mn-\\

On

k

T (2.17)

to compute n . If D<0, then two candidate estimates 6b and 62 of 6 are

computed. Both estimates are obtained via the ALMA procedure (2.7)-(2.9).

One approximates weight (2.9) by setting 6=mn .! as in (2.10); think of the result

as prior-dominated. The other approximates weight (2.9) by setting 6=y,so that

w(y) = -i— ; the result is data-determinated. The likelihood function is then

evaluated at each value of 9:6j and 8 2 .
The quoted estimate of 6 n is set equal to

the Gj that comes closest to maximizing the global likelihood; the estimate of the

variance is set equal to the corresponding Cn .

3. THE KALMAN AND WEST PROCEDURES.

In this subsection, the traditional KALMAN procedure will be described

for the model (1.1)-(1.2). A procedure proposed by West (1981) will also be

discussed.

3.1 The KALMAN Procedure.

The KALMAN filter finds the estimate &n of 6n which minimizes the

conditional mean square error of (6n-Gn ) given y
n

. If {£„} are independently

normally distributed with mean and variances {yn }, then the KALMAN filter

can be viewed as a Bayesian updating procedure; see Meinhold and Singpurwalla

(1983).

The Bayesian KALMAN procedure assumes e^ly"- 1 is normal with mean

mn _! and variance Cn.!. Thus, from (1.1) Q n \y
nA is normal with mean mn.j and

variance cJJ=Cn.! +V From (1.2)

P(6 nG d8,YnG dy I
y"* 1

) = K exp
1 On-nyi)

2

1 (y-9n)

2

~? C* ~ 2 V
d8dy (3.1)



= KexpJ^ 1
1"

M.

-n 2
i

.dGdy.

Cn Yn

Thus 6n | y
n has a normal distribution with mean

(3.2)

mn = Cn

and variance

(3.3)

Cn =
i r

-1

(3.4)

The estimate of Gn given y
n is then

and an estimate of the variance of 6n is Cn .

(3.5)

Comparing (3.3)-(3.4) with (2.10)-(2.12) indicates that, if yn is close to

mn_i, then the ALMA procedure will closely resemble the KALMAN. In

2
particular, if yn = an and d—»°o, the 2 estimators are identical. However, if yn is

far from mn_i, then the ALMA procedure will tend to discount that observation,

relying on its estimate of 6n_i to strongly influence its estimate of 6n . This

behavior implies that the ALMA procedure will be less quickly responsive to

changes in the values of 6n than will be the KALMAN. This is the price paid for

robustness to outlying measurement errors: KALMAN treats all changes in

observations as representative of structural ( 9n ) changes; ALMA is more

tentative. Of course ALMA may be tuned towards KALMAN by increasing the

d-value.

3.2 The West Procedure.



West proposes an estimation procedure for 9n given y
n in the case in

which the density p^ is symmetric about 0. In the special case in which p^ is

normal, West's procedure reduces to the KALMAN filter.

Once again, assume n_i I y
nl is normal with mean mn.j and variance

Cn_i so that 6n ly
n_1 is normal with mean mn_iand variance Cn=Cn_i+ Tn

P{9 ed9, Yn€dy|Yi=yi Yn-i-yn-l)

= Kexp
1 n 1#mn-l) ,jT + ln pE (y-6) dGdy (3.6)

« K exp ^r<e-mn.i) -jr +
2 <

f

In p (y-mn-i) + g(y-m n.i)(9-mn.i) - G(y-m n .i)

V n

(e-mn-i)
:

<*** (3.7)

where a Taylor expansion provides

G(u) =:h\ (u) -

(3.8)

(3.9)

Completing the square in (3.7) results in

P [e„ede,Y„edy I Yi=yi,... fY„_i=y„.iJ

1

R exp ^ -^j — + G(y-mn -i)

C
n

(e-mn-i)-g(y-mn .i)|
— + G(y-mn-i)

C?

.-1x2

(3.10)

Hence, P{9ned0 | Y 1
=y

1
,...,Yn=yn ) is approximated by a normal

distribution having mean

mn = mn-l+ Cng(yn
-mn-l) (3.11)



and variance

Cn = -+G(yn-mn . 1 ) (3.12)

In the special case in which en has a Student-t distribution with d degrees

of freedom and scale parameter on ,

pe (u)=c(d 1 +
<*n L \?n

u^P
-(d+D

(3.13)

g(u)=
d+1

ntm (3.14)

and

n ^
d+1 l

G(u) =—

-

2
"

/U\ 1

-2r

l- r^l (3.15)

Since G(yn-mn-i) is playing the role of a variance in (3.10), but may
become embarrassingly negative for large u, West suggests that it be replaced by

max(0,G(yn-mn_i)); this step has been taken in the simulations that illustrate the

various procedures proposed here. West suggests another possibility in West et

al. (1985).

4. A SIMULATION EXPERIMENT.

All simulations were carried out on an IBM 3033AP computer at the

Naval Postgraduate School. Random numbers were generated using the

LLRANDOMII random number package; cf. Lewis and Uribe (1981).

For each replication of the simulation the model of (1.1)-(1.2) is generated

for n=0,l,...,100. In the simulations reported below {co n } are iid normal with



mean zero and variance one. For each replication, estimates Bn of 9n given y
n

are computed using each of the procedures described above. The data collected

are the estimation error &n - 9n for n=25, 50, 75, 100 and the estimate of

variance Cn , n=25, 50, 75, 100. The number of independent replications is

1000.

Tables 1 and 2 report results of the KALMAN and ALMA procedures for

simulations in which {en } are iid normal with mean zero and variance one. The

ALMA procedure actually uses the incorrect measurement error model that

{en } are iid Student-t with d=3 degrees of freedom and variance equal to one.

Results for the ALMA procedure are shown for weights as in (2.10), for k=1.0

and k=0.25. The procedure was iterated 0, 1, and 2 times.

Table 1 shows statistics of 6n-9n for n=25, 50, 75, 100. As anticipated, the

KALMAN procedure which uses the correct (normal) model exhibits the

smallest variance of 6n - n . The ALMA procedure with k=0.25 and iterations

and the ALMA procedure with k=l and 1 iteration have the smallest variances

for the ALMA procedures.

Table 2 exhibits the estimates of the variance of 8n , namely Cn , for the

ALMA procedure for n=25, 50, 75, 100. The KALMAN estimate of the

variance is the constant 0.618 for all of these n. This constant is the limiting

solution to equation (3.4) with xn = Yn=l i mat is, with C= Cn
n->oo

C =

err + l

a simple quadratic with appropriate solution

C = i^£= 0.618.

The variance of 6n-6n f°r me KALMAN procedure in Table 1 is close to

the calculated 0.618.

The mean values of Cn for the ALMA procedure with k=0.25 and

iterations and k=l with 1 iteration are about half that of the corresponding

variances of &n-^n m Table 1

.



Tables 3-4 report results for a simulation in which {en } are iid Student-t

with 3 degrees of freedom and variance equal to 1. Table 3 reports statistics of

the estimation error, &n-^n» for the KALMAN, ALMA, Biweight, Likelihood,

and West procedures. As usual, the KALMAN procedure assumes {en ) are iid

normal with mean and variance 1. The other procedures assume {en } are iid

Student-t with 3 degrees of freedom and variance equal to 1 . The ALMA
procedure with k=.25 and no iterations exhibits the smallest variance of 6n - 6n .

The more complicated Likelihood procedure with k=0.25 and no iterations

exhibits the next-smallest variance. The ALMA with k=l and 1 iteration

exhibits the third smallest variance.

The Biwei

(2.13)a=5,7,9an

The results for a=

a=5 is not large e

Iterating the biw<

any values of a.

the smallest varia

does not do as well a

indicate that the diff

negative G(y-mn_j)

times over long peri

)lemented with the constants in the weight

•cedure was iterated 0,1, and 2 times,

lan those for a=7 and 9 indicating that

lying values; they are not reported.

2 times did not improve the results for

indicate that the biweight procedure with

1 with no iterations.

J West (1981) as currently implemented

rhe statistics of Cn in Table 4 seem to

;timate of variance, Cn ; the fix for

or Cn to increase by one in successive

Table 4 exhib

ALMA procedure w
and 1 iteration, the I

Biweight with k=l,

;

9n .

of Cn . The KALMAN procedure, the

iterations, the ALMA procedure with k=l

edure with k=0.25 and iterations and the

Tn approximately half the variance of 6n
-

5. CONCLUSIC

The simuk

KALMAN=ALN
requires no iterat

KALMAN when
efficient when er

ratios of (estimat

3 date indicate that a satisfactory robust

he k=0.25 weight-starting option and

liter is about 7% less efficient than the

re ideally Gaussian, it is about 6% more

n-Gaussian; efficiency is in terms of

>t the only meaningful criterion.



Examination of Table 3 reveals through values of skewness, and kurtosis , that as
anticipated, the robust ALMA estimation errors are substantially more closely
Gaussian than are the corresponding KALMAN products when measurement
errors are Student-t.
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Table 1

Statistics of 6n-6n

Normal Measurement Errors with Variance 1

Time n: 25 50 75 100
Proc Nbr k

Iter

M V S K M V S K M V S K M V S K

K . 0.00 0.61 -0.04 0.01 0.02 0.62 -0.01 -0.15 -0.03 0.63 0.02 0.29 0.00 0.60-0.05-0.19

A 1.0 -0.02 0.91 -0.07 0.60 0.03 0.77 0.21 1.40 -0.01 0.78 0.01 0.18 0.01 0.84-0.19 0.78

0.25 0.00 0.65 -0.02 -0.07 0.03 0.65 0.04 0.03 -0.02 0.64 0.01 -0.14 0.00 0.67 -0.05 -0.17

A 1 1.0 0.01 0.70 -0.05 -0.02 0.04 0.69 0.15 0.62 -0.01 0.68 -0.00 0.02 0.03 0.73 -0.06 O.01

025 0.02 0.70 0.00 -0.07 0.03 0.76 0.02 0.09 0.03 0.74 0.04 -0.10 0.00 0.75 0.02 -030

A 2 1.0 0.01 0.71 0.02 -0.09 0.04 0.75 0.06 0.06 -0.02 0.72 0.01 -0.04 0.00 0.76 -0.01 -0.25

0.25 0.02 0.77-0.01-0.11 0.02 0.83 0.02 -0.10 -0.03 0.82 0.O4 -0.09 0.00 0.81 0.O4-031

Procedure (Proc.)

K = KALMAN
A = ALMA

Statistics

M = Mean
V = Variance

S = Skewness

K = Kurtosis



Table 2

Statistics of Cn

Normal Measurement Errors with Variance 1

Time n. 25 50 75 100
Proc Nbr k

Iter

M V M V M V M V

A 1.0 .50 .08 .49 .07 .48 .06 .48 .07

0.25 .31 .01 .30 .01 .30 .01 .30 .01

1 1.0 .23 .02 .22 .02 .22 .02 .22 .02

0.25 .04 .00 .14 .00 .14 .00 13 .00

2 1.0 .14 .01 .13 .01 .13 .01 .13 .01

0.25 .09 .00 .09 .00 .09 .00 .09 .00

Procedure (Proc.)

A=ALMA
Statistics

M=Mean
V= Variance



Table 3

Statistics of &n-9n

Student-t Measurement Errors with 3 degrees of freedom and Variance 1

,

Time n: 25 50 75 100
ProcNbr k a M V S K M V S K M V S K M V S K

K _ _ 0.01 0.57 0.48 27 0.02 053 -0.02 22 0.02 0.67 0.78 8.7 0.04 0.54-0.17 1.7

A 1.0 - 0.03 0.67 -0.07 1.0 0.02 0.58 -0.08 1.1 0.02 0.71 -0.02 1.4 0.01 0.65-0.10 1.7

0.25 - 0.01 0.53 -0.16 1.6 0.01 0.48-0.08 1.5 0.02 0.57 -0.01 21 0.02 0.50 -0.26 23
A 1 1.0 - 0.01 035 0.09 1.5 0.01 0.49-0.09 12 0.02 0.61 -0.01 1.8 0.01 032-0.23 2.4

0.25 - -0.01 0.63 -0.46 4.1 0.01 0.58 0.03 3.1 0.03 0.69 0.06 33 0.03 0.58 0.20 2.7

A 2 1.0 - -0.01 0.58 -0.16 24 -0.01 034-0.05 1.6 0.03 0.64 0.02 1.9 0.02 0.54 -0.26 2.6

025 - -0.02 0.71 -0.66 5.5 0.01 0.66 0.09 43 0.03 0.79 0.18 4.9 0.04 0.64 -0.05 2.9

B 1.0 7 0.01 0.56 -0.17 25 0.01 0.51 -0.07 22 0.02 039 -0.09 2.6 0.02 032 -0.31 24
025 7 0.01 0.61 -0.68 5.2 0.01 0.57 0.04 3.9 0.03 0.69 035 6.0 0.04 0.56-0.13 27

B 1.0 9 -0.01 0.57 -0.42 3.5 0.01 054 -0.00 3.0 0.02 0.62 -0.07 33 0.03 0.53 -0.22 23
0.25 9 -0.01 0.63 -0.76 5.7 0.01 037 0.05 4.1 0.03 0.72 0.75 9.9 0.04 037-0.11 28

L 1.0 - 0.03 0.68 -0.12 1.5 0.03 036-0.09 1.0 0.03 0.69-0.02 13 0.01 0.65-0.13 1.8

025 - 0.01 054 -0.23 1.7 0.01 0.48-0.11 13 0.03 0.60-0.04 2.1 0.02 032 0.29 23
I 1 1.0 - 0.01 035 -0.13 1.7 0.01 0.49-0.09 12 -0.02 0.61 0.01 1.8 0.01 0.52 0.23 24

025 - 4).01 0.63 -0.53 4.1 0.00 037 -0.07 28 0.03 0.69 0.07 3.4 0.03 0.58 0.20 27
L 2 1.0 - 0.00 0.59 -0.22 25 0.01 053-0.08 1.6 0.03 033 0.02 1.9 0.02 0.54 -0.26 26

025 - -0.02 0.72 -0.70 5.5 0.00 0.65 O.01 3.9 0.03 0.79 0.18 4.9 0.04 0.64 -0.05 29
w - - - 4.06 112 -026 3.2 -031 384 0.14 43 1 0.08 774 0.03 5.1 1-0.791249-0.25 5.2

Procedure (Proc.)

K = KALMAN
A = ALMA
B = Biweight

L = Likelihood

W = West

Statistics

M = Mean
V = Variance

S = Skewness

K = Kurtosis



Table 4

Statistics of Cn

Student-t Measurement Errors with 3 degrees of freedom and Variance 1

Time n: 25 50 75 100
Proc Nbr k a

Iter

M V M V M V M V

A l.O - .46 .07 .44 .06 .48 .07 .45 .06

0.25 - .29 .01 .28 .01 .29 .01 .29 .01

A 1 1.0 - .21 .02 .20 .02 .21 .02 .21 .02

0.25 - .13 .00 .13 .00 .14 .00 .14 .00

A 2 1.0 .13 .01 .12 .01 .13 .01 .13 .01

0.25 - .09 .00 .09 .00 .09 .00 .09 .00

B 1.0 7 .29 .01 .29 .00 .29 .01 .29 .00

0.25 7 .27 .00 .27 .00 .27 .00 .27 .00

B 1.0 9 .28 .00 .28 .00 .28 .00 .28 .00

0.25 9 .27 .00 .27 .00 .27 .00 .27 .00

L 1.0 - .44 .06 .44 .06 .46 .06 .46 .06

0.25 - .29 .01 .28 .01 .29 .01 .29 .01

L 1 1.0 - .21 .02 .20 .02 .21 .02 .21 .02
0.25 - .14 .00 .14 .00 .14 .00 .14 .00

L 2 1.0 .13 .01 .12 .01 .13 .01 .13 .01

0.25 - .09 .00 .09 .00 .09 .00 .09 .00
W . . 8.8 64 16 240 23 543 29 946

Procedures (Proc.)

A =ALMA
B=Biweight

L= Likelihood

W = West

Statistics

M=Mean
V= Variance
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