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ABSTRACT 

Due to evolving maritime threats, including submarine warfare, piracy, smuggling, and 
coordinated attack by small vessels, several groups are actively developing tools to 
optimize the allocation of naval forces to detect and interdict maritime targets, and to 
provide decision support to commanders in countering these threats. This document 
reports on a workshop that brought together researchers from several optimization groups 
and environmental information groups to determine the degree of overlap in their 
problems. Many common challenges to implementation were identified. The results 
include a general formulation of the problem of allocating surface, air and undersea assets 
in a maritime environment that applies to many mission areas. The formulation includes 
informational input that combines target position and detection or interdiction capability. 
This allows the separation of the production of environmental information, including 
asset performance and target positions, from the optimization of asset allocation. 
Feedback between information production and optimization may occur relatively 
infrequently. This overcomes some of the practical challenges in implementation of 
decision support systems that the workshop participants identified. The recommendations 
identify important open questions and indicate that there is potential for benefit from 
collaboration and dissemination of advances on the common challenges. 
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I.  INTRODUCTION  

 PURPOSE A.

Due to evolving maritime threats, including submarine warfare, piracy, 
smuggling, and coordinated attack by small vessels, several groups are actively 
developing tools to optimize the allocation of naval forces to detect and interdict illicit 
vessels, and to provide decision support to commanders in countering these threats. 
Several similarities suggested, however, that research addressing these mission areas 
would benefit from a focused exchange among researchers and an effort to identify 
research directions that will have a broad impact across many mission areas. 

First, at least at a superficial level, these mission areas have many common 
features, including similarity in the nature of the threat, the types of decisions and courses 
of action to respond to the threat, the type of information that is or should be exploited in 
making the decisions, and some implementation challenges. Second, several parallel 
efforts in optimizing asset allocation are ongoing and reported in distinct literatures; 
therefore, there may not be sufficient cross-pollination among these researchers. Third, 
efforts to develop more complete and accurate environmental (to include target) 
information have been largely separate from the development of optimization algorithms.  
It is rare for researchers working on generating information to interact with researchers 
working on how best to use the information. 

Therefore, Eva Regnier and James Hansen called a workshop at the  
Naval Postgraduate School on March 13 and 14, 2012, to gather a focused group of 
researchers addressing different parts of this problem. We brought together researchers 
working on generating the information with researchers working on how to use it. The 
participant list is given in Appendix A. The primary goals were to: 

¥ determine whether the mission areas are fundamentally different, or 
whether they are versions of the same problem; 

¥ decompose the problem such that each group can continue to advance 
their work while maintaining interoperability; and 

¥ identify the landscape of what is known and unknown about the suitability 
of various methods for approaching these problems. 

The agenda is given in Appendix B. First, participants described the mission area 
each was supporting. The slides used in this briefing are provided as Appendix C. This 
was followed by a conversation about the common features with the goal to define a 
decision problem as generally as possible so that it represents all the mission areas. Next, 
in the ÒTechnology TransferÓ session, experts summarized relevant findings and 
techniques in their fields that might be unfamiliar to participants from other fields. 
Finally, on the second day, we continued conversations that were triggered by the  
first-day sessions, consolidated that information, and then formulated a general asset 
allocation problem and the supporting information content. 
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1. General Asset Allocation Problem 

It is possible to produce a single formulation for the optimization of asset 
allocation such that it is representative of every mission area discussed. Several distinct 
objectives may be represented, and there are algorithms that may solve these problems, 
usually heuristically. The curse of dimensionality is relevant in this problem, especially 
due to multiple time-steps, multiple assets with distinct capabilities, multiple targets, and 
the potentially large geographic area over which the assets may be allocated. This 
formulation is offered in the Section II . 
 

We will use the term ÒBlueÓ to refer generally to the forces combating the threat 
and, unless otherwise specified, will assume that they are coordinated and therefore 
operating as a single decision-making entity with multiple assets. We will use the term 
ÒRedÓ to refer to the adversary, which will generally have multiple assets (vessels, unless 
otherwise specified). In some cases, Red assets are coordinated, and in other cases they 
are not. 

Strategic behaviorÑ i.e., an adversary who intelligently anticipates BlueÕs 
decision-making processÑ substantially complicates the decision problem. The 
participants determined that strategic behavior is not a critical element of the mission 
areas at this point, but that if it becomes critical, it will need to be addressed with a 
fundamentally different approach in which the information generation and the 
optimization algorithms cannot be separated. 

2. Information Required  

Three major categories of environmental information are exploited in the mission 
areas addressed: 

¥ The natural environment: i.e., Meteorology and Oceanography 
(METOC) and topography and bathymetry. 

¥ Capabilities: i.e., the ability of Blue (and potentially Red) assets to 
achieve their objectives; e.g., the probability of detection; the speed  
of travel. 

¥ Target positions. 

The asset allocation problem benefits from the fact that these three types of 
information may be summarized as the probability of detection (or interdiction) as a 
function of BlueÕs asset positions. This greatly simplifies the optimization problem and 
the information-exchange requirements between the environmental information 
production organization and the decision-making function, whether human or algorithm. 

3. Implementation Challenges 

In many of the mission areas, a human will make decisions regarding the asset 
allocation. This raises several challenges, including providing decision support that the 
commander will be willing to use. 
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Presentation of high-dimensional information in a form that human users can 
readily understand is very challenging. For example, the probability of detecting a target 
is a function of, at a minimum, the detectorÕs position; the targetÕs position; and the 
environment. Users are familiar with map-based representations; how should the 
probability of detection be displayed? The convention has been to present a map showing 
at each point the probability of detecting a target given that the target is equally likely to 
be in any position (uniform target distribution), conditional on the detection asset being at 
each point. 
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II.  GENERAL MISSION FORM ULATION  

Slides summarizing each mission area are provided in Appendix C. The mission 
areas described may be broken down into two major categories: 

¥ allocation of multiple assets over position and time, for surveillance 
(search and detection) and targeting (interdiction/prosecution); and 

¥ routing for a single asset for force protection and fleet safety. 

Each category also includes missions that do not involve an adversary. For 
example, the asset-allocation category includes ocean sensing with unmanned gliders. 
Their task is sampling/sensing to optimize a measure of improvement in information 
(e.g., bathymetry). The routing category includes not just routing ships to minimize the 
likelihood of attack (e.g., from a fleet of small boats [the asymmetric adversary]), but also 
routing ships to minimize environmental risk (e.g., exposure to airborne radioactive 
material). Because we have excluded the problem of strategic behavior by the adversary, 
these adversary-free mission areas may be represented and solved using the same basic 
problem structure. 

Table 1. Examples of mission areas by inclusion of an adversary or target and by 
framing as asset-allocation or routing problem. 

 Asset Allocation Routing 
Adversary Counter-piracy 

Counter drug traffickers 
Anti-submarine warfare (ASW) 

multistatic networks 

Small boats avoidance 
Piracy avoidance 

No Adversary Ocean sensing with sonabuoys or 
unmanned maritime vehicles (UMVs) 

Adaptive ocean sampling 

Environmental risk avoidance 

The decisions are where to position assets  over a planning horizon 
().1 The position of asset  at time  is , with x  giving the positions of 

all n  assets through time T  and the objective is: 

 , 

where is some function that captures uncertainty in the achievement of an 
underlying objective, cost, or fitness function (different research communities use 
different terms), denoted . The information state is denoted as , and so one 

possible formulation of the objective, accounting for uncertainty, is . 

For detection and interdiction problems,  must be a function of target positions. 
 

                                                
1 For convenience, we are denoting the discrete-time problem, which is very common, but not 

universal, in formulations of these problems. 

i =1,É ,n
t = 0,É ,T i t xi t( )

max
x

f x( )

f x( )

g x( ) !

f x( ) = E g x( ) !"# $%
g x( )
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For many detection and interdiction formulations, however,  is not 

necessarily an expectation, e.g., it could be  or 

, i.e., minimize the worst (over all 

targets) nondetection probability, as in RoysetÕs formulation, described below. 

This formulation is general enough to represent go:no-go decisions, or decisions 
about when and where to operate to avoid severe weather. The function  could be: 

¥ an indicator of whether the asset encounters dangerous weather (0 if it 
does, 1 if it does not, to preserve the maximization convention); 

¥ an information-content measure associated with a sampling task; 
¥ the number of targets detected (for a detection problem); or 
¥ an indicator of whether a target is intercepted (1 if intercepted,  

0 otherwise). 

 INFORMATION DECOMPOS ITION FOR MISSIONS W ITH AN A.
ADVERSARY 

Although the objective function differs by mission area, the information state may 
be decomposed for missions with unknown target positions. For each mission area, the 
objective is a function of the probability distribution of the target position(s) and Blue 
asset capability as a function of position. The information state !  describes target 
position(s) and Blue asset capability as a function of asset (and perhaps target) positions, 
where yj t( )  is the position of target j  at time t  and y  gives the positions of all m

targets through time T . Moreover, the information state may be summarized as the 
probability of target detection (interdiction), conditioned only on the Blue asset position, 
which is a decision variable, and not conditioned on target position. 

  (1) 

The above formulation is a critical conclusion. For detection (interdiction) 
missions, uncertainty about target position and asset capability may be combined, and the 
information state expressed as the unconditioned probability of target detection (or 
interdiction), given asset position(s). The assumption that target behavior is random (not 
intelligent) implies that target positions, , are not a function of asset positions, , 
though they may be a function of other factors in the environment, such as 
meteorological and oceanographic conditions (METOC). This allows information about 
the environment to be analyzed independently of the optimization problem, given some 
assumptions about the optimization time horizon and the importance or time-scale of 
strategic behavior by the targets. 

The information relevant to the objective functions may be summarized as the 
unconditioned probability of a target detection as a function of asset positions, i.e., the 

f x( )
max

x
P intercepting at least one target( )

min
x

max
j

1! P probability of detecting target j "( )( )( )

g x( )

P i  detects j  at time t xi t( ),!( ) = P i  detects j xi t( ), yj t( ) = y,!( )
conditional detection probability, a function
of asset capability, as a function of asset and 
target positions, reflecting relative positions

and natural environment (sensor performance)

! "# # # # # $# # # # #
! P yj t( ) = y !( )

target location distribution
! "## $# #y

"

y x
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left-hand expression in Equation (1) above. Moreover, if all targets may be treated as 
identical in value (but not necessarily in behavior or distribution), the information state 
may be summarized over all targets, i.e., 

 

In this case, the information may be represented as a simple function of asset 
position, and therefore plotted on a map, which matches the convention for most 
performance surfaces and many other decision support tools for maritime operators. 

An adversary who intelligently anticipates BlueÕs decision process substantially 
complicates the decision problem in a way that we believe will reduce the performance 
human judgmental asset allocation solutions and also makes most of the work on 
optimization algorithms inapplicable. 

It should be noted that various approaches currently being pursued might capture 
intelligent behavior by the adversary, such as exploiting METOC forecasts and seeking to 
hide in areas where they anticipate that BlueÕs capabilities will be reduced. They do not, 
however, capture a strategic interaction in which the adversary anticipates the way Blue 
will make its decisions. 
  

P i  detects any target at time t xi t( ),!( ) =1" P i  does not detect j xi t( ),!( )
j=1

m

#
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III.  OPTIMIZATION  

There is a substantial body of research on optimization algorithms to support 
decisions of this type. The dimensionality of the problem is limiting, however, especially 
in the case of coordinating multiple assets with distinct characteristics. For example, in a 
search problem with  searchers (with distinct sensors),  targets,  possible 
positions,  possible environmental conditions, and  time-steps in the horizon, there 

are  possible scenarios to be evaluated. Moreover, the dimensionality of 
these problems is increasing, with the addition of more, often unmanned, search assets 
and the increasing importance of asymmetric threats, constituting multiple small targets. 

A further challenge is coordinating the interacting problems of detection and 
interdiction. In several mission areas, aircraft are used in detection, while interdiction is 
almost exclusively by vessels. Therefore, the time-scales of motion are very different. 

 APPROACHES TO OPTIMIZING D ETECTION AND INTERDI CTION  A.

Two experts in optimization algorithms for detection and interdiction problems 
shared with us accessible summaries of the state of models and solution algorithms for 
problems of this type. 

Johannes Royset, in his presentation titled ÒModels for Optimal Routing of 
Searchers against Random Targets,Ó described the curse of dimensionality in the problem 
with multiple targets, multiple search assets, and with moving targets. He formulates a 
discrete-time, discrete-space (area of interest is partitioned into cells) problem in which 
search asset routes are constrained (assets cannot instantaneously move to any cell in the 
area of interest). There are multiple targets and multiple searchers, which may have 
different capabilities. In addition, in his formulation, the optimizer considers the cost of 
false detection (i.e., in addition to adversaries, there are neutral entities that may be 
detected and mistaken for adversaries). This formulation is a convex, nonlinear integer 
program, which is NP-hard.2 However, he proposes cutting-plane algorithms that can 
solve the problem to near-optimality in a reasonable amount of time by restricting the 
horizon to the time until the next detection. Optimizing only until next detection makes 
the problem tractable; this becomes less optimal when there are more false positives. 

It should be noted that if false detections are important, this would also 
complicate the information requirement, described above. In particular, the probability of 
detection, conditional on a target being present, implies a signal threshold for detection to 
be triggered. This threshold is presumably set such that false detections do not interfere 
with the mission. However, having the threshold-setting decision made independently of 
the rest of the optimization may be far from optimal. For example, it may be optimal for 
the threshold to vary based on what is known about the target density and/or the relative 

                                                
2 A problem is NP-hard if there is no algorithm that can solve the problem in a processing time or 

number of operations that is a polynomial function of the size of the problem; see Tovey (2002) Section 1 
for a fairly accessible definition. 

NS NT NP

NE T

NSNT NPNE( )T



 9 

distribution of targets and neutral entities. In this case, additional information might be 
required: an additional dimension, reflecting the signal-detection threshold and/or the 
probability of false positive including detecting a neutral, as a function of asset position 
and the information state. 

In continuous space and time (which is rare; see the Literature Review section), 
the formulation changes. The problem may be reasonably solved, however, by parameter-
distributed optimal control algorithms or direct methods-based discretization of time and 
space. As illustrated in Figure 1, these models are appropriate for Òclose controlÓ of 
searchers, i.e., the solution produces precise searcher paths. It was noted that optimized 
paths might not be realistic movement paths, but Royset stated that it is relatively 
straightforward to constrain the continuous-optimizer to produce more realistic paths. 
Even if realistic, however, it is unlikely that precise search paths would be implementable 
by, for example, a surface vessel or piloted aircraft. This kind of optimization would 
probably be most applicable to an automated searcher, e.g., control of an unmanned aerial 
or undersea vehicle. 

 

Figure 1. Example of continuous-time optimal search paths. The blue line represents 
a high-value asset that the adversary wishes to attack. Red adversary paths approach 

from each side. Optimal searcher paths (two surface, one airborne) are shown in 
black. From Royset (2012, March). 
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Both the discrete and continuous-time optimization models assume a 
conditionally deterministic or Markovian model of target motion. Conditionally 
deterministic motion implies that if you knew precisely where the target was at a given 
point in time, you would know precisely where it would go in the future). This is a 
special case of Markovian motion in which each periodÕs position is probabilistic, but the 
distribution is conditional only on the in targetÕs state in the prior period. Such a model 
contains more information than a set of probability density maps, and this information is 
exploited in the algorithm. This implies that there is a need for target models that can be 
used in this type of model. 

Krishna Pattipati, in his presentation titled ÒDynamic Resource Management 
Algorithms,Ó showed a schematic (see Figure 2) of the general problem, to include the 
distinction between detection and interdiction assets. He described several approximation 
strategies used to overcome the curse of dimensionality, and showed examples from his 
previous work. The mission areas include tactical asset allocation for surveillance, asset 
allocation for the combined interdiction and detection problem, command-level planning 
and allocation of resources at the task-force (multi-asset) level, and asset routing. 

 

Figure 2. Schematic of general combined interdiction/detection problem. Pattipati et 
al. (2012) 

In addition, he described approaches to modeling the information state, 
specifically Hidden Markov Models (HMMs), in which the evolution of the variables that 



 11 

will affect the objective function is Markovian, but information about these variables is 
observed with error. HMMs provide a structure for this type of situation and methods for 
estimating the parameters of process for the evolution of the underlying variables as well 
as the ÒemissionÓ process that produces observations. The resulting HMM can support 
dynamic optimization algorithms. 

Because both constraints (e.g., path constraints) and the objective function  
(e.g., probability of interdicting a smuggler before he reaches his destination) are 
functions of asset positions and the state of information at multiple periods, optimization 
methods (and many heuristics) require a model of the relationships among probability 
distributions over time. Both Royset (2012) and Pattipati et al. (2012) make the 
assumption that target motion is represented by a conditionally deterministic or 
Markovian model. However, the only existing target information productÑ the Pirate 
Attack Risk Surface (PARS) (see Hansen et al., 2011)Ñ provides forecasts of 
instantaneous distributions of target position. This suggests the need for developing 
model-reduction techniques that produce models that have the Markovian property and 
can be used to support these optimization algorithms. 

 LITERATURE REVIEW  B.

The differences among problems and the vast array of classes of algorithm that 
may be used to solve the general problem suggested that a deeper literature review would 
be valuable. This a valuable reference for researchers from the METOC community who 
are often familiar with techniques like genetic algorithms. Genetic algorithms may be 
applied to a wide range of problems, but do not exploit special features of any specific 
problem. Instead, they search the space of possible solutions, and may come up with 
good, but not necessarily optimal, solutions if given enough time.  
 

The search theory literature combines some of the aspects of the information stage 
with the optimization of asset allocation stage. A highly-cited survey of the search theory 
literature is provided in Benkoski, Monticino & Weisinger (1991). Their survey focuses 
on the allocation of the search effort, allows uncertainty in the inspections, and a passive 
or evasive target. Targets can be stationary, or moving, where their movement is 
conditionally deterministic or according to a Markovian process.  
 

Much of the research in this area relates to specific mission contexts that not 
discussed at the workshop, such as search and rescue (Abi-Zeid, Nilo & Lamontagne, 
2011) and the tracking decisions and coordination of satellite-based sensors searching for 
maritime targets (Berry, Pontecorvo & Fogg, 2003). The remainder of this section briefly 
reviews the literature for various mission types in terms of specific challenges and 
modeling choices most relevant to the targeting missions discussed at the workshop. 

1. Search and Interdiction 

While the search problem is itself quite challenging, optimizing for both search 
and interdiction simultaneously adds to the challenge. In many missions, such as counter-
drug trafficking, the aircraft are used to search while vessels are used to interdict. 
Integrating them creates potential incompatibility in asset motion assumptions, grid 
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resolution, etc. Kress, Royset & Rozen (2010) provide a stochastic-dynamic formulation 
of a search and interdiction problem using a single searcher and a single interdictor. The 
problem is hard, and they solve it with a heuristic that involves searching the cell with the 
highest ratio of probability of a target to time required to get there. An et al. (2012) 
exploit special features of the counter-piracy objective function to decompose the 
problem, optimizing interdiction first, and then optimizing the detection problem given 
the interdiction solution. 

2. Number of Searchers and Targets 

This section discusses the different ways that researchers have developed for 
dealing with different numbers of searchers and targets. Dell et al. (1996) formulate a 
multi-searcher (single target) problem and develop heuristic approaches to its solution, 
testing them for up to three searchers and up to 49 cells. Royset and Sato (2010) model 
multiple searchers and multiple targets, coordinating searchers, in part, by including 
constraints to limit the number of searchers that can occupy the same cell. 
 

Chung, Kress & Royset (2009) formulate the problem of multiple searchers that 
should be closely coordinatedÑ specifically, they are motivated by coordinating 
unmanned aerial searchersÑ updating the probabilistic representation of the likelihood of 
the locations and identities of targets. In related work, Chung and Burdick (2008), in a 
similar model, consider information sharing among multiple searchers with distributed 
planning (each searcherÕs plan is selected independently) as a way to achieve 
coordination. 

3. Discretization of Space and Time 

Most of the literature assumes a discrete set of fixed, equally sized cells in  
two-dimensional space, and the optimization algorithms operate in discrete time  
(e.g., Brown et al., 2011; Brown, 1980; Dell et al., 1996; Chung et al., 2009). In this 
section, we discuss papers that differ or improve on this standard. Sato and Royset 
(2010), for example, use discrete cells, but allow the searcher to move in  
three-dimensional airspace. 
 

Many papers assume equal, rectangular sized cells for simplicity, but the methods 
can be extended to arbitrary and varying cell sizes, especially if there is no searcher path 
constraint. Stone (1979) addresses all combinations of continuous and discrete time and 
space, with a single target and searcher. Dambreville and Le Cadre (2002) model and 
propose an algorithm for solving a continuous-space problem. 
 

Wilson, Szechtman & Atkinson (2011) allow for arbitrary cell shapes in a 
detection problem with stationary targets. Abi-Zeid et al. (2011) address the problem of 
defining and assigning multiple, non-overlapping, different-sized, rectangular subareas to 
search assets for a search-and-rescue (stationary target) application. 
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4. Target Information Models 

Benkoski et al. (1991) observe that, to the date of his review, most authors model 
target motion as conditionally deterministic (i.e., if the targetÕs current position were 
known, its future position would be known with certainty) or as Markovian (i.e., given 
the targetÕs current state, often identical with its position, the probability distribution of 
its future motion is known). It remains true that many search researchers assume 
conditionally deterministic or Markovian target motion, generally with very simple 
motion patterns (e.g., Brown, 1980; Kress et al., 2010; Dell et al., 1996; Dambreville & 
Le Cadre, 2002; Berry et al., 2003). 

5. Intelligent Agents 

In the mission contexts discussed at the workshops, it is generally agreed that 
target behavior may be modeled as random, rather than intelligent. There is, however, 
some existing literature on related problems, with targets modeled as intelligent agents. 
Eagle and Washburn (1991) model a single-target, single-searcher, multi-move game in 
which both target and (of course) searcher behave intelligently. Most recently,  
Brown et al. (2011) model the problem of using a set of non-homogenous search assets to 
detect submarines attempting to attack a stationary position. The attacking submarines 
choose a path intelligently, minimizing their probability of detection by the search assets; 
the problem is formulated such that an optimal search plan may be found using 
algorithms that solve a mixed integer program. The field of robotics has generated much 
research on pursuit-evasion games, where the target is actively avoiding the searchers. 
Chung, Hollinger & Isler (2011) survey this research taxonomy. 
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IV.  ENVIRONMENTAL INFORM ATION  

The primary community that generates environmental information for maritime 
targeting problems is the METOC community. As illustrated in Figure 3, the U.S. Navy 
METOC programÕs operational concept is based on the Battlespace on Demand (BonD) 
pyramid, with four tiers: 

¥ Tier 0: the data layer, i.e., raw environmental data; 
¥ Tier 1: the environment layer, i.e., a description of the past, present, or 

predicted environment, including oceans, atmosphere, topography, and 
bathymetry; 

¥ Tier 2: the performance layer, which describes the impact of the 
environment on capabilities, including sensors and platforms; and 

¥ Tier 3: the decision layer, which provides actionable information including 
risk assessments to support tactical, operational, and strategic decisions. 

 

Figure 3. The U.S. NavyÕs Battlespace on Demand (BonD) pyramid. 

The definition of Tier 3 is still a subject of debate; at the workshop, there was a 
long debate about whether optimization results may be considered a Tier 3 product or 
whether they must be considered outside the BonD pyramid. Tier 3 support is still almost 
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always provided by the human forecaster, rather than through an operational 
informational product. The Pirate Attack Risk Surface, described in Hansen et al. (2011) 
and at the workshop by Jim Hansen (see Appendix C) is an operational Tier 3 product 
that estimates the risk of pirate attacks as a function of environmental information. 

In recent years, many Tier 2 products have been developed, such as the acoustic 
performance surface, described by Steve Dennis (see Appendix C) and the radar, 
communications, and sensor performance surfaces described by Tracy Haack (see 
Appendix C). Performance of radar and sonar sensors and communications assets is 
highly dependent on environmental conditions surrounding emitting and receiving assets 
and any target. Radar and communications use electromagnetic waves traveling through 
the atmosphere, while sonar depends on acoustic waves propagating through the oceans. 
Wave propagation, however, is generally very dependent on temperature and pressure 
differentials and may be channeled into layers or ducts, such that signal transmission may 
be great in one direction or vertical layer and small in others. In addition, both are 
susceptible to interference by other waves.  

The estimation of the performance is a very computationally complex problem. 
For example, for a 139! 114 grid at a 5-kilometer km resolution, with 40 levels and an 
aircraft flying at 500 meters, a single forecast lead time, single radial, single sensor, 
single target calculation for the entire domain would take approximately 5 minutes on a 
single processer.  The processing time scales linearly with number of forecast leads, 
number of radials, and number of sensors.  The processing scales nonlinearly with 
number of flight levels (as a function of altitude).  The cost of additional targets is 
minimal.  However, the problem scales very well across processors. The ability to 
provide performance surfaces to commanders is currently limited by not just by 
computational capacity but also by available bandwidth for communicating relevant 
information to ships afloat.  

It is also highly dependent on the quality of environmental information. Using 
higher-resolution environmental information increases the computational demand, but 
also increases the accuracy. The computational burden and the informational 
requirements both constrain the generation of sensor and communications performance 
surfaces for the U.S. Navy to operational centers at the Naval Oceanography Command 
(NAVO) and Fleet Numerical Weather Center (FNMOC). 

For many missions, the optimization must be conducted locally to the decision 
makers, e.g., on board a deployed vessel, or even aboard an autonomous glider. This 
creates a need for physical separation between the asset capability modeling and the 
optimization. The optimizers must reach back periodically to get asset performance 
information. A schematic representing the combined information-optimizer system as 
applied to counter-piracy operations, using the PARS, is shown in Figure 4.  

In addition to the physical separation, the optimizer and the performance 
information may be generated at different time-scales. Performance surfaces take hours to 
produce, while the optimizer may be run at more frequent intervals, especially when new, 
relevant information is received, e.g., with respect to target positions (in the case of the 
counter-smuggling mission at the Joint Interagency Task Force-South [JIATF-S]) or 
sensor-generated input (in the case of ocean-sensing gliders). In some cases, this implies 
a need for a local, approximate update of the asset performance information, as depicted 
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in the blue box labeled ÒLocalÓ in Figure 4. Local updating for both asset performance 
and target position will be discussed further below. 

A very important piece that is missing from the sonar performance (for ASW) 
surfaces is the spatial-temporal distribution of target presence probabilities. Currently, the 
surfaces are based on the assumption that the target distribution is uniform, which is 
clearly inaccurate, but provides a starting point. 

 

Figure 4. Schematic of combined information-optimizer system, for the counter-
piracy mission using the Pirate Attack Risk Surface (PARS). This figure was 

produced manually the workshop participants on the white board during the final 
session of the workshop and recorded by Diego Fernando Martinez Ayala. 

Limitations on the bandwidth for transmitting information to ships afloat, and 
issues in matching the information to optimization inputs indicate that there is a need for 
systematic thinking about model reduction.  

One exception to the general rule that researchers working to develop better 
informational tools are separated from researchers working on optimization is the work at 
the NATO Undersea Research Centre (NURC), represented at the workshop by Raffaele 
Grasso. For detection (interdiction) missions, uncertainty about target position and asset 
capability may be combined, and the information state expressed as the unconditioned 
probability of target detection (interdiction), given asset positions. This allows 
information about the environment to be analyzed independently of the optimization 
problem, given some assumptions about the optimization time horizon and the 
importance or time-scale of strategic behavior by the targets. 
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V. IMPLEMENTATION  

 HUMAN FACTORS  A.

For some of the mission areas, e.g., path planning for unpiloted gliders, the goal is 
to fully automate, and even distribute, the asset allocation decision. In many mission 
areas, however, certainly including the counter-piracy, counter-smuggling, and small boat 
problems, automation of these decisions is not anticipated. Rather, the goal is to support 
commandersÕ judgmental decisions by recommending (optimized) courses of action and 
alerting the decision makers to informational innovations that call for a change in the 
course of action (reoptimization). 

Larry Shattuck presented the group with a discussion of the human dimension of 
the problem, specifically organized around his Dynamic model of Situated Cognition 
(Shattuck & Miller, 2006) and shown in Figure 5, which classifies the various sources of 
error, from the sensor side (left), through the presentation of information to the user, and 
the userÕs perception and processing of the information (right). The human interface is 
the communication of the system designerÕs intent. He recommends making it easy to 
evaluate the current state of the system. 

 

Figure 5. The lens model, from Shattuck (2012). 
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In addition, he stated that in his experience, users do not like an automated agent, 
i.e., an optimizer. He recommends keeping the operator in control and in the loop, and 
making it obvious what the system is doing. 
 

This talk highlighted several human-factors challenges are relevant to this 
problem, as detailed below. 

1. High-Dimensional Information 

Presentation of high-dimensional information in a form that human users can 
readily understand is very challenging. For example, the probability of detecting a target 
is a function of, at a minimum, the detectorÕs position; the targetÕs position; and the 
environment. For undersea applications, the detectorÕs position and the targetÕs position 
each have three dimensions. The problem is further complicated when the detection 
system is made up of multiple interacting assets; e.g., when there is at least one active 
(emitting) asset and at least one other receiving asset; or the signal is a composite of 
multiple detectorsÕ inputs. 

Users are familiar with map-based representations. The convention has been to 
present a map showing at each point the probability of detecting a target, given that the 
target is equally likely to be in any position (uniform target distribution), conditional on 
the detection asset being at each point. Shattuck recommends the reference ÒDisplay and 
Interface Design: Subtle Science, Exact ArtÓ by Bennett and Flach (2011).  
Dave Kleinman pointed out that this implies that cognitive task analysis is a necessary 
step in designing informational- or optimization-based decision support systems. 

2. User Acceptability 

In many of the mission areas, a human will make decisions regarding the asset 
allocation. This raises several challenges, including providing recommended courses of 
action that the commander will be willing to use. Jim HansenÕs experience is that users 
are uninterested in a decision support tool if they already have a way to make that 
decision. They were receptive to the PARS because they did not have another source of 
the information they perceive is contained in PARS. By contrast, the operators at JIATFS 
do have a process for making decisions regarding the allocation of counter-piracy assets. 

A key challenge to introducing an optimizer into this process, then, is to provide 
results that are usable and appealing enough to overcome the resistance to change and 
loss of control. 

As Shattuck pointed out, in order to design a decision support system that is used 
(rather than following the Òvaunted introductionÓ followed by Òveiled discardÓ trap), it is 
essential to work with the users in designing the system. 

Krishna Pattipati and colleagues have addressed this in several ways (An et al., 
2012). First, they define the decision variables to match the way asset allocations are 
implemented. In particular, rather than producing an hour-by-hour or minute-by-minute 
path, the optimizer generates a search box that matches the U.S. NavyÕs convention of 
assigning each vessel or aircraft to a patrol area, usually rectangular, for a period of hours 
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or a day. In addition, the optimizer produces three alternative courses-of-action so that if 
one of these is not practical for reasons not captured by the constraints in the 
optimization, there is another alternative that is nearly optimal that he can select. This 
also gives the user a greater sense of control, even while he takes advantage of the 
optimizerÕs solution. 

Raffale Grasso and his colleagues have addressed this challenge in their design of 
a general-purpose maritime operation support system. As described at the workshop, their 
system provides users with an efficient frontier of non-dominated solutions, each optimal 
for a given relative weighting of multiple objectives. This approach also provides 
multiple good options and a sense of control to the user. 
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VI.  RECOMMENDATIONS  

One of the most important accomplishments was simply that we brought together 
the researchers working on optimization with those working to generate the information 
that the optimizers anticipate using in their algorithms. This is a surprisingly rare 
occurrence. It is nearly universal for the optimization community to assume that relevant 
environmental information is available, often in a highly simplified form matched to the 
optimization algorithm, at matching variables, resolution and with perfect calibration. 
Similarly, it is common for the information-generation (principally, METOC) community 
to engage in a one-way relationship in which they provide a product and the 
responsibility for understanding and extracting value from the information falls on  
the users. 

This workshop led to the exchange of some important ideas, such as some of the 
insights from the human factors literature that highlight the importance of displaying 
sensor performance information in a user-intuitive format. In addition, researchers from 
the information (METOC) side were introduced to algorithms that are tailored to the 
details of this problem, contrasting with general, Òbrute forceÓ approaches such as genetic 
algorithms. On the other hand, optimizers were exposed to the challenges and magnitude 
of the sensor-performance prediction problem and the relative lack of useful models of 
target position. 

The most important conclusions were that we can formulate a general version of 
this problem, and that approximate dynamic programming algorithms are the most 
amenable class of algorithms to the solution. We can also summarize the relevant 
information state as the probability of detecting (interdicting) a target conditional only on 
the information state and the position of Blue assets (except when false detections or 
strategic behavior are important). This allows the separation of the information-
production operation from the optimization and implementation, with feedback that may 
occur relatively infrequently. This also implies that local approximate updating may be 
needed for some missions. 

We identified a number of important open questions, whose answers can guide future 
research efforts in all areas: 

¥ How good does radar or sonar surface have to be? In other words, can we 
determine a level of accuracy above which improvements in accuracy or 
resolution will not substantially affect the optimal allocation of assets? 

¥ How complex a target behavior model is necessary? This boils down to a 
question of how good the target distribution prediction is, and can we 
build a simple model, amenable to quick updates to incorporate new 
information, that produces optimal asset allocation solutions that are 
similar to those produced by more detailed and computationally 
demanding models. 

¥ How much value do you give up in optimization by using a receding 
horizon feedback, rather than a closed-loop complete optimization? 
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¥ How can you automatically provide, together with a solution resulting 
from an optimization, an explanation of the solution proposed, such that 
the user can, at some level, understand why the system is making a given 
recommendation? 

¥ Can we develop good methods for reducing environmental and target 
model size such that the reduced-scale models support optimization 
algorithms and rapid, local updating for incorporating new information? 

¥ Under what circumstances can we decompose the optimization problem 
by assigning targets to assets?  
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APPENDIX B. AGENDA 

Targeting an Asymmetric Maritime Threat  
March 13-14, 2012 

Naval Postgraduate School 
Monterey, CA 

 
Tuesday, March 13 
 
9:30-10 AM Ð Welcome and Introductions 
 
10 AM-NOON Ð Mission Areas 
Each participant is invited to describe the mission area(s) that s/he is working in, 
touching on: 

¥ the nature of the threat, decision type, information sources, and any constraints or 
special considerations; and 

¥ approaches to simulating the targets' motion and generating optimal courses of 
action. 

 
Emanuel Coehlo Ð  
1) Adaptive Sampling 2) Environmental Risk Mitigation 3) ASW Multistatic 
Networks 
Steven Dennis Ð Acoustic Performance Surface  
Raffaele Grasso Ð General purpose maritime operation support system 
Tracy Haack Ð Radar/Comms/Sensor Performance in Complex Environments 
Jim Hansen Ð 1) Small Boats 2) Anti-piracy 
Mike Atkinson Ð Detecting Drug Traffickers (DTOs) 
Eva Regnier Ð 1) Counter-smuggling 2) Comparison with counter-piracy 
Krishna Pattipati Ð Dynamic Resource Management 

 
NOON-1 PM Ð Lunch on site 
 
1-2 PM Ð Consolidation 
 
In this working session, we will identify common features of the various mission areas 
and produce a coherent definition of the problem. 
 
In the process, we hope to answer questions that sponsors might pose, including: What is 
the most general version of this problem? Which solutions may be applicable to other 
mission areas? What makes this kind of problem challenging, i.e. why should we be 
working in this area? What are the hard, unsolved problems? 
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2-4:30 PM Ð Technology Transfer 
Experts will give us brief overviews of relevant tools and research results that may be 
new to some participants. We anticipate that each participant will already be familiar with 
half of these. 
 
2 Environmental Impacts on Sensors - Tracy Haack and Steve Dennis 
2:30 Search and Detection Ð Johannes Royset 
3 Optimization Algorithms Ð Krishna Pattipati 
3:30 Human Factors Ð Larry Shattuck  
4 Simulation Ð Dashi Singham 
 
4:30-5 PM Ð Implementation Challenges 
In this session, we will describe implementation challenges, including barriers to 
operationalizing research results and both anticipated and surprising constraints for 
operational use of decision support and recommendations. The goal is to understand at 
what stage of development these challenges and constraints should be considered. 
 
6:45 PM Ð Dinner, Montrio Bistro, 414 Calle Principal Monterey, CA 
 
Wednesday, March 14 
 
9 Ð NOON Ð State of the Science 
The goal of this working session is to identify and evaluate approaches that have been 
applied or may be applicable to any mission area related to targeting an asymmetric 
maritime threat. We also want to spell out features of a mission area make each approach 
more or less likely to be useful, and understand what is the appropriate level of model 
complexity, as a function of mission area. We will address specific portions of the 
problem, including modeling target motion and optimizing the geographical allocation of 
search and interdiction assets. 
 
NOON Ð 2 PM Lunch and Wrap-up 
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