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ABSTRACT

Quality Assurance (QA) is a critical factor in the

development of successful software systems. Through the use

of various QA tools, project managers can ensure that a

desired level of performance and reliability is built into the

system. However, these tools are not without cost. Project

managers must weigh all QA costs and benefits for each

development environment before establishing an allocation

strategy.

The development of a system dynamics model has provided

project managers with an automated tool that accurately

replicates a project's dynamic behavior. This model can be

used to determine the optimal quality assurance distribution

pattern over a given project's life cycle.

The objective of this thesis was to enhance a prototype

expert system module that interacts with the system dynamics

model for determining QA effort allocation schemes. The new

module uses a pattern search algorithm to derive an optimal

distribution scheme from a given set of project parameters.

This system not only resolves all limitations discovered in

the prototype model, but also achieved significant reductions

in total project cost.
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I. INTRODUCTION

A. BACKGROUND

i. Quality Assurance in Project ManaQement

The technological advancements in the computer

industry have penetrated all elements of our modern day

society. With increased public acceptance and proliferation

of the computer, we have seen the emergence of a more

sophisticated class of end-user. This emergence has lead to

increased demand on the development, maintenance, and

modification of software systems to satisfy their insatiable

appetite for new functionality. [Ref. l:p. 100]

Hardware technology has progressed at a faster rate

than our ability to develop comparable software systems. The

result is an industry-wide backlog of software projects.

Since software is a very critical and complex component of

most major systems, the expanding hardware/software gap is

becoming an increasing concern to system developers. The

software development problem can be directly attributed to the

lack of evolving software management techniques to keep pace

with technological advances. [Ref. 2:pp. 6-7]

To compound this situation, the supply of qualified

programmers and systems analysts is not keeping up with the

software industry's demands. This adds to the growing trend

of overdue and over budget projects, that when delivered don't



perform as required. Many clients find that functional

requirements have been down scaled to cut further cost

increases or reduce time delays. These shortcuts often lead

to an increase of undetected errors in the final delivered

system. [Ref. 2:pp. 6-7]

In resolving the software development dilemma we must

focus our attention on the managerial issues present today.

Many project managers have failed to learn or admit past

mistakes and are doomed to repeat them on future projects.

One example is the practice of attempting to introduce quality

into the developed system at the final testing phase. This is

usually insufficient in resolving many of the hidden errors

committed during the early development phases of the project.

Software productivity directly corresponds to the development

practices that have been implemented by management. Only

through the implementation of sound project management tools

and techniques can we begin to reverse the current climate

surrounding systems development. [Refs. 3:pp. 3-5; 2:pp. 6-

7]

Quality assurance (QA) is one technique that

positively impacts software productivity. This technique

introduces into project controlled systematic development

processes, which ensure quality is built into the system from

the beginning. Walkthroughs, inspections, code readings are

a few of the quality checks that are scheduled at

predetermined points, to continually review and test the
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system. Of course these techniques are not without costs.

The introduction of quality assurance into the software

development process will increase total project costs (man-

days). Therefore, the project manager must utilize cost-

benefit analysis techniques to derive an economical QA

distribution scheme (over the design and coding phases).

[Ref. 4:pp. 1-2]

Throughout software development, the management of software
quality must be an overriding concern of all project
personnel. Quality must be planned into the project
structure, constantly evaluated, and corrections applied
when deficiencies are identified. [Ref. 2:p. 8]

2. Expert Simulators

The computing demands of business and industry in the

last decade have contributed to the emergence and expansion of

new artificial intelligence (expert systems) and operational

research (simulation) disciplines. These advances, coupled

with the increasing complexity in the business world, has lead

to growing interest in merging expert systems and simulation

technologies into a single management system. "Proponents of

AI have stated [expert systems] will revolutionize

managements' use of computing, and have profound effect on the

art and science of simulation." [Ref. 5:p. 723]

Expert systems and simulation models are very similar

technologies. Both attempt to model reality, however use

drastically different methods and tools to accomplish similar

end result. Expert Systems focus on capturing the problem

3



solving techniques of the human expert, often in the form of

a heuristic.

These systems are generally composed of three basic

subsystems:

- User Interface--enables the system to interact with the
outside environment.

- Inference Engine--uses deductive reasoning to drive the
system towards a conclusion.

- Knowledge Base--collection of rules that model the
expert's knowledge in the form of heuristics or "rules-
of-thumb."

A key feature that distinguishes an expert system is

its ability to justify a solution, in much the same manner as

a human expert. [Ref. 6:pp. 12-18]

Simulation is a process of developing a model of

reality, and using it to carry out experimentations. This

technique is math intensive, using algorithms in a repetitive

manner to derive a solution. The primary function of a

simulator is to model how a system behaves over a period of

time. Beginning with a "current" state it searches to

determine if certain preconditions have been met, and if so

moves to a "future" state. LRef. 7;pp. 701-702]

The similarities Detween expert systems and simulation

can be exploited in 'ne general taxonomy where both share a

common data base and cooperate in accomplishing a task.

Parallel combination of an expert system and a simulator is

one of the more common development methods used in joining

these systems. (See Figure 1-1)

4
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Figure 1-1 Parallel Expert System and Simulator

Both systems are developed separately and special

interfaces are created to facilitate their interaction.

Figure 1-1 displays two methods of integration, where either

the expert system or the simulator acts as the front-end user

interface for the model. [Ref. 8:pp. 10-12]

B. THESIS OBJECTIVES

The emphasis of this thesis is the continued development

of an existing expert system simulation model (see Reference

11). Both the expert system and simulation model were

designed, developed, and implemented as separate software, in

parallel. The purpose of this combined system is to provide

a project manager with an optimal quality assurance

distribution scheme, throughout a software project's life

cycle (design and coding phases).

An experimental systems dynamics model for software

project management will be utilized as the simulator within

this combined system. This model accepts the quality

5



assurance schemes from the expert system, performs project

simulations, and provides cost information for evaluation.

The primary control vehicle of the expert system

simulation model is the expert system module. Acting as an

interface between the user and the simulator, it accepts input

from both and controls the continuous simulation test process.

The expert system uses an optimization heuristic for deriving

and evaluating quality assurance distribution schemes.

This thesis will focus on identifying shortcomings that

exist in the current expert system portion of this model. New

search techniques will be implemented to improve the model

overall performance. This enhanced expert systems simulation

model will more accurately and efficiently identify the most

optimal quality assurance distribution.

6



II. SYSTEMS DYNAMICS MODEL OF SOFTWARE PROJECT MANAGEMENT

A. OVERVIEW

In the last two decades, the technological achievements of

the computer industry has caused a deluge of highly capable,

reliable, and relatively inexpensive hardware. Accompanying

this "technical revolution" has been the growing demand for

more sophisticated software applications. As stated in

Chapter I, the software development industry has not been able

to effectively keep pace with these demands. "Software

systems development tis been plagued by cost overruns, late

deliveries, poor reliability, and user dissatisfaction."

[Ref. 9:p. 142G

Recently, the software industry has made some technical

advancements in the software production process. The creation

of effective program development techniques such as structured

system design, reverse engineering, and case tools have all

lead to improvements in the production of software. Yet, the

research community credited with these advancements have given

very little attention to the managerial aspects involved with

software development. This lack of attention may account for

the persisting difficulties encountered when producing

software systems. [Ref. 9:p. 1426]

Effective management of software production is not well

understood. Based on this fact, research was conducted to

7



capture the dynamic properties of the software development

process. Interviews with project managers of five larger

development organizations were combined with the data from

exhaustive literature searches to create a developmental base.

A system dynamics model was developed from this research that

provides management with a vehicle for making predictions

about the software development process. This model integrates

the multiple functions of software development with management

functions (i.e., planning, controlling, staffing) and

production activities (i.e., design, coding, and testing).

Another feature of the model is the use of feedback

principles. Feedback provides clarity to the "complex

conglomerate of independent variables that are interrelated in

various nonlinear fashions" within the model. The purpose of

this feedback system is to assist in evaluating the complex

circular (cause-effect) relationships that exist in the

development world. [Ref. 4:p. 4]

The system dynamics model is comprised of four subsystems:

(1) the human resource management subsystem; (2) the software

production subsystem; (3) the controlling subsystem; and (4)

the planning subsystem. Figure 2-1 illustrates a simplified

view of how these subsystems interrelate. [Ref. 9:p. 1429]

The human resource subsystem captures the hiring,

training, assimilation, and transfer of the project staff. It

segments these resources into two categories, "newly hired"

and "experienced." This segregation allows the system to keep

8
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Figure 2-1 System Dynamics Model
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track of differing productivity levels for each member of the

project team. Secondly, it provides a means of monitoring the

experienced staffs training of new personnel. The subsystem

accepts inputs from the model, such as WORK FORCE NEEDED,

PROGRESS STATUS, and processes them with other factors to

determine the appropriate WORK FORCE AVAILABLE. [Ref. 10:p.

102]

The software production subsystem models the development

process through the design, coding, and testing phase of the

software life cycle. The requirements, operations, and

maintenance phases were not included because they fall outside

the boundaries of the actual software development process and

are not under the direct control of the development team. The

focus of this subsystem is enhancing productivity. Through

the use of quality assurance activities it detects project

errors as soon as possible in the life cycle process. These

"detected" errors are then passed to the rework sector for

correction. Any "undetected" errors, that escape QA and

rework, filter through to the testing sector for final

detection and correcting. The underlying intent is to detect

and correct errors early in the life cycle process. Design

and code errors grow exponentially as the project progresses.

Early corrective action minimizes the costs associated with

there removal. This subsystem notifies the control subsystem

of TASKS COMPLETED. [Ref. 10:pp. 102-103]
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The control subsystem makes distinctions between actual

and perceived model variables to estimate project progress.

Often, human estimates are very inaccurate or over-inflated.

This subsystem evaluates many variables built into the system

to determine what the actual projects status is. This

subsystem supplies the planning subsystem with EFFORT

REMAINING. [Ref. 10:p. 103]

The final subsystem is planning. It provides the system

with initial project estimates, and continually updates them

as the project progresses. Evaluating scheduled times, work

force stability, and training requirements, this subsystem

supplies WORK FORCE NEEDED and SCHEDULE data to the other

subsystems. [Ref. 10:p. 103]

B. QUALITY ASSURANCE

The quality assurance and rework sector is one of four

major activities that comprise the software production

subsystem. Its primary objective is the detection and

subsequent correction of generated software errors. Receiving

newly generated code from the software development sector, the

QA activity uses accepted techniques, such code readings and

periodic group walkthroughs to identify errors. Discovered

errors are corrected by the rework portion of this activity,

with all "undetected" errors passed to the testing sector.

Figure 2-2 is a simplified view of the software production

subsystem process. [Ref. 4:p. 6]

11
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Development & Testing
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Figure 2-2 Software Production Subsystem

The quality assurance effort is assigned as a fixed

portion of the total man-days (weekly) available for a given

project. This is distributed over ten life cycle points

through the project's design and coding phases (i.e., 10%,

20%,30%,...,100%). These values can be entered by the project

manager using a table variable called PLANNED FRACTION OF

MANPOWER FOR QUALITY ASSURANCE (TPFMQA). The actual values

assigned to TPFMQA are percentages of the total man-days

available that are desired for QA effort. For example, a

value of 0.15 at the 10% life cycle completion point

represents an allocation of 15% of total effort dedicated to

QA. [Ref. 4:p. 6]

A large segment of the of the software production industry

is akin to allocating an even QA percentage throughout the

entire project life cycle. This practice obviously does not

take cost effectiveness into consideration. (See Figure 2-3.)

12
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Figure 2-3 Uniformly Distributed QA Effort

The number of errors detected in a software project

directly correlates to the amount of QA effort allocated. The

greater the QA effort during the design and coding phases

means the fewer the errors that will be left to be corrected

when testing the system. However, quality assurance is a very

expensive activity. Excessive QA will lead to unnecessary

project costs. As errors are detected and corrected it

becomes increasingly more difficult, time consuming, and

costly to uncover the few remaining errors. It becomes more

economical to allow the elusive errors to be handled during

the system testing phase. [Ref. 4:pp. 7-8]
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C. OPTIMIZATION SCHEME FOR QA EFFORT (TPFMQA)

The model's QA table variable (TPFMQA) allows the project

manager to experiment with various distributions to find the

most economic solution without sacrificing quality. A three-

step process can be performed at each of the ten life cycle

points.

First, we apply a predetermined negative pulse to a life

cycle (l.c.) point leaving all other points unaltered (i.e.,

15% pulse = l.c. point - (l.c. point * .15), see Figure 2-4).

The new value is entered into the TPFMQA table and a

simulation run is conducted. If the results of the simulation

PLANNED QA EFFORT
CPECENT OF OEVELOcP:NT W.N-AYS)

03-

0 28

0 26 -

0 24 4
0.22wp

.02

0 18

o 0 16

0 0.12

U 0.1

w

0,08

0.06

0 G4

0 02

o 10 20 30 40 50 60 70 80 90 100

:R C2J" cF DEVELOM&eT PHASE COcWLETE

Figure 2-4 Example of a Negative Pulse
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lower the total project cost the new value is adopted, and we

proceed to the next life cycle point. If the results are

worse we apply a positive pulse to the original value and

conduct another simulation run. If neither perturbation

causes improvement, the original value is retained.

Perturbation tests on all ten life cycle point constitutes one

complete cycle.

Figure 2-5 displays the results for an actual experiment

using the system dynamics model. The project was initiated

with a uniform 15% QA distribution (cost was 1656.71 man-

days). After only one cycle the project manager was able to

significantly reduce total project cost to 1537.99 man-days.

This experiment support the theory that by emphasizing QA

early in the design process, the effort required at the later

portion of the project could be drastically reduced.

D. CASE STUDY

1. DE-A Project

To experiment with the cost-reducing capabilities of

the system dynamics model, an actual NASA software project was

used as a test platform. The Fortran-based program was

developed for processing telemetry data, altitude

determination, and control of a DE-A satellite. [Ref. 4:pp.

2-3]

The estimated and actual project results were as

follows:

15
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Figure 2-5 QA Distribution After One Cycle

estimated actual

project size 16,000 24,000 DSI

development cost 1,100 2,200 Man-days

completion time 320 387 Days

These results indicate that the project was not a

complete success, even though the system's performance was

rated extremely reliable. Development costs were twice what

was predicted, delivered source instructions (DSI) were one

and a half times the estimate, and the project fell behind

schedule. A possible contributor to these overruns and delays

was the 36% (on average) allocation of the total available
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Figure 2-6 Actual DE-A Project QA Distribution

resources to quality assurance. Excessive QA was planned into

the project to detect the relatively few elusive errors that

may exist. This higher than industry norm distribution is

show on Figure 2-6. (Ref. 4:p. 3]

2. Manual Experiment

Manual manipulations of the TPFMQA values were

conducted to determine if a more cost effective QA

distribution for the DE-A project could be discovered. The

initial starting point for this experiment was a uniform 15%

17



allocation of resources for QA across the ten life cycle

points. These life cycle points indicate the percentage of

the project completed in increments of ten. Perturbing each

point separately, negative and positive pulses at a magnitude

of 50% were applied. If a negative pulse successfully lowered

the total project cost it was adopted, and then experiment

progressed to the next life cycle point. However, if the

negative pulse was not successful, then a positive pulse was

applied. When a perturbation failed in reducing costs the

original value was restored. This process was continued until

the improvements in costs between consecutive cycles became

nominal. [Ref. 12:p. 43]

Figure 2-7 displays the improved QA distribution

curve. The new allocation scheme resulted in significantly

lowering development costs to 1524.5 man-days total. Quality

assurance effort was reduced from 524 man-days (original 30%

distribution) to approximately 162 man-days. The simulator

successfully lowered overall costs while maintaining the

desired level of quality in the final product. [Ref. 12 :p.

43]
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Figure 2-7 Manually Derived QA Distribution
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III. PRIOR DEVELOPMENT IN EXPERT SYSTEM SIMULATION MODELS

A. EXISTING EXPERT SYSTEM FOR QA ALLOCATION

1. The Exert System Module

Prior research (Reference 11) has yielded a prototype

expert system simulation (ESS) model that is decomposable into

three separate subsystems: An expert system module, the

system dynamics model, and a set of interfacing files, which

are displayed below.

JTnFMCA)

EXPERT SYSTEM SYSTEM DYNAMICS
MITERFACJNG FILES MEL

(CUMMD) 
-

Figure 3-1 The ESS model

The expert module was developed in Prolog and is

comprised of 15 rules. This module performs two functions,

overall ,ystem control and derivation of QA effort allocation

schemes. The derived QA patterns are transferred to the

systems dynamics model, and a simulation is conducted. When

the simulation is complete, the results are returned to the

expert system for evaluation and further action. [Ref. 4:pp.

8-9]
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The ESS model is initialized by the user through a

generated series of expert module queries. Once initialized,

the system operates in an automatic state until encountering

a user-deter-ined termination condition. Of the five required

user inputs, two are critically important: (1) a desired

pulse size factor (PSF), and (2) a base-line QA effort scheme

for ten life cycle points (usually a uniform distribution

across all points).

Pulse size factor is applied as a percentage of the

current QA value at a given life cycle point. It

mathematically alters (perturbs) each point for future

evaluation in the simulation model. Each of the ten life

cycle points are perturbed in sequential order, constituting

a cycle when the system returns to the first point.

This perturbation process begins by applying a

negative pulse to the current QA value (QA - PSF(QA)), sending

the new distribution scheme (TPFMQA) to the simulation model,

and adopting the perturbed QA value if the simulation results

indicate a reduction in total project costs (CUMMD). If the

negative pulse causes an increase in total costs, a positive

pulse is applied (QA + PSF(QA)) and another simulation

conducted. If this results in a cost reduction, the positive

perturbation is adopted. However, if both pulses increase

total project cost then the original QA effort value is

restored. After the lowest cost alternative (negative pulse,

positive pulse, or no pulse) is determined and recorded, the

21



system moves on to the next life cycle point for perturbation.

[Ref. 12:pp. 17-40]

NEGATIVE PULSE POSITIVE PULSE NO PULSE

Figure 3-2 Perturbations

Other user inputs include two termination conditions:

(1) the maximum cycle limit, and (2) minimum threshold level

for cost reduction. The cycle limit terminates the system

when the cycle counter surpasses a user-established maximum.

The minimum threshold level terminates the system if the cost

reduction at the end of a cycle is not greater than a set

amount over the cost at the beginning of the cycle (e.g., a 1%

improvement minimum). Finally, the user can input minimum QA

value. This keeps the system from going below a possible

company established minimum QA policy or at very least above

zero. [Ref. 4:p. 10]

2. Interface Mechanisms

The two major components of the ESS model were

developed in different programming languages. The expert

system module is in Arity Prolog, and the systems dynamics
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model is in Professional Dynamo Plus (PD+). To allow these

separate systems to communicate, a group of interfacing DOS

files were created as a transfer vehicle (see Figure 3-3).

[Ref. 4:p. 10-11]

To communicate with the system dynamics model

(project.dyn), the expert system (pqa.ari) requires a means of

transferring the most currently derived QA distribution

scheme. First, the expert system transforms the data into a

format the simulator can understand (TPFMQA). Next, the data

are copied into an ascii holding file (project.dnx). System

control is then passed from the expert system to a DOS batch

file (project.bat), which moves the TPFMQA data into the

simulator and starts the model. Upon completion of the

simulation, the systems dynamics model's report generator

records the total project costs (CUMMD) to an internal file

(report.exe). The batch file then extracts the CUMMD value

and stores it in an ascii file (project.out), in a format

understandable to the expert system. Control is then returned

to the expert system which reads in the CUMMD value, evaluates

performance, and determines the next course of action. The

above process is repeated for each subsequent life cycle

point. [Ref. 4:p. 11]

The summary file (summary.dat), attached to the expert

system in Figure 3-3, records the results of each interface

exchange. This file provides the user with a chronological

listing of every QA distribution scheme attempted and the
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associated total project cost. When a final termination

condition is met, the system records the best CUMMD discovered

into the file.

3. DE-A Project Revisited

The QA allocation performance of the ESS model was

evaluated using the NASA DE-A software project. The system

was initialized using a pulse size (PSF) of 15%, minimum

threshold for cost reduction of .00001%, maximum number of

cycles at 30, minimum QA value of 3%, and a uniform base-line

QA effort of 15% effort.

The results of this experiment are compared below:

QA costs (man-days) Total costs (man-days)

Actual DE-A 524 2,200

Manually derived 161.9 1,524.5

Expert Simulator 170.04 1,521.07

Figure 3-4 displays a composite of the QA distribution

patterns for the three experiments listed above. Notice that

the expert simulator places more emphasis on QA in the

beginning of the design phase. This capitalizes on the cost

savings associated with detection and correction of errors

early in the life cycle process. The expert simulator's

results are a considerable improvement over the actual QA

effort distribution used by NASA in developing the project.

Slight cost reduction over the manual manipulation of the

system dynamics module was achieved. However, the real

benefit of the prototype model was the elimination of the
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Figure 3-4 Composite of QA Distributions

extensive human interaction time needed when using the

simulator separately. The prototype ESS model proved to be

effective as an automated tool for distributing QA effort.

[Ref. 4:pp. 11-12]

B. SENSITIVITY ANALYSIS OF THE MODEL

I. Introduction

The current ESS model has demonstrated a capability to

produce distribution schemes that reduce project cost, when

compared to the practice of uniform allocation. However, the

ability of the model to derive the "most optimal" QA scheme is

suspect. Multiple experiments were conducted in which the
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initial five input variables were slightly altered. The

results of these experiments produced significantly different

QA allocation schemes and final project costs. The following

model sensitivity questions have arisen for these experiments:

- Is the expert system simulator model sensitive to pulse
size factor? (The prototype system used a static pulse
size for every cycle.)

- Is it the system capable of achieving one global optimal
QA distribution pattern irrespective of where the initial
base-line is established? (The previous experiment used
a 15% initial effort scheme across all life cycle
points.)

- Is it possible for multiple local optimal solutions (at
each life cycle point) to exist? If so, can this deceive
the simulator into believing it has discovered the
optimal for that life cycle point? (This phenomenon
would cause multiple global optimization schemes to be
produced by the existing model. See Figure 3-5 below.)

200- Model s unabl to mOVS

beyond first local optimal
it discovers.

True optimal solution

TOTAL P RCENTALLOCATED TO CI

Figure 3-5 Bi-modal Problem

2. The Test Process

A sensitivity experiment was conducted and divided

into two separate sub-experiments, each using different QA

base-line values. The "low" base-line sub-experiment was

established at 3% of resources allocated to QA and a "high"
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base-line at 50%. These extreme starting points were used to

examine the possible disparities in the model's global (final

QA allocation pattern) and local (individual life cycle point)

"optimal" allocation solutions.

The two sub-experiments were further divided into a

set of three test runs each (for a total of six experiments).

These test runs utilized a 15%, 05%, and 01% pulse size factor

respectively. The variable pulse (PSF) was used to measure

the sensitivity of the model to dynamic pulse size.

Each of the six test runs was limited to a maximum of

20 cycles with the minimum threshold level for cost reduction

setwat zero (effectively eliminating it as a model termination

vehicle). The results of the previous higher PSF experiment

were used as the base-line values to initialize the next run.

For example, the results of the "high" base-line's first 20

cycle run at a 15% pulse size factor were: .293, .137, .137,

.099, .116, .153, .137, .071, .071, .133. These values were

then used as the starting points for the next 20 cycle run at

5% pulse size factor. Although the simulator did not reach

an optimal solution for any of the six runs, the 20 cycle

limit was chosen for the following reasons:

- To reduce the excessive time require to run the ESS
model.

- The degree of change in the QA distribution pattern, with
a static PSF, becomes insignificant after approximately
15 cycles.

- With a minimum threshold level of cost reduction set at
zero, the model could theoretically run on indefinitely
making minute changes in the allocation pattern.
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3. Experiment Results

Both sub-experiments were initialized with a pulse

size factor of .15. The resulting QA effort distributions for

the first set of high/low runs are shown in Table 3-1 and

Figure 3-6.

TABLE 3-1

RUN SET #1 AT 15% PSF

FIRST SET OF HIGH/LOW RUNS AT 15% PSF

Base 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

50% .293 .137 .137 .099 .116 .153 .137 .071 .071 .133

3% .2' .283 .105 .070 .123 .123 .070 .069 .046 .060

Observing the two distribution patterns indicates that

they have not only met but have over-lapped at various points.

This indicates a bi-modal situation does exist for many of the

life cycle points. Figure 3-6 also proves that the ESS model

is not capable of effectively handling a bi-modal environment.

The model tends to accept the first mode it encounters.

Therefore, if a better local solution lies outside of the

currently established pulse factor range, it will be

overlooked. By being "trapped" into a local optimal value,

the model creates inconsistent global distribution schemes

dependent upon where the expert system is started.
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The distribution adjustment process for the first set

of high/low runs (every four cycles) has been recorded in

Table 3-2, Figures 3-7 and 3-8.

An interesting observation is that the expert system

developed a definite allocation pattern within a relatively

few cycles. With only minor refinements, these patterns

resemble the final high/low distribution schemes from the

third set of runs.
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TABLE 3-2

HIGH/LOW DISTRIBUTION COMPARISON FOR FIRST 20 CYCLES

HIGH/LOW DISTRIBUTION ADJUSTMENTS

3% BASE-LINE MOVEMENTS

CYCLE .0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030
4 .053 .053 .030 .030 .035 .035 .035 .040 .040 .053

8 .093 .093 .053 .035 .053 .053 .030 .040 .040 .070

12 .162 .162 .081 .053 .081 .081 .046 .045 .040 .045

16 .246 .283 .105 .070 .123 .123 .076 .069 .046 .060

20 .246 .283 .105 .070 .123 .123 .076 .069 .046 .060

50% BASE-LINE MOVEMENTS

CYCLE 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500

4 .261 .261 .261 .261 .261 .261 .261 .261 .261 .261

8 .222 .137 .137 .137 .137 .137 .137 .137 .137 .137

12 .293 .137 .137 .099 .116 .153 .137 .071 .071 .133

16 .293 .137 .137 .099 .116 .153 .137 .071 .071 .133

20 .293 .137 .137 .099 .116 .153 .137 .071 .071 .133
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The final distribution schemes from the first runs

were used to initialize the model for a second set of high/low

runs. A reduced pulse size factor of .05 was used for another

20 cycles. Table 3-3 and Figure 3-9 are composites of the

second run's final distribution schemes.

TABLE 3-3

RUN SET #2 AT 5% PSF

SECOND SET OF HIGH/LOW RUNS AT 5% PSF

Base 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

50% 349 .156 .150 .066 .129 .164 .106 .041 .046 .105

3% .263 .283 .105 .073 .123 .141 .046 .060 .040 .059

The two patterns show a definite merging trend in over

50% of the project life cycle. This observation supports the

theory that the model is sensitive to pulse size factor.

Lowering the PSF allows the model to fine tune its global

solution.

A final set of runs was conducted using the results

from the second run and a .01 pulse size factor. The

distributions, after 20 cycles, are shown in Table 3-4 and

Figure 3-10.

33



HIGH/ LOW COMPAP I SON
05 PSF

0.4

0. 35

03

- 0.25

0 2

0.15

D.

0 05

0- T

10 20 30 40 50 80 70 ea 90 100

PB:ENT OF DEVELOPMET PHASE COMPLETED
Q 50' GA %e.o 03% QA Base

Figure 3-9 05% PSF High/Low Comparison

HIGH/LOW COMPAR I SON
01 PSF

0. 35

0.3

0 25

0.1

0.05 1

10 20 30 40 50 50 70 80 90 100

PS CENT OF DEVEL0PMENT PIHASE CCMPLETE0
0 50LS GA Bawo + 03% QA ee

Figure 3-10 01% PSF High/Low Comparison

34



TABLE 3-4

RUN SET #3 AT 1% PSF

THIRD SET OF HIGH/LOW RUNS AT 1% PSF

Base 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

50% .369 .165 .155 .069 .134 .155 .086 .030 .030 .085

3% .264 .283 .105 .073 .123 .141 .046 .060 .040 .059

This run provides more proof that the static pulse

size of the expert system degrades overall model performance.

Also, the increasing disparity between effort recommendations

of the first three life cycle points further supports the

model's inability to deal with complex environments.

C. REDESIGN CONSIDERATIONS

The existing expert system can be used as the basis for

redevelopment. This will require minor modifications to the

current 15 Prolog rules, and additions to resolve the

identified limitations of the model. The interfacing files

will remain unaltered, along with the technique of perturbing

each life cycle point sequentially.

New rule additions will include a mechanism for reducing

pulse size factor. The expert system will evaluate when the

current PSF is no longer effective in processing change, and

reduce its value automatically (not to go below a user

established minimum pulse size). The model needs to
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capitalize on the early emergence of a distribution pattern.

This can be used to significantly reduce the number of cycles

the expert system simulation model must go through in deriving

solution. Secondly, the pattern can be used to "look beyond"

local optimums, thus reducing the negative effects of bi-modal

life cycle points.

With these additions, the need for inputting a maximum

number of cycles can be eliminated. The system will be able

to determine a optimal global solution in fewer cycles than

currently required and subsequently run to completion.
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IV. PATTERN SEARCH

A. METHODOLOGY

The limitations identified in the prototype ESS model can

be rectified through the incorporation of an existing pattern

search algorithm. The chosen optimization pattern search

technique is the result of extensive academic research

conducted by Robert Hooke and Thomas Jeeves [Ref. 13]. This

technique is based on a simple movement principle that, "a

successful earlier move in a particular direction is worth

attempting again." [Ref. 13:p. 145]

This search algorithm identifies a pattern early, and

cautiously makes further excursions in the directions of

improvement. If these excursions prove to be successful, the

algorithm adopts them as a base for further excursions, with

an increasing step size per subsequent success. When an

excursions fails to produce an improvement, the technique

performs local explorations, from the unsuccessful location,

as a last attempt for success. If improvement is achieved,

the algorithm adopts these explorations as a base and

continues the excursion process. However, if these local

explorations are unsuccessful, the pattern is "destroyed," the

base is reestablished at the last successful position, and the

excursion step size (PSF) is reduced. This three-element

technique accomplishes two tasks. First, it enables an
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optimal pattern to be discovered quickly. Secondly, it allows

fine tuning of the final solution when in the vicinity of a

true minimum. (Ref. 13:p. 145]

This search technique begins with a set of base values

(bO), which may be chosen arbitrarily (user input QA base-line

values). A step size (PSF) is also chosen, which will be used

for perturbations around the base values. The algorithm

begins by applying a negative perturbation (bO - PSF). If

this new value causes an improvement, it is adopted as a new

base (bl) and the algorithm moves to the next life cycle point

for perturbation. However, if no improvement occurs, a

positive perturbation is applied to the old base (bO + PSF).

If this new value causes improvement, it is adopted as the new

base (bl) ; otherwise the original value at bO also becomes the

new base (bl) value. At this point the algorithm move.s to the

next life cycle point for perturbations. In summary, when

attempting to minimize the objective function (y), the

perturbation results are:

- bl = bO - PSF if y(bO - PSF) < y(bO).

- bl = bO + PSF if y(bO + PSF) < y(bO) < (bO - PSF).

- bl = bO if y(bO) < min[y(bO - PSF),y(bO + PSF)].

Figure 4-1 displays the perturbation process over the first

three project life cycle points.

When all perturbations have been performed, the algorithm

moves into the pattern search portion of the technique. The

old base values (bO) and the newly determined base values (bl)
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together establish the pattern search step size. Extending an

arrow from bO to bi and doubling its length determine where

the new temporary head (T) will fall. These temporary values

are mathematically derived by the following equation:

T = bO + 2(bl + bO)

which is demonstrated in Figure 4-2 below.

T
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Figure 4-2 Pattern Jump

If the temporary head pattern (T) is an improvement

(lowers total project costs) over the new base's (bl)

distribution, the temporary values are retained by the
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algorithm. Next, the new base values (bl) are redesignated as

the bo values, and perturbations are conducted around the

temporary head values to determine the next set of bl values

(see Figure 4-3). [Ref. 13:p. 148]
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Figure 4-3 Perturbations/Pattern Jump Successful

As portrayed in the figure above, after all perturbations

have occurred, the distance between all b0 points to bl points

(the ten life cycle values) are doubled constituting the

"pattern search" movement to the next set of temporary heads.

This process continues until a temporary head distribution

pattern fails to provide improvement over the new base (bl)

distribution. When this occurs the algorithm conducts "local

explorations" about the temporary head values (T) . Thesem

I I I

local explorations are actually perturbations, except the

automatic redesignation of bl values to bo values is

temporarily placed on hold. If the local explorations succeed

in producing an improved distribution pattern, they are

adopted as the new base values (bl) and the redesignation of
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the bO values occurs (the old bl values are redesignated the

bO values). The system continues as before (see Figure 4-4).
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Figure 4-4 Local Explorations/Pattern Jump Unsuccessful

Figure 4-4 displays the increasing pattern size that can

occur with repeated success in the same direction. [Ref.

13:pp. 148-149]

However, if the local explorations do not produce an

improved distribution scheme, then the pattern is "destroyed"

(see Figure 4-5). Next, the redesignation of the bO values

occurs and the step size (PSF) is reduced. A new set of

perturbations are then applied to derive the new base values

(bl) and the algorithm proceeds on as before. The search
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continues until step size falls below a preselected minimum

(an input from the user). [Ref. 13:pp. 148-150]

This technique quickly and smoothly finds a pattern and

capitalizes upon it to discover an optimal solution. When the

technique is in close proximity to the global optimal scheme,

it reduces step size to refine its final answer. The use of

local explorations, when a pattern jump is unsuccessful,

enables the algorithm to "look beyond" local optimal values.

The combination of these characteristics gives the pattern

search techniques a better likelihood of discovering the true

optimal QA distribution than using just a perturbation process

alone.

B. THE PATTERN SEARCH EXPERT SYSTEM ARCHITECTURE

The pattern search expert system module (pattern.ari) is

a refinement of an existing prototype system. However, the

underline purpose of the module remains the same; to derive

the optimum quality assurance distribution for a given

software project.

The pattern search technique was developed separately as

a Arity Prolog rule-based subsystem. This seven-rule

subsystem was then added to the existing 15-ruled prototype.

Minor modifications to the original rules were required to

facilitate this addition. All interfacing files and rules,

used to communicate with the system dynamics model, were left

intact.
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The original 15-rule prototype system performed important

administrative control functions for the ESS model.

Interfacing with the user, running the simulation model,

creating and maintaining files, and monitoring progress are

just a few of its duties. This functionality will be carried

over to the new expert system module. However, the

prototype's most significant contribution to further

development is its life cycle point perturbation technique.

With minor modifications this technique will be combined with

the three elements of the pattern search algorithm (pattern

jumps, local explorations, and pulse size reduction) to

enhance the expert system's performance.

The new expert system will at the end of each cycle (all

ten life cycle points perturbed), transfer control to the

pattern search algorithm. One of three possible event then

ensue:

- Global adjustments will be made to the QA distribution in
the form of a pattern jump. If successful in reducing
total project costs, then the system continues on with
the perturbation process, again.

- Global adjustments will be made to the QA distribution in
the form of a pattern jump. If unsuccessful in reducing
total project costs, then the system returns to the
perturbation process to perform local explorations about
the temporary head (actually the perturbation process
with a flag set on to indicate the last pattern was
unsuccessful).

- If the local explorations occurred and were unsuccessful
in reducing total project costs then the pattern is
destroyed, the pulse size factor is reduced, and the
perturbation process is restarted from the last
successful set of base values.
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The rest of this section is dedicated to displaying and

explaining each of PATTERN.ARI's 22 Arity Prolog rules. To

differentiate the unaltered, modified and new program code the

following will be typed after each subsection heading:

- (Original)--rules that were not altered by the
redevelopment.

- (Modified)--rules that were altered by the redevelopment.
If the rule name was also changed, the indicator will
appear as (Modified - old name: ).

- (Pattern Search)--rules that were added to the system.

A complete code listing of the pattern search expert

system module is provided in Appendix A. For description of

the prototype system the reader is directed to Reference 12,

Chapter III. The following subsections will be presented in

the same manner as the earlier work for continuity.

1. Rule--pa (Modified)

This rule is used only once, in conjunction with the

initial-run rule, to initialize the system. Four global

variables are established to monitor all previous actions

taken by the expert system module. The "newcycle" and

"number" predicates keep track of the current cycle and

iteration (life cycle point) the system is at, respectively.

The "calc" predicate monitors whether the last applied pulse

was negative or positive. Lastly, the "flag" predicate

records if the last pattern jump was successful or not. These

four global variables play a key role in determining the

appropriate sequence of events within the system.
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Next, this rule queries the user for five parameters:

pulse size factor, minimum QA effort value, maximum QA effort

value, minimum desired pulse size (used as the exit

condition), and the initial ten base-line QA values. After

the user has entered the tenth base-line value, the rule

records these initial parameters in the SUMMARY.DAT file for

future reference. The dopqa rule is called, whicn takes

control and operates the system in an automatic mode until an

optimal QA distribution pattern has been discovered.

pqa:-

/* sets initial global values */

asserta(number(1)),

asserta(calc(O)),

asserta(flag(0)),

asserta(newcycle(1)),

/* user input queries */

write(What is your desired pulse size factor? '),

read(PU),

asserta(size(PU)),

write(What is the minimum QA value? '),

read(MN),

asserta(min(MN)),

write('What is the maximum QA value? '),

read(AX),

asserta(max(AX)),

write(What is your minimum desired pulse size? ),

read(MP),

asserta(minpsf(MP)),
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write('Enter the initial QA distribution. Point 1 '),

read(QA1),

write(' Point 2 '),

read(QA2),

writeC Point 3 '),

read(QA3),

write(C Point 4 ),

read(QA4),

write(' Point 5 '),

read(QA5),

write(' Point 6 ),

read(QA6),

write(' Point 7 ),

read(QA7),

write(' Point 8 '),

read(QA8),

writeC Point 9 '),

read(QA9),

writeC Point 10 '),

read(QA10),

/* prints starting values into the summary output */

printhead(PU,MN,AX,MP),

/* initializes the system with user inputs */

initialrun(QAI,QA2,QA3,QA4,QA5,QA6,QA7,QA8,QA9,QA10),

dopqa.

2. Rule--dovaa (OriQinal)

This rule is the repeat/fail loop which automates the

pattern search ESS model. To accomplish this, it makes use of

the built-in back-tracking capabilities of the Prolog
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language. The repeat statement always succc -: when

encountered by the interpreter. This tells the interpreter to

perform all statements that follow it. The main 1,"I is then

invoked, and when finished moves to the fail statement. The

fail statement causes the interpreter to be "tricked" into

believing it needs more data to make this statement succeed,

and automatically back tracks in search of these data. It

encounters the main rule and invokes it. After the main rule

has finished, the interpreter further back tracks to the

repeat statement and the cycle continues as before.

The rule continues to run indefinitely. The system

runs until it encounters a termination condition elsewhere in

the program.

dopqa:-

repeat,

main,

fail.

3. Rule--main (OriQinal)

This rule is the central control point for the

perturbation process. It passes essential system status data,

such as the current life cycle point for perturbations

(number(ITER)) and last pulse direction applied (calc(TYPE)),

to the pulse application rules. The rule recalls the

previously derived CUMMD from the system's built-in recording
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system (cummdold). It then compares the previous CUMMD with

the most currently derived CUMMD (readcummd), to determine if

a negative (calc_less) or a positive (calc_-rore) pulse should

be applied to the life cycle point. Finally, the rule outputs

statistics and current life cycle undergoing perturbations to

the screen for performance monitoring by the user.

main:-

/* gets the x value for the pulse */

call (number(ITER)),

call(calc(TYPE)),

/* gets the previous man days */

PREV is [ITER + 8] mod 10] + 1],

call(cummdold(PREV,CHECK)),

call(cummdold(ITER,OLD)),

/* gets the man days rom the last QA numbers */

read_cummd,

call(cummd(NEW)),

/* calculates the new y value (QA) for tl,0 current x value */

case([NEW =< CHECK -> calc_less(ITER,NEW,OLD,TYPE),

NEW > CHECK -> calc more(ITER,NEW,OLD,CHECK,TYPE)]),

/* prints to screen module statistics for monitoring */

statistics,

writeC Iteration = '),write(ITER).

4. Rule--end cycle (Modified--old name: quit test)

This rule starts the pattern search algorithm after

the perturbation cycle has been completed. It also advances

48



the cycle count (newcycle(NEXT)) and outputs the current cycle

to the screen for monitoring.

endcycle (NEW,ITER) -

call(newcycle(NOW)),

/* initializes the "Pattern Search" algorithm */

ifthenelse(NOW > 1,pattern_search(NEW,ITER),

outputcummd(NEW,ITER)),

/* advances cycle number */

NEXT is NOW + 1,

writeCCycle number = '),write(NOW),

retract(newcycle (NOW)),

asserta (newcycle(NEXT)).

5. Rule--pattern search (Pattern Search)

This rule uses the flag predicate value to determine

a course of action. If TYPE = 0 it indicates that the last

pattern jump was successful and to attempt another search

(tempbase). However, if TYPE = 1 it indicates that the last

pattern jump was unsuccessful and that local explorations were

conducted. The rule calls the reduction-test rule to evaluate

if the local explorations were successful.

pattern_search(NEW,ITER):-

call(flag(TYPE)),

case([TYPE 0 -> temp base(NEWITER),

TYPE 1 -> reduction_test(NEW,ITER)]),!.
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6. Rule---reduction test (Pattern Search)

This rule determines if the local explorations,

following an unsuccessful pattern jump, have produced an

improvement in total project costs. The rule calls on the

last successful perturbation base value's CUMMD

(blcummd(BASE)) and compares that value with the local

exploration's CUMMD. If the local explorations produce a

reduction in total costs the new temporary values are adopted

as the base for the next pattern search. However, if the

local explorations are not an improvement, then the

reducepulse rule is invoked.

reductiontest(NEW,ITER):-

call(blcummd(BASE)),

ifthenelse(NEW < BASE,tempbase(NEW,ITER),

reduce-pulse(NEW,ITER)),!.

7. Rule--temp base (Pattern Search)

This rule actually performs the pattern jump on the

ten life cycle points. First, it outputs the final

perturbation cycle CUMMD to the SUMMARY.DAT file

(output_cummd). Then it resets all base CUMMD recording files

with the most current values (bOcummd and blcummd). Next,

each life cycle point is adjusted mathematically creating the

new pattern search distribution. The rule then calls new-base

rule to redesignate the old base (bO) and the temporary head
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(T) values. A pattern search header and listing of the new

temporary values are recorded in the SUMMARY.DAT file. Next,

the simulation model is called (shell(model)), and the total

project costs for the pattern search distribution is

determined. The simulation derived CUMMD is then called back

into the rule (readcummd) and recorded into the SUMMARY.DAT

file. A comparison between the pattern search distribution

CUMMD (HEAD) and the last perturbation distribution CUMMD

(NEW) is conducted. If the pattern search fails to lower

total project costs the local_explorations rule is called.

Finally, the system updates the cummdold recording system and

erases the temporary head (T) values for the next pattern

search run (the T values were redesignated as TPFMQA values by

the new-base rule).

tempbase(NEW,ITER):

outputcummd(NEW,ITER),

/* resets "flag" to record the last action taken */

abolish(flag/1),

asserta (flag(0)),

/* resets both base CUMMD value holders */

call(bl_cummd(OLD)),

abolish(bO_cummd/1),

asserta(bO_cunund(OLD)),

abolish(blcummd/1),

asserta(bl_cummd(NEW)),

/* pattern search algorithm */

/* point one */
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call(bo(l,Ql)),

call (tpfrnqa (l,QAl)),

Al is Ql+[2*[QA-Ql]]I,

qa-test(Al ,Tl),

asserta(t(1 Ti)),
/* point two */

call(bO(2,Q2)),

caLl(tpfmqa(2,QA2)),

A2 is Q2+[2*[QA2-Q2]I,

qatest(A2,T2),

asserta(t(2,T'2)),

/* point three */

call(bO(3,Q3)),

call (tpftnqa (3, QA3)),

A3 is Q3+[2*IQA3-Q3]],

qatest(A3,T3),

ass erta(t (3,T3)),
/* point four ~

call(bO(4,Q4)),

call(tpfmqa(4,QA4)),

A4 is Q4+[2*[QA4-Q4]I,

qatest(A4,T4),

asserta(t(4,T4)),

/* point five */

call(bO(S,Q5)),

call (tpfmqa (5,QA5)),

A5 is Q5+[2*[QA5-Q5II,

qatest(A5,T5),

asserta(t(5,T5)),

/* point six */

call(bO(6,Q6)),

call(rpfrnqa(6,QA6)),
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A6 is Q6+[2*[QA6-Q6]I,

qatest (A6,T6),

asserta(t(6,T6)),

/* point seven */

call(bO(7,Q7)),

cal(tpfmnqa(7,QA7)),

A7 is Q7+[2*[QA7-Q7]],

qatest(A7,T7),

asserta(t(7,T7)),

/* point eight */

call(bO(8,Q8)),

call(tpfmnqa(8,QA8)),

A8 is Q8+[2*[QA8-Q8]I,

qatest (A8,T8),

asserta(t(8,T8)),

/* point nine */

call(bo(9,Q9)),

call (tpfmnqa (9,QA9)),

A9 is Q9+[2*[QA9-Q9]],

qatest(A9,T9),

asserta (t (9,T9)),

/* point ten */

call(bO(1 O,QI 0)),

caU(tpfmqa(1O,QA1O)),

A10 is QIO+[2*IQA10-Q1O]],

qa test (Al0,T1 0),

asserta(t(10,T1O)),

/* establishes a new temporary base *

new_base,

/* notification in output that a pattern search occurred *

open (S,'sumniary.dat',a),

nl(S) ,write(S,
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Pattern Search *********************

nI(S),nl(S),close(S),

/* runs the system dynamics model for pattern search CUMMD */

output_tpfmnqa,

shell(model),

read_cummd,

call(cummd(HEAD)),

output_cummd(HEAD,ITER),

/* if CUMMD not an improvement, local explorations occur */

ifthen(HEAD > = NEW,localexplorations),

/* resets CUMMD recording system */

retract (cummdold (ITER,NEW)),

asserta(cummdold(ITER,HEAD)),

/* erases temporary head (T) values */

abolish(t/2),!.

8. Rule--ga test (Pattern Search)

This rule is used by the temp base rule to keep from

pattern jumping below the user established minimum QA level.

The post pattern jump value is compared with the allowed

minimum value (min(MINQA)) and the greater value is adopted.

qatest(IN,OUT):-

call(min(MINQA)),

ifthenelse(IN < MINQA,OUT is MINQAOUT is IN).

9. Rule--new base (Pattern Search)

This rule performs two functions. First, it

redesignates the last perturbation derived distribution as the
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old base distribution (bO) . Secondly, it redesignates the

pattern search derived temporary head (T) distribution as the

temporary base (TPFMQA's) to conduct the next set of

perturbations from.

new-base:-

/* calls last perturbation and pattern search values ~

call(tpfmqa(1 ,QAl)),

call (tpf-mqa (2,QA2)),

call(tpfrnqa(3,QA3)),

call (rp fiqa(4,QA4)),

call(tpfmnqa(5,QAS)),

call(rpfmqa(6,QA6)),

call(tpfmnqa(7,QA7)),

call(tpfmqa(8,QA8)),

call(tpfmnqa(9,QA9)),

call(tpfrnqa(1 O,QA1O)),

call(t(2l,A2)),

call(t(2,A2)),

call(t(4,A4)),

call(t(4,A4)),

call(t(6,A6)),

call(t(7,A7),

call(t(7,A8)),

call(t(9,A9)),

call(t(1O,AlO)),

/* resets old base values ~

abolish(bO/2),

assertaCbO(1,QA1)),
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asserta (bO (2 ,QA2)),

asserta(bO(3,QA3)),

asserta(bO(4,QA4)),

asserta(bO(S,QA5)),

asserta(bO(6,QA6)),

asserta(bO(7,QA7)),

asserta (bO0(8,QA8)),

asserta (bo(9,QA9)),

asserta (bO(I O,QA1O0)),

/* resets a new temporary base values ~

abolish (tp fmqa/2),

asserta(tpfmqa(1 ,A1)),

asserra(tpfrnqa(2,A2)),

asserta (tpfmqa (3,A3)),

asserrta(tpfmqa(4,A4)),

asserta(tpf-mqa(5,A5)),

asserta (tpfmnqa (6,A6)),

asserta (tpfnqa (7,A7)),

asserta (tpfmnqa (8,A8)),

asserta(tpfmnqa(9,A9)),

asserta (tpfinqa (I 0,A 10)),!.

10. Rule-local explorations (Pattern Search)

This rule is invoked by the temp_base rule each time

the pattern search distribution fails to lower total project

costs. This rule sets the flag predicate to 1. On the next

cycle this flag is detected by the pattern-search rule

notifying it that the new perturbation distribution is to be

treated as local explorations. Further evaluation of the

results are required before the system can adopt these values.
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The rule also outputs a local exploration header in the

SUMMARY.DAT file to record the occurrence.

local explorations:-

/* resets "flag" to record last action taken */

abolish(flag/1),

asserta(flag(1)),

/* notification in output that local exploration occurred */

open (S,'summary.dat',a),

nl(S),write(S,

'************ Local Explorations ****************'),

nl(S),nl(S),close(S),!.

11. Rule--reduce pulse (Pattern Search)

This rule is invoked by the reduction-test rule when

local explorations are unsuccessful in lowering total project

costs. The current pulse size factor (size (PULSE)) is

brought into the rule and halved. This event is then recorded

with a pulse reduction header in the SUMMARY.DAT file along

with the new pulse size value. The pattern is then destroyed

by resetting the distribution values back to the last

successful perturbation values (bO). Next, the simulation

model is run (shell(model)) with the reset values to derive

CUMMD. Both the new CUMMD and reset distribution values

(TPFMQA's) are recorded in the SUMMAPY.DAT file, and the

cummdold recording system is updated. Finally, the rule

checks to see if the pulse reduction value is less than the
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user input minimum PSF. If it falls below the minimum

(minpsf(MPSF)), then the run stop rule is invoked for system

termination. Otherwise the flag is reset to 0 and control is

transferred back to the perturbation process.

reducepulse (NEW, ITER):

output-cunund(NEW,ITER),

call (size (PULSE)),

call(minpsf(MPSF)),

call(bO-cummd(OLD)),

/* reduces current pulse size (PSF) by half *

REDUCED is round(PULSE / 2,3),

/* notification in output that pulse reduction occurred ~

open (S,'summary-dat',a),

ril(S),write(S,

Pulse reduction *******)

nl(S),write(S,'Pulse size is: '),write (S, REDUCED),

nl(S),nl(S),

close(S),

/* resets old base TPFMQA values to those prior *

/* to the pattern search and local explorations ~

call(bO(1,QA1)),

call (bO (2,QA2)),

call (bO (3,QA3)),

call (bO (4,QA4)),

call (bO (5,QA5)),

call(bO(,QAM),

callI(b0(7,QA7))

call (bO (8,QA8)),

call (bO (9, QA9)),
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call(bO(1O,QA1O)),

abolish (tp fmqa/2),

asserta(tpfmqa(1 ,QA1)),

asserta(tpfmqa(2,QA2)),

asserta (tpfinqa (3,QA3)),

asserta(tpfmqa(4,QA4)),

asserta (tpfmqa (5,QA5)),

asserta(tpfmqa (6,QA6)),

asserta(tpf-mqa(7,QA7)),

asserta(tpfmqa(8,QA8)),

asserta(tpfmnqa(9,QA9)),

asserta (tpfmqa(1 O,QA1 0)),

output tpfmqa,

shell(model),

read_curnid,

call(cummnd(AFTER)),

output cunmd (AFTER, ITER),

/* resets CUMMD value holders *

abolish (bl1 curnmd/ 1),

asserta (b 1_cummd (OLD))

retract(cummrdold (1 0,BEFORE)),

asserta(cumnrdold(1 O,AFTER)),

retract (cumxndold (ITER, NEW)),

asserta (cummdold (ITER,AFTER)),

/* terminates the model if pulse is below minimum *

retract(size (PULSE)),

ifthenelse (REDUCED > = MPSF,asserta (size (REDUCED)),

run stop (OLD)),

/* resets "flag" to record last action taken *

abolish(flag/1),

asserta (flag (0)),!.
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12. Rule--print head (Modified--old name: calc zero)

This rule creates and records into the SUMMARY.DAT

file all expert system derived QA distributions (TPFMQA) that

are sent to the system dynamics model, and the total project

costs (CUMMD) that are returned. It also records the user

input parameters as a header to this listing.

print_head(PU,MN,AX,MP):-

create (S,'summary.dat ),

write(S,' Pulse size factor = '),write(S,PU),nl(S),

write(S,' Minimum QA value = '),write(S,MN),nl(S),

write(S,' Maximum QA value = '),write(S,AX),n1(S),

writ( (S,' Minimum pulse size = '),write(S,MP),nl(S),

nl(S),close(S).

13. Rule--calc less (Modified)

This rule applies the negative pulse during the

perturbation process. It is always the first pulse applied to

each of the ten life cycle points. Because of this fact it is

tasked with the administrative duties of the perturbation

process. These duties include: updating the cummdold

recording system, outputting previously derived CUMMDs to the

SUMMARY.DAT file, determining when the pattern search process

should be invoked, and keeping a track of the original "pre-

perturbation" QA value for a life cycle point (holder(QA)).

After applying the negative pulse, the rule compares the new

QA value (NEWQA) to the user established minimum QA value
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(min(MINQA)). The greater of the two values is adopted.

Next, the rule outputs the new QA distribution (outputtpfmqa)

to the SUMMARY.DAT file and runs the simulation model with

these values. Finally, it advances the iteration count

(number(NEWITER)) and records the fact that a negative pulse

was applied (calc(O)).

calc_less(ITER,NEW,OLD,TYPE):-

/* records man-days for this cycle */

retract (cummdold (ITER,OLD)),

asserta(cummdold(ITER,NEW)),

ifthenelse(ITER =:= 1,end_cycle(NEW,ITER),

outputcummd(NEW,ITER)),

/* reads the current QA values */

call(tpfmqa (ITER,QA)),

/* establishes an "initial" QA holder for perturbation use */

abolish(holder/1),

asserta(holder(QA)),

call (size (PULSE)),

/* calculates a new QA value (NEWQA) */

NEWQA is round(QA-PULSE,3),

/* checks if the new QA is less than the minimum (MINQA) */

/* add the new QA value to the database */

call(min(MINQA)),

retract(tpfmqa(ITER,QA)),

ifthenelse(NEWQA < MINQAasserta(tpfmqa(ITER,MINQA)),

asserta(tpfmqa(ITER,NEWQA))),

/* moves to the next life cycle position */

retract (number(ITER)),

NEWITER is [ITER mod 10] + 1,
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asserta (number (N EWITER)),

ifthen(ITER =:= 1,output_break),

output-tpfmqa,

shell(model),

/* records that last pulse was negative */

retract(calc (TYPE)),

asserra(calc(O)).

14. Rule--calc more (Modified)

This rule applies to both the positive pulse and no

pulse (return to the original value) during the perturbation

process. It is only invoked by the main rule when the

negative pulse was unsuccessful at reducing total project

costs. First, the rule internally resets the iteration count

back one, to allow the rule to reference the current life

cycle point data (the prior negative pulse advanced the

iteration count!). When the last TYPE value is 0 (last pulse

was negative), the rule applies a positive pulse and calls the

calc up rule. Likewise, if the TYPE value is 1 (last pulse

was positive), the original QA value before any perturbations

were applied is restored and the calcorig rule is called.

The element of this rule is the maximum QA value limiting

code. The derived QA value from the positive pulse is

compared with the maximum QA value input by the user. The

minimum of the two values is adopted.
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calc_more(ITER,NEW,OLD,CHECK,TYPE)

/* resets the life cycle position back 1 */

NEWITER is [[ITER + 8] mod 10] + 1],

call(tpfmqa (N EWITER,QA)),

/* calls the "initial" QA value for perturbation use */

call(holder(VALUE)),

call (size (PULSE)),

/* computes the new QA value depending on whether the last */

/* pulse was negative (TYPE = 0) c.: positive (TYPE = 1) */

case([TYPE 0 -> NEWQA is round(VALUE+PULSE,3),

TYPE I -> NEWQA is VALUE]),

/* checks if new QA is greater than the maximum (MAXQA) */

call(max(MAXQA)),

retract (tp fmqa(NEWITER,QA)),

ifthenelse (NEWQA > MAXQA,asserta (tpfmqa (NEWITER,MAXQA)),

asserta (tpfmqa(NEWITER,N EWQA))),

retract(calc(TYPE)),

/* resets the type of calculation */

case([TYPE 0 -> calc_up(NEW, NEWITER),

TYPE =: 1 -> calc orig(NEWITER, ITER,NEW,OLD,CHECK)]).

15. Rule--calc up (Original)

This rule follows the application of a positive pulse

by the calc_more rule. It records the last simulation derived

CUMMD and QA distribution (TPFMQA) intc the SUMMARY.DAT file.

Secondly, it records the fact that a positive pulse was

applied (calc(1)). And finally, runs the simulation model

with the current QA distribution scheme.

63



calcup(NEW,NEWITER):-

asserta(calc(1)),

outputcummd (NEW, NEWITER),

output_tpfmqa,

shell(model).

16. Rule--calc oria (Original)

This rule follows the application of no pulse by the

calc more rule. It records the last simulation derived CUMMD

and QA distribution (TPFMQA) into the SUMMARY.DAT file. This

rule resets TYPE to 0 and returns directly to the calc less

rule for perturbations around the next life cycle point.

calc-orig(NEWITER,ITER,NEW,OLD,CHECK):-

asserta(calc(0)),

outputcummd(NEW,NEWITER),

outputtpfmqa,

caic_less (ITER,CHECK, OLD,O).

17. Rule--run stop (Modified--old name: no calc)

This rule is the only means of terminating the expert

system simulation model. It is invoked by the reducepulse

rule when pulse size is reduced below a user established

minimum. The best CUMMD value is then assessed and recorded

in the SUMMARY.DAT file.
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run stop(NEW):-

call(cummdold(1 0,BEST)),

open (S,'summary.dat',a),

rd(S),nl(S),

write(S,'The best CUMMD is: '),

ifthenelse(BEST < NEW,write(S,BEST),write(S,NEW)),

nL(S),

close(S),

halt.

18. Rule--output tpfmqa (Original)

This rule outputs a current QA distribution scheme to

two different files. First, the distribution is recorded in

the SUMMARY.DAT file for post run process evaluation by the

user. Secondly, the distribution is translated and stored in

the PROJECT.DNX file for use by the system dynamics simulation

model.

outputtpfmqa:-

call(tpfmqa(1,QA1)),

call(tpfmqa(2,QA2)),

call(rpfmqa(3,QA3)),

call(tpfmqa(4,QA4)),

call(tpfmqa(5,QAS)),

call(tpfmqa(6,QA6)),

call(rpfmqa(7,QA7)),

call(tpfmqa(8,QA8)),

call(tpfmqa(9,QA9)),

call(tpfmqa(1O,QA10)),
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create (D,'project.dnx'),

write(D,'T TPFMQA='),

w-rite(D,QAI),wriite(D,'')

w-rire(D,QA2),wrire(D,'')

write(D,QA3),wi-ite(D,'')

write (D,QA4),write (D,'')

write (D,QAS), write (D,' ')

write (D,QA6),wr-ite(D,'')

write (D,QA7),write (D,'')

write (D, QA8), write (D,' ')

write (D,QA9),write (D,'')

write (D,QA1 0) ,nl(D),

close (D),

open (S,' surnrmary.dat',a),

write (S,'TPFMQA =),

w-rite (S,QA1) ,write(S,'/'),

write(S,QA2),write(S,'/'),

write (S,QA3),write(S,'/),

write (S,QA4) ,write (S,'/'),

w-rite (S,QAS) ,write(S,'/'),

write (S,QA6) ,write(S,'/'),

write (S,QA7) ,write (S,'/'),

write (S,QA8) ,write(S,'/'),

write (S,QA9),write (S,'/'),

w-rite(S,QA1 O),nl(S),

close(S).

19. Rule--outgut cummd (Original)

This rule output total project costs in cummulative

man-days to the SUMMARY.DAT file. This CUNMD value follows
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its related QA distribution scheme, in the file layout, and is

number with the iteration it corresponds to.

outputcummd (NEW,ITER):-

open(S,'summary.dat',a),

write(S,ITER),write(S,'. '),

write(S,'CUMMD ='),write(S,NEW),nl(S),

close(S).

20. Rule--output break (Original)

This rule is invoked by the calc less rule at the

beginning of a new cycle. It records a new cycle header into

the SUMMARY.DAT file.

output break:-

open(S,'summary.dat',a),

nl(S),write(S,

Start of a new cycle *************')

nl(S),nl(S),

close(S).

21. Rule--read cummd (Original)

This rule translates and reads into the expert system

module the CUMMD value currently stored in the PROJECT.OUT

file. This file records the total project costs derived by

the system dynamics simulation model.
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read cummd:-

open(C,'project.out',r),

read(C,CUMMD),

abolish (cummd/1),

asserta(CUMMD),

close(C).

22. Rule--initial run (Modified)

This rule is only invoked once to assist the pqa rule

in initializing and starting the system. Accepting the ten

base-line QA values it sets both the old base (bO) and the

temporary base (TPFMQA) to these values. The initial QA

distrioution is then recorded in the SUMMARY.DAT file and the

simulation is run to derive the initial CUMMD. This CUMMD is

used tc-. initialize the base CUMMD recording system (bOcummd

and bl cummd) along with the cummdold recording system.

initialin i(QA1 ,QA2,QA3,QA4,QA5,QA6,QA7,QA8,QA9,QA1 O):-

/* estabLshes the initial temporary base */

asserta, tpfmqa(1 ,QA1)),

assert,' tpfmqa(2,QA2)),

assertaktpfmqa(3,QA3)),

asserta(tpfmqa(4,QA4)),

asserta(tpfmqa(5,QAS)),

asserta(rpfinqa(6,QA6)),

asserta(tpfmqa(7,QA7)),

asserta(tpfmqa(8,QA8)),

asserta(tpfmqa(9,QA9)),

asserta(tpfmqa(1 O,QA10)),
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/* establishes the initial base for pattern search *

asserta(bO(1,QAl)),

asserta(b0(2,QA2)),

asserta(bO(3,QA3)),

asserta (1,0(4,QA4)),

asserta(bO(5,QA5)),

asserta(bO(6,QA6))

asserta (b0(7,QA7)),

asserta (b0(8,QA8)),

asserta (bO (9,QA9)),

asserta(bO(l 0,QA1 0)),

/* runs the system dynamics model ~

output tpfmqa,

shell(model),

read_cunund,

call(cummd(INITAL)),

/* records initial GUMMIs for perturbation comparisons *

asserta(bO_cumxnd(INITIAL)),

asserta Cb1_cumnxd (INITIAL)),

asserta(cummdold(1 ,0)),

asserta(cummdold(2,0)),

asserta(currtrdold(3,O)),

asserta(cummdold(4,0)),

asserta (cunundold(5,0)),

asserta(curamdold (6,0)),

asserta(cummdold(7,0)),

asserta(cummndold(8,0)),

asserta (curndold (9,0)),

asserta (cunundold (1 0, INITIAL)),

retract(cumnd (INITIAL)).
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C. SYSTEM OPERATIONS

To use the pattern search ESS model the following hardware

and software is required:

- IBM compatible microcomputer.

- 80286 or better microprocessor.

- math coprocessor.

- 640k RAM.

- 20M hard drive.

- PCDOS or MSDOS 2.0 or better.

- Arity Prolog 5.0 Interpreter software.

- the system dynamics simulation model and associated
editors and files.

- the expert system module (PATTERN.ARI).

- the interfacing files (SUMMARY.DAT, PROJECT.DNX, PROJECT.
OUT, PROJECT.DRS, and MODEL.BAT).

The interpreter files, expert system program, simulator

files, and interfacing files should all be stored under a

separate directory on the computer's hard drive. Next, the

user can modify the system dynamics model's internal variables

(project.dyn) using the pd.com file, to reflect the predicted

behavior of a proposed software project. Complete information

on this process is contained in Reference 11. The PROJECT.DYN

file currently contains the NASA DE-A project estimates and

data. To conduct further experiments using this project

requires no editing.

The expert system simulation model is initiated by typing

"api" at the DOS prompt, as shown below:
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C:\(directory name)> api

This loads the Arity Prolog Interpreter which displays the

software package information and input prompt (?-).

Arity/Prolog Interpreter Version 5.0
Copyright (C) 1989 Arity Corporation

At the prompt the name of the prolog program, without the

extension, is typed enclosed in square brackets and followed

by a period.

?- [pattern].

The interpreter is case sensitive. All commands should be

typed as lower case letters, as capitals are treated as

variables. A period must follow all entries to the system.

This tells the interpreter, when accompanied by a carriage

return, that the input is complete and to expect nothing else

at this time.

At this point the interpreter compiles the program and

reviews it for syntax errors. The system will respond with a

second prompt. To start the expert system model the program's

initialization rule name is typed at the prompt:

yes
?- pqa.

This brings up the user input queries, that have been coded

into the rule, one at a time. Each input is to be followed by

a period and a carriage return. Fractional numbers require a

zero prior to the decimal point. The interpreter will not

accept them in any other format. The complete input screen is

displayed below with sample entries:
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What is your desired pulse size factor? 0.05.
What is the minimum QA value? 0.02.
What is the maximum QA value? 0.5.
What is your minimum desired pulse size? 0.01.
Enter the initial QA distribution. Point 1 0.15.

Point 2 0.15.
Point 3 0.15.
Point 4 0.15.
Point 5 0.15.
Point 6 0.15.
Point 7 0.15.
Point 8 0.15.
Point 9 0.15.
Point 10 0.15.

After the tenth base-line QA value has been entered, the

system shifts into an automatic mode requiring no intervention

from the user. Depending on the characteristics of the

software project being simulated and the quality/speed of the

hardware used, the entire process could take anywhere from 45

minutes to two days to derive an optimum. When the system has

terminated (screen shows "Press any key to continue.... "), the

actual sequence of events the model used to reach an optimal

QA distribution can be retrieved from the SUMMARY.DAT file.

A copy of a NASA DE-A project results is displayed in Appendix

B.

D. SYSTEM TEST

1. DE-A Prolect

The QA allocation performance of the pattern search

ESS model was evaluated using the DE-A software project. The

system was initialized with the exact parameters used in the

prototype's performance evaluation. The only exception was a
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minimum pulse size factor value of 1%, which was an addition

to the expert system module.

The results of the experiment are compared with

previous experiments below:

QA costs (man-days) Total Costs (man-days)

Actual DE-A 524 2,200

Manually derived 161.9 1,524.5

Prototype ESS 170.4 1,521.07

Pattern Search ESS 176.6 1,489.34

The results clearly show that the performance of the

pattern search ESS is far superior to any of its predecessors.

Figure 4-6 displays a composite of the QA distribution

patterns of the four experiments listed above. As seen in the

graph, the model places an extreme emphasis on quality

assurance at the beginning of the project's life cycle. This

technique causes the project to avoid: (1) the excessive cost

of removing design errors during the testing phase; and (2)

the tendency of early committed errors creating additional

errors or growing in size and complexity as the life cycle

progresses. Early detection and correction of errors allows

the ESS model to reduce a considerable number of the latter

life cycle points' values to within the minimum QA value

(established by the user at 2%).

Another advantage to the pattern search ESS model is

its level of sophistication. The prototype requires that a

maximum number of cycles setting be entered by the user. This
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Figure 4-6 Composit6 of QA Distributions

parameter was used by the prototype to terminate the ESS model

during all experiment runs. For this reason the prototype

never successfully reached an "optimal" distribution pattern

within a reasonable time limit (reasonable time limit

established by the maximum cycle parameter).

The pattern search ESS model uses only one termination

criteria, minimum pulse size factor (PSF). This ensures the

model runs until the PSF is reduced to the level that it can

no longer affect any substantial changes (e.g., below .01

PSF).
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2. Performance Testing

The high/low experiments used in evaluating the

performance of the prototype model were conducted on the

pattern search ESS. The "high" base-line was established at

50% of total resources dedicated to QA, and the "low" at 3%.

All initialization parameters were identical to those used on

the prototype experiments: base line QA at .15, minimum QA

level at .02, and pulse size factor at .05. Additionally,

minimum pulse size was set at .01 and maximum QA level at .50.

The "high" run produced a solution after 12 cycles,

and the "low" run after seven cycles. Both final QA

distribution schemes are shown in Table 4-1 below. The total

costs associated with these schemes were 1522.33 and 1524.65

total man-days, respectively.

TABLE 4-1

PATTERN SEARCH HIGH/LOW EXPERIMENT RESULTS

PATTERN SEARCH ESS HIGH/LOW COMPARISON

Base 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

50% .250 .225 .150 .050 .150 .150 .100 .087 .020 .020

3% .205 .205 .155 .080 .155 .155 .130 .020 .020 .020
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Figure 4-7 shows the graphical representation of the

two distribution schemes. The similar patterns are a strong

indication that the pattern search ESS is capable of deri 'ing

identical distribution patterns independent of the base-line

level. This provides strong evidence that the pattern search

algorithm is not vulnerable to a bi-modal (multiple local

optimals) environment.
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V. SENSITIVITY ANALYSIS

A. INTRODUCTION

To further evaluate the performance of the pattern search

ESS model, a set of six sensitivity experiments was developed.

Using the DE-A project, each experiment focused on a single

table function or group of related constants for altercation.

The areas of focus were: (1) project performance estimates,

(2) productivity of personnel, (3) nominal number of errors,

(4) rework manpower required, (5) quality assurance manpower

required, and (6) percentage of bad fixes.

Experiments two through six were further divided into two

separate sub-experiments. Both sub-experiments addressed the

same area of focus. However, the first (e.g., Experiment 2a)

uniformly increased the focus areas' values while the second

(e.g., Experiment 2b) did the exact opposite. These new

values were compiled separately into the system dynamics

portion of the ESS model and an optimal pattern search was

conducted.

Resulting statistics from the 11 sub-experiments were

recorded in experimental data sheets for further sensitivity

analysis. These data sheets follow each experimental write-

up and summarize the results in both tabular and graphic form.

An ESS-deAived "base case" solution (base QA), using the

original DE-A project values, was established as the
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performance standard for each experiment. Comparisons between

the base case and experimental results will provide insights

into the sensitivity of the pattern search ESS model. The

data sheets contain the following displays:

- Project Statistics Tables--Two statistics tables are
provided per sub-experiment. These tables provide data
on estimated completion time (days), effort required
(man-days), and total errors for a particular development
environment. The first table uses an ESS generated QA
distribution scheme (Test QA) to derive its results. The
second table uses the actual project's QA allocation
scheme (DE-A).

- OA Comparison Table--This table displays QA effort over
ten life cycle points. Three distribution schemes are
presented: (1) the actual DE-A project's QA distribution
scheme (DE-A), (2) the ESS derived scheme using unaltered
DE-A project values (Base QA), and (3) the ESS derived
scheme with focus area values altered (Test QA).

- OA Comparison Charts--These line charts graphically
display the QA comparison table's three distribution
schemes. A separate chart is provided for each sub-
experiment.

- Statistical Comparison Charts--These bar charts
graphically display the data contained in the project
statistics tables. This data is broken down into an
effort/time comparison chart and an error comparison
chart for each experiment. Both graphs display interest
areas in groups of three along the X-axis as follows:
(1) negatively altered focus area's value (e.g.,
experiment 2b), (2) base case value (Base QA), and (3)
positively altered focus area's value (e.g., experiment
2a).

Experiment 1 consisted of a single test case and only

required a single QA comparison chart. To reduce redundancy

of information, the base case statistics table (Base QA) was

provided only once in place of the experiment one's other

comparison chart. All references to base case values (Base

QA) are directed to this table.
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B. RESULTS OF EXPERIMENTAL TESTS

1. Experiment 1: Accurate Estimates

This experiment examines the ESS model's optimal QA

distribution when the project is accurately estimated. Four

initialization constants within the system dynamics module

were altered: (1) real job size in DSI (RJBDSI), (2) tasks

underestimation fraction (UNDEST), (3) total man-days

(TOTMDl), and (4) time to develop (TDEVl). The experimental

values are shown in Table 5-1 below.

TABLE 5-1

ESTIMATED = ACTUAL

Experiment 1

RJBDSI - 24400 LNDEST -0

TOTMDI - 2100 TDEVI -387

Actually estimating the project's size, cost, and

schedule reduced the constraint pressures experienced by the

development team. As expected, the system dynamics model (DE-

A) produced final results that were closed to the above

productivity estimates. The DE-A statistics table also shows

a reduction in error generation, which is attributable to the

experimentally-reduced schedule pressures. A lower error

generation rate combined with actual project's high level of

QA and rework ensured that very few errors escape to testing.
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Comparing the ESS-produced statistics (Test QA) with

the original project results show a deemphasis of QA

importance by the model. QA was virtually eliminated (reduced

to the -minimum level cf 2%) for over pC)% of the project's life

cycle. By eliminating all unnecessary and costly QA

activities the model was able to produce a significant savings

in project costs (CUMMD).

The experimental statistics (Test QA) show a

substantial reduction to QA and rework levels compared to the

base case results (Base QA) . Although the error generation

rate was lower in the experimental case, the reduced detection

effort still caused many errors to escape. This increase in

escaping errors required more effort in the area of project

testing. Combining these factors resulted in an additional

130 man-days over the base case results.

The ESS model performed as expected in this

experimental environment. By lowering the perceived pressures

on the development team, fewer errors were generated and the

optimal level of QA was reduced. The model emphasized QA at

the beginning of the project's life cycle. This allows the

most critical design errors to be detected and corrected early

in the development process. Weighing all costs and benefits,

the model chose to virtually eliminate QA in the latter

portion of the life cycle. Most of the errors that occurred

after the first two life cycle points were allowed to escape

to testing. The model did not obtain a lower project cost
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(CUMMD) than the base case. This is attributable to lower

personnel productivity brought on by reduced performance

pressures. An increase in required development effort and

days needed for project completion added to the final total

cost.
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EXPERIMENT 1

This experiment examines the model's sensitivity when estimated job size

in DSI, effort required in man-days, and time required in days, are equal

to the actual project's performance.

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 377.00 DAYS

TOTAL EFFORT 1,619.22 MAN-DAYS

QA EFFORT 63.31 MAN-DAYS

DEVELOP EFFORT 1,058.00 MAN-DAYS

REWORK EFFORT 78.68 MAN-DAYS

TESTING EFFORT 376.38 MAN-DAYS

TRAINING EFFORT 42.82 MAN-DAYS

TOTAL ERRORS GENERATED 461.40 ERRORS GENERATED

TOTAL ERRORS DETECTED 85.30 ERRORS DETECTED
TOTAL ERRORS ESCAPED 376.08 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 384.00 DAYS

TOTAL EFFORT 2,050.93 MAN-DAYS
QA EFFORT 566.11 MAN-DAYS

DEVELOP EFFORT 954.41 MAN-DAYS

REWORK EFFORT 277.61 MAN-DAYS

TESTING EFFORT 199.87 MAIN-DAYS
TRAINING EFFORT 52.94 MAN-DAYS

TOTAL ERRORS GENERATED 463.21 ERRORS GENERATED

TOTAL ERRORS DETECTED 336.66 ERRORS DETECTED

TOTAL ERRORS ESCAPED 126.20 ERRORS THAT ESCAPED

EXPERIMENT 1: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .313 .050 .020 .020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 1

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (BASE QA):

COMPLETION TIME 331.00 DAYS
TOTAL EFFORT 1,489.34 MAIN-DAYS

QA EFFORT 176.60 MAN-DAYS
DEVELOP EFFORT 907.78 MAN-DAYS

REWORK EFFORT 153.66 MAN-DAYS

TESTING EFFORT 188.67 MAN-DAYS
TRAINING EFFORT 62.63 MAN-DAYS

TOTAL ERRORS GENERATED 490.72 ERRORS GENERATED
TOTAL ERRORS DETECTED 183.07 ERRORS DETECTED
TOTAL ERRORS ESCAPED 306.85 ERRORS THAT ESCAPED
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EXPERIMENT 1
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2. Experiment 2: Productivity

This experiment examines the ESS model's sensitivity

to changes in the productivity of new and experienced

personnel. This analysis was divided into two sub-

experiments. Experiment 2a increaSed productivity by 25%, and

2b decreased it by 25%. Two software development constants in

the system dynamics model were altered: (1) nominal potential

productivity of experienced employees (NPWPEX), and (2)

nominal potential productivity new employees (NPWPNE). The

experimental values are shown in table 5-2 below.

TABLE 5-2

PRODUCTIVITY

Experiment 2a Experiment 2b

NPWPEX - 1.25 NPWPEX - 0.75

NPWPNE - 0.625 NPWPNE - 0.375

An increase in productivity (2a) significantly

lowered the development effort shown in the actual project's

statistics (DE-A). This lower development effort does not

result in any significant increases to the error generation

rate. Since the increase in productivity makes all effort

more efficient, QA and rework can be increased while taking

advantage of the cost effectiveness this environment offers.

Diverting effort to QA and rework increases the number of
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errors detected without adding greatly to final project cost

(CUMMD). Both the EES model (Test QA) and the actual project

(DE-A) statistics show very few errors escaping to testing.

The ESS model took full advantage of this highly

productive environment. Since the relative cost of QA was

low, the model assigns approximately 25% of totai effort to

quality assurance over the entire life cycle. This

distribution scheme ensured excellent error detection, minimal

error escapes, and produced a total cost lower than that of

the actual DE-A project.

A decrease in personnel productivity (2b) has the

reverse effect on the experiment. As shown in both the ESS

(Test QA) and actual (DE-A) statistical tables, the increases

experienced in all effort areas impact heavily on project

cost. However, once again productivity does not impact

greatly on error generation rate. The system dynamics

module's results (DE-A) show the significant cost increases

QA, rework, and training cause in a low productive

environment. The static QA distribution scheme has almost

doubled final project cost.

The ESS model effectively cuts the total project costs

in half (test QA vs. DE-A). Taking into account the limited

effects that QA has in this environment, and the high

associated costs, it virtually does away with the effort for

over 90% of the project. Cost savings in QA and rework

support the transfer of error correcting to the testing phase.

87



EXPERIMENT 2a

This experiment examines the model's sensitivity when nonimal productivity
of both experienced and new personnel is increased by 25 percent (+25%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 330.00 DAYS
TOTAL EFFORT 1,518.09 MAN-DAYS

QA EFFORT 321.98 MAN-DAYS
DEVELOP EFFORT 702.43 MAN-DAYS
REWORK EFFORT 254.17 NAN-DAYS

TESTING EFFORT 176.29 MAN-DAYS
TRAINING EFFORT 63.22 MAN-DAYS

TOTAL ERRORS GENERATED 494.73 ERRORS GENERATED
TOTAL ERRORS DETECTED 327.24 ERRORS DETECTED
TOTAL ERRORS ESCAPED 166.94 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 341.00 DAYS
TOTAL EFFORT 1,590.81 MAN-DAYS

QA EFFORT 373.59 MAN-DAYS
DEVELOP EFFORT 695.47 MAN-DAYS
REWORK EFFORT 265.38 MAN-DAYS
TESTING EFFORT 192.20 MAN-DAYS
TRAINING EFFORT 64.17 MAN-DAYS

TOTAL ERRORS GENERATED 493.70 ERRORS GENERATED
TOTAL ERRORS DETECTED 355.03 ERRORS DETECTED
TOTAL ERRORS ESCAPED 138.40 ERRORS THAT ESCAPED

EXPERIMENT 2a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .300 .300 .300 .200 .250 .250 .300 .250 .263 .050
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EXPERIMENT 2b

This experiment examines the model' s sensitivity when nominal productivity
of both experienced and new personnel is decreased by 25 percent (-25%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 356.00 DAYS
TOTAL EFFORT 1,748.64 MAN-DAYS

QA EFFORT 55.64 MAN-DAYS
DEVELOP EFFORT 1,205.10 MAN-DAYS
REWORK EFFORT 68.88 MAN-DAYS

TESTING EFFORT 340.65 MAN-DAYS
TRAINING EFFORT 78.32 MAN-DAYS

TOTAL ERRORS GENERATED 492.99 ERRORS GENERATED
TOTAL ERRORS DETECTED 82.88 ERRORS DETECTED
TOTAL ERRORS ESCAPED 409.91 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 435.00 DAYS
TOTAL EFFORT 3,341.13 MAN-DAYS

QA EFFORT 768.45 MAN-DAYS

DEVELOP EFFORT 1,440.60 MAN-DAYS
REWORK EFFORT 311.10 MAN-DAYS

TESTING EFFORT 537.05 MAN-DAYS
TRAINING EFFORT 283.97 MAN-DAYS

TOTAL ERRORS GENERATED 514.39 ERRORS GENERATED
TOTAL ERRORS DETECTED 384.68 ERRORS DETECTED
TOTAL ERRORS ESCAPED 128.62 ERRORS THAT ESCAPED

EXPERIMENT 2b: QA DISTRIBUTION COMPARISON

10 20 30 +G 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .250 .020 .020 .020 .020 .020 .020 .020 .020 .020
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EXPERIM4ENT 2
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3. Experiment 3: Error Rate

This experiment examines the ESS model's sensitivity

to changes in the number of errors committed during

development. This analysis was divided into two sub-

experiments. Experiment 3a increased the number of errors by

50%, and 3b decreased it by 50%. A single QA and rework table

function in the system dynamics model was altered: nominal

errors committed per KDSI (TNERPK). The experimental values

are shown in Table 5-3 below.

TABLE 5-3

ERRORS COMMITTED

TNERPK

Exp. 3a 36 34.35 31.125 22.875 19.65 18

Exp. 3b 12 11.45 10.375 7.625 6.55 6

An increase in the number of errors committed (3a)

obviously means more effort must be allocated to detection and

correction activities. As seen in the actual project's

statistics (DE-A), the high allocation of QA, rework and

training greatly increases total project costs.

As expected, this environment produced a significantly

greater error generation rate. However, the ESS model (Test

QA) ignored this fact and concentrated on reducing project

costs by drastically cutting QA and rework effort. This
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action also reduced the necessary training and associated

costs by half (Test QA vs. DE-A). Using a form of cost-

benefit analysis, the model emphasized QA during the early

design phases and virtually eliminated QA from the remainder

of the life cycle. This distribution scheme allowed over 83%

of the errors to escape to testing.

Since the testing phase is the termination point for

error generation, the model waited until development had

finished to handle most errors. Surprisingly, this resulted

in the need for very little added effort to handle the

additional errors. By virtue of this fact, the ESS model cut

over 1,000 man-days from total project costs.

A decrease in the number of errors (3b) should also

decrease the man-days required in all effort areas. In this

environment both the ESS model (Test QA) and the system

dynamics module (DE-A) statistics, show significant reductions

in effort areas, errors generated, and total costs. The only

disparities between the two are in QA and rework levels.

The ESS model (Test QA) actually produces a lower

project cost (CUMMD) than in the base case results (Base QA).

However, the QA distribution pattern is extremely erratic.

The values jump from 50% effort down to 2% over the course of

the first three life cycle points. The experimentally derived

total cost (Test QA) is very close to the to CUMMDs produced

by the base case (Base QA) and the actual project (DE-A).

However, all three patterns differ quite drastically. One
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possibility is that in this environment large increases or

decreases in QA effort only cause small changes in total

project cost. If this is true, the pattern search model may

have serious sensitivity problems and would account for the

apparent "wandering" pattern the model produced. Experiment

2b failed to produce the expected results.
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EXPERIMENT 3a

This experiment examines the model's sensitivity when nominal number of
errors committed per KDSI is increased by 50 percent (+50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 348.00 DAYS
TOTAL EFFORT 1,628.32 MAN-DAYS

QA EFFORT 119.14 MAN-DAYS

DEVELOP EFFORT 946.06 MAN-DAYS
REWORK EFFORT 139.38 MAN-DAYS
TESTING EFFORT 353.84 MAN-DAYS
TRAINING EFFORT 69.91 MAN-DAYS

TOTAL ERRORS GENERATED 732.35 ERRORS GENERATED
TOTAL ERRORS DETECTED 150.63 ERRORS DETECTED
TOTAL ERRORS ESCAPED 581.68 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 415.00 DAYS
TOTAL EFFORT 2,671.32 MAN-DAYS

QA EFFORT 673.57 MAN-DAYS
DEVELOP EFFORT 1,015.20 MAN-DAYS
REWORK EFFORT 462.07 MAN-DAYS
TESTING EFFORT 336.79 MAN-DAYS
TRAINING EFFORT 183.72 MAN-DAYS

TOTAL ERRORS GENERATED 763.25 ERRORS GENERATED
TOTAL ERRORS DETECTED 596.67 ERRORS DETECTED
TOTAL ERRORS ESCAPED 165.32 ERRORS THAT ESCAPED

EXPERIMENT 3a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

rest QA .338 .225 .020 .020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 3b

This experiment examines the model's sensitivity when nominal number of
errors committed per KDSI is decreased by 50 percent (-50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 330.00 DAYS
TOTAL EFFORT 1,437.29 MAN-DAYS

QA EFFORT 297.21 MAN-DAYS
DEVELOP EFFORT 860.89 MAN-DAYS
REWORK EFFORT 76.52 MAN-DAYS
TESTING EFFORT 142.38 MAN-DAYS
TRAINING EFFORT 60.28 MAN-DAYS

TOTAL ERRORS GENERATED 245.34 ERRORS GENERATED
TOTAL ERRORS DETECTED 91.60 ERRORS DETECTED
TOTAL ERRORS ESCAPED 152.97 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 338.00 DAYS
TOTAL EFFORT 1,583.72 MAN-DAYS

QA EFFORT 388.36 MAN-DAYS
DEVELOP EFFORT 877.84 MAN-DAYS
REWORK EFFORT 104.84 MAN-DAYS
TESTING EFFORT 147.69 MAN-DAYS
TRAINING EFFORT 64.98 MAN-DAYS

TOTAL ERRORS GENERATED 245.93 ERRORS GENERATED
TOTAL ERRORS DETECTED 137.87 ERRORS DETECTED
TOTAL ERRORS ESCAPED 107.63 ERRORS THAT ESCAPED

EXPERIMENT 3b: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .500 .450 .020 .100 .350 .020 .020 .020 .020 .020
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EXPERIMENT 3
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4. E2xeriment 4: Rework Manpower

This experiment examines the ESS model's sensitivity

to changes in rework manpower levels. This analysis was

divided into two sub-experiments. Experiment 4a increased

rework manpower by 50%, and 4b decreased it by 50%. A single

QA and rework table function in the system dynamics model was

altered: nominal rework manpower needed per error (TNRWME).

The experimental values are shown in Table 5-4 below.

TABLE 5-4

REWORK MANPOWER

TNRWME

Exp. 4a 0.9 0.8625 0.75 0.6 0.4875 0.45

Exp. 4b 0.3 0.2875 0.25 0.2 0.1625 0.15

An increase in the rework manpower required to resolve

each error (4a) means any correction activity prior to testing

will be extremely costly. The actual project results (DE-A),

placed significant emphasis on QA, rework, and training. As

expected, the cost of rework and its related activities

produced a high final project cost.

The ESS model (Test QA) effectively reduced costs to

within the base case results (Base QA). This was accomplished

by focusing QA and rework effort during the first third of the

life cycle, and virtually eliminating this effort over the
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latter two-thirds. Since the rework capabilities of the

development team were reduced, leaving non-design errors in

the system until testing was the most cost effective solution.

A decrease in the rework manpower required to resolve

an error (4b) creates the exact opposite environment from

above. Reducing the cost of rework means more errors can be

handled prior to testing at a fraction of the base case cost

(Base QA).

Analyzing the ESS model results (Test QA) we see cost

savings were obtained by reducing QA and rework below the

levels contained in the base case (Base QA). This seems to be

counter intuitive. With rework being less costly it is

expected that the ESS model would attempt to capitalize on

resolving more errors prior to testing. However, this was not

the case. Rework has been reduced to almost half of the base

case value. The resulting distribution scheme is also very

erratic (similar to experiment 3b). Large disparities between

consecutive life cycle points indicates the ESS model is

"hunting" for an optimal solution. Once again we have an

environment where increases and decreases in QA values have

limited impact on overall project cost. Experiment 4b failed

to produce the expected results.
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EXPERIMENT 4a

This experiment examines the model's sensitivity when nominal rework
manpower required per error is increased by 50 percent (+50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 333.00 DAYS
TOTAL EFFORT 1,490.38 MAN-DAYS

QA EFFORT 134.85 MAN-DAYS
DEVELOP EFFORT 913.09 MAN-DAYS
REWORK EFFORT 171.52 MAN-DAYS
TESTING EFFORT 208.40 MAN-DAYS
TRAINING EFFORT 62.51 MAN-DAYS

TOTAL ERRORS GENERATED 489.14 ERRORS GENERATED
TOTAL ERRORS DETECTED 126.74 ERRORS DETECTED
TOTAL ERRORS ESCAPED 361.86 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 413.00 DAYS
TOTAL EFFORT 2,597.02 MAN-DAYS

QA EFFORT 664.51 MAN-DAYS
DEVELOP EFFORT 1,004.90 MAN-DAYS
REWORK EFFORT 431.34 MAN-DAYS
TESTING EFFORT 325.82 MAN-DAYS
TRAINING EFFORT 170.48 MAN-DAYS

TOTAL ERRORS GENERATED 506.26 ERRORS GENERATED
TOTAL ERRORS DETECTED 373.90 ERRORS DETECTED
TOTAL ERRORS ESCAPED 131.24 ERRORS THAT ESCAPED

EXPERIMENT 4a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .215 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .450 .150 .100 .020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 4b

This experiment examines the model's sensitivity when nominal rework

manpower required per error is decreased by 50 percent (-50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 330.00 DAYS

TOTAL EFFORT 1,501.03 MAN-DAYS

QA EFFORT 254.03 MAN-DAYS

DEVELOP EFFORT 902.37 MAN-DAYS

REWORK EFFORT 96.07 MAN-DAYS

TESTING EFFORT 184.44 MAN-DAYS

TRAINING EFFORT 63.46 MAN-DAYS

TOTAL ERRORS GENERATED 491.69 ERRORS GENERATED

TOTAL ERRORS DETECTED 229.94 ERRORS DETECTED

TOTAL ERRORS ESCAPED 260.84 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 353.00 DAYS
TOTAL EFFORT 1,689.44 MAN-DAYS

QA EFFORT 398.35 MAN-DAYS
DEVELOP EFFORT 874.97 MAN-DAYS

REWORK EFFORT 134.04 MAN-DAYS
TESTING EFFORT 212.82 MAN-DAYS
TRAINING EFFORT 69.25 MAN-DAYS

TOTAL ERRORS GENERATED 492.79 ERRORS GENERATED
TOTAL ERRORS DETECTED 356.79 ERRORS DETECTED
TOTAL ERRORS ESCAPED 135.58 ERRORS THAT ESCAPED

EXPERIMENT 4b: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .187 .500 .020 .112 .200 .225 .099 .020 .020 .020
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EXPERIMENT 4
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5. Experiment 5: OA Manpower

This experiment examines the ESS model's sensitivity

to changes in quality assurance manpower levels. This

analysis was divided into two sub-experiments. Experiment 5a

increased QA manpower by 50%, and 5b decreased it by 50%. A

single QA and rework table function in the system dynamics

model was altered: nominal QA manpower needed to detect

average errors (TNQAPE). The experimental values are shown in

Table 5-5 below.

TABLE 5-5

QA MANPOWER

Experiment 5 a & b (TNQAPE)

.6 .6 .585 .5625 .525 .45 .375 .3375 .315 .3 .3

.2 .2 .195 .1875 .175 .15 .125 .1125 .105 .1 .1

An increase in the QA manpower required to detect

errors (5a) will caused a rise project costs when large levels

of quality assurance are used. This is very apparent in the

actual project's results (DE-A) where a high level of QA was

scheduled.

The ESS model (Test QA) reduced project cost by

minimizing the total man-days devoted to QA and rework.

Interestingly, the model allowed a large majority of errors to

escape, yet still managed to reduce testing man-days below
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those required by the actual project (DE-A). The ESS model's

resulting distribution scheme and statistics closely resemble

the base case results (Base QA). Model performance in this

environment was as expected.

A decrease in the QA manpower required to detect

errors (5b) means that any additional QA effort used should be

more economical and effective than in the base case (Base QA).

The actual project results (DE-A) indicate that this

environment has increased QA effectiveness though the

detection of most error prior to testing. However, the high

project cost does not indicate that any monetary advantage can

be gain with increased QA.

The ESS effectively reduce QA effort with only minor

increases in escaped errors. Taking advantage of the project

team's efficiency at QA, the ESS model developed a distribu-

tion scheme which significantly reduced project costs. The

relative position of the ESS pattern (Test QA) above the base

case distribution indicates that the model is capable of

capitalizing on some limited cost reduction by increasing QA.

Likewise, the ESS pattern position below the actual project

curve (DE-A), indicates that the model is able to discern the

environmental limits when developing a QA scheme.
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EXPERIMENT 5a

This experiment examines the model's sensitivity when nominal QA mannn,."'r

required to detect average errors is increased by 50 percent (+50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 331.00 DAYS
TOTAL EFFORT 1,491.51 MAN-DAYS

QA EFFORT 177.87 MAN-DAYS
DEVELOP EFFORT 928.74 MAN-DAYS

REWORK EFFORT 112.55 MAN-DAYS

TESTING EFFORT 208.93 MAN-DAYS

TRAINING EFFORT 63.42 MAN-DAYS
TOTAL ERRORS GENERATED 488.24 ERRORS GENERATED

TOTAL ERRORS DETECTED 125.52 ERRORS DETECTED

TOTAL ERRORS ESCAPED 362.00 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 384.00 DAYS
TOTAL EFFORT 2,050.56 MAN-DAYS

QA EFFORT 510.00 MAN-DAYS
DEVELOP EFFORT 902.84 MAN-DAYS
REWORK EFFORT 259.85 MAN-DAYS
TESTING EFFORT 264.74 MAN-DAYS
TRAINING EFFORT 113.13 MAN-DAYS

TOTAL ERRORS GENERATED 496.30 ERRORS GENERATED

TOTAL ERRORS DETECTED 348.65 ERRORS DETECTED

TOTAL ERRORS ESCAPED 146.68 ERRORS THAT ESCAPED

EXPERIMENT 5a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .325 .400 .050 .020 .020 .020 .125 .020 .020 .020
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EXPERIMENT 5b

This experiment examines the model's sensitivity when nominal QA manpower
required to detect average errors is decreased by 50 percent (-50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 327.00 DAYS
TOTAL EFFORT 1,528.53 MAN-DAYS

QA EFFORT 160.66 MAN-DAYS
DEVELOP EFFORT 909.80 MAN-DAYS
REWORK EFFORT 239.35 MAN-DAYS
TESTING EFFORT 153.66 MAN-DAYS
TRAINING EFFORT 65.05 MAN-DAYS

TOTAL ERRORS GENERATED 492.14 ERRORS GENERATED

TOTAL ERRORS DETECTED 317.90 ERRORS DETECTED
TOTAL ERRORS ESCAPED 173.66 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 390.00 DAYS
TOTAL EFFORT 2,139.22 MAN-DAYS

QA EFFORT 542.88 MAN-DAYS
DEVELOP EFFORT 918.70 MAN-DAYS
REWORK EFFORT 287.94 MAN-DAYS
TESTING EFFORT 268.23 MAN-DAYS
TRAINING EFFORT 121.47 MAN-DAYS

TOTAL ERRORS GENERATED 496.98 ERRORS GENERATED
TOTAL ERRORS DETECTED 386.06 ERRORS DETECTED
TOTAL ERRORS ESCAPED 109.94 ERRORS THAT ESCAPED

EXPERIMENT 5b: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .200 .175 .050 .100 .075 .020 .150 .300 .025 .200
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6. Experiment 6: Bad Fixes

This experiment examines the ESS model's sensitivity

to changes in the number of bad fixes. This analysis was

divided into two sub-experiments. Experiment 6a increased the

overall bad fix percentage, and 6b decreased the percentage.

A single system test constant in the system dynamics model was

altered: percent of bad fixes (PBADFX). The experimental

values are shown in Table 5-6 below.

TABLE 5-6

BAD FIXES

Experiment 6a Experiment 6b

PBADFX - .15 PBADFX - .05

An increase in bad fixes (6a: from 7.5% to 15%) had

only minor influence on project results. In the actual

project (DE-A) this environment caused increases in the QA,

rework, training, and testing effort areas. These effort

increases subsequently caused a rise in the project's cost.

As expected, the ESS model (Test QA) allocated more

effort to QA and rework than the base case (Base QA). QA was

established at a little less than half the total effort, and

allowed to declined steadily over the entire design phase.

Once reaching the coding phase the model virtually eliminated
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QA in an attempt to reduce project cost. The total errors

that escaped were comparable to the number in the base case.

However, project costs were inflated due to the doubling of

bad fixes.

A decrease in bad fixes (6b: from 7.5% to 5%)

subsequently reduced the number of errors that escaped. This

provided substantial cost savings in testing for both the ESS

model (Test QA) and the actual project (DE-A) results.

The ESS model attempted to redistribute the bad fix

savings into the QA and rework effort areas. Although there

was a reduction in the number of errors that escaped to

testing, total project cost was higher than anticipated. The

model's final distribution scheme was also quite erratic

(similar to experiments 3b and 4b). QA was emphasized at the

beginning of the life cycle process as was done in all prior

experiments. However, the model allocated a considerable

amount of QA during the bulk of the coding phase. This

allocation technique does not occur in any of the other

experiments and is well above level of QA the base case (Base

QA) allocates. It was anticipated that a reduction in bad

fixes would have a more positive impact on the experiment's

results. The opposite resulted, indicating the ESS model is

sensitive to this environment. Experiment 6b failed to

produce the expected results.
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EXPERIMENT 6a

This experiment examines the model's sensitivity when bad fixes are

estimated to be 15 percent of total fixes (original project estimated at

7.5 percent).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 331.00 DAYS
TOTAL EFFORT 1,507.92 MAN-DAYS

QA EFFORT 150.55 MAN-DAYS

DEVELOP EFFORT 931.71 MAN-DAYS
REWORK EFFORT 144.93 MAN-DAYS

TESTING EFFORT 217.04 MAN-DAYS

TRAINING EFFORT 63.68 MAN-DAYS

TOTAL ERRORS GENERATED 488.23 ERRORS GENERATED

TOTAL ERRORS DETECTED 160.29 ERRORS DETECTED

TOTAL ERRORS ESCAPED 327.35 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 389.00 DAYS
TOTAL EFFORT 2,142.50 MAN-DAYS

QA EFFORT 526.36 MAN-DAYS
DEVELOP EFFORT 912.94 MAN-DAYS
REWORK EFFORT 273.49 MAN-DAYS

TESTING EFFORT 304.51 MAN-DAYS

TRAINING EFFORT 125.20 MAN-DAYS

TOTAL ERRORS GENERATED 497.37 ERRORS GENERATED

TOTAL ERRORS DETECTED 365.85 ERRORS DETECTED

TOTAL ERRORS ESCAPED 130.74 ERRORS THAT ESCAPED

EXPERIMENT 6a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .350 .250 .150 .050 .063 .020 .020 .020 .020 .020
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EXPERIMENT 6b

This experiment examines the model's sensitivity when ')ad fixes are
estimated to be 5 percent of total fixes (original project estimated at

7.5 percent).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

COMPLETION TIME 329.00 DAYS
TOTAL EFFORT 1,526.87 MAN-DAYS

QA EFFORT 191.02 MAN-DAYS

DEVELOP EFFORT 902.66 MAN-DAYS
REWORK EFFORT 193.34 MAN-DAYS

TESTING EFFORT 175.03 MAN-DAYS
TRAINING EFFORT 64.82 MAN-DAYS

TOTAL ERRORS GENERATED 492.74 ERRORS GENERATED
TOTAL ERRORS DETECTED 245.78 ERRORS DETECTED
TOTAL ERRORS ESCAPED 246.15 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 390.00 DAYS
TOTAL EFFORT 2,139.22 MAN-DAYS

QA EFFORT 542.88 MAN-DAYS

DEVELOP EFFORT 918.70 MAN-DAYS
REWORK EFFORT 287.94 MAN-DAYS

TESTING EFFORT 268.23 MAN-DAYS
TRAINING EFFORT 121.47 MAN-DAYS

TOTAL ERRORS GENERATED 496.98 ERRORS GENERATED
TOTAL ERRORS DETECTED 386.06 ERRORS DETECTED
TOTAL ERRORS ESCAPED 109.94 ERRORS THAT ESCAPED

EXPERIMENT 6b: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .300 .200 .110 .100 .050 .200 .200 .150 .050 .050
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C. RESULTS

The pattern search ESS model was able to effect some cost,

effort, and time reductions in all 11 sensitivity experiments.

Eight of these experiments produced results similar to what

was anticipated. Identifying close to optimal solutions for

their specific environment, these eight developed QA

distribution schemes that significantly reduced project costs.

Experiment 3b (errors per KDSI reduced), experiment 4b

(rework manpower required per error reduced), and experiment

6b (percentage of bad fixes reduced) all produced unexpected

results. Although their QA distribution schemes did render

lower project costs, their allocation patterns were very

erratic. These three experiments exist in environments were

significant changes in QA allocation have minimal effect on

total cost (CUMMD). This would mean that a high percentage of

alternate distribution schemes are capable of providing

similar results.

The ESS model is vulnerable to these "low impact"

environments. When operating in this environment it is

possible for the ESS model to continue in the same direction

that was first established for each life cycle point. Since

most patterns produce similar results, the model has no reason

to change directions. Once the model terminates the final QA

distribution can be an erratic pattern ranging between

predetermined limits (set at .02 to .5 for all experiment

runs). This is exactly the product of the three unsuccessful
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experiments. Further experimentation is required to identify

and eliminate the ESS model's sensitivity to this environment.
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VI. CONCLUSION

A. ACCOMPLISHMENTS

The focus of this thesis was to enhance the performance of

an existing expert system simulation (ESS) model. Through a

series of experiments, the performance limitations of the

prototype system were identified. These limitations were

resolved by the addition of a pattern search technique within

the existing expert system program.

Evaluating the performance of the pattern search ESS model

showed great improvements over the prototype system. The

pattern search technique minimized the QA environment's bi-

modal problems, thus enabling the model to identify similar QA

distribution schemes independent of where the system was

initialized. All system results were established in fewer

cycles, at a lower cost, and with a "smoother" curve than the

prototype was capable of achieving.

B. SUGGESTIONS FOR FURTHER RESEARCH

The pattern search methodology effectively resolved the

problem areas identified in the prototype ESS model. However,

this new technique is not devoid of its own sensitivity

problems.

Eleven experimental scenarios were used to evaluate the

performance of the new system. Of these experiments, three

failed to produce the expected results. These failed
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scenarios were classified as "low impact" environments, where

large changes in QA effort had minimal effect on project cost.

In this environment the ESS model was able to make almost any

allocation decision with similar cost results. This lead to

extremely erratic QA distribution schemes.

Further research can be broken down into two areas: (1)

improving the pattern search ESS model, and (2) developing a

new expert system model using a more sophisticated

optimization technique.

Improvements to the ESS model will require further

experimentation in "low impact" environments. Additions to

the system should include mechanisms to identify low impact

situations, and possibly bias the system towards minimizing QA

when impact on costs is insignificant. The desired outcome is

a model which provides a more predictable and less erratic

solution to all project scenarios.

A separate and smaller expert system (seven-ten rules) can

be developed as a test vehicle for further development effort.

This system may provide valuable insights into the

complexities surrounding the distribution of quality

assurance. Any discoveries could be used to enhance the

existing model or may identify a technique that better handles

this environment.

One possible technique to replace pattern search is,

"Optimization by Simulated Annealing." This technique makes

use of statistical evaluation mechanisms to derive optimal

120



patterns in a complex environment. Using an analogy to metal

annealing, this technique makes small adjustment to a

particular variable and allows the system to move to

eq'rlibrium before making the next change. A complex

optimization methodology may be the best method of handling an

equally complex environment. [Ref. 14:pp. 1-9]
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APPENDIX A

PROGRAM LISTING OF PATTERN.ARI

/* *
/* PROGRAM - pattern.ari
/* *
/* This program utilizes a "Pattern Search" technique,
/* developed by R. Hooke and T. Jeeves, to adjust percentage */
/* of Quality Assurance (TPFMQA) allocated for each of 10
/* lifecycle points (Design thru Coding phases). This
/* technique identifies an optimal QA scheme and subsequently */
/* reduces total cummulative man-months (CUMMD) required to
/* complete the project.

/***************************************************************/*
/***************************************************************/*

/* RULE - pqa
I* *1

/* This rule initializes the system parameters and gets the */
/* system started./* */
**** ************************************************************

pqa:-

/* sets initial global values */
asserta(number(l)),
asserta(calc(0)),
asserta(flag(0)),
asserta(newcycle(l)),

/* user input queries */
write('What is your desired pulse size factor? '),
read(PU),
asserta(size(PU)),

write('What is the minimum QA value? '),
read(MN),
asserta(min(MN)),

write('What is the maximum QA value? ),
read(AX),
asserta(max(AX)),
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write('What is your minimum desired pulse size? ),
read (MP),
asserta(minpsf(MP)),

write('Enter the initial QA distribution. Point 1 ),
read(QAI),

write (' Point 2 ),
read(QA2),

write (' Point 3 ),
read(QA3),

write (' Point 4 ),
read(QA4),

write (' Point 5 ),
read(QA5),

write (' Point 6 ),
read(QA6),

write (' Point 7 ),
read(QA7),

write(' Point 8 ),
read(QA8),

write(' Point 9 ),
read (QA9),

write(' Point 10 ),
read (QAI0),

/* prints starting values into the summary output */
print head(PU,MN,AX,MP),

/* initializes the system with user inputs */
initialrun(QAl,QA2,QA3,QA4,QA5,QA6,QA7,QA8,QA9,QA0),

dopqa.

/* end of pqa */

/* RULE - dopqa

/* Creates a repeat-fail loop to execute main rule until the */
/* step size (PSF) falls below the user input minimum. *1

* *2/**************************************************************!
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dopqa:-

repeat,

main,

fail.

/* end of dopqa */

/* */
/* RULE - main

/* This module controls the perturbation activity of the */
/* pattern search technique.

/********************************************************* *******

main:-

/* gets the x value for the pulse */
call(number(ITER)),
call(calc(TYPE)),

/* gets the previous man days */
PREV is [[[ITER + 8] mod 10] + 1],
call(cummdold(PREV,CHECK)),
call(cummdold(ITER,OLD)),

/* gets the man days from the last QA numbers */
read_cummd,
call(cummd(NEW)),

/* calculates the new y value (QA) for the current x value */
case((NEW =< CHECK -> calc less(ITER,NEW,OLD,TYPE),

NEW > CHECK -> calc more(ITER,NEW,OLD,CHECK,TYPE)]),

/* prints to screen module statistics for monitoring */
statistics,

write(' Iteration = '),write(ITER).

/* end of main */

12
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/* ** ** **** ** ** ** ** ** ** ** ** * *** * ** ** ** * ***************************

/* RULE - end-cycle

/* Advances cycle count and initiates pattern search technique */
/* after initial perturbations have occurred. */I * *
/***** ************************** *********************************

endcycle(NEW,ITER):-

call(newcycle(NOW)),

/* initializes the "Pattern Search" algorithm */
ifthenelse(NOW > l,patternsearch(NEW,ITER),

outputcummd(NEW, ITER)),

/* advances cycle number */
NEXT is NOW + 1,
write('Cycle number = '),write(NOW),
retract(newcycle(NOW)),
asserta(newcycle(NEXT)).

/* end of end-cycle */

/* RULE - patternsearch

/* Evaluation rule that monitors past preformance to determine */
/* the next course of action.1* *
/****************************************************************

patternsearch(NEW,ITER):-

call(flag(TYPE)),
case([TYPE =:= 0 -> tempbase(NEW,ITER),

TYPE =:= 1 -> reduction_test(NEW,ITER)]),!.

/* end of pattern-search */

/****************************** **********************************
I* *
/* RULE - reductiontest

/* Further evaluation rule that determines if local */
/* perturbations or pulse size reduction is the next logical */
/* course of action.

12*5/****************************************************************
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reduction_test(NEW,ITER):

call(bl cummd(BASE)),
ifthenefse(NEW < BASE,tempbase(NEW, ITER),

reduce pulse(NEW,ITER)),!.

/* end of reduction-test *

/* RULE - temp base

/* "Pattern Search" algorithm that captilizes on a *
/* preestablished pattern in determining the next QA value *
/* for the 10 lifecycle points. *

temp_base(NEW,ITER):

output_cumxnd(NEW,ITER),

/* resets "flag" to establish a record of last action taken *
abolish(flag/l),
asserta(flag(0)),

/* resets the 3 CUMND value holders *
call(bl cummd(OLD)),
abolish(bO_cummd/l),
asserta(bO_cummd(OLD)),
abolish(bl_cummd/l),
asserta (bl cummd (NEW)),

/* pattern search algorithm *
call(bO(l,Q1)),
call(tpfmqa(l,QAl)),
Al is Ql+[2*[QAl-Qll],
qa test (Al, Ti)
asserta(t(l,T1)),

call (bO(2,Q2)),
call (tpfmqa(2,QA2)),
A2 is Q2+[2*[QA2-Q2]],
qatest(A2,T2),
asserta(t(2,T2)),

call (bO(3,Q3)),
call(tpfmqa(3,QA3)),
A3 is Q3+[2*[QA3-Q3]],
qatest(A3,T3),
asserta(t(3,T3)),
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call (bO(4,Q4)),
call (tpfmqa(4,QA4)),
A4 is Q4+[2*[QA4-Q4]],
qatest(A4,T4),
asserta(t(4,T4)),

call (bO (5, Q5)) ,
call(tpfmqa(5,QA5)),
A5 is Q5+[2*[QA5-Q5]],
qatest(A5,T5),
asserta(t(5,T5)),

call (bO(6,Q6)),
call(tpfmqa(6,QA6)),
A6 is Q6+[2*[QA6-Q6]],
qa_test(A6,T6),
asserta(t(6,T6)),

call (bO(7,Q7)),
call(tpfmqa(7,QA7)),
A7 is Q7+(2*jjQA7-Q7]],
qatest(A7,T7),
asserta(t(7,T7)),

call (bO(8,Q8)),
call(tpfmqa(8,QA8)),
A8 is Q8+[2*[QA8-Q8]],
qatest(A8,T8),
asserta(t(8,T8)),

call(bO(9,Q9)),
call(tpfmqa(9,QA9)),
A9 is Q9+[2*[QA9-Q9]],
qatest(A9,T9),
asserta(t(9,T9)),

call (bO(lO,QlO)),
call (tpfmqa(lO,QAlO)),
A10 is QlO+[2*[QAlO-QlO]],
qatest(AlO,TlO),
asserta(t(lO,TlO)),

/* establishes a new temporary base *
new-base,

1* notification in the output that a pattern search occurred *
open(S, 'summary.dat' ,a),
nl(S) ,write(S,

'****************Pattern Search***********'
nl(S) ,nl(S) ,close(S),

127



/* runs the system dynamics model for a pattern search CUMMD */

output_tpfmqa,

shell(model),

readcummd,
call(cummd(HEAD)),
output_cummd(HEAD,ITER),

/* if CUMMD is not an improvement, local explorations occur */
ifthen(HEAD >= NEW,local_explorations),

/* resets CUMMD recording system for perturbation comparisons */
retract(cummdold(ITER,NEW)),
asserta(cummdold(ITER,HEAD)),

/* erases temporary head (T) values */

abolish(t/2),!.

/* end of tempbase */

/*************************************************
1* *1
/* RULE - qatest1* *
/* Used in the "tempbase" rule to keep the pattern from */
/* jumping below the minimum QA value. *//* */

*************************** *** ** *********** *******

qa test(IN,OUT):-

call(min(MINQA)),
ifthenelse(IN < MINQA,OUT is MINQA,OUT is IN).

/* end of qa_test */

1* *
/* RULE - new-base */

/* This rule actually records the "Pattern Search" values */
/* into the program./* *

new base:-

/* calls last perturbation values and pattern search values */
call(tpfmqa(l,QAl)),
call(tpfmqa(2,QA2)),
call(tpfmqa(3,QA3)),
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call(tpfmqa(4,QA4)),
call(tpfmqa(5,QA5)),
call(tpfmqa(6,QA6)),
call(tpfmqa(7,QA7)),
call (tpfmqa(8,QA8)),
call(tpfmqa(9,QA9)),
call(tpfmqa(lO,QAlO)),

call (t (1,Al) ),
call (t(2,A2)),
call (t (3, A3)),
call (t(4,A4)),
call (t(5,A5)),
call (t(6,A6)),
call (t(7,A7)),
call(t(8,A8)),
call (t(9,A9)),

/* resets a new base *
abolish (bO/2),

asserta(bO(l,QAl)),
asserta(bO(2,QA2)),
asserta(bO(3,QA3)),
asserta(bO(4,QA4)),
asserta(bO(5,QA5)),
asserta(bO(6,QA6)),
asserta(bQ(7,QA7)),
asserta(bO(8,QA8)),
asserta(bO(9,QA9)),
asserta(bO(lQ,QAlO)),

/* resets a new temporary base *
abolish(tpfmqa/2),

asserta(tpf'mqa(l,Al)),
asserta(tpfmqa(2,A2)),
asserta(tpfmqa(3,A3)),
asserta(tpfmqa(4,A4)),
asserta(tpfmqa(5,A5)),
asserta(tpfmqa(6,A6)),
asserta(tpfmqa(7,A7)),
asserta(tpfmqa(8,A8)),
asserta(tpfmqa(9,A9)),
asserta(tpfmqa(lO,AlO)),!.

/* end of new-base *
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************************************** *1

/* RULE - local_explorations

/* This rule is invoked when the last pattern search did not */
/* result in an improved CUMMD than the previous base (bl).1* *
/****************************************************************

local explorations: -

/* resets "flag" to establish a record of last action taken */
abolish(flag/l),
asserta(flag(l)),

/* notification in output that a local exploration occurred */
open(S, 'summary.dat' ,a),
nl(S) ,write(S,
'******************* Local Explorations *******************'),

nl(S),nl(S) ,close(S),!.

/* end of local_explorations */

**** *********************************************************** **
1* *
/* RULE - reducepulse1* *
/* Decreases the pulse size factor by half and reestablishes */
/* the previous base values (TPFMQA) after local explorations */
/* failed to produce an improved CUMMD.

reducepulse (NEW, ITER) : -

output_cummd(NEW,ITER),

call(size(PULSE)),
call (minpsf (MPSF)),
call (bO_cummd(OLD)),

/* reduce, current pulse size (PSF) by half */
REDUCED is round(PULSE / 2,3),

/* notification in the output that a pulse reduction occurred */
open(S, 'summary.dat' ,a),
n1(S) ,write(S,

Pulse reduction
nl(S),write(S,'Pulse size is: '),write(S,REDUCED),
nl(S),nl(S),
close(S),
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/* resets old base TPFMQA values to those prior *
/* to the pattern search and local explorations *

call(bO(1,QA1)),
call(bO(2,QA2)),
call (bO(3,QA3) )
call (bO(4,QA4)),

* call(bO(5,QA5)),
call (bO(6,QA6)),
call (bO(7,QA7)),
call (bQ(8,QA8)),
call (bO(9,QA9)),
call (bO(lO,QAlO)),

abolish(tpfmqa/2),

asserta(tpfmqa(l,QAl)),
asserta(tpfmqa(2,QA2)),
asserta(tpfmqa(3,QA3)),
asserta(tpfmqa(4,QA4)),
asserta(tpfmqa(5,QA5)),
asserta(tpfrnqa(6,QA6)),
asserta(tpfmqa(7,QA7)),
asserta(tpfmqa(8,QA8)),
asserta(tpfmqa(9,QA9)),
asserta(tpfmqa(lQ,QAlQ)),

output tpfrnqa,

shell (model),

read_ cummd,
call(cummd(AFTER)),
output cummd (AFTER, ITER),

/* resets CUMMD recording system for perturbation comparisons *
abolish(bl cummd/l),
asserta(bl-cummd(OLD)),

retract(cummdold(lO,BEFORE)),
asserta(cummdold(lO,AFTER)),
retract(cummdold(ITER,NEW)),
asserta(cummdold(ITER,AFTER)),

/* terminates the model if pulse is below user input mininmum *
retract (size (PULSE) )
ifthenelse(REDUCED >= MPSF,asserta(size(REDUCED)),

run stop (OLD) )

/* resets "flag" to establish a record of last action taken *
abolish(flag/l),
asserta(flag(O)),!.
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/* end of reduce_pulse *

/* RULE - print-head

/* Creates summary data file (summary.dat) for recording all *
/* TPFMQA values sent to the system dynamics module and total *
/* project costs data (CUMMD) that is returned. Secondly, it *
/* records all user input data as the header of this file.

print_head(PU,MN,AX,MP) :-

create(S, 'summary.dat'),

write(S,' Pulse size factor = '),write(S,PU),nl(S),
write(S,' Minimum QA value = '),write(S,MN),nl(S),
write(S,' Maximum QA value = ),write(S,AX),nl(S),
write(S,I Minimum pulse size = '),write(S,MP),nl(S),nl(S),

close(S).

/* end of print head *

/* RULE - calc-less

/* Negative perturbation (pulse).

calc_less(ITER,NEW,OLD,TYPE) :-

/* records man-days for this cycle *
retract(cummdold(ITER,OLD)),
asserta(cumindold(ITER,NEW)),

ifthenelse(ITER =:= l,end cycle(NEW,ITER),
output_cuiumd(NEW,ITER)),

/* reads the current QA values *
call(tpfmqa(ITER,QA)),

1* establishes an "initial" QA holder for perturbation use *
abolish(holder/l),
asserta(holder(QA)),

call(size(PULSE)),
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/* calculates a new QA value (NEWQA) */
NEWQA is round(QA-PULSE,3),

/* checks if the new QA is less than the minimum (MINQA) */
/* add the new QA value to the database */

call(min(MINQA)),
retract(tpfmqa(ITER,QA)),
ifthenelse(NEWQA < MINQA,asserta(tpfmqa(ITER,MINQA)),

asserta(tpfmqa(ITER,NEWQA))),

/* moves to the next life cycle position */
retract(number(ITER)),

NEWITER is [ITER mod 10] + 1,
asserta(number(NEWITER)),

ifthen(ITER =:= l,outputbreak),
outputtpfmqa,

shell(model),

/* records that last pulse was negative */
retract(calc(TYPE)),
asserta(calc(0)).

/* end of calc less */

**** ******* *****************************************************
/* *
/* RULE - calc more *//* *
/* Calculates a positive perturbation (pulse) if the previous */
/* negative pulse resulted in a higher man-days value. */
/* If the man-days resulting from the positive pulse also */
/* results in a higher man-days value then the QA value will */
/* be returned to its original value for this cycle. *//* *
/****************************************************************

calc more(ITER,NEW,OLD,CHECK,TYPE):-

/* resets the life cycle position back 1 */
NEWITER is [[[ITER + 8] mod 10] + 1],

call(tpfmqa(NEWITER,QA)),

/* calls the "initial" QA value for perturbation use */

call(holder(VALUE)),

call(size(PULSE)),
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/* calculates the new QA value depending on whether the last */
/* pulse was negative (TYPE = 0) or positive (TYPE = 1) */

case([TYPE =:= 0 -> NEWQA is round(VALUE+PULSE,3),
TYPE =:= 1 -> NEWQA is VALUE]),

/* checks if the new QA is greater than the maximum (MAXQA) */
call(max(MAXQA)),
retract(tpfmqa(NEWITER,QA)),
ifthenelse(NEWQA > MAXQA,asserta(tpfmqa(NEWITER,MAXQA)),

asserta(tpfmqa(NEWITER,NEWQA))),

retract(calc(TYPE)),

/* resets the type of calculation */
case([TYPE =:= 0 -> calcup(NEW,NEWITER),

TYPE =:= 1 -> calcorig(NEWITER,ITER,NEW,OLD,CHECK)]).

/* end of calc more */

/***************************************************************
I* *
/* RULE - calcup */

/* Runs the dynamo model after an increase in the current
/* QA position./* *
/**************************************************************/*

calcup (NEW, NEWITER): -

asserta(calc(l)),

outputcummd (NEW, NEWITER),
outputtpfmqa,

shell(model).

/* end of calcup */

/* RULE - calc orig

/* After the QA value at a point has been returned to its */
/* original value, this rule continues with the next point. *1/* *

calc-orig(NEWITER,ITER,NEW,OLD,CHECK):-
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asserta(calc(O)),

outputcummd(NEW,NEWITER),
output tpfmqa,
calc_less(ITER,CHECK,OLD,O).

/* end of calc_orig */

/*****************************************************************
I* *
/* RULE - runstopI* *
/* Halts the program when an exit condition is met.I* *1/*********** ************************ *****************************
run stop(NEW):-

call(cummdold(10,BEST)),

open(S,'summary.dat',a),
nl(S) ,nl(S),

write(S,'The best CUMMD is: '),

ifthenelse(BEST < NEW,write(S,BEST),write(SNEW)),

nl(S),
close(S),

halt.

/* end of runstop */

/****************************************************************
1* *
/* RULE - outputtpfmqa/* *1
/* Creates one file and updates one file: *//* *
/* 1. project.dnx - created with the format required by the */
/* system dynamics simulation model./* *I
/* 2. summary.dat - updated by adding the current TPFMQA *1
/* values to the end of the list of all previous values. *!1* *

output tpfmqa:-

call(tpfmqa(l,QAl)),
call(tpfmqa(2,QA2)),
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call(tpfmqa(3,QA3)),
call (tpfmqa(4,QA4)),
call(tpfmqa(5,QA5)),
call (tpfmqa(6,QA6)),
call (tpfmqa(7,QA7)),
call(tpfmqa(8,QA8)),
call(tpfmqa(9,QA9)),
call (tpfmqa(lO,QA1O)),

create(D, 'project.dnx'),
write(D,'T TPFMQA-'),
write(D,QAl),write(D,' '),
write(D,QA2),write(D,' '),
write(D,QA3),write(D,' '),
write(D,QA4),write(D,l '),
write(D,QA5) ,write(D,l '),
write(D,QA6),write(D,' 1),
write(D,QA7),write(D,' '),
write(D,QA8),write(D,' 1),
write(D,QA9),write(D,' 1),
write(D,QAlO) ,nl(D),
close(D),

open(S, 'summary.dat ,a),
write(S, 'TPFMQA='),
write(S,QA1),write(S,'/'),
write(S,QA2),write(S,'/'),
write(S,QA3),write(S,'/'),
write(S,QA4),write(S,'/'),
write(S,QA5),write(S,'/'),
write(S,QA6) ,write(S, '/'),
write(S,QA7),write(S,'/'),
write(S,QA8),write(S,'/'),
write(S,QA9) ,write(S, I/u),
write(S,QAlO) ,nl(S),
close(S).

/* end of output tpfmqa *

/* RULE - output_cumnd

/* Outputs cumulative man-days total to the SUNMARY.DAT file. *

output cummd (NEW, ITER) :-

open(S, 'summary.dat' ,a),
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write(S,ITER),write(S,'. '),

write(S,'CUMMD='),write(S,NEW),nl(S),

close(S).

/* end of output-cumnd

/* RULE - output-break

/* Outputs a line denoting the start of a new cycle to the *
1* SUMMARY.DAT file.

output_break:-

open(S, summary.dat' ,a),

nl(S) ,write(S,
'************* Start of a new cycle ********')

nl(S) ,nl(S),

close(S).

/* end of output-break *

/* RULE - read-cummd

/* Reads from PROJECTOUT file the man-days total output by *
/* the system dynamics simulation model.

read-cummd:-

open(C, 'project.out' ,r),

read(C,CUMMD),
abolish(cummd/l),
asserta(CUMMD),

close (C).

/* end of read-cummd *
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/* RULE - initial-run

/* Runs the system dynamics simulation model with the
/* initial TPFMQA values.

initial_run(QA1,QA2,QA3,QA4,QA5,QA6,QA7,QA8,QA9,QAO):

/* establishes the initial temporary base for pattern search *
asserta(tpfmqa(l,QA1)),
asserta(tpfmqa(2,QA2)),
asserta(tpfmqa(3,QA3)),
asserta(tpfmqa(4,QA4)),
asserta(tpfmqa(5,QA5)),
asserta(tpfmqa(6,QA6)),
asserta(tpfmqa(7,QA7)),
asserta(tpfmqa(8,QA8)),
asserta(tpfmqa(9,QA9)),
asserta(tpfmqa(lO,QA1O)),

1* establishes the initial base for pattern search *
asserta(bO(l,QAl)),
asserta(bO(2,QA2)),
asserta(bO(3,QA3)),
asserta(bO(4,QA4)),
asserta(bO(5,QA5)),
asserta(bO(6,QA6)),
asserta(bo(7,QA7)),
asserta(bO(8,QA8)),
asserta(bO(9,QA9)),
asserta(bo(1O,QAIO)),

/* runs the system dynamics model *
output tpfmqa,
shell (model),

read cummdI
call (cui-mid(INIA.TIAL))

1* records initial CUNMDs for perturbation comparisons *
asserta(bOcummd(INITIAL)),
asserta(bl_cummd(INITIAL)),

asserta(cummdold(l,O)),
asserta(curnmdold(2,O)),
asserta(cummdold(3,O)),
asserta(cuxnmdold(4,O)),
asserta(cuxnmdold(5,O)),
asserta(cummdold(6,O)),
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asserta(cummdold(7,O)),
asserta(cummdold(8,O)),
asserta(cunundold(9,0)),
asserta(cummdold(1O,INITIAL)),

retract(cumind(INITIAL)).

/* end of initial-run */

/* end of program pattern.ari *
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APPENDIX B

PATTERN SEARCH RESULTS

Pulse size factor = 0.05
Minimum QA value = 0.02
Maximum QA value = 0.5
Minimum pulse size = 0.01

TPFMQA=Q.15/0.15/0.15/0.15/0. 15/0.15/0.15/0.15/0.15/0.15
1. CUMMD=1656.71

************* Start of a new cycle ********

TPFMQA=0.1/0. 15,O.15/0.15/0.15/0. 15/0.15/0.15/0.15/0.15
1. CUMMD=1786.84
TPFMQA=0.2/0.15/0.15/0.15/0. 15/0.15/0.15/0.15/0.15/0.15
2. CUMMD=1597.04
TPFMQA=0.2/0.1/0.15/0.15/0.15/0. 15/0.15/0.15/0.15/0.15
2. CUI4MD=1604.8
TPFMQA=0.2/0.2/O.15/0.15/0.15/0.15/0.15/0. 15/0.15/0.15
2. CUMMD=1606.44
TPFMQA=0.2/0. 15/0.15/0.15/0.15/0.15/0. 15/0.15/0. 15/0. 15
3. CUI4MD=1597.04
TPFMQA=0.2/0.l5/0.1/0.15/0.15/0.15/0.15/0.15/0.15/0. 15
4. CUMMD=1586.96
TPFMQA=0.2/0.15/0.l/0.1/0.15/0.15/0.15/0.15/0.15/0. 15
5. CUMMD=1573.78
TPFMQA=0.2/0. 15/0.1/0. 1/0.1/0.15/0.15/0. 15/0.15/0. 15
6. CUMMD=1556.6
TPFMQA=0.2/0.15/0.1/0.1/0.1/0. 1/0.15/0.15/0.15/0.15
7. CUMMD=1551.05
TPFMQA=0. 2/0. 15/0. 1/0. 1/0. 1/0. 1/0. 1/0. 15/0. 15/0. 15
7. CUMMD=1558.14
TPFMQA=0. 2/0. 15/0. 1/0. 1/0. 1/0. 1/0. 2/0. 15/0. 15/0. 15
7. CUMMD=1557.33
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.15
8. CUMMD=1551.05
TPFMQA=0. 2/0. 15/0. 1/0. 1/0. 1/0. 1/0. 15/0. 1/0. 15/0. 15
8. CUMMD=1557.77
TPFMQA=0. 2/0. 15/0. 1/0. 1/0. 1/0. 1/0. 15/0. 2/0. 15/0. 15
8. CUMMD=1557.66
TPFMQA=0. 2/0. 15/0. 1/0. 1/0. 1/0. 1/0. 15/0. 15/0. 15/0. 15
9. CUI4MD=1551.05
TPFMQA=0.2/0. 15/0. 1/0. 1/0.1/0.1/0.15/0.15/0. 1/0. 15
9. CUMMD=1557.69
TPFMQA=0. 2/0.15/0.1/0.1/0.1/0. 1/0.15/0.15/0.2/0.15
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9. CUMMD=1557.72
TPFMQA=0.2/0.15/0.1/0. 1/0.1/0.1/0.15/0.15/0.15/0.15
10. CUMMD=1551.05
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.1
10. CUMMD=1557.68
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0. 15/0.2
10. CUMMD=1557.74
TPFMQA=0. 2/0. 15/0. 1/0. 1/0. 1/0. 1/0. 15/0. 15/0. 15/0. 15
1. CUI4MD=1551.05

*****************Pattern Search***********

TPFMQA=0.25/O.15/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
1. CUI4MD=1570.05

***************Local Explorations**********

************* Start of a new cycle

TPFMQA=0. 2/0. 15/0. 05/0. 05/0. 05/0. 05/0. 15/0. 15/0. 15/0. 15
1. CUMMD=1579.31
TPFMQA=0.3/0.15/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
2. CUl4ID=1560.65
TPFMQA=0.3/0.1/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0-15
2. CUMMD=1585.35
TPFMQA=0.3/O.2/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
3. CUMMD=1545.7
TPFMQA=0.3/0.2/0.02/0.05/0.05/0.05/0.15/0.15/0. 15/0.15
3. CUMMD=1554.31
TPFMQA=0. 3/0. 2/0. 1/0. 05/0. 05/0. 05/0. 15/0. 15/0. 15/0. 15
4. CUI4MD=1537.04
TPFMQA=0. 3/0. 2/0. 1/0. 02/0. 05/0. 05/0. 15/0. 15/0. 15/0. 15
4. CUMMD=1541.09
TPFMQA=0.3/0.2/0. 1/0.1/0.05/0.05/0.15/0.15/0. 15/0. 15
5. CUMMD=1529.88
TPFMQA=0. 3/0. 2/0. 1/0. 1/0. 02/0. 05/0. 15/0. 15/0. 15/0. 15
5. CUMMD=1531.51
TPFMQA=0. 3/0. 2/0. 1/0. 1/0. 1/0. 05/0. 15/0. 15/0. 15/0. 15
5. CUMMD=1540.31
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0. 15/0.15/0.15
6. CUMMD=1529.88
TPFMQA=0. 3/0. 2/0. 1/0. 1/0. 05/0. 02/0. 15/0. 15/0. 15/0. 15
6. CUI4MD=1530.47
TPFMQA=0. 3/0. 2/0. 1/0. 1/0. 05/0. 1/0. 15/0. 15/0. 15/0. 15
6. CUMMD=1535.59
TPFMQA=0. 3/0. 2/0. 1/0. 1/0. 05/0. 05/0. 15/0. 15/0. 15/0. 15
7. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0. 1/0.15/0. 15/0.15
7. CUMMD=1530.21
TPFMQA=0.3/0.2/0. 1/0.1/0.05/0.05/0.2/0.15/0.15/0.15
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7. CUMMD=1536.25
TPFMQA=0. 3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
8. CUMMD=1529.88
TPFMQA=0. 3/0. 2/0. 1/0. 1/0. 05/0. 05/0. 15/0. 1/0. 15/0. 15
8. CUMI4D=1529.95
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.2/0.15/0.15
8. CUMMD=1536.42
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
9. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.1/0.15
9. CUMMD=iL529.89
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.2/0. 15
9. CUMMD=1529.91
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
10. CUI4MD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.1
1. CUMMD=1529.88

*****************Pattern Search **********

TPFMQA=0.4/0.25/0.1/0.1/0.02/0.02/0.15/ 0.15/0.15/0.05
1. CtMMD=1524.59

************* Start of a new cycle

TPFMQA=0. 35/0. 25/0. 1/0. 1/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
2. CUMMD=1516.34
TPFMQA=0. 35/0. 2/0. 1/0. 1/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
2. CUMMD=1528.66
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0. 05
2. CUI4MD=1530.23
TPFMQA=0. 35/0. 25/0. 1/0. 1/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
3. CUMMD=1516.34
TPFMQA=0 .3 5/0. 25/0. 05/0. 1/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
3. CUMMD=1524.42
TPFMQA=0. 35/0.25/0. 15/0. 1/0.02/0.02/0.15/0.15/0.15/0.05
3. CUMMD=1528.3
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
4. CUMMD=1516.34
TPFMQA=0. 35/0.25/0.1/0.05/0.02/0.02/0.15/0.15/0.15/0.05
4. CUMMD=1516.94
TPFMQA=0. 35/0. 25/0. 1/0. 15/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
4. CUMMD=1534.82
TPFMQA=0 .3 5/0. 25/0. 1/0.1/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
5. CUI4MD=1516.34
TPFMQA=O. 35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
6. CUMMD=1516.34
TPFMQA=0. 35/0. 25/0. 1/0. 1/0. 02/0. 02/0. 15/0. 15/0. 15/0. 05
7. CUMMD=1516.34
TPFMQA=0. 35/0. 25/0. 1/0. 1/0. 02/0. 02/0. 1/0. 15/0. 15/0. 05
8. CUMMD=-1510.08
TPFMQA=0.35/0.25/0. 1/0.1/0.02/0.02/0.1/0.1/0.15/0.05
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8. CUMMD=1510.13
TPFMQA=0.35/0.25/0.1/0.1/0. 02/0.02/0.1/0.2/0.15/0.05
8. CUMMD=1516.53

* TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.15/0.15/0.05
9. CUMMD=1510.08
TPFMQA=0. 35/0.25/0.1/0.1/0.02/0.02/0.1/0.15/0.1/0.05
10. CUI4MD=1510.08
TPFMQA=0 .3 5/0. 25/0. 1/0. 1/0.02/0. 02/0. 1/0. 15/0. 1/0. 02
1. CUMMD=1510.08

*****************Pattern Search***********

TPFMQA=0.4/0. 3/0. 1/0.1/0.02/0.02/0.05/0.15/0.05/0.02
1. CUMMD=1505.19

************* Start of a new cycle ********

TPFMQA=0. 35/0. 3/0. 1/0. 1/0. 02/0. 02/0. 05/0. 15/0. 05/0. 02
2. CUMMD=1497.86
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.05/0.15/0.05/0.02
2. CUMMD=1510.4
TPFMQA=0.35/0.35/0.1/0.1/0.02/0.02/0.05/0. 15/0.05/0.02
2. CUMIMD=1510.18
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0.05/0.02
3. CUMMD=1497.86
TPFMQA=0.35/0.3/0.05/0.1/0.02/0.02/0.05/0.15/0.05/0.02
3. CUIMD=1511.74
TPFMQA=0.35/0.3/0.15/0.1/0.02/0.02/0.05/0.15/0.05/0.02
3. CUMMD=1510.2
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0.05/0.02
4. CUMMD=1497.86
TPFMQA=0.35/0.3/0.1/0. 05/0.02/0.02/0.05/0.15/0.05/0.02
4. CUMI4D=1504.83
TPFMQA=0.3 5/0. 3/0. 1/0.15/0. 02/0. 02/0. 05/0. 15/0. 05/0. 02
4. CUMMD=1509.73
TPFMQA=0. 35/0. 3/0. 1/0. 1/0. 02/0. 02/0. 05/0. 15/0. 05/0. 02
5. CtJNMD=1497.86
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0. 15/0.05/0.02
6. CUMMD=1497.86
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0.05/0. 02
7. CUMMD=1497.86
TPFMQA=0. 35/0. 3/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 05/0. 02
7. CUMMD=1498.02
TPFMQA=0. 35/0. 3/0. 1/0. 1/0. 02/0. 02/0. 1/0. 15/0. 05/0. 02
7. CUMMD=1504.01
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0. 05/0.02
8. CUMND=1497.86
TPFMQA=0. 35/0. 3/0. 1/0.1/0.02/0.02/0.05/0.1/0. 05/0.02
8. CUMIMD=1497.91

* TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0.2/0.05/0.02
8. CUMMD=1504.2
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0. 05//0.02
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9. CUM4D=1497.86
TPFMQA=0.35/0.3/0.1/0. 1/0.02/0.02/0.05/0.15/0.02/0.02
10. CUMMD=1497.86
TPFMQA=0. 35/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0.02/0.02
1. CUMMD=1497.86

*****************Pattern Search***********

TPFMQA=0 .3 5/0. 35/0. 1/0.1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
1. CUMMD=1497.32

************* Start of a new cycle ********

TPFMQA=0. 3/0. 35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
2. CUMMD=1489.34
TPFMQA=0. 3/0.3/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
2. CUMMD=1508.86
TPFMQA=0.3/0.4/0. 1/0.1/0.02/0.02/0. 02/0. 15/0.02/0.02
2. CtMMD=1506.9
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
3. CUMMD=1489.34
TPFMQA=0.3/0.35/0.05/0.1/0.02/0.02/0.02/0.15/0.02/0.02
3. CUMMD=1502.6
TPFMQA=0. 3/0. 35/0. 15/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUMMD=1502.07
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
4. CUMND=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 05/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1496.1
TPFMQA=0.3/0.35/0.1/0.15/0.02/0.02/0.02/0.15/0.02/0.02
4. CUMMD=1507.7
TPFMQA=0.3/0.35/0.1/0.1/0. 02/0.02/0.02/0.15/0.02/0.02
5. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
6. CUMMD=1489.34
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
7. CUMI4D=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
8. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 1/0. 02/0. 02
8. CUMMD=1489.4
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.2/0.02/0.02
8. CUI4MD=1495.67
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
9. CUMMD=1489.34
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
10. CUMMD=1489.34
TPFMQA=0.3/0.35/0.1/0. 1/0.02/0.02/0.02/0. 15/0.02/0.02
1. CUMMD=1489.34
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*****************Pattern Search***********

TPFMQA=0.25/0.4/0. l/0.l/0.02/0.02/ 0. 02/0.15/0.02/0.02
1. CUMMD=1498.23

***************Local Explorations**********

************* Start of a new cycle * *~* **

TPFMQA=0.2/0.4/0.l/0.l/0.02/0.02/0. 02/0.15/0.02/0.02
2. CUMMD=1495.38
TPFMQA=0.2/0.35/0.l/0.l/0.02/0.02/0.02/0. 15/0.02/0.02
2. CUI4MD=1509.26
TPFMQA=0.2/0.45/0.l/0.l/0.02/0.02/0.02/0. 15/0.02/0.02
2. CUMMD=1511.97
TPFMQA=0.2/0.4/0.l/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
3. CUMMD=1495.38
TPFMQA=0.2/0.4/0.05/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
3. CUI4MD=1501.95
TPFMQA=0.2/0.4/0.15/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
3. CUMMD=1514.79
TPFMQA=0.2/0.4/0.1/0.l/0.02/0.02/0.02/0. 15/0.02/0.02
4. CUI4MD=1495.38
TPFMQA=0.2/0.4/0.l/0.05/0.02/0.02/0.02/0. 15/0.02/0.02
4. CUMMD=1495.67
TPFMQA=0. 2/0. 4/0. 1/0. 15/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02

* 4. CUMMD=1513.95
TPFMQA=0.2/0.4/0.l/0.l/0.02/0. 02/0.02/0. 15/0.02/0.02
5. CUMMD=1495.38
TPFMQA=0. 2/0. 4/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
6. CUI4MD=1495.38
TPFMQA=0.2/0.4/0.1/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
7. CUMMD=1495.38
TPFMQA=0.2/0.4/0.1/0.l/0.02/0.02/0.02/0. 15/0.02/0.02
8. CUI4MD=1495.38
TPFMQA=0. 2/0. 4/0. 1/0. 1/0. 02/0. 02/0. 02/0. 1/0. 02/0. 02
9. CUMMD=1495.37
TPFMQA=0.2/0.4/0.1/0. 1/0.02/0.02/0.02/0. 1/0.02/0.02
10. CIJNMD=1495.37
TPFMQA=0. 2/0. 4/0. 1/0. 1/0. 02/0. 02/0. 02/0. 1/0. 02/0. 02
1. CUI4MD=1495.37

Pulse reduction
Pulse size is: 0.025

TPFMQA=0.3/0.35/0.1/0.l/0.02/0.02/0.02/0.15/0.02/0.02
1. CUMMD=1489.34

************* Start of a new cycle

TPFMQAO0.275/0.35/0.1/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
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1. CUMMD=1494.57
TPFMQA=0.325/0.35/0.1/0.1/0. 02/0.02/0.02/0.15/0.02/0. 02
1. CUMMD=1496.56
TPFMQA=0.3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/'0. 02/0. 02
2. CUMMD=1489.34
TPFMQA=0.3/0.325/0.1/0. 1/0.02/0.02/0.02/0. 15/0.02/0.02
2. CTMMD=1499.24
TPFMQA=0. 3/0. 37 5/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
2. CUMMD=1498.23
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUMMD=1489.34
TPFMQA=0.3/0.35/0.075/0.1/0.02/0.02/0.02/0.15/0.02/0.02
3. CUMMD=1495.97
TPFMQA=0. 3/0. 35/0. 12 5/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUMI4D=1495.52
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
4. CTJNMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 075/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1492.77
TPFMQA=0. 3/0. 35/0. 1/0. 12 5/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1498.49
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
5. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
6. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
7. CUMND=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
8. CUMMD=1489.34
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 12 5/0. 02/0. 02
8. CUMMD=1489.37
TPFMQA=0. 3/0. 35/0.1/0.1/0.02/0.02/0.02/0.175/0.02/0.02
8. CUMMD=1495.65
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
9. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
10. CUI4MD=1489.34
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
1. CU1MD=1489. 34

*****************Pattern Search***********

TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
1. CTJMID=1489.34

***************Local Explorations**********

************* Start of a new cycle

TPFMQA=0. 275/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
1. CUMMD=1494.57
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TPFMQA=0.325/0.35/0.1/0. 1/0.02/0.02/0. 02/0.15/0.02/0.02
1. CUMMD=1496.56
TPFMQA=0.3/0.35/0. 1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
2. CUI4MD=1489.34
TPFMQA=0.3/0.325/0.l/0.1/0.02/0.02/0.02/0.15/0.02/0.02
2. CUMMD=1499.24
TPFMQA=0.3/0.375/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
2. CUMMD=1498.23
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUI4MD=1489.34
TPFMQA=0.3/0.35/0.075/0.1/0.02/0.02/0. 02/0.15/0.02/0.02
3. CtMMD=1495.97
TPFMQA=0. 3/0. 35/0.125/0.1/0.02/0.02/0. 02/0.15/0.02/0.02
3. CUMMD=1495.52
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 07 5/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1492.77
TPFMQA=0. 3/0. 35/0. 1/0. 12 5/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUI*ID=1498.49
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
5. CUMMD=1489.34
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
6. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
7. CUMMD=1489.34

* TPFMQA=0.3/0.35/0.l/0.1/0.02/0.02/0.02/0.15/0.02/0.02
8. CUI4MD=1489.34
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.125/0.02/0.02
8. CUMMD=1489.37
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.175/0.02/0.02
8. CUMMD=1495.65
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
9. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
10. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
1. CUW4D=1489.34

Pulse reduction
Pulse size is: 0.013

TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
1. CU1MD=1489.34

************* Start of a new cycle ********

TPFMQA=0. 287/0.35/0.1/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
1. CUMMD=1492.09
TPFMQA=0.313/0.35/0.1/0.l/0.02/0.02/0.02/0.15/0.02/0.02
1. CLMMD=1492.86
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
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2. CUMMD=1489.34
TPFMQA=0.3/O.337/O.l/O. 1/0.02/0.02/0.02/0.15/0.02/0.02
2. CTMMD=1494.53
TPFMQA=0. 3/0. 363/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
2. CUMMD=1490.42
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUMM.D=1489.34
TPFMQA=0. 3/0. 35/0. 087/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUMMD=1492.78
TPFMQA=0. 3/0. 35/0. 113/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUMMD=1492.24
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CTMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 087/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1491.14
TPFMQA=0 .3/0. 35/0. 1/0. 113/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1493.83
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
5. CUI4MD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
6. CUMMD=1489.34
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
7. CUMM1.1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
8. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 137/0. 02/0. 02
8. CUI4MD=1489.36
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 163/0. 02/0. 02
8. CUMMD=1495.67
TPFMQA=0.3/0.35/0.1/0.1/0.o2/0.02/o.02/o.15/o.02 /0.o2
9. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
10. CUMMD=1489.34
TPFMQA=0.3/0.35/0.1/0.1/o. 02/0.02/0.02/0.15/0.02/0.02
1. CUMMD=1489.34

*****************Pattern Search ~**********

TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
1. CUMMD=1489.34

***************Local Explorations *********

************* Start of a new cycle ~*******

TPFMQA=0.287/0.35/0.1/0.l/0.02/0.02/0.o2/o. 15/0.02/0.02
1. CUI4MD=1492-09
TPFMQA=0. 313/0.35/0.1/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
1. CUMMD=1492.86
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/o.o2/o.o2
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2. CUMMD=1489.34
TPFMQA=0.3/0.337/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
2. CUMI4D=1494.53
TPFMQA=0.3/0.363/0.1/0.1/0. 02/0.02/0.02/0.15/0.02/0.02
2. CUMMD=1490.42
TPFMQA=0.3/O.35/O. 1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
3. CUMMD==1489.34
TPFMQA=0.3/0.35/0.087/0.1/0.02/0.02/0.02/0.15/0.02/0.02
3. CUMMD=1492.78
TPFMQA=0. 3/0. 35/0. 113/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
3. CUNND=1492.24
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0. 15/0.02/0.02
4. CUIU4D=1489.34
TPFMQA=0. 3/0.35/0.1/0.087/0.02/0.02/0.02/0.15/0.02/0.02
4. CUMMD=1491.14
TPFMQA=0. 3/0. 35/0. 1/0. 113/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
4. CUMMD=1493.83
TPFMQA=0. 3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
5. CUMMD=1489.34
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
6. CUMMD=1489.34
TPFMQA=:0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.15/0.02/0.02
7. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
8. CUMMD=1489.34
TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.137/0.02/0.02
8. CUMMD=1489.36

* TPFMQA=0.3/0.35/0.1/0.1/0.02/0.02/0.02/0.163/0.02/0.02
8. CUNND=1495.67
TPFMQA=0 .3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02

* 9. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
10. CUMMD=1489.34
TPFMQA=0. 3/0. 35/0. 1/0. 1/0. 02/0. 02/0. 02/0. 15/0. 02/0. 02
1. CUMMD=1489.34

Pulse reduction
Pulse size is: 0.007

TPFMQA=0. 3/0.35/0.1/0.1/0. 02/0. 02/0.02/0.15/0.02/0.02
1. CUMMD=1489.34

The best CUMND is: 1489.34
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