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ABSTRACT

Linear controls are a well known simple technique for achieving variance

reduction in computer simulation. Unfortunately the effectiveness of a linear

control depends upon the correlation between the statistic of interest and the

control, which is often low. Since statistics often have a nonlinear relation-

ship with the potential control variables, nonlinear controls offer a means for

improvement over linear controls. This paper focuses on the use of nonlin-

ear controls for reducing the variance of quantile estimates in simulation. It is

shown that one can substantially reduce the analytic effort required to develop a

nonlinear control from a quantile estimator by using a strictly monotone trans-

formation to create the nonlinear control. It is also shown that as one increases

the sample size for the quantile estimator, the asymptotic multivariate normal

distribution of the quantile of interest and the control reduces the effectiveness

of the nonlinear control to that of the linear control. However, the data has

to be sectioned to obtain an estimate of the variance of the controlled quantile

estimate. Graphical methods are suggested for selecting the section size that

maximizes the effectiveness of the nonlinear control.

1 OUTLINE OF THE PAPER
The paper begins with a short discussion of quantiles and the properties of a

quantile estimator, with emphasis on the need for a reliable estimator for the vari-

ance of the quantile estimator. The next part of the paper discusses linear controls

for quantile estimates and the subtleties involved with estimating the coefficients

for the control functions. The discussion of linear controls is followed by a discus-

sion of nonlinear controls and their application to reducing the variance of quantile



estimates for a fixed simulation sample size. The final part of the paper presents an

extract of results from a simulation experiment where crude, linearly controlled and

nonlinearly controlled estimators are compared. Throughout the paper the empha-

sis is on quantile estimation for continuous random variables, though other cases

are of interest.

2 QUANTILES

2.1 Properties of a Quantile Estimator

Let Y be a random variable with a right-continuous distribution function defined

by

FY (y) = Pr{y < y}, -oo<y<oo.

Following Serfling (1980) define the a quantile of Y, ya , for < a < 1, as the value

Fy 1
(a) = m{{y:FY (y)>a}. (1)

If Fy{y) is strictly increasing, yQ is unique for each a. Additional restrictions

on Fy(y), such as continuity at yQ , may be needed for the existence of certain

asymptotic properties and will be stated as required.

Given a simulation sample of n independent and identically distributed (i.i.d.)

samples of Y, namely Y\, .. . ,Yn , one can construct a sample distribution function,

Fn , by placing at each observation Y{, a mass 1/n. Thus Fn may be represented as

1
n

Fn(y)= -J2l(Y, < y), -oo < y < oo

where I(-) is an indicator function which returns 1 if the argument is true and

otherwise.

For a sample of size n, one can define a nonparametric estimator of the a quantile,

ya (n), as the sample a quantile of the sample distribution function, or

ya (n) = F~ l
(a).

Using the sample a quantile to estimate ya is equivalent to using the order statistics

of the sample, Y^ <,...,< Yt n \, and defining a nonparametric estimator of the

a quantile, ya (n), as in Lewis and Orav (1989), as

yQ{ n) = Y{r)
=

l *H
jf no is an integer

MLna J + 1
) " na 1S not an Inte§er

where [w\ denotes the integral part of w.

For a given n and a, ya (n) is the rth order statistic from the n-sized sample

where r is determined as in (2). The following results on the distribution of ya (n)

are well known (David 1970, chap. 1-3 or Kendall and Stuart 1977, pp. 251-252).



Let Fya (
n)(y) be the cumulative distribution function of the quantile estimator.

Then Fya (
n)(y) can be written as

ffcOOdO = Pr{ya(n)<y}

= Pr { at least r of the n V, are < y}

since the term in the summand is the binomial probability that exactly i of the V,

are less than or equal to y. If the Y, are continuous with a density function fy(y),

the density function of yQ (n) is

fya (n)(y)= B{J_r+l)
^- 1 (y)[l-FY (y)}

n- r

fY (y)

where B(-,-) represents the complete beta function. Unfortunately, while ya (n) is a

nonparametric estimator, (3) shows that the distribution of the quantile estimator

ya (n) depends not only on n and a but also on the unknown distribution of the

underlying Y

.

The bias and variance of yQ (n) also depend on n, a, and the distribution of the

underlying Y . Assume that Fy(y) is continuous with a density function fy(y) which

is differentiable and nonzero at yQ . The following result for the expected value of

the quantile estimator can be derived from results in David (1970, p. 65):

a(l-a)fY (ya )
/ 1

nfY (ya ) 2(n + 2)fY (yQ )
\n-

E[ya (n)] = ya ~ ^ t ^ N
" „,„ , OW2,.. x

+ 0( -5 h ( 4 )

where e is a sawtooth function of n and a such that |e| < 1 and /'(•) denotes

the derivative of the function /(•)• An expansion for the variance of the quantile

estimator can be derived in similar fashion as

varfc(n)] = 4,w = ^y?^ + 0(£) • (5)

The notation g(n) = 0(l/n 2
) means that the absolute value of g(n)/(l/n 2

) remains

bounded as n goes to infinity.

There are also well known asymptotic results for yQ (n) (Serfling, 1980, sec. 2.3).

• If ya is the unique solution y of F(y-) < a < F(y), then ya (n)
—>yQ with

probability 1 as n — 00.

• If Fy{y) possesses a density fy(y) in a neighborhood of t/ , and fy(y) is pos-

itive and continuous at yQ , then ya {n) has an asymptotic normal distribution

in that



• Weiss (1964) proved that under mild conditions, the sample marginal quantiles

from a multivariate population with an absolutely continuous joint distribution

function have an asymptotic multivariate normal distribution. The asymptotic

covariance is a function of the multivariate distribution of the underlying mul-

tivariate population. This multivariate result is important because of the role

of the joint distribution of the controlled and controlling statistics in the theory

of controls for variance reduction.

2.2 Using Sectioning to Estimate the Variance of a Quantile Es-

timator

When using (2) to calculate a point estimate of the a quantile, one must also

estimate the variance or equivalently the standard deviation of the point estimate.

One could estimate the density of Y at ya and use (5) to estimate the variance.

However, the instability of density estimates at extreme quantiles can cause this to

be a very biased and unstable estimate of the variance of yQ (n). A more general

technique is to use sectioning to calculate both a point estimate of the quantile

and an estimate of the variance of the point estimate. While non-parametric con-

fidence intervals are available for crude quantile estimates (see Mood Graybill and

Boes 1974, p. 312), the confidence intervals are not appropriate for controlled esti-

mates. A brief discussion of sectioning follows; for a detailed discussion of sectioning

see Lewis and Orav (1989, chap. 9).

Let the random variable ya (n) be the function of independent and identically

distributed random variables Y\,...,Yn defined in (2) such that ya (n) is a point

estimator of ya . Let a 2
. ,> denote the variance of ya {n). Assume for now that there

are a total of N = m x n independent samples of Y, namely Y\, .

.

.., Yn , .

.

. , Yjv- The

sectioned point estimator, ya (m,n), is constructed as follows:

1. Divide the N samples of the random variable Y into m sections with n samples

each where for simplicity n x m = N (equivalently, replicate a sample of size n,

m times).

2. For the jth. section, j = 1, . . . ,m, use (2) to compute yayJ (n).

3. Compute ya(m,n) as:

I
™

yQ{m,n) = — Y]yQJ (n). (6)

The point estimator yai^in) is a sample mean of m independent estimates,

each of which is based on n samples.

4. Estimate the variance of yQ (m,n), namely a^-. ., with the sample variance
ya (m,n)

of the sample mean:

Shmn) = ~< 7^J2{ya,j(n)-y^(m,n)\ . (7)
ya (m,n) m(m — 1) ^^ I J



One advantage of sectioning to estimate the variance of the quantile estimate

over estimating the density is that since the yaj(n) in step 2 above are i.i.d. and

the point estimator ya (rn,n) is their sample mean, S^-, . is an unbiased estimate
yQ (m,n)

of the variance of the point estimate. Furthermore, if the yaj (n) are approximately

normally distributed, one can develop approximate confidence intervals for ya(m,n)
based on a f-statistic with m - 1 degrees of freedom. A disadvantage of sectioning

is the increase in the bias of the point estimate; the first-order bias predicted by (4)

for ya (m,n) is m times that for ya (N), a point estimate based on all TV samples.

For fixed JV, the selection of m and n involves a tradeoff between the bias and

the variance of yQ (m,n)as well as the precision of the estimate of the variance

of ya (m, n). To minimize the bias in yQ (m, n), as well as improve the approximation

to normality of the individual y_,(n), one would like n to be large. A drawback of

increasing n is the decrease in precision of the estimate of the variance of the point

estimate as well as a decrease in the degrees of freedom, m — 1, for the ^-statistic,

which relaxes the confidence interval. Using (5) and (7), one can write the expansion

for the variance of the sectioned estimate in terms of m only as

ya (m,n) ' m ~ (N + 2m) N* \N 2 )' K)

where j3 and 7 are constants determined by Fy(y) and a. The presence of m in

both the denominator and the numerator in (8) implies, for fixed N, that the value

of m which minimizes the variance is a function of the relative magnitudes of f3

and 7. If fl is small relative to 7, one should choose a small m in order to minimize

the variance. The value for m must be at least 2 in order to use (7) to estimate

the variance. Values for m and n which will minimize the variance or the mean
square error of the point estimate can be determined as functions of terms such

as (3 and 7. However, these terms are in turn functions of the distribution of Y
which is unknown. After consideration of the above, Lewis and Orav (1989, p. 262)

suggest as a "rough rule of thumb" to make m between 12 and 20 for samples with

N over 1000. This usually gives sufficient precision for the estimate of the variance

of ya {m,n).

Once m and n have been selected, the variance of the point estimate can be

estimated. Equation (5) shows that a2-
(

* is a decreasing function of n. For fixed

m, a decrease ma 2-, , will cause a corresponding decrease in 0%-. .. A technique

for reducing a 2 ,, without increasing n is linear controls.

3 LINEAR CONTROL OF QUANTILES

3.1 Single and Multiple Linear Controls

3.1.1 A Single Linear Control

Linear controls is a variance reduction technique which can be used to reduce the

variance of an estimate of a statistic of interest, often a sample mean. The statistic

of interest in this paper is the quantile estimator ya (n) from (2) and eventually the

individual section estimate ya<J (n) from (6).



To use a linear control for variance reduction a random variable generated in

the simulation, called the control or control variable, which is correlated with yQ (n),

must be available. The expected value of the control must be known, either exactly

or approximately. Let C be a random variable which is generated via simulation.

Although an estimator of the a quantile of C is not necessarily the most effective

control for a given quantile or Y , for purposes of discussion we will use as the control

variable the estimator of the a quantile of C as defined in (2), namely ca (n). The

random variable ca (n) is a function of n i.i.d. samples of the random variable C.

If ca(n) is generated as part of the simulation that produces the samples of Y it

will be called an internal control variable. If ca(n) is generated as output from a

different simulation, it will be called an external control variable.

The linear control scheme for variance reduction, with a single control, uses as a

control function a linear additive combination of the control and its expected value to

produce a controlled estimate ifa {n) where the prime applied to an estimate implies

that it is a controlled estimate. The control function, with coefficient 0, is subtracted

off from the uncontrolled or crude estimate yQ (n) to produce the controlled estimate

as follows:

Vain) = ya (n) - 9 {ca(n) - E[ca(n)]} . (9)

Putting aside the question of sectioning for now, the purpose of using a control

is to minimize the variance of the controlled estimate, o% in \, for a fixed sample

size n. If the statistic of interest is ya ,j(
n ) from (6), minimizing its variance will,

for fixed m, minimize the variance of the section estimate yQ (m,n). The value of 9

which minimizes a2
-, ,>. can be determined using differentiation to be the regression

coefficient from the regression of yQ (n) on ca (n);

9= \
'- = —p(yQ {n),ca (n)) (10)

where vya (
n ),ca {n) ls the covariance of ya (n) and cQ (n) and p{ya {n),cQ(n)) is the

correlation between yQ (n) and cQ (n).

3.1.2 Multiple Linear Controls

One can use multiple controls for variance reduction where ca (n) and 9 become

p-dimensional column vectors, ta( n ) an^ 9 with components ca ,(n) and 0{, for

i = 1,. . . ,p. With multiple controls, equation (9) becomes

y'Jn) = ya (n) - 9
T {^(n) - Efe,(n)]} . (11)

It can be shown (see Kendall and Stuart, 1977, chap. 27) that in the multiple control

case, the values for 9 which minimize a 2
-, ,-. are the multiple regression coefficients

- =
(^Ijn)) a

ya (n),ca (n) (12)

where £eQ (n) ' s the covariance matrix of ca (
n ) and <?ya (

n ),£ (n) ' s the p-dimensional

vector with components cov(ya (n),cai,(n)), for i = 1, . . . ,p.



Rubinstein and Marcus (1985) demonstrated that the solution for £ in the linear

control of a single response, yQ (n), is a special case of determining the canonical

correlation coefficients for maximizing the correlation between linear combinations

of multiple responses and multiple controls.

3.2 A Measure of the Effectiveness of a Control for Variance Re-
duction

One measure of effectiveness for a particular linear control is the percent variance

reduction which involves the ratio of the variance of the controlled estimate y'Q(n)

to the uncontrolled estimate yQ (n). A high percent variance reduction implies that

the control is effective at reducing the variance of the point estimate. For a single

control, assuming the optimal value for 6 is known, the percent variance reduction

is
2

l- 1̂ = p
2
(ya(n),da (n)). (13)

Equation (13) implies that for the control to be effective, one should choose a random
variable which is "strongly" correlated with yQ (n) to be the control variable cQ (n).

For multiple controls, the percent variance reduction is the direct generalization

a2
, /

j1_ ^^ = jRyo(n),ca (n)- (
14

)

where

R-.

<7
ya (n),c

<1
(n) (Ecjn)) a

ya (n),ca (n)
2

ya (n),cjn)
~

a2

i/c.{n)

is the square of the multiple correlation coefficient between ya (n) and (^(n). As

before, the effectiveness of the control depends upon a large value for R 2
- , * - , ,.

When the number of multiple controls to use is given, one should simply choose

those controls which maximize the R 2
. /. . ,y However, determining the number

of multiple controls to use is a more difficult problem which is complicated by the

necessity of estimating the coefficients in 0.

3.3 Use of the Asymptotic Expected Value as an Approximation
for the Expected Value of the Control

When using a linear control for variance reduction, the expected value of the

control is subtracted from the control variable in the control function as in (9) so

that the control function will have a mean of zero. A mean-zero control function is

desirable when controlling an unbiased estimator such as a sample mean so that the

controlled estimate is also unbiased. However, expected values of quantile estimators

are rarely known exactly. If the values of the density function of C and its derivative

at ca are known, the biased expected value of the quantile estimator from (4) can

be subtracted in the control function so that the control function does not affect

the first order bias in the controlled quantile estimate. If the expected value of the

biased quantile estimator is not known, it can be approximated by the asymptotic



expected value of the estimator; i.e. the actual quantile value cQ . The value ca

will replace E[ca (n)] in the control function in (9). While this causes the control

function to have order 1/n bias, there is already order 1/n bias in the estimate being

controlled, ya (n), so that the order of the bias in the controlled estimate is the same

as in the uncontrolled estimate.

Even when the biased expected value for the control from (4) is known, it may
desirable to use the asymptotic value. There is empirical evidence, and it can

be shown analytically, that use of a control function with order 1/n bias can ac-

tually decrease the magnitude of the first-order bias in the controlled estimate.

For example, let #yQ (
n )

denote the first order bias of ya (n) computed using (4) as

&ya (n) — E[ya (n)] — ya + 0(l/n2
) and let B^a^ denote the bias of ca(n) computed

similarly. If using the linear control scheme (9) to control a quantile estimate, where

Bya (n)IBca (n) is positive and

O<0<2^!,
Bca (n)

the magnitude of the first-order bias of the controlled estimate is less than the

magnitude of the first-order bias of the uncontrolled estimate.

If we are using sectioning to generate the overall point estimate and an estimate

of the variance (standard deviation) of the point estimate, and we assume that 9 is

known, equations (6) and (7) can be combined with the linear control equation, (9),

to get

1 ^
y'Jm,n) = — ]T y'

aJ (n) (15)

. m

m r~*

with an unbiased estimate of the variance of the controlled estimate of

1
m

i

v '
.7= 1

These results are straightforward. It is when 9 is not known, the usual case, and

has to be estimated using sectioning, that estimating the variance of the controlled

estimate requires some care.

3.4 Estimating the Coefficients

In the usual case in simulation, the values for 6 or 9 must be estimated since

not enough information is known about the joint distribution of yQ (n) and ta{ n ) to

determine the regression coefficients. For notation's sake, assume that one is using

a single control. If using sectioning to estimate the point estimate along with its

variance, the sectioned estimates y3 {n) and Cj(n), for j = l,...,m are available

to use to estimate 9. One could generate sample estimates of the variance and

covariances in (10) to estimate 9; however since 9 is the coefficient of regression, an

equivalent but computationally more convenient method for estimating 9 is to use

linear least-squares regression.

8



The regression coefficient 6 can be estimated by the least squares regression of

[Va,j(n) - t/a(m,n)] on 0[caj(n) - ca ] using the regression model

[ya,j(n)-y^(m,n)} = e[caj(n)-ca] + €j, j = l,...,m (18)

where the cQ>3 (n) are considered fixed and t
3

is a mean-zero random variable inde-

pendent of catj(n). Denote by 6(m,n) the estimate of 9 from a regression which

used m estimates for both the dependent variable and the predictor variable, where

each of the estimates was based on n independent samples of Y or C as appropriate.

Once 9(m,n) is computed, the controlled estimate for each section can be com-

puted using (9) as

y'cj(
n ) = y<*,j(n) ~ £("*,n) {cQ,j(n) -ca }. (19)

where cQ is the approximation for the expected value of the control. The final

controlled section estimate, y'a (m,n), can be computed using (15) as the sample

mean of the controlled estimates from each section. Unfortunately, estimating the

variance of the y'a(m,n) with (17) is not as straightforward since the individual

y'a,j( n ) are generally no longer independent because of the common 8(m,n). The
characteristics of the quantile estimates and the variance estimates depend upon the

joint distribution of ya (n) and ca (n).

3.4.1 Subtleties with the Joint Distribution of the Estimators

A key point of linear controls for quantile estimates is that the joint distribution

of the statistic being controlled and the control statistic, here ya (n) and ca(n), is

of primary importance for determining 8 and the characteristics of the controlled

estimate, not the joint distribution of the underlying populations Y and C

.

This is in contrast to the use of a linear control for controlling an estimate of the

mean, y, with the sample mean of the control, c. In this case, one can determine

as a function of the joint distribution of Y and C since, using (10),

_ cov(y, c) _ cov( y,c)

var[c] var[c]

Although the joint distribution of y and c is different from the joint distribution of

Y and C, one can estimate 9 using estimates of the population covariances based

on the iV individual samples. In general, when controlling estimators other than

the sample mean, one must estimate the covariances from the joint distribution of

the controlled statistic and the control, not the joint distribution of the underlying

populations.

3.4.2 Sectioning with the Assumption that the Joint Distribution is

Multivariate Normal

If the joint distribution of yQ (n) and ca (n) is multivariate normal and $ is estimated,

the point estimate of the quantile and the estimate of the variance of the point

estimate have several nice properties:



• the controlled estimates for each section, y'
Q An), are i.i.d. since the sample

covariance matrix of the ca>1 {n) is independent of their sample mean.

• S%r, o the estimate of the variance of yfAm.n) from (17) where y' An) is

computed using (19), is an unbiased estimator, and

• one can develop an unconditional confidence interval for y'a (m,n) using the

t statistic following Lavenberg, Moeller and Welch (1982) since conditionally

unbiased estimators remain unbiased unconditionally and conditional confi-

dence intervals remain valid unconditionally (see Kendall and Stuart, 1977,

p. 379).

When the multivariate normal assumption is not valid,

• the controlled estimates from each section ]/Qj{n) are no longer independent

since the sample mean and covariance matrix are no longer independent. The

controlled estimates also have additional 0(1 /m) bias from the estimation of 6.

• S^-, . from (17) can still be used to estimate the variance of i/Jm.n) al-
y'a (m,n)^

though it is now biased, and

• even if the y'
a An) are normally distributed, a confidence interval based on

a t statistic is only approximate because of the lack of independence of the

individual section estimates.

One method for maintaining independence between the controlled section estimates

at the cost of a loss of variance reduction is to estimate independently for each

section.

3.4.3 Subsectioning

An alternative to estimating a single 0(m,n), which couples the y'
a An) together so

that they are no longer independent, is to generate an individual estimate of 6 for

each section. This can be done by subsectioning the n samples within the section

and calculating quantile estimates within the section to use as data to estimate

Bj(v,l). More formally, for each jth section, for j — l,...,m,

1. divide the n samples into v subsections of length / where v x / = n, and

2. estimate ya ,j,k(0 and ca<J>k(l) for each Arth subsection, for k = 1, . ,
.

, v.

3. Use the v sets of subsection estimates yQjJ) jt(/) and ca j t

k(l) from the jth section

to estimate 8j(v,l) using a regression model similar to (18).

Once Oj(v, I) has been estimated, the controlled estimate for the jth section is com-

puted as

y'aj( n ) = Va,] -0j(v,l){caj(n)-ca ). (20)

The equation is similar to (19) only now there is a subscript on 9, which also has

different arguments. The final controlled estimate is calculated as before, as a sample

10



mean using (15), and the estimate of variance of the point estimates is calculated

using (17).

An advantage of subsectioning is that by using an independent estimate of 9 to

calculate each section's controlled estimate, the ifa An) are now i.i.d.. A disadvan-

tage of using subsectioning is the loss of predicted variance reduction. This occurs

for two reasons. The first is that instead of needing one estimate of 9, now m esti-

mates are needed and each additional estimate tends to reduce the achieved percent

variance reduction. The second reason is that 9(v,l) is not an unbiased estimator

of the regression coefficient for ya (n) and ca (n) since it is calculated using quantile

estimates based on / samples, which have a different joint distribution than ya (n)

and ca (n). There can also be some additional bias in the y'a An) from the estimation

of 6j.

3.4.4 Splitting and The Jackknife

Other methods which have been used with linear controls for calculating a point

estimate and the variance of the point estimate include splitting and the jackknife.

Each of these techniques is described in Lewis and Orav (1989, chap. 9) and in

Nelson (1988).

The splitting technique removes the bias caused by estimating 9 with the same

data being controlled at the cost of reducing the percent variance reduction. Split-

ting has been described in Tocher (1963, p. 115) and then in Beale (1985). When
using sectioning to generate m individual section quantile estimates ya ,j(n) and

Ca,j( n )i f°r j — 1,.. • , wt, the splitting procedure generates an estimate of 9 for each

section. The estimate of for the jth section is computed using all of the section

estimates except the jth set of estimates. The controlled estimate for each section

is computed using (20) with 9j(m — l,n). The final controlled estimate and its

variance are computed as before as the sample mean of the individual controlled

section estimates and the sample variance of the sample mean

The splitting estimator eliminates the bias in y'
a>An) due to estimating 9. How-

ever, like the sectioning estimator it has the disadvantage that the ifa An) are no

longer independent. It also has the same disadvantage as the subsection estimator

in that m estimates of 8 must be computed, reducing the percent variance reduc-

tion. The primary purpose for using the splitting estimator has been to eliminate

the 0(l/m) bias in the controlled estimate from the estimation of 9 in non-normal

samples when controlling unbiased estimators. Since the quantile estimator already

has 0(l/n) bias, which is unaffected by splitting, and splitting has no other clear

advantages over the section or subsection estimator, we chose not to use it.

Jackknifing is a method for removing the 0(l/n) bias in ya {n) at the price of

uncertainty about the loss of percent of variance reduction in small to medium sized

samples. For an "m-fold"jackknife estimate, one combines an estimate based on the

entire data set, yQ${N), with m estimates, each based on the data set with N/m
samples deleted, ya ,j(N - m), for j = l,...,m, to get a set of m 'pseudo values"

(j)ya(N-m), for j = 1,. .
.

, m. The final jackknife point estimate is the sample mean

of the pseudo values. In some circumstances, one can also use the sample variance of

the sample mean of the pseudo values as an estimate of the variance of the jackknife
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point estimate.

The jackknife estimate has an advantage over the section and subsection esti-

mators in that the bias of the quantile estimates is reduced since each pseudo value

is based on estimates using N — m instead of N/m samples. Unfortunately it has

some disadvantages as well. Lavenberg, Moeller and Welch (1982) examined the use

of the jackknife when using a linear control for the sample mean under the assump-

tion of a multivariate normal distribution between the statistic of interest and the

control. They found that the jackknifed confidence interval was usually larger and

more computationally expensive than the standard linear control based confidence

interval. Nelson (1988) compared the performance of several methods for linear

control of the mean when the normality assumption was violated and found that

the jackknife was usually "dominated" by the splitting estimator.

The jackknife has been used in quantile estimation. Seila (1982) used a 2-fold

jackknife for removing the bias of quantile estimates however he used a sectioning

approach for estimating the variance of the point estimate, not the jackknife estimate

for the variance of the point estimate. Miller (1974), and Efron and Gong (1983)

imply that the jackknife technique may not be an appropriate tool for use with

quantile estimation because of the discontinuous, nonlinear nature of quantile esti-

mators such as (2). Our empirical results (presented in the last section) confirmed

that the jackknife was not suitable for computing quantile estimates and estimates

of the variance of the jackknife point estimate because of the high variability of the

point estimates and the poor performance of the jackknife estimate of the variance

of the jackknife point estimator.

3.5 The Loss Factor

In general, regardless of the method chosen, estimating the coefficients can cause

a reduction in the percent variance reduction predicted by (13) or (14). Lavenberg,

Moeller and Welch (1982) investigated the decrease in predicted variance reduction

caused by using the individual samples to estimate 8 for a linear control of the sam-

ple mean. Under the assumption of multivariate normality between the statistic of

interest and the control, they concluded that the decrease in variance reduction due

to estimating 9 could be predicted by multiplying the R2
(-) in (14) by a "loss factor".

The loss factor was (m — 2)/(ra — p — 2) where m was the number of independent

samples of the statistic being controlled and p was the number of controls whose co-

efficients had to be estimated. The loss factor is a deterrent to adding more controls

simply to achieve a small increase in the R2
in (14). As one selects more controls

for a multiple control scheme, the impact of the loss factor can quickly overcome

the benefits of increasing the R2
. Thus one can not guarantee an improvement in

the effectiveness of a linear control by simply adding more controls.

3.6 Measuring the Effectiveness of a Control at Reducing Sample
Sizes

Lewis and Orav (1989, p. 262) mention an alternative measure for quantifying

the effectiveness of a control scheme. They look at the square root of the ratio of

the variance of the uncontrolled estimate to the variance of the controlled estimate.

This ratio can be considered to be the ratio of the sample size that would be needed
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to achieve a given standard deviation without using the control scheme, to the

sample size needed to achieve the same standard deviation using the control. When
expressed in terms of the correlation coefficient for the controlled statistic and the

control, the ratio becomes 1/(1 - p
2
(-))

1 ^ 2
. Given a value for /?(•), the formula gives

the increase in the sample size that would be needed to achieve the same standard

deviation without the control. Given a desired reduction in sample size, say 1/2, the

formula implies that to achieve a given standard deviation while cutting the sample

size in half, one must have 1 — p
2 = .25, which implies a correlation coefficient

of ±0.86.

Linear controls are typically unable to reduce the sample size by as much as a

half because the correlation between the statistic of interest and a linear function

of the control variables is not high enough. Since many statistics have a nonlinear

relationship with the control variables, one possible means for increasing the variance

reduction for a given set of controls is to allow nonlinear transformations of the

controls.

4 NONLINEAR CONTROLS
4.1 Definition of a Nonlinear Control

One can generalize the linear control scheme for p controls, (11), to include

nonlinear transformations of random variables as controls for variance reduction

as shown in Lewis, Ressler and Wood (1989). Let hi(cQti(n),8 i ), for i = 1,. . . ,p,

be a transformation function of the random variable ca7,(n) and let 8
t
be a vector

of coefficients where, depending upon /&»(•), the vector 8
t
may have more than one

component. When incorporating nonlinear transformations of multiple controls, the

linear control scheme (11) becomes

y'
Q (n) = ya(n)-H(Un),9) (21)

where for our purposes H(-) is a linear additive combination of the p transformed

controls, /*:(?/»,j(n),#,), and their expected values, Ef/i^j/a^n), #,-)], for i = l,...,p.

The vector 8 contains the coefficients from the linear combination in addition to the

p sets of coefficients from the individual transformations, //(^(n),^) will be referred

to as the control function. A control function with terms that are nonlinear in the

unknown coefficients will be said to be a nonlinear control. For ease of notation,

the coefficients 8 may be suppressed in the expressions for H(-) and h(-). When
there is only one control so that p — 1, the subscript i will be suppressed so that

M-) = />(•)•

In some simulations possible control variables may have very low correlation

with ya (n). For a given control, two of the possible sources for the low correlation

between ya (n) and ca(n) are:

1. there is in fact very little structural relationship between yQ (n) and the control;

i.e. a bivariate scatter plot of ya {n) versus ca (n) would look patternless, or

2. the structural relationship between yQ (n) and cQ (n) is of a nonlinear form

which is poorly approximated by a straight line.

13



In the first case, a nonlinear control may or may not offer improvement over the linear

control. In the second case, a nonlinear control can offer substantial improvement

in variance reduction, as shown in Lewis, Ressler and Wood (1989).

A simple example will show the potential benefits of nonlinear transformations.

Let z be a Normal (0,1) random variable which is being used to control the sample

mean of w = z2 . It follows that

cov(w,z) = E[z3
]
- E[z2

]E[z] =

so that p(w, z) is zero, which implies zero effectiveness for the linear control as well.

Now allow the nonlinear transformation

h*(z) = h(z,6) = z
6

with 8 = 2. The transformed random variable h*(z) is a x\ random variable with

mean 1 and variance 2. It follows that

o
cov(w,h*(z)) = var[z2

]
= 2 =>• p(w,h m

{z)) = - = 1

so that the nonlinear control is completely effective. Therefore when evaluating a

potential control, one should ask: Can this random variable be transformed to have

a "high" correlation with the statistic of interest?

4.2 The Existence of Optimal Nonlinear Transformations

For some random variables, transformations do exist which will improve their

correlation with t/Q (n).

• Let ya (n) a"d ^(n), with p components catl(n), for i = 1,. ..,p, be random

variables with a general but nonsingular joint distribution.

• Let g(yQ (n)) = g{yQ {n),(f>) and /i,(ca ,,(n)) = /»(cQi,-(n),g,-)» for i= !»•••»?

be mean-zero transformation functions of random variables yQ (n) and cQ ,i(n)

such that var[<7(r/Q (n))] = 1 and var[/i,(cai;(n))] < oo, for i = 1,. . . ,p.

Breiman and Friedman (1985) proved the existence of optimal transformations for

maximizing the correlation between g(yQ (n)) and H(ca(n)), a linear additive func-

tion of the mean-zero hi(ca j(n)). The optimal transformation for one variable can

be expressed in terms of the conditional expected values of given transformations of

the other variables. In the bivariate case, where H(-) = h(-) since p = 1, the pair of

optimal transformations g'(-) and h'(-) are:

„./. /.« E[h*(ca (n))
| ya (n)]

9 {ya{n)) =
\\E[h*(ca (n))

| ya (n)]

and

h'(ca(n)) = E[g'(yQ (n)) |
ca (n)}

where|H| = {E[(.)
2
]}

1/2
.
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In the multiple control case, where p > 1,

g'(ya (n)) =
J2 h1(caA n )) I

ya(n)
1=1

/•: J^r(c ,,(n))
I ya (n)

t=i

(22)

and

^(ca
,
t
(n)) = £ 0(M«)) " I>j(c«,j(n)) • (23)

The transformations p*(-) and A*(-) in (22) and (23) will usually be nonlinear, the

exception being when ya (n) and ^(n) have a multivariate normal distribution.

Results from Lancaster (1966) can be used to show that if ya (n) and ^(n) have

a multivariate normal distribution, the solutions for g(ya (n)) and //(^(n)) which

have maximal correlation between g(ya (n)) and ^/(^(n)), over all measurable func-

tions of finite variance, are the linear transformations which yield the first Hotelling

canonical variables. In other words, when y (n) and (^(n) have a multivariate nor-

mal distribution, using the linear control scheme (11), with the multiple regression

coefficients for 9, produces the greatest amount of variance reduction. Conversely,

whenever the joint distribution of ya (n) and ^(n) is not multivariate normal, a

nonlinear control offers the possibility for greater variance reduction over a linear

control.

4.3 Estimating the Optimal Nonlinear Transformations

Determining the optimal transformations in (22) and (23) analytically requires

the joint distribution of yQ {n) and ^(n) which, in the context of a simulation, is

unknown. In the multivariate normal case, the form of the transformations are

known to be linear and one can estimate the coefficients using one of the methods

described earlier. With a nonlinear control, one must first estimate the form of the

transformations.

Breiman and Friedman (1985) also developed the Alternating Conditional Ex-

pectation Algorithm (ACE) as a means for generating nonparametric estimates of

the optimal transformations (22) and (23). In the ACE implementation for finite

data sets of continuous variables, data smooths are used in place of the analytical

conditional expected values. The ACE algorithm produces estimates of the optimal

transformations as sets of fitted values, one set for each variable. Plotting the fitted

values against the original values gives the shape of the estimated transformation for

each variable. ACE also provides an estimate of the maximum obtainable squared

correlation between the transformed response and the sum of transformed predic-

tors. This R2 estimate is useful as it provides an estimate of an upper bound on the

percent variance reduction one can obtain using the given set of controls.

Since ACE does not give an explicit analytical form for its estimate of the optimal

transformation, one must approximate the optimal transformation with a parametric

nonlinear transformation. The output from ACE is useful in selecting an appropriate
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approximating transformation. One possible approximating transformation is the

scaled power transformation

h(cQ(n),9) = (£(») - 1)

9
for 9 > -1, (24)

where 9 is an unknown parameter which becomes a coefficient which must be esti-

mated. Using this transformation, the nonlinear control scheme (21) can become

y'
Q (
n

) = y*( n ) ~ #1
f ffOO-1
1 02

-E #00-1
07

(25)

where both 9\ and $2 need to be estimated. Other possible transformations are

described in Lewis, Ressler and Wood (1989).

As a general rule, a transformation should contain the linear transformation as a

special set of parameter values 9_L . This allows for the linear control to be a special

case of the nonlinear control when the joint distribution between the statistic of

interest and the control is multivariate normal. Choosing the special set of param-

eter values 9L as starting values for the nonlinear optimizer which estimates the

coefficients initializes the optimizer at the linear control. Any movement made by

the optimizer away from the starting values implies that the nonlinear control is

giving improved variance reduction over the linear control. Thus using a nonlinear

control, one can not do worse than using a linear control.

One of the problems in choosing an approximating transformation hi(caii(n),9)

is that E[/i,(cQ),(n),0)] must be known exactly or approximately. This severely limits

the selection of nonlinear transformations available to approximate h*(cat ,(n)) as the

necessary expected values may be intractable or unknown for some transformations.

The difficulty in analytically determining the expected value of the transformed

control can be greatly reduced when using monotone transformations of quantile

estimators as controls, as is discussed in the next section.

5 NONLINEAR CONTROL OF QUANTILE ESTI-
MATES

5.1 The Behavior of Quantiles Under Monotone Transformations

Quantiles have a property that is especially useful when working with nonlin-

ear controls. Under strictly monotone transformations of the underlying random

variable, the quantiles transform monotonely as well. For example,

• let h(-) be a strictly monotone function with inverse /i
-1

(-),

• let C be a random variable with a continuous, strictly monotone cumulative

distribution function such that for all a between zero and one, Fq 1
(o) — ca ,

and

• let W = h(C) be the transformed random variable.
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By definition of a quantile,

Pr {C <ca}=a and Pr {W < wa ] = a.

Therefore:

Pr {W<wa } = PT{h(C)<wa }

= ?x{c<h- l (wa)}=a.

This implies that for all a between zero and one,

wQ = h(cQ ). (26)

For example, if C has a uniform (0,1) distribution with .9 quantile of c.g = .9, then

the .9 quantile of W = h(C) = C2
, namely w.g is equal to c

2
9 = .9

2 = .81.

The key point is that the a quantile of a transformed random variable can be

found by applying the same transformation to the a quantile of the original random
variable.

5.2 Controlling Quantile Estimates

The fact that quantiles transform monotonely under strictly monotone trans-

formations of the underlying random variable can also be useful in computing the

expected value of a transformed quantile estimator. It is important to note that

the random variable being transformed is the quantile estimator ca(n) and not the

underlying C. For a given nonlinear transformation, it may be possible to compute

the expected value of h(ca(n)). For example, if C has a uniform (0,1) distribution,

and h(ca(n)) is the scaled power transformation, (24) where is constrained to be

non-negative, h(ca (n)) has a Beta distribution with a known expected value. For

other distributions of ca (n), or other transformations h(-), the expected value may

not be tractable. This is where the use of strictly monotone transformations can

help.

We are interested in the expected value of the transformed quantile estimator.

When a strictly monotone transformation is applied to the underlying C, the quan-

tile estimator cQ(n) transforms monotonely as well, i.e. if cQ (n) estimates cQ and

h(C) = W, with a quantile wa , then

wa(n) = h(cQ (n)).

From the point of view of the quantile estimator, applying a strictly monotone

transformation to a quantile estimator, ca (n), yields the same estimate as using the

identical transformation on the underlying random variable C and then using (2) to

estimate the a quantile. Although for small n

E[h(ca(n))]?h(E[cQ (n)]),

it is true that as n — oo,

E[h(ca {n))} — h(cQ ) and h(E[ca (n)}) —» h{cQ )
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so that asymptotically, the expected value of the transformed quantile estimator

is the same as the expected value of the quantile estimator of the transformed

underlying random variable.

Since the asymptotic expected values are the same, if the individual transforma-

tion functions h(-) in the control function H(ca (n),9) are restricted to strictly mono-

tone transformations, one can approximate E[h(ca(n),9)] in the nonlinear control

function H(Co,(n),9), with the asymptotic expected value of the transformed con-

trol, namely, the transformed value of the a quantile, h(ca ,9_). Calculating h(cQ ,d)

is trivial since ca is a constant. Using the asymptotic expected value with the scaled

power transformation, the nonlinear control scheme becomes

ya (n) = yQ {n) - 0i i — \ .

The use of the approximation introduces bias into the control function, but it is

still 0(l/n) and may, as in the linear control case, reduce the magnitude of the first

order bias of the controlled estimate. The key point is that the analytical burden of

calculating the expected value of the transformed control has been greatly reduced.

Once the approximating transformations for the c^ have been selected, one can

use either the section or subsection estimator to estimate 9 and calculate the final,

controlled point estimate y'a(m,n) in (15) and an estimate of the variance of the

point estimate. Regardless of the method, the coefficients in for h(ca ,6) can

be estimated using a nonlinear least-squares regression algorithm as the nonlinear

optimizer.

5.3 Selection of m and n for a Nonlinearly Controlled Section

Estimate when 8 Must be Estimated

A major factor that must also be considered in the selection of m and n for

fixed sample size N is the impact of n, the number of samples used to compute

the individual quantile estimates, on the joint normality of the quantile estimates.

When computing a controlled section estimate and estimating the coefficients 9, the

impact of m and n on the variance of the estimate 9(m,n) must also be considered.

As previously discussed, given a fixed sample size N the values of m and n

which minimize the mean square error of the crude section estimate are a function

of the coefficients in the asymptotic expansions for the mean and variance of the

estimator, equations (4) and (5). The variance of the controlled estimate y'a(n)

is a function of the variance of the estimate of the coefficients 9 in addition to

the variance of the crude estimate, yQ (n), and the variance of the estimate of the

control cQ (n). In general, the bias and variance of coefficients estimated via least-

squares nonlinear regression is a decreasing function of the number of estimates

used as data in the regression (see Gallant, 1987, chap. 1). When using the section

estimator, this implies that one would like m, the number of quantile estimates,

to be large. However, as m increases for fixed N , n must decrease, increasing the

bias and variance of the estimates used as data in the regression. If n is too small,

the bias and variance of the estimates could be such that there is actually very
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little nonlinear or even linear relationship between the crude and control quantile

estimates so that any control scheme is ineffective.

If n, the number of samples in a section, is too large, the joint distribution of

the crude and control quantile estimates approaches a joint normal distribution as

seen in part 2.1. The impact of the joint normality is that the optimal nonlinear

transformation is now the linear transformation of the linear control as seen in

part 4.2 and one has lost the increased effectiveness of the nonlinear control. This

result is similar to one obtained by Glynn and Whitt (1989) who state that "no

improvement in asymptotic efficiency can be achieved by generalizing the notion

of control variables from a linear form to a nonlinear setting." They go on to

say however, "...this does not preclude the possibility of better performance by

nonlinear methods in a small sample context." The key point is that by avoiding

the asymptotic joint normality through keeping small the number of samples used

to compute the individual quantile estimates, the nonlinear controls can be more

effective than the asymptotic linear controls.

When using the subsection estimator, the interplay between m and n changes.

One must now consider the impact of choices for u, the number of subsection esti-

mates, and /, the number of samples used to compute a subsection estimate. With

the section estimator one wanted m, as the number of points in the regression, to be

large. For the subsection estimator m is the number of estimates of 9 to compute

and a large m implies more regression computations that have to be made, as well

as a small value for n. For any given value of n, the choice of v and / has slightly

different considerations than the choice of m and n for the section estimator. An
important consideration for the subsection estimator is that / be "close" to n so

that the joint distribution ya (l) and cQ (l) will be similar in shape to that of yQ {n)

and ca (n). If the two joint distributions are not similar in shape, then the subsec-

tion estimate of 9 could be very biased, reducing the effectiveness of the control.

This suggests making v as small as possible while still being two to three times the

number of coefficients being estimated. If n is too small, the few samples available

for the v subsections of length / will force both v and / to be small, resulting in

possibly little structure to exploit, or unreliable estimates of #, both of which result

in ineffective control. The solution would seem to be to make n large.

Making n too large results in the same problems for the subsection estimator as

it did for the section estimator. If n is too large, there are few controlled section

estimates which reduces the precision of the variance estimate. More importantly,

n is still the critical factor for the joint normality of the estimate being controlled

and the control estimate. If n is too large, the asymptotic joint normality reduces

the effectiveness of the linear control to that of the linear control.

The selection of m and n for a fixed N which minimizes the bias, variance or mean

square error of the controlled estimate is a complicated function of many parameters.

These parameters include the value of a, the sample size N , and unfortunately,

because of the need to estimate 9, characteristics of the unknown joint distribution

of the underlying populations Y and C. An alternative to attempting to estimate

the optimal in and n via a functional approximation is to use graphical methods to

assist in the selection of m and n such as in Heidelberger and Lewis (1981). In the

experiment described below, for a given fixed sample size N, the results of using
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different values of n are compared graphically as well as numerically to assist in

selecting m and n.

6 THE SIMULATION EXPERIMENT
6.1 The Factors

The simulation experiment used M replications to investigate simulation pro-

cedures for estimating the a quantile of a distribution and estimating the variance

of the quantile estimate. The factors in the simulation experiment included the

distribution of the underlying population of interest, the value for a, the method

of estimating the quantile, the sample size, the choice of m and n for the sec-

tion estimator and the choice of the m for the m-fold jackknife estimator. All of

the computations were performed in the APL2-based statistcal computing package

GRAFSTAT.

6.2 The Statistic of Interest

The distribution used in the results presented here was suggested by Hsu and

Nelson (1987). The statistic of interest is the estimator for the a quantile of a

random variable Y where

and A' has a uniform (0,1) distribution and e has a uniform (0,.5) distribution and

is independent of X. The untransformed control is the estimator of the a quantile

of X. The value of a will be .95 for the results presented here. The true value for

the .95 quantile of Y, namely y.95, is .164167.

Figure 1 shows the nonlinear nature of the relationship between ya (n) and xa(n)

for four values of n with the sample size N fixed at 1000. Prior to plotting, the

quantile estimates were standardized by subtracting off the sample mean of the

quantile estimates from each estimate, and then dividing each estimate by the sample

standard deviation of the quantile estimates. Thus the "true" values are zero. The

quantile estimates were standardized so that one could visually assess the correlation

between the quantile estimator of interest and the control quantile estimator. Note

that the scales of the axes in Figure 1 change as n increases to 100, 250 and 500 as

the ranges of the standardized quantile estimates become more concentrated about

the true values of zero.

For n = 25 in Figure 1, the relationship between yQ {n) and xa(n) is highly

nonlinear. As n increases to 100, 250 and 500 the relationship seems to become more

linear as the number of estimates available decreases to just two at n = 500 where

with only two pairs of estimates, the relationship must appear linear. However, one

can see from Figure 2, where N = 6000, that even for n = 1000 the relationship

between yQ {n) and xa (n) still has nonlinear tendencies. In all cases, the relationship

appears to be one that would be well approximated by a monotone transformation.
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Figure 1: Scatterplots illustrating the joint distribution of standardized section point es-

timates of the .95 quantile of Y and X for n = 25, 100, 250, and 500 from a sample of

N = 1000 samples. Since the estimates are standardized, the true values are zero.
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Figure 2: Scatterplots illustrating the joint distribution of of standardized section point

estimates of the .95 quantile of Y and A' for n = 250, 500, 1000, and 1500 from a sample of

N = 6000 samples. Since the estimates are standardized, the true values are zero.
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6.3 The Section Estimator versus the Jackknife Estimator

As stated previously, the section estimator was preferred over the jackknife esti-

mator for estimating the a quantile along with an estimate of the variance (standard

deviation) of the quantile estimator. Analytically, the section estimator of the vari-

ance of the section estimate from (17) is an unbiased estimator and the section

estimate of the standard deviation has 0(l/m) bias. We will graphically show the

performance of the section estimate of the standard deviation so that the graphs

can be compared with the performance of the jackknife estimation procedure.

The performance of the section estimator can be seen in Figure 3. The top graph

of Figure 3 shows a series of boxplots of section point estimates of the .95 quantile

of Y calculated using (6). For a discussion of boxplots see Chambers et. al. (1983,

chap. 2). The boxplots summarize the distribution of the section estimates, for

varying n, from 300 independent replications of N = 1000 samples. The data under

the graph are the sample statistics from the 300 estimates in each boxplot. The
bottom graph consists of boxplots of section estimates of the standard deviation,

calculated using (7), corresponding to the point estimates in the top graph, again

with the sample statistics underneath.

The top graph in Figure 3 shows that as n increases from 10 to 500, for a fixed

sample size N = 1000, the bias in the section point estimates tends to decrease as

expected. However, the top graph also shows that increasing n does not necessarily

decrease the sample variance of the section quantile estimator because of the impact

of decreasing the number of estimates, m, with which the section point estimate of

the quantile is computed.

The bottom graph of Figure 3, of the section estimates of the standard deviation

of the section point estimate, shows another effect of increasing n. As n increases

and m decreases, it is easy to see that the standard deviation of the estimates of

the standard deviation also increases, from .00227 for n = 10' to .01170 for n = 500,

so that the section estimate of the standard deviation becomes less precise. As the

section estimate of the standard deviation has 0(l/ra) bias, one would expect that

the section estimate of the standard deviation should be closer to the estimate of the

sample standard deviation for small n. A check of the sample standard deviation in

the top graph against the mean of the section estimates of the standard deviation in

the bottom graph shows that in fact the two values of .02030 and .01974 are fairly

close at n — 10 and become farther apart as n increases. The significance of the

difference will be examined in a moment.

Figure 4 shows the performance of the jackknife estimator for ya . The top

boxplots are the m-fold jackknife estimate of the .95 quantile of Y, for varying ra,

from the same 300 independent replications of N = 1000 samples used for the section

estimates in Figure 3. The data under the graph are the sample statistics from the

300 estimates in each boxplot. The bottom graph in Figure 4 consists of boxplots

of the corresponding jackknife estimates of the standard deviation of the jackknife

point estimates in the top graph, again with the sample statistics underneath.

The top graph in Figure 4 shows that for a fixed sample size N — 1000, the jack-

knife estimates become highly variable as m increases, as well as having in general

a slight positive bias (ya = .164167). The main reason for not using the jackknife
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technique however is the poor performance of the jackknife estimate of the standard

deviation of the point estimate. A check of the sample standard deviation in the

top graph against the mean of the jackknife estimates of the standard deviation in

the bottom graph shows that the two estimates of the standard deviation become
quite far apart as m increases. For m = 2 the values are the closest, at .02202 for

the sample standard deviation of the point estimate and .01555 for the jackknife

estimate of the standard deviation of the point estimate

The purpose of estimating the standard deviation of the point estimators is to

have a measure of the precision of the point estimate. The section and jackknife

estimators of the standard deviation of the point estimate are both trying to estimate

the standard deviation of a sample of section or jackknife point estimates. To
more formally assess their performance we used the data from the 300 independent

replications previously shown in Figures 3 and 4. The procedure used for both the

section estimates and the jackknife estimates was as follows:

1. The point estimates from the 300 replications were sectioned into 30 inde-

pendent sections of 10 point estimates each. The sample standard deviation

was computed for each of the 30 sections. Thus there were 30 independent

estimates of the sample standard deviation for both the section estimates and

the jackknife estimates.

2. Likewise, the 300 estimates of the standard deviation were sectioned into 30

independent sections of 10 estimates of the standard deviation each. These

10 standard deviation estimates were averaged to get a single estimate of the

standard deviation for each section. Thus there were 30 independent estimates

of the standard deviation from the estimator, for both the section estimator

and the jackknife estimator.

3. For each of the 30 sectionSj the mean of the 10 section or jackknife estimates of

the standard deviation from step 2 was subtracted from the sample estimate

of the standard deviation from step 1 to yield 30 independent estimates of the

difference.

If the section or jackknife estimator is a reliable estimate of the sample standard

deviation, then the difference of the sample standard deviation and the section or

jackknife estimate of the standard deviation should be zero.

Note that while the same data is used for all of the section and jackknife es-

timators so that there is no independence between the different estimators, the 30

estimates of the difference for a single estimator i.e., the section estimate with n = 25

or the 2-fold jackknife are independent. Figure 5 has boxplots of the differences for

both the section estimates (top graph) and the jackknife estimates (bottom graph).

The top graph in Figure 5, of the section estimator, shows that the sample mean

for the smaller n is within one standard error of zero. When n is increased to 250 and

500, where the section estimates of the standard deviation are more variable because

of the small m, the means of the differences, .00140 and .00300, are still within three

standard errors of zero. This shows that section estimator of the standard deviation

of the section point estimate is a reliable estimate of the sample standard deviation

of the point estimate.
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The Data consists of Each Replication's Quantile Estimate
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Figure 3: Boxplots of section point estimates of y 95 (top) and section estimates of the

standard deviation of the point estimates (bottom) for 300 replications of N = 1000 samples

and varying n.
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Figure 4: Boxplots of m-fold jackknife point estimates of y 95 (top) and m-fold jackknife

estimates of the standard deviation of the point estimates (bottom) for 300 replications of

N = 1000 samples and varying m.
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The bottom graph in Figure 5 shows the opposite for the jackknife estimator.

For no m is the mean of the differences within three standard errors of zero. If one

tests, for each m, the normality of the differences for the jackknife estimates^ one

can not reject at the .95 confidence level the hypothesis that the differences have

a normal distribution. For each m, the .95 confidence interval for the mean of the

fitted normal distribution does not include zero. Thus the jackknife estimate of

the standard deviation of a jackknifed quantile estimate is a biased and unreliable

estimate. We feel this is strong evidence for not using the jackknife technique for

estimating quantiles and the variance of the quantile estimate.

0.015

0.010

30 Rcplicatlo

•

: 1

n8 of (Samp] e - Section) Estimates of the Std Dev

; ; J_
0.005

dbA.. „ _ e

0.005 i T T 1

c 10 25 50 100 250 500
Mean -0.0003 0.00081 0.00090 0.00016 0.00140 0.00300

Std Dev 0.00434 0.00458 0.00640 0.00388 0.00575 0.00610
Std Error 0.00079 0.OOOB3 0.00116 0.00070 0.00105 0.00111

30 Replications of (Sample - Jackknife) Estimates of the Std Dev

0.08

0.06

0.04

0.02

Oh
m 2 5 10 25 50

Mean 0.00565 0.00539 0.01066 0.02743 0.05101
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Std En-or 0.00121 0.00123 0.00141 0.00218 0.00368

Figure 5: Boxplots of differences between estimates of the sample standard deviation of

the point estimate and the section (top) and m-fold jackknife (bottom) estimates of the

standard deviation of the point estimate based on 30 sections of M = 300 independent

replications of N = 1000 samples each.

6.4 Comparing the Crude, Linearly Controlled and Nonlinearly

Controlled Estimators

The crude, linearly controlled and nonlinearly controlled estimators will be com-

pared both graphically and numerically. Now the number of replications is M = 20

and the number of samples in each replication is fixed at .V = 1000. The section

estimator will be used for all three estimators. For the nonlinearly controlled es-

timator, the monotone transformation will be the scaled power transformation so

that the control function will be

Vain) = Vain) -0 X

xa (n)
e
? - 1 x£ - 1

Bi ft
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6.4.1 Comparison When the Sample Size N = 1000

Figure 6 shows the performance of the three estimators as triplets of boxplots for

n = 25, 100, 250, and 500. In each of the graphs that follow, the left boxplot of the

triple is the crude estimate, the middle boxplot of the triple is the linearly controlled

estimate and the right boxplot of the triple is the nonlinearly controlled estimate.

The statistics under each graph are the respective means of the data in the boxplot

for the crude, linearly controlled and nonlinearly controlled estimators.

The boxplots in the top graph of Figure 6 contain the final quantile estimates

for each of the estimators. This graph shows the effect of a control function that

is biased because of the use of the asymptotic expected value. Without the biased

control function each of the boxplots would look virtually the same because the

control function would be mean zero and so would not change the expected value of

the point estimate. The bias in the control function tends to reduce the bias of the

point estimate with the exception of the linearly controlled estimate at n = 25.

The boxplots in the bottom graph of Figure 6 contain the section estimates of

the standard deviation of the point estimators. One can see that as n increases,

the mean of the estimated standard deviation of the linearly controlled estimate

decreases, from .01123 to .00391, while the mean of the estimated standard deviation

for the nonlinear control increases, once n is greater than 100, from .00241 to .00374,

until the values for the linear control and the nonlinear control are about the same.

In fact, the estimator that minimizes the variance can be seen to be the nonlinearly

controlled estimator at n = 100 with a value of .00241. It is also clear that when n is

large at 250 and 500, the small m of 4 and 2 causes higher variance in the estimates

of the standard deviation.

The top graph in Figure 7 combines the two graphs from Figure 6, the bias and

the variance, in that it contains the estimated mean square error of the estimators.

It can be seen with this graph that the estimator that minimizes the mean square

error is again the nonlinearly controlled estimator at n — 100 with a value of .00005.

In fact the estimated mean square error for this estimator is under one-half of the

best mean square error for the linear control of .00013 that is at n = 250. At

n = 500 the values are the same, .00029, since there are only 2 quantile estimates

with which to work. The other factor affecting the nonlinear control besides having

only 2 quantile estimates to work with is that at n = 500 the joint distribution of

the crude estimate and the control estimate is closer to multivariate normal than at

n = 100.

The bottom graph in Figure 7 is a summary of the percent variance reduction

achieved by the various estimators. The percent variance reduction for each esti-

mator is computed using the estimate of the variance of the crude estimate which

is why the value for the crude estimator is 0. This graph again highlights the effec-

tiveness of the nonlinearly controlled estimator at smaller n. The highest percent

variance reduction is .97568, which is actually achieved at n = 25 and not n = 100

because the percent variance reduction is a relative measure and the crude estimator

at n = 25 had higher variance than the crude estimator at n — 100. This graph also

points out the high variability of the variance reduction for large n as the number

of quantile estimates becomes small.
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Figure 6: Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the point quantile estimates of y 95 (top) and the estimates of the standard deviation

of the point estimates (bottom) from M = 20 independent replications of N = 1000 for

varying n.
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Figure 7: Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the estimated mean square error (top) and percent variance reduction (bottom)

from M = 20 independent replications of N = 1000 for varying n.

27



6.4.2 Comparison When the Sample Size N = 5000

The next pairs of graphs, Figures 8 and 9 are identical in nature to the graphs for

N = 1000 only now the data is from estimates made from a sample size of N = 5000.

The number of samples used to compute each section estimate n is unchanged so

increasing the sample size only increases m, the number of quantile estimates. The
larger m greatly reduces the problem of high variability of the estimates caused by

having only 2 quantile estimates with which to work at n = 500.

In the top graph of Figure 8, increasing m has slightly improved the bias of the

mean of the nonlinearly controlled estimates so that it is now less than the bias

of the crude estimate for each n. At the same time the bias of the mean of the

linearly controlled estimates has increased. A more significant impact of increasing

m, shown in the bottom graph, is the drop in the estimated standard deviations

for all estimators as compared to N = 1000. The variability of the estimates of the

standard deviation has decreased as well.

The mean square errors of the top graph in Figure 9 show again the nonlinear

control at n = 100 does better than the best linearly controlled estimate. However,

as n increases, one can lose the effectiveness of the nonlinear control as both the

number of quantile estimates decreases and the quantile estimates approach multi-

variate normality. The impact of increasing N and m from Figure 7 is seen in the

bottom graph of Figure 9 as the variability of the estimate of the percent variance

reduction is greatly reduced.

7 SUMMARY
Nonlinear controls have been seen to be effective in improving the variance reduc-

tion over linearly controlled estimates of the mean. Sectioning is a useful procedure

for computing point estimates for quantiles along with an estimate of the variance of

the point estimate. The jackknife is not a useful procedure as the jackknife estimate

of the variance of the jackknife point estimate is unreliable. Controlling quantiles

with nonlinear controls is analytically tractable if the nonlinear transformations of

the control quantile estimator are limited to strictly monotone functions. With this

restriction, one can approximate the expected value of the transformed quantile es-

timator with its asymptotic expected value, namely the transformed value of the

true quantile for the control. The approximation induces additional bias into the

control function. However use of a biased control function can reduce the first order

bias in the controlled estimate.

Finally, when one is considering the choice of m and n to use for the sectioning

estimator, one must keep n small and avoid approaching the asymptotic multivariate

normal distribution. As the joint distribution of the crude estimate of the quantile

of interest and the control quantile estimate approaches multivariate normality, the

effectiveness of the nonlinear control reduces to that of the linear control.
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Figure 8: Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the point quantile estimates of 1/95 (top) and the estimates of the standard deviation

of the point estimates (bottom) from M = 20 independent replications of N = 5000 for

varying n.
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Figure 9: Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the estimated mean square error (top) and percent variance reduction (bottom)

from M = 20 independent replications of N — 5000 for varying n.
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