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ABSTRACT 

An analytical approximation to the image theory model is developed for predicting the 

acoustical pressure field in a wedge-shaped ocean. This thesis is a of the ongoing 

development of this model. Previously, limitations has restricted the source and receiver to be placed 

in only an upslope/downslope configuration. This thesis removes these limitations and allows the 

source and the receiver to be placed in cross-slope configurations. 
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I. INTRODUCTION 

Current historical events have necessitated a change from 

studying the propagation of sound in deep water to studying 

the propagation of sound in shallow water. With the fall of 

the Soviet Union and the rise of Mid- astern countries, 

Antisubmarine Warfare (ASW) is more and more likely to occur 

in shallow water. Shallow water provides a much more complex 

environment for ASW prosecution, and, unfortunately, has not 

had as much research as in deep water. 

Image theory is one method that is being developed to 

predict sound propagation in shallow water. This method is 

more accurate than ray tracing methods because it is not 

limited to high frequencies. A number of thesis conducted at 

the Naval Post Graduate School were involved with applying 

image theory to a wedge-shaped, shallow-water ocean. The 

first thesis provided the groundwork for the initial 

development of the image theory. The most recent 

[Nassopoulos, 19901 derives a simplification involving a 

doublet approximation and incorporates all of this information 

into one manageable computer program [Nassopoulos, 19921. 

This thesis assimilates a more complicated cross-slope 

approximation into the doublet analysis which allows the 

source and receiver to be placed anywhere in the wedge. A 



computer program has also been developed to show that the 

approximations are correct within the set of assumptions. 



11. BACKGROUND 

Research on the prediction of sound propagation in a 

wedge-shaped ocean has been directed in three major areas: the 

parabolic equation approximation, the adiabatic normal mode 

theory, and the image theory. 

The parabolic equation can be used as a range dependent 

underwater acoustic propagation model. It basically replaces 

the Helmholz equation with a one-way parabolic approximation 

which will generate the acoustic field as an initial value 

problem. The original version of the parabolic equation, 

developed in 1977 by Tappert, contained restrictions on the 

maximum elevation angle at the source. These limitations were 

reduced by Claerbout and Green and finally eliminated with the 

use of a higher order parabolic equation [Collins, 19871. 

Because the parabolic equation is cylindrically symmetric, 

sloping bottoms cause a problem. One attempt to solve this 

problem has been attempted by sectioning off the bottom into 

a series of range-independent regions and then applying the 

normal parabolic approximation to each section [Lee et al, 

19831. Although this method increases the accuracy, it still 

does not alleviate the problem completely. A more recent 

approach to this problem has been attempted by using a rotated 

parabolic equation [Collins, 19901 which shows good results. 



Normal mode theory is a range-independent approach.  his 

approach has been used for open ocean predictions, but for a 

wedge shaped ocean, a range dependent approach is needed. For 

this type of approach it was shown [Pierce, 19651 that an 

approximation to the normal mode theory can be utilized by 

performing an adiabatic separation of the depth and range 

coordinates in the wave equation. This approach has been 

applied to the wedge-shaped ocean [Graves et al, 19751 but was 

limited to only small slopes and non-penetrable bottoms. An 

exact solution for the ideal wedge, where boundaries are 

perfectly reflected, was developed. [Buckingham, 19871 A 

continuing problem for adiabatic mode theory is that it can 

not explain the transition from the guided mode to the 

evanescent modes at cutoff [Jensen et all 19801. One hybrid 

approach that has been pursued to account for this is the use 

of the parabolic equation [Pierce, 19821 which is solved 

asymptotically subject to adiabatic mode initial conditions. 

Another method is based on tracking of local plane-wave 

spectra [Arnold et all 19841 which produce intrinsic mode 

fields. Another method uses spectral representation based 

on the theory of characteristic Green's functions [Kamel et 

all 19831. 

Another approach in solving the wedge-shaped ocean problem 

is image theory. This theory predicts the pressure field from 

a series of projected images [Coppens et al, 19801. A further 

description of this approach will be provided in the following 



chapters. The basic geometry and mathematical analysis has 

been developed and compared to the parabolic equation model 

with favorable results. The u ~ s l ~ p e / d o w n s l ~ ~ ~  case has been 
- 

approximated [Nassopoulos, 19921  by use of Taylor Series 

approximations resulting in a substantial savings in computer 

computational time. Although less research time has been 

placed into the image theory approach, it shows high potential 

as a viable way to predict acoustic pressure fields in a wedge 

shaped ocean. 



111. DEVELOPMENT 

The basic goal of this research is to approximate the 

images by a sum of doublets. Although a full description of 

the theories will not be incorporated into this thesis, the 

following can be used as a general overview. 

A. IMAGE THEORY 

Image theory stems from the idea that if a source is 

radiating near a surface, then an image, out of phase with the 

source and an equal distance away from the surface, is 

produced. In an isospeed wedge-shaped ocean, numerous images 

are produced [MacPherson et al, 19661. These images form a 

circular pattern around the point where the surface meets the 

bottom and interact with a series of images each possessing an 

image of the surface and bottom of the wedge. The images are 

numbered sequentially around the upper half of the circle 

starting with 1 for the source, 2 for the image and so on 

around the circle. The lower half of the circle is labeled in 

a similar fashion. The pattern for the sign convention along 

with the numbering of the images is shown in Fig. 1. 



Image Paaem for a Wedge-Shaped Ocean 
F i p  1 

Each image contributes to the total pressure field at a point 

in the wedge. For each image, the distance to the receiver 

and the total reflection coefficient, which is the product of 

all the reflection coefficients along the path from the image 

to the receiver, can be determined. The total pressure is the 

sum of the pressures from all of the images. A simplified 

three dimensional view at Fig. 1 shows that the shoreline acts 

as the perpendicular axis to the circle of images. See Fig. 

Shoreline 

3-Dimensional View of Wedge 
Figure 2 



B. DOUBLET RADIATION 

The images on each side of the pressure release surface 

can be grouped together in pairs to form acoustic doublets: 

Images 1 and 2 form a doublet, 3 and 4 form another doublet, 

and so on around the upper and lower half of the circle. Each 

doublet consists of two simple sources, vibrating at the same 

frequency but 180 degrees out of phase. See Fig. 3. 

Geomemcal Presentation of Doublet 
Fi eure 3 

It can be shown that in the far field the pressure field 

resulting from this doublet using a far field approximation is 

Where d is the separation of the source and image in the 

doublet, r is the distance from the field point to the 



midpoint of the doublet, and 6 is the angle formed by r and a 

perpendicular bisector of the doublet. ~t should be noted 

that, if the polarities Were switched, the pressure field 

would change sign, 

To incorporate doublets into the wedge problem, Eq. 1 

needs to be modified to include the reflection coefficients. 

Nassapolous developed the following equation for pressure 

A 1 ~ ( r ,  0 ,  t) =- [ (x -q )  cos ( zk lds inO)  
r 

1 + j ( X  +I# ) sin ( - k ,ds in0)  1 ej(wt-kx) 
2 

Where x and $ are the cumulative reflection coefficients for 

the negative and positive images respectively. 

C .  DOUBLET ANALYSIS OF THE IMAGE THEORY 

1. General Description: 

The purpose of this thesis is to extend Nassapolousf 

doublet approximation to the image theory model to incorporate 

cross-slope propagation. The basic assumptions remain the 

same: the sound speeds and densities are constant in both the 

wedge and the bottom, the water-air boundary is a pressure- 

release surface, and the slope is constant and shallow 

[Nassapolous, 19921. Nassapolous developed the case for 

upslope and downslope propagation. Figure 4 shows how 

doublets are grouped together: The third and fourth upper 

images are grouped together with the first and second lower 

images (n=l), the fifth and sixth upper images are grouped 



together with the third and fourth lower images (n=2) and so 

on around the circle until all the doublets are paired. 

Reprerentadon of the Groupings of Acousdcd Doublets 
Figun 4 

The source and image for the first surface reflected path form 

the neutral doublet (n=O) and is an exception to this grouping 

rule. Similar to doublet radiation, where each doublet 

contributes to the pressure field, now, each pair of doublets 

is considered the basic contributor to the total pressure 

field. The number of paired doublets used in this total 

pressure calculation can be determined by 

p is the angle between the surface and the bottom. To ensure 

that the pressure field is accurate, a wedge angle should be 

chosen such that all of the images are grouped into pairs of 

doublets. To insure that there is closure for the set of 



images. 360/0 must be a multiple of four. In calculating the 

total pressure field, the pressure from the neutral doublet 

will first be developed, followed by the pressure field from 

each of the paired doublets. 

All distances used are scaled according to RScaid 

=Rr,,/X. Two bottom types are examined. in this research, a 

fast bottom and a slow bottom. For a fast bottom, the scaling 

distance X, occurs where the lowest mode attains cut off. For 

a slow bottom, the lowest mode does not attain cut off, but a 

scaling distance X, is used for convenience in calculations. 

The definitions of these scaling distances are 

Fast bottom: 

Slow bottom: 7~ 

K,X, = 
2 tan0,tanp 



is the wedge angle, the s u b s c r i p t  1 refers to the f l u i d  i n  - 

the water, and the subscript 2 refers to the bottom 

[NassopoulOs, 19921. 

2. Neutral Doublet (n=o) 

The neutral doublet, as stated above, comprises of the 

source and upper image. The pressure field from the neutral 

doublet crosses no bottom boundaries therefore, no reflection 

coefficients need to be considered. See Fig. 5. 

Geomemc* Re~resentaaon of N e u d  
Figure 5 

d is the distance between image 1 (the source) and image 2, 6 

is the angle formed between the surface and the plane 

containing the receiver and the shoreline, and R, is the 

perpendicular distance from the shoreline to the receiver. 

Taking Eq. 1, that was developed for doublet radiation without 

reflection coefficients, and applying it to the new cross 

slope geometry gives 

1 Pd= .in ( -k,dsino,') e f ' w t - k l R ~ '  

~,l 2 
( 6 )  



where P', is the pressure field from the neutral doublet, R', 

is the distance between the receiver and the midpoint between 

the neutral doublet and a ' ,  is the angle formed between R', and 

the surface. 

To reduce Eq. 6 ,  the following substitution is made: 

y is the angle formed between the surface plane and the plane 

containing the source and shoreline, and R, is the 

perpendicular distance from the shoreline to the source. See 

Fig. 6. 

I Surface 

Geometrical Representation of R1 and Y 
Figure 6 

Since 6 is assumed to be a small angle, sin? can be 

approximated by y which reduces Eq. 6 to 

A further substitution can be made by applying the geometry in 

Fig. 7. 



Ocotluskd Hcptercntrhn of a: and w,, 
I.igurc 7 

The side common to both triangles shows that R2sin6 = 

Rx0sino ',. since 6 is small, the small angle approximation can 

be utilized to form the equation sina', = R,S/R',. 

Substituting this into Eq. 8 and assigning I?', = k,R,R,/R', 

gives the final pressure for the neutral doublet 

3. Pressure Field From the Nth Pair of Acoustic Doublets 

The paired doublets can be split into two groups, one 

from the upper set of doublets P',' and one from the lower set 

of doublets P',-. The " ' I 1  denotes the cross slope geometry, 

the subscript n denotes which paired doublet is being 

calculated and the If+" and the "-'I denotes the upper and lower 

doublet respectively. Figure 8 illustrates the geometry of 

these upper and lower doublets. 



G e o m e ~  of Upper and Lower Double6 
Figure 8 

The pressure from the upper doublet is 

and the pressure from the lower doublet is 

The (-1) and the -(-I) account for the different 

orientations of the top and bottom doublets. 

The total pressure from all of the paired doublets is 

 his pressure could be calculated by a computer program, but 

it would take a relatively long time to compute. To shorten 

the computational time, and also research for an analytical 

approximation a Taylor series expansion is used for R',', 

R ',-, sino ',+, and sino ',-. 



a .  ~ e r i v a t i o n  R ',' and R ',- 

The geometry for an upper doublet image is shown 

in Fig. 9. 

Receiver 

I Yo- 

Geometrical Representation of Upper Doublet 
From this geometry figure 9 . 

and 

therefore by direct substitution 

By the same reasoning, for the lower doublet 



setting Y, to zero, Eq. 15 and Eq. 16 reduce to 

which match the equations developed be Nassapolous. 

(I) The Taylor Series Expansion for R ',' and R ',-. 
Because R',' and R',- appears in the phase a third order Taylor 

series expansion is needed. Taking this expansion around 6=0 

gives 

This formula is the general case for both the upper and lower 

doublet. To get the correct formula, R', would be replaced 

with R t n +  or R',- as needed. R e n o  is the distance to the nth 

doublet if the receiver were moved vertically to the surface. 

See Fig. 10. Since the geometry is now symmetrical 

I + I R ~ ~ + Y ~ ~ - ~ R , R ~ c o s  ( 2 n . p )  R,, =R~,-=R,,=/R~ + ( 2 0 )  



Geomemcal Repmentation of 0 no and R,' 
R p  LO 

Taking the first derivative yields 

Taking the second derivative yields 



Through cancellations of the minus signs, the second 

derivative for the lower doublet is the same, so 

d2~;' d2R;- 
-1 6 =O =- 16 =O 

( 2 8 )  
d6 d6 

Taking the third derivative and evaluating at 6=0 yields 

Combining these pieces together, the third order Taylor series 

expansion is obtained 



[ 
-3 RlR2cos (243 ) sin (2np ) (3 1) 

(2) Phase Approximation. R '  and R play 

significant roles in the phase. Placing these terms in the 

phase in the third order Taylor series expansion and 

rearranging the terms gives 

exp ( j w L )  exp [ ( j k )  [(RL,) * 6 RlR2sin('np) + '1'262 cos(znp) 
I 

Rno 2 d o  

3 ~ ~ ~ ~ ~ ~ s i n ~  (2np ) 
- sin (24) + 

1 4  
Rno 

Since e'"' does not contain the index n, it can be set aside for 

the moment and the second term will be examined for possible 

reductions. In order for a term to be considered negligible, 

a phase error of less than m / 4  is assumed. Certain 

assumptions also need to be made in order to represent a 

typical ocean environment. First, it is assumed that 

which is equivalent to 



Where c, is the speed of sound in the water, c2 is the speed of 

sound in the bottom, and 8, is the critical angle. 

second, 

Finally, 

Whose implementation will be seen in the following analysis. 

Grouping the terms inside the brackets from Eq. 32 in 

terms of powers in R, and R2 gives 



RlR2 k- 1 
/ 

[sin ( 2 4 3 )  6+-cos ( 2 n p )  a2-Lsin ( 2 1 2 ~ )  a3]  
Rno 2 6 

k40 ( 4 0 )  

Each group needs to be compared to r / 4  to determine if it can 

be considered negligible. Beginning with expression 37 the 

following inequality is set up 

  ear ranging gives 

~aking the definitions S=R,/Rtn0 and sinn=R2/Rtno and multiplying 

through by X/X gives 

where kx=.rr/(2sin9,tan@) for a fast bottom. 

To ensure that the left hand side of the equation is always 



Since @ is small, tan @ = ,8 while 6, the receiver angle, falls 

between 0 and @. The right hand side is minimized by setting 

@=6. Making this substitution into Eq. 44 and allowing @ to 

take on a minimum value of 0.1, reduces Eq. 44 to 

Finally, substituting S = 1/10 according to Eq. 36 gives 

If R,/X for some reason became larger than 40000, the term 

would need to be added back into the equation to keep the 

phase error less than 7714. Note that @ 2 0.1 is eqivalent to 

setting a lower limit on the wedge angle of about 6 degrees. 

Expression 38 can be written 



Making the same substitutions as in the previous equation 

yields 

Once again substituting in the maximizing values gives 

R, s2-a4 ( 4 9 )  
X 

Substituting S = 1/10 gives 

which allows this expression to be neglected. 

Expression 39 gives 

7c R + & C O S ( ~ ~ P ) ~ ~  -&sin ( ~ $ 1  831ez (51) 
~ L R ,  [sin (2nP) 8 

1 
Rno 

Making the same substitutions as in the previous equation 

yields 



 earr ranging the terms and substituting in the maximum values 

gives 

The dominate terms in the denominator are sin(2nO)g + 

0.5cos(2np)6~. Since 1/6 sir1(2n@)6~ is a comparatively small 

number it can be neglected without increasing the phase error 

over T /  4. 

It follows that the expression for the upper doublet is 

and by the same method 

for the lower doublet. 

(3) Amplitude Approximation. It can be shown 

that, in the far field, the amplitude, R',' and R',- can be 

replaced by R',, with a relatively small margin of error. 



b. ~ e r i v a t i o n  o f  s in0  *,,' and sine *.- 

TO take the Taylor series expansion of sin~',,+ and 

sins';, an expression for each term is needed. The geometry 

for this is shown in Fig. 11 for an upper doublet. 

Receiver , 

Gwmerricd Representation of ,"# + and R,,'+ 
Figure 11 

From the law of sines 

Rearranging this gives 

~ubstitution t/l-cos2 7 for sin q gives 

Apex 

To get 7 in terms of 6 a substitution for cos2 q is needed. 

To do this the following equality is setup: 



Canceling similar terms and solving for cos2 gives 

Substituting this into Eq. 58 and replacing cos2(2np + 6 )  

with 1-sin2(2np + 6) gives: 

~;+sinoh*=\l~,~  sin^ (2.8 +6 ) (61) 

Bringing R',+ over to the right side gives the final 

expression for sina ',+. 

And finally, by the same reasoning the expression for sinaO,- 

is 

When the receiver is moved vertically to the surface Eq. 62 

and Eq. 63 become 

Again, by setting Y,=O for a geometrical check 



which agrees with the upslope/downslope case. 

(1) The Taylor - series expansion for sino',' and 

sine ',-. The first order Taylor series expansion taken around 

Y,=O gives 

Because these terms only appear in the amplitude, the 

approximation sina', = sino', is acceptably accurate. 

c. Total Pressure Including Approximations 

Putting all of these equations together yields the 

pressure for the upper doublet, 

That for the lower doublet is the same except for a sign, 



The pressure from the pair is 

The total pressure as stated in Eq.  12 is 

Combining E q .  9 and E q .  70 gives the final solution for the 

total pressure, 

2 A  I j ( wt-kl~,$ + ~,=j-~sin(I',y6) e 
R 0 

1 4A [~in-k,dsino~~l e j ( wt-M;,) wn7 
Rno 

2 

k1R1R2 (sin (znp) 6 +lcos (2np) a2) I sin[ 
Rno 

2 

4 .  Validation 

To validate the analysis of doublet cross-slope 

propagation, a computer program was developed. See Appendix 

"Att. Different inputs of Yo, R,, and R, were used along with 

a wedge angle and source depth of 7.5 and 3.75 degrees 

respectively. These inputs were also put into the program 

URTEXT and a comparative table was constructed. See Table 1. 



TABLE 1 

COMPAKISON OF DOUBLET ANALYSIS TO IMAGE THEORY 
p = 7.5 Y = 3-75 # of depth points = G 

R l = 1  R2=15 Y O = O  

M M P  = .OOGG APHS = .01898 
R 1 = 1  R2=14 YO=3 

R 1 = 1  R2=12 YO=8 

.45507 .77353 .42229 .80677 .49899 -.2554 .35361 -.2402 

.56437 .77059 .51721 .80558 .GO956 -.2580 .43309 -.2403 

.64061 .76720 .57687 .80473 .67701 -.2617 ,48304 -.2403 

.G7940 -763 16 .59736 .80443 .69602 -.2671 .SO009 -.2403 
AAMP = .0423 APHS = .035 1 AAMP= .I447 APHS=.0178 

R l = 1  R2=13 YO=6 R 1 = 1  R2=2  YO=10 
DOUBLEI' IMAGE DOUBLET IMAGE 

AMP PHs AMP PHs AMP PHs AMP PHs 
.I9161 .77072 .I4813 .74146 .00110 -.3287 .00016 -.0074 
.36918 .77044 .28616 .74157 .00216 -.3376 .00030 -.0376 
.5 1968 .76982 .40469 .74174 .00320 -.3477 .00043 -.0112 
.63207 .76894 .49564 .74189 .00415 -.3607 .00052 -.0134 
,69820 .76776 .55281 .74199 .00500 -.3813 .00055 -.0195 
,71336 .76620 .57226 .74203 .00573 -.4041 .00055 -.025 1 

AAMP = .I1073 APHS = ,0272 AAMP= .0031 APHS = .3421 

M M P =  .I729 APHS = .0232 
R 1 = 1  R 2 = 8  YO=9 

DOUBLEI' 

DOUBLEI' 

IMAGE 
A M P  

19230 
.37155 
-52564 
.64414 
.71913 
.74575 

DOUBLET 

AMP 
.I6437 
.31909 

IMAGE DOUBLEI' 

AMP 
.I9020 
.36747 
.51973 
.63659 
.71006 
.735 19 

PHs 
-1.189 
-1.192 
-1.195 
-1.199 
-1.203 
-1.207 

AMP 
,20760 
.40214 
.57139 
.70471 
.79371 
.83276 

IMAGE 

PHs 
.77749 
.77590 

AMP 
.I5456 
.29861 

AMP 
.I8308 
.35338 

IMAGE 

PHs 
-1.1 74 
-1.1 75 
-1.177 
-1.179 
-1.180 
-1.180 

PHs 
.97186 
.97103 
.96959 
.!I6741 
.96432 
-c)6002 

AMP 
.I4901 
.28788 
.40713 
.49862 
.55614 
-575c)O 

PHs 
.BOB84 
.80795 

PHs 
-.2626 
-.2536 

AMP 
.I2944 
.25005 

PI-IS 
.99135 
,99132 
.99133 
.99135 
.99135 
- W l 3 8  

PHs 
-.2403 
-.2402 



It is shown that the doublet cross-slope propagation results 

are in good agreement with the URTEXT results. ~t should be 

noted though, that for the results to compare favorably, the 

wedge angle that is chosen must ensure that the number of 

wedges are an even multiple of four. 



IV. CONCLUSIONS AND RECOMMENDATIONS 

Image theory is an excellent method for predicting the 

transmission of sound in shallow water. ~t is an important 

area of research because it is directly applicable to shallow 

water ~nti-submarine Warfare. Other methods that are being 

examined include the Parabolic Equation approximation, ray 

tracing methods, and the Adiabatic Normal Mode theory. Image 

theory shows the most promise for predicting the acoustical 

pressure fields in a wedge-shaped ocean because it can predict 

pressure fields for cross-slope and for all frequencies. 

Image theory can also deal with the transitional area at cut 

off, a region that is difficult for normal mode theory. 

previous theses have laid the groundwork for the image 

theory model. This thesis has extended the doublet 

approximation to cross-slope propagation. The base 

approximation used, R,* << R~~ + Y:, limits the extension to the 

far-field. Another limiting restriction on this thesis 

basically states that for a phase error of 7r/4 or less, the 

scaled receiver distance R,/X must be less than 400 .  

~eometrically this says that when the receiver gets too far 

away the phase errors combine and the pressure equation 

developed in Eq. 72 is no longer valid. One further 



restriction is that the wedge angle must be chosen such that 

the number of wedges produced is an even multiple of four. 

Because of this, when the dipoles are grouped into pairs of 

doublets, one dipole, 180 degrees from the neutral doublet, 

will be left ungrouped. This will only be a significant 

factor when the grouped dipoles cancel completely leaving only 

the dipole to contribute to the pressure. The effects of this 

dipole can also be seen in Table 1: The results vary when R, 

gets small and Yo gets large. Although this dipole can have 

noticeable effects on the pressure in the rigid bottom case, 

when reflection coefficients are incorporated, the effects 

become negligible. 

The next step in this research would be to incorporate the 

reflection coefficients for the upper and lower doublet into 

Eq. 72. The reflection coefficients though, because of their 

large effect on the pressure, need to be calculated 

individually for each image. Nassopoulos incorporated the 

reflection coefficients into the upslope/downslope case, but 

an extension is still needed for the cross-slope case, 
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