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ABSTRACT

Quality Assurance (QA) 1is a critical factor in the
development of successful software systems. Through the use
of various QA tools, project managers can ensure that a
desired level of performance and reliability is built into the
system. However, these tools are not without cost. Project
managers must weigh &ll QA costs and benefits for each
development environment before establishing an allocation
strateqgy.

The development of a system dynamics model has provided
project managers with an automated tool that accurately
replicates a project's dynamic behavior. This model can be
used to determine the optimal quality assurance distribution
pattern over a given project's life cycle.

The objective of this thesis was to enhance a prototype
expert system module that interacts with the system dynamics
model for determining QA effort allocation schemes. The new
module uses a pattern search algorithm to derive ar optimal
distribution scheme from a given set of project parameters.
This system not only resolves all limitations discovered in
the prototype model, but also achieved significant reductions

in total project cost.
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I. INTRODUCTION

A. BACKGROUND
1. Quality Assurance in Project Management

The technological advancements in the computer
industry have penetrated all elements of our modern day
society. With increased public acceptance and proliferation
of the computer, we have seen the emergence of a more
sophisticated class of end-user. This emergence has lead to
increased demand on the development, maintenance, and
modification of software systems to satisfy their insatiable
appetite for new functionality. [Ref. 1:p. 100]

Hardware technology has progressed at a faster rate
than our ability to develop comparable software systems. The
result 1is an industry-wide backlog of software projects.
Since software is a very critical and complex component of
most major systems, the expanding hardware/software gap is
becoming an increasing concern to system developers. The
software development problem can be directly attributed to the
lack of evolving software management techniques to keep pace
with technological advances. [Ref. 2:pp. 6-7]

To compound this situation, the supply of qualified
programmers and systems analysts is not keeping up with the
software industry's demands. This adds to the growing trend

of overdue and over budget projects, that when delivered don't




perform as required. Many clients find that functional

requirements have been down scaled to cut further cost
increases or reduce time delays. These shortcuts often lead
to an increase of undetected errors in the final delivered
system. [Ref. 2:pp. 6-7]

In resolving the software development dilemma we must
focus our attention on the managerial issues present today.
Many project managers have failed to learn or admit past
mistakes and are doomed to repeat them on future projects.
One example is the practice of attempting to introduce quality
into the developed system at the final testing phase. This is
usually insufficient in resolving many of the hidden errors
committed during the early development phases of the project.
Software productivity directly corresponds to the development
practices that have been implemented by management. Oonly
through the implementation of sound project management tools
and techniques can we begin to reverse the current climate
surrounding systems development. [Refs. 3:pp. 3-5; 2:pp. 6-
7]

Quality assurance (QA) is one technique that
positively impacts software productivity. This technique
introduces into project controlled systematic development
processes, which ensure quality is built into the system from
the beginning. Walkthroughs, inspections, code readings are
a few of the quality checks that are scheduled at

predetermined points, to continually review and test the




system. Of course these techniques are not without costs.
The introduction of quality assurance into the software
development process will increase total project costs (man-
days) . Therefore, the project manager must utilize cost-
benefit analysis techniques to derive an economical QA
distribution scheme (over the design and coding phases).
[Ref. 4:pp. 1-2]

Throughout software development, the management of software
quality must be an overriding concern of all project

personnel. Quality must be planned into the project
structure, constantly evaluated, and corrections applied
when deficiencies are identified. [Ref. 2:p. 8]

2. Expert Simulators

The computing demands of business and industry in the
last decade have contributed to the emergence and expansion of
new artificial intelligence (expert systems) and operational
research (simulation) disciplines. These advances, coupilied
with the increasing complexity in the business world, has lead
to growing interest in merging expert systems and simulation
technologies into a single management system. "Proponents of
AT have stated [expert systems] will revolutionize
managements' use of computing, and have profound effect on the
art and science of simulation."™ [Ref. 5:p. 723]

Expert systems and simulation models are very similar
technologies. Both attempt to model reality, however use
drastically different methods and tools to accomplish similar

end result. Expert Systems focus on capturing the problem




solving techniques of the human expert, often in the form of
a heuristic.

These systems are generally composed of three basic
subsystems:

- VUser Interface--enables the system to interact with the
outside environment.

- Inference Engine--uses deductive reasoning to drive the
system towards a conclusion.

- Knowledge Base--collection of rules that model the
expert's knowledge in the form of heuristics or "rules-
of-thumb."

A key feature that distinguishes an expert system is
its ability to justify a solution, in much the same manner as
a human expert. [Ref. 6:pp. 12-18]

Simulation is a process of developing a model of
reality, and using it to carry out experimentations. This
technique is math intensive, using algorithms in a repetitive
manner to derive a solution. The primary function of a
simulator is to model how a system behaves over a period of
time. Beginning with a "current" state it searches to
determine if certain preconditions have been met, and if so
moves to a "future" state. [Ref. 7;pp. 701-702]

The similarities petween expert systems and simulation
can be exploited in <~ne general taxonomy where both share a
common data base and cooperate in accomplishing a task.
Parallel combination of an expert system and a simulator is

one of the more common development methods used in joining

these systems. (See Figure 1-1)
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Figure 1-1 Parallel Expert System and Simulator

Both systems are developed separately and special
interfaces are created to facilitate their interaction.
Figure 1-1 displays two methods of integration, where either
the expert system or the simulator acts as the front-end user

interface for the model. [Ref. 8:pp. 10-12]

B. THESIS OBJECTIVES

The emphasis of this thesis is the continued development
of an existing expert system simulation model (see Reference
11). Both the expeirt system and simulation model were
designed, developed, and implemented as separate software, in
parallel. The purpose of this combined system is to provide
a project manager with an optimal quality assurance
distribution scheme, throughout a software project's 1life
cycle (design and coding phases).

An experimental systems dynamics model for software

project management will be utilized as the simulator within

this ccmbined system. This model accepts the quality




assurance schemes from the expert system, performs project
simulations, and provides cost information for evaluation.

The primary control vehicle of the expert system
simulation model is the expert system module. Acting as an
interface between the user and the simulator, it accepts input
from both and controls the continuous simulation test process.
The expert system uses an optimization heuristic for deriving
and evaluating quality assurance distribution schemes.

This thesis will focus on identifying shortcomings that
exist in the current expert system portion of this model. New
search techniques will be implemented to improve the model
overall performance. This enhanced expert systems simulation
model will more accurately and efficiently identify the most

optimal quality assurance distribution.




IT. SYSTEMS DYNAMICS MODEL OF SOFTWARE PROJECT MANAGEMENT

A. OVERVIEW

In the last two decades, the technological achievements of
the computer industry has caused a deluge of highly capable,
reliable, and relatively inexpensive hardware. Accompanying
this "technical revolution" has been the growing demand for
more sophisticated software applications. As stated in
Chapter I, the software development industry has not been able
to effectively keep pace with these demands. "Software
systems development las been plagued by cost overruns, late
deliveries, poor reliability, and user dissatisfaction."
[Ref. 9:p. 1423G]

Recently, the software industry has made some technical
advancements in the software production process. The creation
of effective program development techniques such as structured
system design, reverse engineering, and case tools have all
lead to improvements in the production of software. Yet, the
research community credited with these advancements have given
very little attention to the managerial aspects involved with
software development. This lack of attention may account for
the persisting difficulties encountered when producing
software systems. [Ref. 9:p. 1426]

Effective management of software production is not well

understood. Based on this fact, research was conducted to




capture the dynamic properties of the software development

process. Interviews with project managers of five larger
development organizations were combined with the data from
exhaustive literature searches to create a developmental base.
A system dynamics model was developed from this research that
provides management with a vehicle for making predictions
about the software development process. This model integrates
the multiple functions of software development with management
functions (i.e., planning, controlling, staffing) and
production activities (i.e., design, coding, and testing).
Another feature of the model 1is the use of feedback
principles. Feedback provides clarity to the "“complex
conglomerate of independent variables that are interrelated in
various nonlinear fashions" within the model. The purpose of
this feedback system is to assist in evaluating the complex
circular (cause-effect) relationships that exist in the
development world. [Ref. 4:p. 4]

The system dynamics model is comprised of four subsystems:
(1) the human resource management subsystem; (2) the software
production subsystem; (3) the controlling subsystem; and (4)
the planning subsystem. Figure 2-1 illustrates a simplified
view of how these subsystems interrelate. [Ref. 9:p. 1429]

The human resource subsystem captures the hiring,
training, assimilation, and transfer of the project staff. It

segments these resources into two categories, "newly hired"

and "experienced." This segregation allows the system to keep
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track of differing productivity levels for each member of the
project team. Secondly, it provides a means of monitoring the
experienced staffs training of new personnel. The subsystem
accepts inputs from the model, such as WORK FORCE NEEDED,
PROGRESS STATUS, and processes them with other factors to
determine the appropriate WORK FORCE AVAILABLE. [Ref. 10:p.
102]

The software production subsystem models the development
process through the design, coding, and testing phase of the
software 1life cycle. The requirements, operations, and
maintenance phases were not included because they fall outside
the boundaries of the actual software development process and
are not under the direct control of the development team. The
focus of this subsystem is enhancing productivity. Through
the use of quality assurance activities it detects project
errors as soon as possible in the life cycle process. These
"detected" errors are then passed to the rework sector for
correction. Any "undetected" errors, that escape QA and
rework, filter through to the testing sector for final
detection and correcting. The underlying intent is to detect
and correct errors early in the life cycle process. Design
and code errors grow exponentially as the project progresses.
Early corrective action minimizes the costs associated with
there removal. This subsystem notifies the control subsystem

of TASKS COMPLETED. [Ref. 10:pp. 102-103]
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The control subsystem makes distinctions between actual
and perceived model variables to estimate project progress.
Often, human estimates are very inaccurate or over-inflated.
This subsystem evaluates many variables built into the system
to determine what the actual projects status is. This
subsystem supplies the planning subsystem with EFFORT
REMAINING. [Ref. 10:p. 103]

The final subsystem is planning. It provides the system
with initial project estimates, and continually updates them
as the project progresses. Evaluating scheduled times, work
force stability, and training requirements, this subsystem
supplies WORK FORCE NEEDED and SCHEDULE data to the other

subsystems. [Ref. 10:p. 103]

B. QUALITY ASSURANCE

The quality assurance and rework sector is one of four
major activities that comprise the software production
subsystem. Its primary objective 1is the detection and
subsequent correction of generated software errors. Receiving
newly generated code from the software development sector, the
QA activity uses accepted techniques, such code readings and
periodic group walkthroughs to identify errors. Discovered
errors are corrected by the rework portion of this activity,
with all "undetected" errors passed to the testing sector.
Figure 2-2 is a simplified view of the software production

subsystem process. [Ref. 4:p. 6]
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Figure 2-2 Software Production Subsystem

The quality assurance effort is assigned as a fixed
portion of the total man-days (weekly) available for a given
project. This 1is distributed over ten 1life cycle points
through the project's design and coding phuses (i.e., 10%,
20%,30%,...,100%). These values can be entered by the project
manager using a table variable called PLANNED FRACTION OF
MANPOWER FOR QUALITY ASSURANCE (TPFMQA). The actual values
assigned to TPFMQA are percentages of the total man-days
available that are desired for QA effort. For example, a
value of 0.15 at the 10% 1life cycle completion point
represents an allocation of 15% of total effort dedicated to
QA. [Ref. 4:p. 6]

A large segment of the of the software production industry
is akin to allocating an even QA percentage throughout the
entire project life cycle. This practice obviously does not

take cost effectiveness into consideration. (See Figure 2-3.)
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Figure 2-3 Uniformly Distributed QA Effort

The number of errors detected in a software project
directly correlates to the amount of QA effort allocated. The
greater the QA effort during the design and coding phases
means the fewer the errors that will be left to be corrected
when testing the system. However, quality assurance is a very
expensive activity. Excessive QA will lead to unnecessary
project costs. As errors are detected and corrected it
becomes increasingly more difficult, time consuming, and
costly to uncover the few remaining errors. It becomes more
economical to allow the elusive errors to be handled during

the system testing phase. [Ref. 4:pp. 7-8]
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C. OPTIMIZATION SCHEME FOR QA EFFORT (TPFMQA)

The model's QA table variable (TPFMQA) allows the project
manager to experiment with various distributions to find the
most economic solution without sacrificing quality. A three-
step process can be performed at each of the ten life cycle
points.

First, we apply a predetermined negative pulse to a life
cycle (l.c.) point leaving all other points unaltered (i.e.,
15% pulse = l.c. point - (l.c. point * .15), see Figure 2-4).
The new value 1is entered into the TPFMQA table and a

simulation run is conducted. If the results of the simulation

PLANNED QA EFFORT

(PERCENT OF DEVELOPMENT MAN-DAYS)
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Figure 2-4 Exémple of a Negative Pulse
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lower the total project cost the new value is adopted, and we
proceed to the next life cycle point. If the results are
worse we apply a positive pulse to the original value and
conduct another simulation run. If neither perturbation
causes improvement, the original value 1is retained.
Perturbation tests on all ten life cycle point constitutes one
complete cycle.

Figure 2-5 displays the results for an actual experiment
using the system dynamics model. The project was initiated
with a uniform 15% QA distribution (cost was 1656.71 man-
days). After only one cycle the project manager was able to
significantly reduce total project cost to 1537.99 man-days.
This experiment support the theory that by emphasizing QA
early in the design process, the effort required at the later

portion of the project could be drastically reduced.

D. CASE STUDY

1. DE-A Project

To experiment with the cost-reducing capabilities of

the system dynamics model, an actual NASA software project was

used as a test platform. The Fortran-based program was
developed for processing telemetry data, altitude
determination, and control of a DE-A satellite. [Ref. 4:pp.
2-3]

The estimated and actual project results were as

follows:
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Figure 2-5 QA Distribution After One Cycle
estimated actual
project size 16,000 24,000 DSI
development cost 1,100 2,200 Man-days
completion time 320 387 Days

These results indicate that the project was not a
complete success, even though the system's performance was
rated extremely reliable. Development costs were twice what
was predicted, delivered source instructions (DSI) were one
and a half times the estimate, and the project fell behind
schedule. A possible contributor to these overruns and delays

was the 36% (on average) allocation of the total available
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Figure 2-6 Actual DE-A Project QA Distribution

resources to quality assurance. Excessive QA was planned into
the project to detect the relatively few elusive errors that
may exist. This higher than industry norm distribution is
show on Figure 2-6. [Ref. 4:p. 3]
2. Manual Experiment

Manual manipulations of the TPFMQA values were
conducted to determine if a more «cost effective QA
distribution for the DE-A project could be discovered. The

initial starting point for this experiment was a uniform 15%

17




allocation of resources for QA across the ten life cycle
points. These life cycle points indicate the percentage of
the project completed in increments of ter. Perturbing each
point separately, negative and positive pulses at a magnitude
of 50% were applied. If a negative pulse successfully lowered
the total project cost it was adopted, and then experiment
progressed to the next life cycle point. However, if the
negative pulse was not successful, then a positive pulse was
applied. When a perturbation failed in reducing costs the
original value was restored. This process was continued until
the improvements in costs between consecutive cycles becanme
nominal. [Ref. 12:p. 43]

Figure 2-7 displays the improved QA distribution
curve. The new allocation scheme resulted in significantly
lowering development costs to 1524.5 man-days total. Quality
assurance effort was reduced from 524 man-days (original 30%
distribution) to approximately 162 man-days. The simulator
successfully 1lowered overall costs while maintaining the
desired level of quality in the final product. [Ref. 12:p.

43)

18
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ITI. (0] E EXPERT SYSTEM STIMULATIO oD

A. EXISTING EXPERT SYSTEM FOR QA ALLOCATION
1. The Expert System Module
Prior research (Reference 11) has yielded a prototype
expert system simulation (ESS) model that is decomposable into
three separate subsystems: An expert system module, the
system dynamics model, and a set of interfacing files, which

are displayed below.

TOEMQA)
EXPERT SYSTEM > SYSTEM DYNAMICS
MODULE INTERFACING FILES MOOEL
»
B (CUMMD)

Figure 3-1 The ESS model

The expert module was developed in Prolog and is
comprised of 15 rules. This module performs two functions,
overall .ystem control and derivation of QA effort allocation
schemes. The derived QA patterns are transferred to the
systems dynamics model, and a simulation is conducted. When
the simulation is complete, the results are returned to the
expert system for evaluation and further action. [Ref. 4:pp.

8-9]

20




The ESS model is initialized by the user through a
generated series of expert module queries. Once initialized,
the system operates in an automatic state until encountering
a user-determined termination condition. Of the five required
user inputs, two are critically important: (1) a desired
pulse size factor (PSF), and (2) a base-line QA effort scheme
for ten life cycle points (usually a uniform distribution
across all points).

Pulse size factor is applied as a percentage of the
current QA value at a given 1life cycle point. It
mathematically alters (perturbs) each point for future
evaluation in the simulation model. Each of the ten life
cycle points are perturbed in sequential order, constituting
a cycle when the system returns to the first point.

This perturbation process begins by applying a
negative pulse to the current QA value (QA - PSF(QA)), sending
the new distribution scheme (TPFMQA) to the simulation model,
and adopting the perturbed QA value if the simulation results
indicate a reduction in total project costs (CUMMD). If the
negative pulse causes an increase in total costs, a positive
pulse is applied (QA + PSF(QA)) and another simulation
conducted. If this results in a cost reduction, the positive
perturbation 1is adopted. However, if both pulses increase
total project cost then the original QA effort value is
restored. After the lowest cost alternative (negative pulse,

positive pulse, or no pulse) is determined and recorded, the

21




system moves on to the next life cycle point for perturbation.

(Ref. 12:pp. 17-40]

NEGATIVE PULSE POSITIVE PULSE NO PULSE

Figure 3-2 Perturbations

Other user inputs include two termination conditions:
(1) the maximum cycle limit, and (2) minimum threshold level
for cost reduction. The cycle limit terminates the system
when the cycle counter surpasses a user-established maximum.
The minimum threshold level terminates the system if the cost
reduction at the end of a cycle is not greater than a set
amount over the cost at the beginning of the cycle (e.g., a 1%
improvement minimum). Finally, the user can input minimum QA
value. This keeps the system from going below a possible
company established minimum QA policy or at very least above
zero. [Ref. 4:p. 10]

2. Interface Mechanisms

The two major components of the ESS model were
developed in different programming languages. The expert
system module is in Arity Prolog, and the systems dynamics
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model is in Professional Dynamo Plus (PD+). To allow these
separate systems to communicate, a group of interfacing DOS
files were created as a transfer vehicle (see Figure 3-3).
[Ref. 4:p. 10-11]

To communicate with the system dynamics model
(project.dyn), the expert system (pga.ari) requires a means of
transferring the most currently derived QA distribution
scheme. First, the expert system transforms the data into a
format the simulator can understand (TPFMQA). Next, the data
are copied into an ascii holding file (project.dnx). System
control is then passed from the expert system to a DOS batch
file (project.bat), which moves the TPFMQA data into the
simulator and starts the model. Upon completion of the
simulation, the systems dynamics model's report generator
records the total project costs (CUMMD) to an internal file
(report.exe). The batch file then extracts the CUMMD value
and stores it in an ascii file (project.out), in a format
understandable to the expert system. Control is then returned
to the expert system which reads in the CUMMD value, evaluates
performance, and determines the next course of action. The
above process is repeated for each subsequent life cycle
point. [Ref. 4:p. 11]

The summary file (summary.dat), attached to the expert
system in Figure 3-3, records the results of each interface
exchange. This file provides the user with a chronological

listing of every QA distribution scheme attempted and the
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SUMMARY.DAT
ARITY PROLOG
PQA.ARI
y DOS
INTERFACING
PROJECT.OUT | | PROJECT.BAT | | PROJUECT.DNX FILES
REPEXE | PROUECT.DYN |DYNEXEXE
PROFESSIONAL DYNAMO PLUS

Figure 3-3 ESS Model File Structure
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associated total project cost. When a final termination
condition is met, the system records the best CUMMD discovered
into the file.
3. DE-A Project Revisited

The QA allocation performance of the ESS model was
evaluated using the NASA DE-A software project. The system
was initialized using a pulse size (PSF) of 15%, minimum
threshold for cost reduction of .00001%, maximum number of
cycles at 30, minimum QA value of 3%, and a uniform base-line
QA effort of 15% effort.

The results of this experiment are compared below:

QA costs (man-days) Total costs (man-days)

Actual DE-A 524 2,200
Manually derived 161.9 1,524.5
Expert Simulator 170.04 1,521.07

Figure 3-4 displays a composite of the QA distribution
patterns for the three experiments listed above. Notice that
the expert simulator places more emphasis on QA in the
beginning of the design phase. This capitalizes on the cost
savings associated with detection and correction of errors
early in the life cycle process. The expert simulator's
results are a considerable improvement over the actual QA
effort distribution used by NASA in developing the project.
Slight cost reduction over the manual manipulation of the
system dynamics module was achieved. However, the real

benefit of the prototype model was the elimination of the
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Figure 3-4 Composite of QA Distributions

extensive human interaction time needed when using the
simulator separately. The prototype ESS model proved to be
effective as an automated tool for distributing QA effort.

[Ref. 4:pp. 11-12]

B. SENSITIVITY ANALYSIS OF THE MODEL
1. Introduction
The current ESS model has demonstrated a capability to
produce distribution schemes that reduce project cost, when
compared to the practice of uniform allocation. However, the
ability of the model to derive the "most optimal" QA scheme is
suspect. Multiple experiments were conducted in which the
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initial five input variables were slightly altered. The
results of these experiments produced significantly different
QA allocation schemes and final project costs. The following
model sensitivity questions have arisen for these experiments:

- 1Is the expert system simulator model sensitive to pulse
size factor? (The prototype system used a static pulse
size for every cycle.)

- 1Is it the system capable of achieving one global optimal
QA distribution pattern irrespective of where the initial
base-line is established? (The previous experiment used
a 15% 1initial effort scheme across all 1life cycle
points.)

- 1Is it possible for multiple local optimal solutions (at
each life cycle point) to exist? If so, can this deceive
the simulator into believing it has discovered the
optimal for that life cycle point? (This phenomenon
would cause multiple global optimization schemes to be
produced by the existing model. See Figure 3-5 below.)

QOST
20 Model 18 unable 1o move
beyond first local optimal
It discovers.
10 - \ ‘
True optimal solution
| ! | 1
1 | I 1
0 10 20 30 40
TOTAL PERCENTALLOCATED TO QA

Figure 3-5 Bi-modal Problem

2. The Test Process
A sensitivity experiment was conducted and divided
into two separate sub-experiments, each using different QA
base-line values. The "low”" base-line sub-experiment was
established at 3% of resources allocated to QA and a "high"
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base-line at 50%. These extreme starting points were used to
examine the possible disparities in the model's global (final
QA allocation pattern) and local (individual life cycle point)
"optimal" allocation solutions.

The two sub-experiments were further divided into a
set of three test runs each (for a total of six experiments).
These test runs utilized a 15%, 05%, and 01% pulse size factor
respectively. The variable pulse (PSF) was used to measure
the sensitivity of the model to dynamic pulse size.

Each of the six test runs was limited to a maximum of
20 cycles with the minimum threshold level for cost reduction
setsat zero (effectively eliminating it as a model termination
vehicle). The results of the previous higher PSF experiment
were used as the base-line values to initialize the next run.
For example, the results of the "high" base-line's first 20
cycle run at a 15% pulse size factor were: .293, .137, .137,
.099, .116, .153, .137, .071, .071, .133. These values were
then used as the starting points for the next 20 cycle run at
5% pulse size factor. Although the simulator did not reach
an optimal solution for any of the six runs, the 20 cycle
limit was chosen for the following reasons:

- To reduce the excessive time require to run the ESS
model.

- The degree of change in the QA distribution pattern, with
a static PSF, becomes insignificant after approximately
15 cycles.

- With a minimum threshold level of cost reduction set at
zero, the model could thecoretically run on indefinitely
making minute changes in the allocation pattern.
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3. Experiment Results

Both sub-experiments were initialized with a pulse
size factor of .15. The resulting QA effort distributions for
the first set of high/low runs are shown in Table 3-1 and

Figure 3-6.

TABLE 3-1

RUN SET #1 AT 15% PSF

FIRST SET OF HIGH/LOW RUNS AT 15X PSF

Base 102 20% 30 40% 50%  60% 70% 80% 90X 100%

50% 293 137 .137 .099 .116 .153 .137 .071 .071 .133

.283  .105 .070 .123 .123 .070 .069 .046 .060

(W3}

32 L2

Observing the two distribution patterns indicates that
they have not only met but have over-lapped at various points.
This indicates a bi-modal situation does exist for many of the
life cycle points. Figure 3-6 also proves that the ESS model
is not capable of effectively handling a bi-modal environment.
The model tends to accept the first mode it encounters.
Therefore, if a better 1local solution lies outside of the
currently established pulse factor range, it will be
overlooked. By being "trapped" into a local optimal value,
the model creates inconsistent global distribution schemes

dependent upon where the expert system is started.
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Figure 3-6 15% PSF High/Low Comparison

The distribution adjustment process for the first set
of high/low runs (every four cycles) has been recorded in
Table 3-2, Figures 3-7 and 3-8.

An interesting observation is that the expert system
developed a definite allocation pattern within a relatively
few cycles. With only minor refinements, these patterns
resemble the final high/low distribution schemes from the

third set of runs.
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TABLE 3-2

HIGH/LOW DISTRIBUTION COMPARISON FOR FIRST 20 CYCLES

HIGH/LOW DISTRIBUTION ADJUSTMENTS

3% BASE-LINE MOVEMENTS

CYCLE| 10% 20 30X 40X S0% 60% 702 80% 90% 100%
0 .030  .030 .030 .030 .030 .030 .030 .030 .030 .030

4 053 .053 .030 .030 .035 .035 .035 .040 .040 .053

8 -093  .093 .053 .035 .053 .053 .030 .040 .040 .070
12 162 .162 .081 .053 .081 .08l .046 .045 .040 .045
16 246 .283 105 .070 .123 .123 .076 .069 .046 .060
20 246 .283 105 .070 .123 .123 .076 .069 .046 .060

50% BASE-LINE MOVEMENTS

CYCLE 10% 20% 30 40X  50% 60% 70X 80% 902 100x%
0 -200  .500 .500 .500 .500 .500 .500 .500 .500 .500

4 261 .261 .261 .261 .261 .261 .261 .261 .261 .261

8 £222 137 137 137 137 .137 .137 137 .137 .137
12 -293  .137 .137 .099 .116 .153 .137 .071 .071 .133
16 ©293 137 137 .099 .116 .153 .137 .071 .071 .133
L;, 20 -293 137 .137 .099 .116 .153 .137 .071 .071 .133
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The final distribution schemes from the first runs
were used to initialize the model for a second set of high/low
runs. A reduced pulse size factor of .05 was used for another
20 cycles. Table 3-3 and Figure 3-9 are composites of the

second run's final distribution schemes.

TABLE 3-3

RUN SET #2 AT 5% PSF

SECOND SET OF HIGH/LOW RUNS AT 5% PSF

Base 10% 20% 308 40% 50% 60% 70% 80% 90% 100%

50% 349 156 150 .066 .129 .164 .106 .041 .046 .105

3% .263  .283 105 .073 .123 .141 .046 .060 .040 .059

The two patterns show a definite merging trend in over
50% of the project life cycle. This observation supports the
theory that the model is sensitive to pulse size factor.
Lowering the PSF allows the model to fine tune its global
solution.

A final set of runs was conducted using the results
from the second run and a .01 pulse size factor. The
distributions, after 20 cycles, are shown in Table 3-4 and

Figure 3-10.
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TABLE 3-4

RUN SET #3 AT 1% PSF

THIRD SET OF HIGH/LOW RUNS AT 1X PSF

Base 10% 20% 308 40% 50% 60X 70% 80% 90X 100%

50% .369 .165 .155 .069 .134 .155 .086 .030 .030 .085

3% .264 .283 105 .073 .123 .141 .046 .060 .040 .059

This run provides more proof that the static pulse
size of the expert system degrades overall model performance.
Also, the increasing disparity between effort recommendations
of the first three life cycle points further supports the

model's inability to deal with complex environments.

C. REDESIGN CONSIDERATIONS

The existing expert system can be used as the basis for
redevelopment. This will require minor modifications to the
current 15 Prolog rules, and additions to resolve the
identified limitations of the model. The interfacing files
will remain unaltered, along with the technique of perturbing
each life cycle point sequentially.

New rule additions will include a mechanism for reducing
pulse size factor. The expert system will evaluate when the
current PSF is no longer effective in processing change, and
reduce its value automatically (not to go below a user

established minimum pulse size). The model needs to
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capitalize on the early emergence of a distribution pattern.
This can be used to significantly reduce the number of cycles
the expert system simulation model must go through in deriving
solution. Secondly, the pattern can be used to "look beyond"
local optimums, thus reducing the negative effects of bi-modal
life cycle points.

With these additions, the need for inputting a maximum
number of cycles can be eliminated. The system will be able
to determine a optimal global solution in fewer cycles than

currently required and subsequently run to completion.
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IV. PATTERN SEARCH

A. METHODOLOGY

The limitations identified in the prototype ESS model can
be rectified through the incorporation of an existing pattern
search algorithm. The chosen optimization pattern search
technique 1is the result of extensive academic research
conducted by Robert Hooke and Thomas Jeeves [Ref. 13]. This
technique is based on a simple movement principle that, "a
successful earlier move in a particular direction is worth
attempting again."” [Ref. 13:p. 145]

This search algorithm identifies a pattern early, and
cautiously makes further excursions in the directions of
improvement. If these excursions prove to be successful, the
algorithm adopts them as a base for further excursions, with
an increasing step size per subsequent success. When an
excursions fails to produce an improvement, the technique
performs local explorations, from the unsuccessful location,
as a last attempt for success. If improvement is achieved,
the algorithm adopts these explorations as a base and
continues the excursion process. However, if these 1local
explorations are unsuccessful, the pattern is "destroyed," the
base is reestablished at the last successful position, and the
excursion step size (PSF) is reduced. This three-element

technique accomplishes two tasks. First, it enables an
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optimal pattern to be discovered quickly. Secondly, it allows
fine tuning of the final solution when in the vicinity of a
true minimum. (Ref. 13:p. 145]

This search technique begins with a set of base values
(b0), which may be chosen arbitrarily (user input QA base-line
values). A step size (PSF) is also chosen, which will be used
for perturbations around the base values. The algorithm
begins by applying a negative perturbation (b0 - PSF). If
this new value causes an improvement, it is adopted as a new
base (bl) and the algorithm moves to the next life cycle point
for perturbation. However, if no improvement occurs, a
positive perturbation is applied to the old base (b0 + PSF).
If this new value causes improvement, it is adopted as the new
base (bl); otherwise the original value at b0 also becomes the
new base (bl) value. At this point the algorithm mov~ns to the
next life cycle point for perturbations. In summary, when
attempting to minimize the objective function (y), the
perturbation results are:

~ bl =Db0 - PSF if y(b0 - PSF) < y(bO).

-~ bl =Db0 + PSF if y(b0 + PSF) < y(b0) < (b0 - PSF).

~ bl = b0 if y(b0) < min(y(bO0 - PSF),y(b0 + PSF)].
Figure 4-1 displays the perturbation process over the first
three project life cycle points.

When all perturbations have been performed, the algorithm
moves into the pattern search porticn of the technique. The

old base values (b0) and the newly determined base values (bl)
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Figure 4-1 Perturbation Process
together establish the pattern search step size. Extending an
arrow from b0 to bl and doubling its length determine where
the new temporary head (T) will fall. These temporary values
are mathematically derived by the following equation:

T = b0 + 2(bl + bO)

which is demonstrated in Figure 4-2 below.
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Figure 4-2 Pattern Jump

If the temporary head pattern (T) is an improvement
(lowers total project costs) over the new base's (bl)

distribution, the temporary values are retained by the
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algorithm. Next, the new base values (bl) are redesignated as
the b0 values, and perturbations are conducted around the

temporary head values to determine the next set of bl values

(see Figure 4-3). [Ref. 13:p. 148)
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Figure 4-3 Perturbations/Pattern Jump Successful

As portrayed in the figure above, after all perturbations
have occurred, the distance between all b0 points to bl points
(the ten 1life cycle values) are doubled constituting the
"pattern search" movement to the next set of temporary heads.

This process continues until a temporary head distribution
pattern fails to provide improvement over the new base (bl)
distribution. When this occurs the algorithm conducts "local
explorations" about the temporary head values (T). These
local explorations are actually perturbations, except the
automatic redesignation of bl values to b0 values is
temporarily placed on hold. If the local explorations succeed
in producing an improved distribution pattern, they are

adopted as the new base values (bl) and the redesignation of
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the b0 values occurs (the old bl values are redesignated the

b0 values). The system continues as before (see Figure 4-4).
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Figure 4-4 Local Explorations/Pattern Jump Unsuccessful

Figure 4-4 displays the increasing pattern size that can
occur with repeated success in the same direction. [Ref.
13:pp. 148-149)

However, if the 1local explorations do not produce an
improved distribution scheme, then the pattern is "destroyed"
(see Figure 4-5). Next, the redesignation of the b0 values
occurs and the step size (PSF) is reduced. A new set of
perturbations are then applied to derive the new base values

(bl) and the algorithm proceeds on as before. The search
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Figure 4-5 Pattern Destroved
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continues until step size falls below a preselected minimum
(an input from the user). ([Ref. 13:pp. 148-150]

This technique quickly and smoothly finds a pattern and
capitalizes upon it to discover an optimal solution. When the
technique is in close proximity to the global optimal scheme,
it reduces step size to refine its final answer. The use of
local explorations, when a pattern jump is unsuccessful,
enables the algorithm to "look beyond" local optimal values.
The combination of these characteristics gives the pattern
search techniques a better likelihood of discovering the true
optimal QA distribution than using just a perturbation process

alone.

B. THE PATTERN SEARCH EXPERT SYSTEM ARCHITECTURE

The pattern search expert system module (pattern.ari) is
a refinement of an existing prototype system. However, the
underline purpose of the module remains the same; to derive
the optimum quality assurance distribution for a given
software project.

The pattern search technique was developed separately as
a Arity Prolog rule-based subsystem. This seven=-rule
subsystem was then added to the existing 15-ruled prototype.
Minor modifications to the original rules were required to
facilitate this addition. All interfacing files and rules,

used to communicate with the system dynamics model, were left

intact.
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The original 15-rule prototype system performed important
administrative control functions for the ESS model.
Interfacing with the user, running the simulation model,
creating and maintaining files, and monitoring progress are
just a few of its duties. This functionality will be carried
over to the new expert system module. However, the
prototype's most significant <contribution to further
development is its life cycle point perturbation technique.
With minor modifications this technique will be combined with
the three elements of the pattern search algorithm (pattern
jumps, 1local explorations, and pulse size reduction) to
enhance the expert system's performance.

The new expert system will at the end of each cycle (all
ten life cycle points perturbed), transfer control to the
pattern search algorithm. One of three possible event then
ensue:

- Global adjustments will be made to the QA distribution in
the form of a pattern jump. If successful in reducing
total project costs, then the system continues on with
the perturbation process, again.

- Global adjustments will be made to the QA distribution in
the form of a pattern jump. If unsuccessful in reducing
total project costs, then the system returns to the
perturbation process to perform local explorations about
the temporary head (actually the perturbation process
with a flag set on to indicate the last pattern was
unsuccessful) .

- 1If the local explorations occurred and were unsuccessful
in reducing total project costs then the pattern is
destroyed, the pulse size factor is reduced, and the

perturbation process 1is restarted from the last
successful set of base values.
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The rest of this section is dedicated to displaying and
explaining each of PATTERN.ARI's 22 Arity Prolog rules. To
differentiate the unaltered, modified and new program code the
following will be typed after each subsection heading:

- (Original)--rules that were not altered by the
redevelopment.

- (Modified)--rules that were altered by the redevelopment.
If the rule name was also changed, the indicator will
appear as (Modified - old name: ) -

- (Pattern Search)--rules that were added to the system.
A complete code 1listing of the pattern search expert
system module is provided in Appendix A. For description of
the prototype system the reader is directed to Reference 12,
Chapter III. The following subsections will be presented in
the same manner as the earlier work for continuity.
1. Rule--pga (Modified)

This rule is used only once, in conjunction with the
initial run rule, to initialize the system. Four global
variables are established to monitor all previous actions
taken by the expert system module. The "newcycle" and
"number" predicates keep track of the current cycle and
iteration (life cycle point) the system is at, respectively.
The "calc" predicate monitors whether the last applied pulse
was negative or positive. Lastly, the "flag" predicate
records if the last pattern jump was successful or not. These
four global variables play a key role in determining the

appropriate sequence of events within the system.
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Next, this rule queries the user for five parameters:
pulse size factor, minimum QA effort value, maximum QA effort
value, minimum desired pulse size (used as the exit
condition), and the initial ten base-line QA values. After
the user has entered the tenth base-line wvalue, the rule
records these initial parameters in the SUMMARY.DAT file for
future reference. The dopga rule is called, whicn takes
control and operates the system in an automatic mode until an

optimal QA distribution pattern has been discovered.

pga:-

/* sets initial global values */
asserta(number(1)),
asserta(calc(0)),
asserta(flag(0)),
asserta(newcycle(1)),

/* user input queries */
write(What is your desired pulse size factor? ),
read(PU),
asserta(size(PU)),
write(What is the minimum QA value? ’),
read(MN),
asserta(min(MN)),
write("What is the maximum QA value? '),
read(AX),
asserta(max(AX)),
write(What is your minimum desired pulse size? "),
read(MP),
asserta(minpsf(MP)),
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write(CEnter the initial QA distribution. Point 1 ),

read(QA1l),
write(’
read(QA2),
write(
read(QA3),
write(’
read(QA4),
write(’
read(QAS),
write(’
read(QA6),
write(
read(QA7),
write(’
read(QAS8),
write(
read(QA9),
write(
read(QA10),

/* prints starting values into the summary output */

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

Point 9

Point 10 ),

print_head (PU,MN,AX,MP),

/* initializes the system with user inputs */

initial_run(QA1,QA2,QA3,QA4,QA5,QA6,QA7,QA8,QA9,QA10),

dopqa.

2. Rule--dopga (Original)

This rule is the repeat/fail loop which automates the

pattern search ESS model.

the built-in

back-tracking capabilities

,)’

),

of

the

To accomplish this, it makes use of

Prolog




language. The repeat statement always succc iz when
encountered by the interpreter. This tells the interpreter to
perform all statements that follow it. The main »lc is then
invoked, and when finished moves to the fail statement. The
fail statement causes the interpreter to be "tricked" into
believing it needs more data to make this statement succeed,
and automatically back tracks in search of these data. It
encounters the main rule and invokes it. After the main rule
has finished, the interpreter further back tracks to the
repeat statement and the cycle continues as before.

The rule continues to run indefinitely. The system
runs until it encounters a termination condition elsewhere in

the progran.

dopqa:-
repeat,
main,

fail.

3. Rule--main (QOriginal)

This rule 1is the central control point for the
perturbation process. It passes essential system status data,
such as the current 1life cycle point for perturbations
(number (ITER)) and last pulse direction applied (calc(TYPE)),
to the pulse application rules. The rule recalls the

previously derived CUMMD from the system's built-in recording

47




system (cummdold). It then compares the previcus CUMMD with
the most currently derived CUMMD (read cummd), to determine if
a negative (calc_less) or a positive (calc_mnore) pulse should
be applied to the life cycle point. Finally, the rule outputs
statistics and current life cycle undergoing perturbations to

the screen for performance monitoring by the user.

main:-

/* gets the x value for the pulse */
call(number(ITER)),
call(cale(TYPE)),

/* gets the previous man days */
PREV is {[[ITER + 8] mod 10] + 11,
call(cummdold(PREV,CHECK)),
call{cummdold(ITER,OLD)),

/* gets the man days .rom the last QA numbers */
read_cummd,
call(cummd(NEW)),

/* calculates the new y value (QA) for the current x value */
case([NEW =< CHECK -> calc_less(ITER,NEW,OLD,TYPE),

NEW > CHECK -> calc_more(ITER,NEW,OLD,CHECK,TYPE)]),

/* prints to screen module statistics for monitoring */

statistics,

write( Iteration = "),write(ITER).

4. Rule--end cycle (Modified--old name: quit test)

This rule starts the pattern search algorithm after

the perturbation cycle has been completed. It also advances
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the cycle count (newcycle(NEXT)) and outputs the current cycle

to the screen for monitoring.

end_cycle(NEW,ITER):-
call(newcycle(NOW)),

/* initializes the "Pattern Search" algorithm */
ifthenelse(NOW > 1 pattern_search(NEW,ITER),

output_cummd(NEW,ITER)),

/* advances cycle number */
NEXT is NOW + 1,
write(Cycle number = "),write(NOW),
retract(newcycle(NOW)),
asserta(newcycle(NEXT)).

5. Rule--pattern search (Pattern Search)

This rule uses the flag predicate value to determine
a course of action. If TYPE = 0 it indicates that the last
pattern jump was successful and to attempt another search
(temp base). However, if TYPE = 1 it indicates that the last
pattern jump was unsuccessful and that local explorations were
conducted. The rule calls the reduction test rule to evaluate

if the local explorations were successful.

patiern_search(NEW,ITER):-
call(flag(TYPE)),
case([TYPE =:= Q -> temp_base(NEW,ITER),
TYPE =:= 1 -> reduction_test(NEW,ITER)]),!.
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6. Rule---reduction test (Pattern Search)

This rule determines if the 1local explorations,
following an unsuccessful pattern jump, have produced an
improvement in total project costs. The rule calls on the
last successful perturbation base value's CUMMD
(b1_cummd (BASE)) and compares that value with the 1local
exploration's CUMMD. If the 1local explorations produce a
reduction in total costs the new temporary values are adopted
as the base for the next pattern search. However, if the
local explorations are not an improvement, then the

reduce_pulse rule is invoked.

reduction_test(NEW,ITER):-

call(bl_cummd(BASE)),
ifthenelse(NEW < BASE,temp_base(NEW,ITER),
reduce_pulse(NEW,ITER)),!.

7. Rule--temp base (Pattern Search)

This rule actually performs the pattern jump on the
ten 1life «cycle points. First, it outputs the final
perturbation cycle CUMMD to the SUMMARY . DAT file
(output_cummd). Then it resets all base CUMMD recording files
with the most current values (bO_cummd and bl cummd). Next,
each life cycle point is adjusted mathematically creating the
new pattern search distribution. The rule then calls new _base

rule to redesignate the old base (b0) and the temporary head
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(T) values. A pattern search header and listing of the new
temporary values are recorded in the SUMMARY.DAT file. Next,
the simulation model is called (shell(model)), and the total
project costs for the pattern search distribution is
determined. The simulation derived CUMMD is then called back
into the rule (read cummd) and recorded into the SUMMARY.DAT
file. A comparison between the pattern search distribution
CUMMD (HEAD) and the last perturbation distribution CUMMD
(NEW) is conducted. If the pattern search fails to lower
total project costs the local explorations rule is called.
Finally, the system updates the cummdold recording system and
erases the temporary head (T) values for the next pattern
search run (the T values were redesignated as TPFMQA values by

the new base rule).

temp_base(NEW,ITER):-
output_cummd(NEW,ITER),

/* resets "flag" to record the last action taken */
abolish(flag/1),
asserta(flag(0)),

/* resets both base CUMMD value holders */
call(bl_cummd(OLD)),
abolish(b0_cummd/1),
asserta(b0_cummd(OLD)),
abolish(bl_cummd/1),
asserta(bl_cummd(NEW)),

/* pattern search algorithm */

/* point one */
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call(b0(1,Q1)),
call(tpfmqa(1,QA1)),

Al is Q1+[2*[QA1-Q1]],
qa_test(A1,T1),
asserta(t(1,T1)),

/* point two */
call(b0(2,Q2)),
call(tpfmqa(2,QA2)),

A2 is Q2+[2*[QA2-Q2]],
qa_test(A2,T2),
asserta(t(2,T2)),

/* point three */
call(b0(3,Q3)),
call(tpfmqa(3,QA3)),

A3 is Q3+[2*[QA3-Q3]],
qa_test(A3,T3),
asserta(t(3,T3)),

/* point four */
call(b0(4,Q4)),
call(tpfmqa(4,QA4)),

A4 is Q4+[2*[QA4-Q4]],
qa_test(A4,T4),
asserta(t(4,T4)),

/* point five */
call(b0(5,Q5)),
call(tpfmqa(5,QA5)),

AS is Q5+[2*[QA5-Q51],
qa_test(AS5,TS),
asserta(t(5,T5)),

/* point six */
call(b0(6,06)),
call(tpfmqa(6,QA6)),
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A6 is Q6+[2*[QA6-Q6]],
qa_test(A6,T6),
asserta(t(6,T6)),

/* point seven */
call(b0(7,Q7)),
call(tpfmqa(7,QA7)),

A7 is Q7+[2*[QA7-Q7]],
qa_test(A7,T7),
asserta(t(7,T7)),

/* point eight */
call(b0(8,Q8)),
call(tpfmqa(8,QA8)),

A8 is Q8+[2*[QA8-Q8]],
qa_test(A8,T8),
asserta(t(8,T8)),

/* point nine */
call(b0(9,Q9)),
call(tpfmqa(9,QA9)),

A9 is Q9+[2*[QA9-Q91],
qa_test(A9,T9),
asserta(t(9,T9)),

/* point ten */
call(b0(10,Q10)),
call(tpfmqa(10,QA10)),

Al0 is Q10+{2*[QA10-Q10]],

qa_test(A10,T10),
asserta(t(10,T10)),

/* establishes a new temporary base */

new_base,

/* notification in output that a pattern search occurred */

open(S,’summary.dat’,a),
nl(S),write(S,
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¥ 3 de de de I de g o e d K ke de ke ke e Paftem Search ******************')
'

nl(S),nl(S),close(S),

/* runs the system dynamics model for pattern search CUMMD */
output_tpfmqa,
shell(model),
read_cummd,
call(cummd(HEAD)),
output_cummd(HEAD,ITER),

/* if CUMMD not an improvement, local explorations occur */
ifthen(HEAD >= NEW,local_explorations),

/* resets CUMMD recording system */
retract(cummdold(ITER,NEW)),
asserta(cummdold(ITER,HEAD)),

/* erases temporary head (T) values */
abolish(t/2),!.

8. Rule~--ga test (Pattern Search)

This rule is used by the temp base rule to keep from
pattern jumping below the user established minimum QA level.
The post pattern jump value is compared with the allowed

minimum value (min(MINQA)) and the greater value is adopted.

qa_test(IN,OUT):-
call(min(MINQA)),
ifthenelse(IN < MINQA,OUT is MINQA,OUT is IN).

9. Rule--new_base (Pattern Search
This rule performs two functions. First, it

redesignates the last perturbation derived distribution as the

54




old base distribution (b0). Secondly, it redesignates the
pattern search derived temporary head (T) distribution as the
temporary base (TPFMQA's) to conduct the next set of

perturbations from.

new_base:-

/* calls last perturbation and pattern search values */
call(tpfmqa(1,QA1)),
call(tpfmqa(2,QA2)),
call(tpfmqa(3,QA3)),
call(tpfmqa(4,QA4)),
call(tpfmqa(5,QAS)),
call(tpfmqa(6,QA6)),
call(tpfmqa(7,QA7)),
call(tpfmqa(8,QA8)),
call(tpfmqa(9,QA9)),
call(tpfmqa(10,QA10)),
call(t(1,A1)),
call(t(2,A2)),
call(t(3,A3)),
call(t(4,A4)),
call(t(5,A5)),
call(t(6,A6)),
call(t(7,A7)),
call(t(8,A8)),
call(t(9,A9)),
call(t(10,A10)),

/* resets old base values */
abolish(b0/2),
asserta(p0(1,QAl)),
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asserta(b0(2,QA2)),
asserta(b0(3,QA3)),
asserta(b0(4,QA4)),
asserta(b0(5,QAS5)),
asserta(b0(6,QA6)),
asserta(b0(7,QA7)),
asserta(b0(8,QA8)),
asserta(b0(9,QA9)),
asserta(b0(10,QA10)),
/* resets a new temporary base values */
abolish(tpfmqa/2),
asserta(tpfmqa(1,Al)),
asserta(tpfmqa(2,A2)),
asserta(tpfmqa(3,A3)),
asserta(tpfmqa(4,A4)),
asserta(tpfmqa(5,AS)),
asserta(tpfmqa(6,A6)),
asserta(tpfmqa(7,A7)),
asserta(tpfmqa(8,A8)),
asserta(tpfmqa(9,A9)),
asserta(tpfmqa(10,A10)),!.

10. Rule--local explorations (Pattern Search)

This rule is invoked by the temp base rule each time
the pattern search distribution fails to lower total project
costs. This rule sets the flag predicate to 1. On the next
cycle this flag is detected by the pattern search rule
notifying it that the new perturbation distribution is to be
treated as local explorations. Further evaluation of the
results are required before the system can adopt these values.
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The rule also ocutputs a local exploration header in the

SUMMARY.DAT file to record the occurrence.

local_explorations:-

/* resets "flag" to record last action taken */
abolish(flag/1),
asserta(flag(1)),

/* notification in output that local exploration occurred */
open(S, summary.dat’,a),
nl(S),write(S,

2 e Jr e & ok ke de de ok e ok ok ke ok ok ke Local Explorations ****************’)
’

nl(S),nl(S),close(S),!.

11. Rule--reduce pulse (Pattern Search)

This rule is invoked by the reduction test rule when
local explorations are unsuccessful in lowering total project
costs, The current pulse size factor (size (PULSE)) is
brought into the rule and halved. This event is then recorded
with a pulse reduction header in the SUMMARY.DAT file along
with the new pulse size value. The pattern is then destroyed
by resetting the distribution values back to the last
successful perturbation values (bo0). Next, the simulation
model is run (shell(model)) with the reset values to derive
CUMMD. Both the new CUMMD and reset distribution values
(TPFMQA's) are recorded in the SUMMARY.DAT file, and the
cummdold recording system is updated. Finally, the rule

checks to see if the pulse reduction value is less than the
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user input minimum PSF. If it falls below the minimum
(minpsf (MPSF)), then the run stop rule is invoked for system
termination. Otherwise the flag is reset to 0 and control is

transferred back to the perturbation process.

reduce_pulse(NEW,ITER):-
output_cummd(NEW,ITER),
call(size(PULSE)),
call(minpsf(MPSF)),
call(b0_cummd(OLD)),
/* reduces current pulse size (PSF) by half */
REDUCED is round(PULSE / 2,3),
/* notification in output that pulse reduction occurred */
open(S,’ summary.dat’,a),
nl(S),write(S,
Yk Rk KRR Pulse reduction ~ *****ikxxssiwn)
nl(S),write(S, Pulse size is: "),write(S,REDUCED),
nl(S),nl(S),
close(S),
/* resets old base TPFMQA values to those prior */
/* to the pattern search and local explorations */
call(b0(1,QA1)),
call(b0(2,QA2)),
call(b0(3,QA3)),
call(b0(4,QA4)),
call(b0(5,QAS5)),
call(b0(6,QA6)),
call(b0(7,QA7)),
call(b0(8,QA8)),
call(b0(9,QA9)),
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/*

call(b0(10,QA10)),
abolish(tpfmqa/2),
asserta(tpfmqa(1,QA1)),
asserta(tpfmqa(2,QA2)),
asserta(tpfmqa(3,QA3)),
asserta(tpfmqa(4,QA4)),
asserta(tpfmqa(5,QA5)),
asserta(tpfmqa(6,QA6)),
asserta(tpfmqa(7,QA7)),
asserta(tpfmqa(8,QA8)),
asserta(tpfmqa(9,QA9)),
asserta(tpfmqa(10,QA10)),
output_tpfmqa,
shell(model),
read_cummd,
call(cummd(AFTER)),
output_cummd(AFTER,ITER),
resets CUMMD value holders */
abolish(bl_cummd/1),
asserta(bl_cummd(OLD)),
retract(cummdold(10,BEFORE)),
asserta(cummdold(10,AFTER)),
retract(cummdold(ITER,NEW)),
asserta(cummdold(ITER,AFTER)),
terminates the model if pulse is below minimum */
retract(size(PULSE)),
ifthenelse(REDUCED > = MPSF,asserta(size(REDUCED)),
run_stop(OLD)),

/* resets "flag" to record last action taken */

abolish(flag/1),
asserta(flag(0)),!.

59




12. Rule--print _head (Modified--old name: calc zero)

This rule creates and records into the SUMMARY.DAT
file all expert system derived QA distributions (TPFMQA) that
are sent to the system dynamics model, and the total project
costs (CUMMD) that are returned. It also records the user

input parameters as a header to this listing.

print_head(PU,MN,AX,MP):-
create(S, summary.dat’),
write(S,’ Pulse size factor = "),write(S,PU),nl(S),
write(S,’ Minimum QA value = ’),write(S,MN),nl(S),
write(S,’ Maximum QA value = ’),write(S,AX),nl(S),
write (S, Minimum pulse size = "),write(S,MP),nl(S),
nl(S),close(S).

13. Rule--calc less (Modified)

This rule applies the negative pulse during the
perturbation process. It is always the first pulse applied to
each of the ten life cycle points. Because of this fact it is
tasked with the administrative duties of the perturbation
process. These duties include: updating the cummdold
recording system, cutputting previously derived CUMMDs to the
SUMMARY.DAT file, determining when the pattern search process
should be invoked, and keeping a track of the original "pre-
perturbation" QA value for a life cycle point (holder(QAi)).
After applying the negative pulse, the rule compares the new

QA value (NEWQA) to the user established minimum QA value
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(min (MINQA)). The greater of the two values is adopted.
Next, the rule outputs the new QA distribution (output tpfmga)
to the SUMMARY.DAT file and runs the simulation model with
these values. Finally, it advances the iteration count
(number (NEWITER)) and records the fact that a negative pulse

was applied (calc(0)).

calc_less(ITER,NEW,OLD,TYPE):-

/* records man-days for this cycle */
retract(cummdold(ITER,OLD)),
asserta(cummdold(ITER,NEW)),
ifthenelse(ITER =:= 1,end_cycle(NEW,ITER),

output_cummd(NEW,ITER)),

/* reads the current QA values */
call(tpfmqa(ITER,QA)),

/* establishes an "initial" QA holder for perturbation use */
abolish(holder/1),
asserta(holder(QA)),
call(size(PULSE)),

/* calculates a new QA value (NEWQA) */

NEWQA is round(QA-PULSE,3),

/* checks if the new QA is less than the minimum (MINQA) */

/* add the new QA value to the database */
call(min(MINQA)),
retract(tpfmqa(ITER,QA)),
ifthenelse(NEWQA < MINQA,asserta(tpfmqa(ITER,MINQA)),

asserta(tpfmqa(ITER,NEWQA))),

/* moves to the next life cycle position */
retract(number(ITER)),

NEWITER is [ITER mcd 10] + 1,
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asserta(number(NEWITER)),
ifthen(ITER =:= 1,output_break),
output_tpfmqa,
shell(model),

/* records that last pulse was negative */
retract{calc(TYPE)),

asserta(calc(0)).

14. Rule--calc more (Modified)

This rule applies to both the positive pulse and no
pulse (return to the original value) during the perturbation
process. It is only invoked by the main rule when the
negative pulse was unsuccessful at reducing total project
costs. First, the rule internally resets the iteration count
back one, to allow the rule to reference the current 1life
cycle point data (the prior negative pulse advanced the
iteration count!). When the last TYPE value is 0 (last pulse
was negative), the rule applies a positive pulse and calls the
calc_up rule. Likewise, if the TYPE value is 1 (last pulse
was positive), the original QA value before any perturbations
were applied is restored and the calc orig rule is called.
The element of this rule is the maximum QA value limiting
code. The derived QA value from the positive pulse is
compared with the maximum QA value input by the user. The

minimum of the two values is adopted.

62




cale_more(ITER,NEW,OLD,CHECK,TYPE):-
/* resets the life cycle position back 1 */
NEWITER is [[[ITER + 8] mod 10] + 1],
call(tpfmqa(NEWITER,QA)),
/* calls the "initial" QA value for perturbation use */
calltholder(VALUE)),
call(size(PULSE)),
/* computes the new QA value depending on whether the last */
/* pulse was negative (TYPE = 0) ¢ positive (TYPE = 1) */
case([TYPE =:= 0 -> NEWQA is round(VALUE +PULSE,3),
TYPE =:= 1 -> NEWQA is VALUE]),
/* checks if new QA is greater than the maximum (MAXQA) */
call(max(MAXQA)),
retract(tpfmqa(NEWITER,QA)),
ifthenelse(NEWQA > MAXQA,asserta(tpfmqa(NEWITER,MAXQA)),
asserta(tpfmqa(NEWITER,NEWQA))),
retract(cale(TYPE)),
/* resets the type of calculation */
case({TYPE =:= 0 -> calc_up(NEW,NEWITER),
TYPE =:= 1 -> calc_orig(NEWITER,ITER,NEW,OLD,CHECK)]).

15. Rule--calc_up (Original)

This rule follows the application of a positive pulse

by the calc more rule. It records the last simulation derived

CUMMD and QA distribution (TPFMQA) intc the SUMMARY.DAT file.

Secondly, it records the fact that a positive pulse was

applied (calc(l)). And finally, runs the simulation model

with the current QA distribution scheme.
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cale_up(NEW,NEWITER):-
asserta(calc(1)),
output_cummd(NEW,NEWITER),
output_tpfmqa,
shell(model).

16. Rule--calc orig (Original)
This rule follows the application of no pulse by the

calc_more rule. It records the last simulation derived CUMMD
and QA distribution (TPFMQA) into the SUMMARY.DAT file. This
rule resets TYPE to 0 and returns directly to the calc less

rule for perturbations around the next life cycle point.

cale_orig(NEWITER,ITER,NEW,OLD,CHECK):-
asserta(calc(Q)),
output_cummd(NEW,NEWITER),
output_tpfmqa,
calc_less(ITER,CHECK,OLD,0).

17. Rule--run_stop (Modified--old name: no_calc)

This rule is the only means of terminating the expert
system simulation model. It is invoked by the reduce pulse
rule when pulse size is reduced below a user established
minimum. The best CUMMD value is then assessed and recorded

in the SUMMARY.DAT file.




run_stop(NEW):-
call{cummdold(10,BEST)),
open(S,’summary.dat,a),
nl(S),nl(S),
write(S, The best CUMMD is: '),
ifthenelse(BEST < NEW,write(S,BEST),write(S,NEW)),
nl(S),
close(S),
halt.

18. Rule--output tpfmga (Original)

This rule outputs a current QA distribution scheme to
two different files. First, the distribution is recorded in
the SUMMARY.DAT file for post run process evaluation by the
user. Secondly, the distribution is translated and stored in
the PROJECT.DNX file for use by the system dynamics simulation

nmodel.

output_tpfmqa:-
call(tpfmqa(1,QA1)),
call(tpfmqa(2,QA2)),
call(tpfmqa(3,QA3)),
call(tpfmqa(4,QA4)),
call(tpfmqa(5,QAS)),
call(tpfmqa(6,QA6)),
call(tpfmqa(7,QA7)),
call(tpfmqa(8,QA8)),
call(tpfmqa(9,QA9)),
call(tpfmqa(10,QA10)),
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create(D,’project.dnx’),
write(D,'T TPFMQA="),
write(D,QA1),write(D,’ "),
write(D,QA2),write(D,’ "),
write(D,QA3),write(D,’ "),
write(D,QA4),write(D, "),
write(D,QAS),write(D,’ ),
write(D,QA6),write(D,’ ),
write(D,QA7),write(D, ),
write(D,QA8),write(D,’ '),
write(D,QA9),write(D,’ '),
write(D,QA10),nl(D),
close(D),
open(S,’summary.dat’,a),
write(S, TPFMQA="),
write(S,QAl),write(S,/"),
write(S,QA2),write(S, /"),
write(S,QA3),write(S,”/),
write(S,QA4),write(S,”/’),
write(S,QAS),write(S,/’),
write(S,QA6),write(S,/"),
write(S,QA7),write(S,/),
write(S,QA8),write(S,/"),
write(S,QA9),write(S,/),
write(S,QA10),nl(S),
close(S).

19. Rule--ocutput cummd (Original)

This rule output total project costs in cummulative

man-days to the SUMMARY.DAT file. This CUMMD value follows
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its related QA distribution scheme, in the file layout, and is

number with the iteration it corresponds to.

output_cummd(NEW,ITER):-
open(S,’summary.dat’,a),
write(S,ITER),write(S,. ),
write(S,'CUMMD="),write(S,NEW),nl(S),
close(S).

20. Rule--output break (Original)

This rule is invoked by the calc less rule at the
beginning of a new cycle. It records a new cycle header into

the SUMMARY.DAT file.

output_break:-
open(S,’ summary.dat’,a),
nl(S),write(S,
ekRRRRRRRRERE SPATt Of 3 new Cycle  FRERXRAARARRR)
nl(S),nl(S),
close(S).

’

21. Rule--read cummd (Original)

This rule translates and reads into the expert system
module the CUMMD value currently stored in the PROJECT.OUT
file. This file records the total project costs derived by

the system dynamics simulation model.
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read_cummd:-
open(C, project.out’,r),
read(C,CUMMD),
abolish(cummd/1),
asserta(CUMMD),
close(C).

22. Rule--initial run (Modified)

This rule is only invoked once to assist the pga rule
in initializing and starting the system. Accepting the ten
base-line QA values it sets both the o0ld base (b0) and the
temporary base (TPFMQA) to these values. The initial QA
distrisution is then recorded in the SUMMARY.DAT file and the
simuletion is run to derive the initial CUMMD. This CUMMD is
used to initialize the base CUMMD recording system (bO_cummd

and bl cummd) along with the cummdold recording system.

initial_r1(QA1,QA2,QA3,QA4,QA5,QA6,QA7,Q0A8,QA9,QA10):-

/* establLshes the initial temporary base */
asserta ' tpfmqa(1,QA1)),
asserto'tpfmqa(2,QA2)),
asserta tpfmqa(3,QA3)),
asserta(tpfmqa(4,QA4)),
asserta(tpfmqa(5,QAS)),
asserta(tpfinqa(6,QA6)),
asserta(tpfmqa(7,QA7)),
asserta(tpfmqa(8,QA8)),
asserta(tpfmqa(9,QA9)),
asserta(tpfmqa(10,QA10)),
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/* establishes the initial base for pattern search */
asserta(b0(1,QA1)),
asserta(b0(2,QA2)),
asserta(b0(3,QA3)),
asserta(b0(4,QA4)),
asserta(b0(5,QAS)),
asserta(b0(6,QA6)),
asserta(b0(7,QA7)),
asserta(b0(8,QA8)),
asserta(b0(9,QA9)),
asserta(b0(10,QA10)),

/* runs the system dynamics model */
output_tpfmqa,
shell(model),
read_cummd,
call(cummd(INITIAL)),

/* records initial CUMMDs for perturbation comparisons */
asserta(b0_cummd(INITIAL)),
asserta(bl_cummd(INITIAL)),
asserta(cummdold(1,0)),
asserta(cummdold(2,0)),
asserta(cummdold(3,0)),
asserta(cummdold(4,0)),
asserta(cummdold(5,0)),
asserta(cummdold(6,0)),
asserta(cummdold(7,0)),
asserta(cummdold(8,0)),
asserta(cummdold(9,0)),
asserta(cummdold(10,INITIAL)),
retract(cummd(INITIAL)).
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C. SYSTEM OPERATIONS
To use the pattern search ESS model the following hardware

and software is required:

- IBM compatible microcomputer.

- 80286 or better microprocessor.

- math coprocessor.

- 640k RAM.

- 20M hard drive.

- PCDOS or MSDOS 2.0 or better.

- Arity Prolog 5.0 Interpreter software.

- the system dynamics simulation model and associated
editors and files.

- the expert system module (PATTERN.ARI).

- the interfacing files (SUMMARY.DAT, PROJECT.DNX, PROJECT.
OUT, PROJECT.DRS, and MODEL.BAT).

The interpreter files, expert system program, simulator
files, and interfacing files should all be stored under a
separate directory on the computer's hard drive. Next, the
user can modify the system dynamics model's internal variables
(project.dyn) using the pd.com file, to reflect the predicted
behavior of a proposed software project. Complete information
on this process is contained in Reference 11. The PROJECT.DYN
file currently contains the NASA DE-A project estimates and
data. To conduct further experiments using this project
requires no editing.

The expert system simulation model is initiated by typing

"api" at the DOS prompt, as shown below:
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C:\(directory name)> api

This loads the Arity Prolog Interpreter which displays the

software package information and input prompt (?2-).
Arity/Prolog Interpreter Version 5.0
Sfpyright (C) 1989 Arity Corporation

At the prompt the name of the prolog program, without the
extension, is typed enclosed in square brackets and followed
by a period.

?- [pattern].

The interpreter is case sensitive. All commands should be
typed as 1lower case letters, as capitals are treated as
variables. A period must follow all entries to the system.
This tells the interpreter, when accompanied by a carriage
return, that the input is complete and to expect nothing clse
at this time.

At this point the interpreter compiles the program and
reviews it for syntax errors. The system will respond with a
second prompt. To start the expert system model the program's
initialization rule name is typed at the prompt:

yes
?- pga.

This brings up the user input queries, that have been coded
into the rule, one at a time. Each input is to be followed by
a period and a carriage return. Fractional numbers require a
zero prior to the decimal point. The interpreter will not
accept them in any other format. The complete input screen is
displayed below with sample entries:

71




What is your desired pulse size factor? 0.05.
What is the minimum QA value? 0.02.
What is the maximum QA value? 0.5.

What is your minimum desired pulse size? 0.01.

Enter the initial QA distribution. Point 1 0.15.
Point 2 0.15.
Point 3 0.15.
Point 4 0.15.
Point 5 0.15.
Point 6 0.15.
Point 7 0.15.
Point 8 0.15.
Point 9 0.15.
Point 10 0.15

After the tenth base-line QA value has been entered, the
system shifts into an automatic mode requiring no intervention
from the user. Depending on the characteristics of the
software project being simulated and the quality/speed of the
hardware used, the entire process could take anywhere from 45
minutes to two days to derive an optimum. When the system has
terminated (screen shows "Press any key to continue...."), the
actual sequence of events the model used to reach an optimal
QA distribution can be retrieved from the SUMMARY.DAT file.
A copy of a NASA DE-A project results is displayed in Appendix

B.

D. SYSTEM TEST

1. DE-A Project

The QA allocation performance of the pattern search
ESS model was evaluated using the DE-A software project. The
system was initialized with the exact parameters used in the

prototype's performance evaluation. The only exception was a
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minimum pulse size factor value of 1%, which was an addition
to the expert system module.
The results of the experiment are compared with

previous experiments below:

QA costs (man-days) Total Costs (man-days)
Actual DE-A 524 2,200
Manually derived 161.9 1,524.5
Prototype ESS 170.4 1,521.07
Pattern Search ESS 176.6 1,489.34

The results clearly show that the performance of the
pattern search ESS is far superior to any of its predecessors.
Figure 4-6 displays a composite of the QA distribution
patterns of the four experiments listed above. As seen in the
graph, the model places an extreme emphasis on quality
assurance at the beginning of the project's life cycle. This
technique causes the project to avoid: (1) the excessive cost
of removing design errors during the testing phase; and (2)
the tendency of early committed errors creating additional
errors or growing in size and complexity as the life cycle
progresses. Early detection and correction of errors allows
the ESS model to reduce a considerable number of the latter
life cycle points' values to within the minimum QA wvalue
(established by the user at 2%).

Another advantage to the pattern search ESS model is
its level of sophistication. The prototype requires that a

maximum number of cycles setting be entered by the user. This
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Figure 4-6 Composite of QA Distributions

parameter was used by the prototype to terminate the ESS model
during all experiment runs. For this reason the prototype
never successfully reached an "optimal" distribution pattern
within a reasonable time 1limit (reasonable time 1limit
established by the maximum cycle parameter).

The pattern search ESS model uses only one termination
criteria, minimum puvlse size factor (PSF). This ensures the
model runs until the PSF is reduced to the level that it can
no longer affect any substantial changes (e.g., below .01

PSF) .
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2. Performance Testing

The high/low experiments used in evaluating the
performance of the prototype model were conducted on the
pattern search ESS. The "high" base-line was established at
50% of total resources dedicated to QA, and the "low" at 3%.
All initialization parameters were identical to those used on
the prototype experiments: base line QA at .15, minimum QA
level at .02, and pulse size factor at .05. Additionally,
minimum pulse size was set at .01 and maximum QA level at .50.

The "high" run produced a solution after 12 cycles,
and the "low" run after seven cycles. Both final QA
distribution schemes are shown in Table 4-1 below. The total
costs associated with these schemes were 1522.33 and 1524.65

total man-days, respectively.

TABLE 4-1

PATTERN SEARCH HIGH/LOW EXPERIMENT RESULTS

PATTERN SEARCH ESS HIGH/LOW COMPARISON

Base 10% 20% 302 40% 50% 602 70% 80% 50 100%

50% |.250 .225 .150 .050 .150 .150 .100 .087 .020 .020

3% |.205 .205 .155 .080 .155 .155 .130 .020 .020 .020
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Figure 4-7 shows the graphical representation of the

twe distribution schemes. The similar patterns are a strong
indication that the pattern search ESS is capable of deriving
identical distribution patterns independent of the base-line
level. This provides strong evidence that the pattern search
algorithm is not wvulnerable to a bi-modal (multiple 1local

optimals) environment.
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V. SENSITIVITY ANALYSIS

A. INTRODUCTION

To further evaluate the performance of the pattern search
ESS model, a set of six sensitivity experiments was developed.
Using the DE-A project, each experiment focused on a single

table function or group of related constants for altercation.

The areas of focus were: (1) project performance estimates,
(2) productivity of personnel, (3) nominal number of errors,
(4) rework manpower required, (5) gquality assurance manpower

required, and (6) percentage of bad fixes.

Experiments two through six were further divided into two
separate sub-experiments. Both sub-experiments addressed the
same area of focus. However, the first (e.g., Experiment 2a)
uniformly increased the focus areas' values while the second
(e.g., Experiment 2b) did the exact opposite. These new
values were compiled separately into the system dynamics
portion of the ESS model and an optimal pattern search was
conducted.

Resulting statistics from the 11 sub-experiments were
recorded in experimental data sheets for further sensitivity
analysis. These data sheets follow each experimental write-
up and summarize the results in both tabular and graphic form.
An ESS-decrived "base case" solution (base QA), using the

original DE-A project values, was established as the
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performance standard for each experiment. Comparisons between
the base case and experimental results will provide insights
into the sensitivity of the pattern search ESS model. The
data sheets contain the following displays:

- Project Statistics Tables--Two statistics tables are
provided per sub-experiment. These tables provide data

on estimated completion time (days), effort required
(man-days), and total errors for a particular development
environment. The first table uses an ESS generated QA

distribution scheme (Test QA) to derive its results. The
second table uses the actual project's QA allocation
scheme (DE-A).

- QA Comparison Table--This table displays QA effort over

ten life cycle points. Three distribution schemes are
presented: (1) the actual DE-A project's QA distribution
scheme (DE-A), (2) the ESS derived scheme using unaltered

DE-A project values (Base QA), and (3) the ESS derived
scheme with focus area values altered (Test QA).

- QA Comparison_ Charts--These 1line charts graphically
display the QA comparison table's three distribution
schemes. A separate chart is provided for each sub-
experiment.

- Statistical Comparison Charts--These bar charts
graphically display the data contained in the project

statistics tables. This data is broken down into an
effort/time comparison chart and an error comparison
chart for each experiment. Both graphs display interest
areas in groups of three along the X-axis as follows:

(1) negatively altered focus area's value (e.g.,
experiment 2b), (2) base case value (Base QA), and (3)
positively altered focus area's value (e.g., experiment
2a).

Experiment 1 consisted of a single test case and only
required a single QA ccmparison chart. To reduce redundancy
of information, the base case statistics table (Base QA) was
provided only once in place of the experiment one's other
comparison chart. All references to base case values (Base

QA) are directed to this table.
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B. RESULTS OF EXPERIMENTAL TESTS
1. Experiment 1: Accurate Estimates

This experiment examines the ESS model's optimal QA
distribution when the project is accurately estimated. Four
initialization constants within the system dynamics module
were altered: (1) real job size in DSI (RJIBDSI), (2) tasks
underestimation fraction (UNDEST) , (3) total man-days
(TOTMD1), and (4) time to develop (TDEV1l). The experimental

values are shown in Table 5-1 below.

TABLE 5-1

ESTIMATED = ACTUAL

Experiment 1

RJBDSI = 24400 UNDEST = O

TOTMD1 = 2100 TDEV1 = 387

Actually estimating the project's size, cost, and
schedule reduced the constraint pressures experienced by the
development team. As expected, the system dynamics model (DE-
A) produced final results that were closed to the above
productivity estimates. The DE-A statistics table also shows
a reduction in error generation, which is attributable to the
experimentally-reduced schedule pressures. A lower error
generation rate combined with actual project's high level of
QA and rework ensured that very few errors escape to testing.
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Comparing the ESS-produced statistics (Test QA) with
the original project results <chow a deemphasis of QA
importance by the model. QA was virtually eliminated (reduced
to the minimum level cf 2%) for over 8% of the proiect's life
cycle. By eliminating all unnecessary and costly QA
activities the model was able to produce a significant savings
in project costs (CUMMD).

The experimental statistics (Test QA) show a
substantial reduction to QA and rework levels compared to the
base case results (Base QA). Although the error generation
rate was lower in the experimental case, the reduced detection
effort still caused many errors to escape. This increase in
escaping errors required more effort in the area of project
testing. Combining these factors resulted in an additional
130 man-days over the base case results.

The ESS model performed as expected in this
experimental environment. By lowering the perceived pressures
on the development team, fewer errors were generated and the
optimal level of QA was reduced. The model emphasized QA at
the beginning of the project's life cycle. This allows the
most critical design errors to be detected and corrected early
in the development process. Weighing all costs and benefits,
the model chose to virtually eliminate QA in the latter
portion of the life cycle. Most of the errors that occurred
after the first two life cycle points were allowed to escape

to testing. The model did not obtain a lower project cost
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(CUMMD) than the base case. This 1is attributable to lower
persconnel preductivity brought on by reduced performance
pressures. An increase in required development effort and
days needed for project completion added to the final total

cost.
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EXPERIMENT 1

This experiment examines the model’s sensitivity when estimated job size
in DSI, effort required in man-days, and time required in days, are equal

to the actual project’s periormance.

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 377.00 DAYS
TOTAL EFFORT 1,619.22 MAN-DAYS
QA EFFORT 63.31 MAN-DAYS
DEVELOP EFFORT 1,058.00 MAN-DAYS
REWORK EFFORT 78.68 MAN-DAYS
TESTING EFFORT 376.38 MAN-DAYS
TRAINING EFFORT 42.82 MAN-DAYS
TOTAL ERRORS GENERATED 461.40 ERRORS GENERATED
TOTAL ERRORS DETECTED 85.30 ERRORS DETECTED
TOTAL ERRORS ESCAPED 376.08 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 384.00 DAYS
TOTAL EFFORT 2,050.93 MAN - DAYS
QA EFFORT 566.11 MAN-DAYS
DEVELOP EFFORT 954.41 MAN-DAYS
REWORK EFFORT 277.61 MAN-DAYS
TESTING EFFORT 199.87 MAN-DAYS
TRAINING EFFORT 52.94 MAN - DAYS
TOTAL ERRORS GENERATED 463.21 ERRORS GENERATED
TOTAL ERRORS DETECTED 336.66 ERRORS DETECTED
TOTAL ERRORS ESCAPED 126.20 ERRORS THAT ESCAPED

EXPERIMENT-I: QA DISTRIBUTION COMPARISON
10 20 30 40 50 60 70 80 90 100
DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400
Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020
Test QA .313 .050 .020 .020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 1

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (BASE QA):

COMPLETION TIME 331.00 DAYS
TOTAL EFFORT 1,489.34 MAN-DAYS

QA EFFORT 176.60 MAN-DAYS

DEVELOP EFFORT 907.78 MAN-DAYS

REWORK EFFORT 153.66 MAN-DAYS

TESTING EFFORT 188.67 MAN-DAYS

TRAINING EFFORT 62.63 MAN-DAYS
TOTAL ERRORS GENERATED 490.72 ERRORS GENERATED
TOTAL ERRORS DETECTED 183.07 ERRORS DETECTED
TOTAL ERRORS ESCAPED 306.85 ERRORS THAT ESCAPED

PLANNED QA EFFORT COMPARISONS
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EXPERIMENT 1
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2. Experiment 2: Productjvity

This experiment examines the ESS model's sensitivity
to changes 1in the productivity of new and experienced
personnel. This analysis was divided into two sub-
experiments. Experiment 2a inrcreazed productivity by 25%, and

2b decreased it by 25%. Two coftware development constants in

the system dynamics model were altered: (1) nominal potential
productivity of experienced employees (NPWPEX), and (2)
nominal potential productivity new employees (NPWPNE). The

experimental values are shown in table 5-2 below.

TABLE 5-2

PRODUCTIVITY

Experiment 2a Experiment 2b

NPWPEX = 1.25 NPWPEX = 0.75

NPWPNE = 0.625 NPWPNE = 0.375

An increase in productivity (2a) significantly
lowered the development effort shown in the actual project's
statistics (DE-A). This lower development effort does not
result in any significant increases to the error generation
rate. Since the increase in productivity makes all effort
more efficient, QA and rework can be increased while taking
advantage of the cost effectiveness this environment offers.
Diverting effort to QA and rework increases the number of
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errors detected without adding greatly to final project cost
(CUMMD) . Both the EES model (Test QA) and the actual project
(DE-A) statistics show very few errors escaping to testing.

The ESS model took full advantage of this highly
productive environment. Since the relative cost of QA was
low, the model assigns approximately 25% of totai effort to
quality assurance over the entire 1life cycle. This
distribution scheme ensured excellent error detection, minimal
error escapes, and produced a total cost lower than that of
the actual DE-A project.

A decrease in personnel productivity (2b) has the
reverse effect on the experiment. As shown in both the ESS
(Test QA) and actual (DE-A) statistical tables, the increases
experienced in all effort areas impact heavily on project
cost. However, once again productivity does not impact
greatly on error generation rate. The system dynamics
module's results (DE-A) show the significant cost increases
QA, rework, and training <cause in a 1low productive
environment. The static QA distribution scheme has almost
doubled final project cost.

The ESS model effectively cuts the total project costs
in half (test QA vs. DE-A). Taking into account the limited
effects that QA has in this environment, and the high
associated costs, it virtually does away with the effort for
over 90% of the project. Cost savings in QA and rework

support the transfer of error correcting to the testing phase.
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EXPERIMENT 2a

This experiment examines the model’s sensitivity when nonimal productivity
of both experienced and new personnel is increased by 25 percent (+25%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 330.00 DAYS
TOTAL EFFORT 1,518.09 MAN-DAYS
QA EFFORT 321.98 MAN-DAYS
DEVELOP EFFORT 702.43 MAN-DAYS
REWORK EFFORT 254.17 FMAN-DAYS
TESTING EFFORT 176.29 MAN-DAYS
TRAINING EFFORT 63.22 MAN-DAYS
TOTAL ERROKRS GENERATED 494.73 ERRORS GENERATED
TOTAL ERRORS DETECTED 327.24 ERRORS DETECTED
TOTAL ERRORS ESCAPED 166.94 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 341.00 DAYS
TOTAL EFFORT 1,590.81 MAN-DAYS
QA EFFORT 373.59 MAN-DAYS
DEVELOP EFFORT 695.47 MAN-DAYS -
REWORK EFFORT 265.38 MAN-DAYS
TESTING EFFORT 192.20 MAN-DAYS
TRAINING EFFORT 64.17 MAN-DAYS
TOTAL ERRORS GENERATED 493.70 ERRORS GENERATED
TOTAL ERRORS DETECTED 355.03 ERRORS DETECTED
TOTAL ERRORS ESCAPED 138.40 ERRORS THAT ESCAPED

EXPERIMENT 2a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .300 .300 .300 .200 .250 .250 .300 .250 .263 .050 -
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EXPERIMENT 2b

This experiment examines the model’s sensitivity when nominal productivity
of both experienced and new personnel is decreased by 25 percent (-25%).

COMPLETION TIME
TOTAL EFFORT
QA EFFORT
DEVELOP EFFORT
REWORK EFFORT
TESTING EFFORT
TRAINING EFFORT
TOTAL ERRORS GENERATED
TOTAL ERRORS DETECTED
TOTAL ERRORS ESCAPED

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):

356.00 DAYS
1,748.64 MAN-DAYS
55.64 MAN-DAYS
1,205.10 MAN-DAYS
68.88 MAN-DAYS
340.65 MAN-DAYS
78.32 MAN-DAYS
492.99 ERRORS GENERATED
82.88 ERRORS DETECTED
409.91 ERRORS THAT ESCAPED

COMPLETION TIME
TOTAL EFFORT
QA EFFORT
DEVELOP EFFORT
REWORK EFFORT
TESTING EFFORT
TRAINING EFFORT
TOTAL ERRORS GENERATED
TOTAL ERRORS DETECTED
TOTAL ERRORS ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

435.00 DAYS
3,341.13 MAN-DAYS
768.45 MAN -DAYS
1,440.60 MAN-DAYS
311.10 MAN-DAYS
537.05 MAN-DAYS
283.97 MAN-DAYS
514.39 ERRORS GENERATED
384 .68 ERRORS DETECTED
128.62 ERRORS THAT ESCAPED

EXPERIMENT

2b: QA DISTRIBUTION COMPARISON

10 20 39

40 50 60 70 80 90 100

DE-A .325 .290 .275

.255  .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100

.100 .020 .020 .020 .150 .020 .020

Test QA .250 .020 .020

.020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 2
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EXPERIMENT 2
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3. Experiment 3: Error Rate

This experiment examines the ESS model's sensitivity
to changes in the number of errors committed during
development. This analysis was divided into two sub-
experiments. Experiment 3a increased the number of errors by
50%, and 3b decreased it by 50%. A single QA and rework table
function in the system dynamics model was altered: nominal
errors committed per KDSI (TNERPK). The experimental values

are shown in Table 5-3 below.

TABLE 5-3

ERRORS COMMITTED

TNERPK
Exp. 3a 36 34.35 31.125 | 22.875 19.65 18
Exp. 3b 12 11.45 10.375 7.625 6.55 6

An increase in the number of errors committed (3a)
obviously means more effort must be allocated to detection and
correction activities. As seen in the actual project's
statistics (DE-A), the high allocation of QA, rework and
training greatly increases total project costs.

As expected, this environment produced a significantly
greater error generation rate. However, the ESS model (Test
QA) ignored this fact and concentrated on reducing project
costs by drastically cutting QA and rework effort. This
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action also reduced the necessary training and associated
costs by half (Test QA vs. DE-A). Using a form of cost-
benefit analysis, the model emphasized QA during the early
design phases and virtually eliminated QA from the remainder
of the life cycle. This distribution scheme allowed over 83%
of the errors to escape to testing.

Since the testing phase is the termination point for
error deneration, the model waited until development had
finished to handle most errors. Surprisingly, this resulted
in the need for very 1little added effort to handle the
additional errors. By virtue of this fact, the ESS model cut
over 1,000 man-days from total project costs.

A decrease in the number of errors (3b) should also
decrease the man-days required in all effort areas. In this
environment both the ESS model (Test QA) and the system
dynamics module (DE-A) statistics, show significant reductions
in effort areas, errors generated, and total costs. The only
disparities between the two are in QA and rework levels.

The ESS model (Test QA) actually produces a lower
project cost (CUMMD) than in the base case results (Base QA).
However, the QA distribution pattern is extremely erratic.
The values jump from 50% effort down to 2% over the course of
the first three life cycle points. The experimentally derived
total cost (Test QA) is very close to the to CUMMDs produced
by the base case (Base QA) and the actual project (DE-A).

However, all three patterns differ quite drastically. One
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possibility is that in this environment large increases or
decreases in QA effort only cause small changes in total
project cost. If this is true, the pattern search model may
have serious sensitivity problems and would account for the
apparent "wandering" pattern the model produced. Experiment

2b failed to produce the expected results.
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EXPERIMENT 3a

This experiment examines the model’s sensitivity when nominal number of
errors comnitted per KDSI is increased by 50 percent (+50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 348.00 DAYS
TOTAL EFFORT 1,628.32 MAN-DAYS
QA EFFORT 119.14 MAN-DAYS
DEVELOP EFFORT 946.06 MAN-DAYS
REWORK EFFORT 139.38 MAN-DAYS
TESTING EFFORT 353 .84 MAN-DAYS
TRAINING EFFORT 69.91 MAN-DAYS
TOTAL ERRORS GENERATED 732.35 ERRORS GENERATED
TOTAL ERRORS DETECTED 150.63 ERRORS DETECTED
TOTAL ERRORS ESCAPED 581.68 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 415.00 DAYS
TOTAL EFFORT 2,671.32 MAN-DAYS
QA EFFORT 673.57 MAN-DAYS
DEVELOP EFFORT 1,015.20 MAN-DAYS
REWORK EFFORT 462.07 MAN-DAYS
TESTING EFFORT 336.79 MAN-DAYS
TRAINING EFFORT 183.72 MAN-DAYS
TOTAL ERRORS GENERATED 763.25 ERRORS GENERATED
TOTAL ERRORS DETECTED 596.67 ERRORS DETECTED
TOTAL ERRORS ESCAPED 165.32 ERRORS THAT ESCAPED

EXPERIMENT 3a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .338 .225 .020 .020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 3b

This experiment examines the model’s sensitivity when nominal number of
errors committed per KDSI is decreased by 50 percent (-50%).
PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 330.00 DAYS
TOTAL EFFORT 1,437.29 MAN-DAYS
QA EFFORT 297.21 MAN-DAYS
DEVELOP EFFORT 860.89 MAN-DAYS
REWORK EFFORT 76.52 MAN-DAYS
TESTING EFFORT 142.38 MAN-DAYS
TRAINING EFFORT 60.28 MAN-DAYS
TOTAL ERRORS GENERATED 245.34 ERRORS GENERATED
TOTAL ERRORS DETECTED 91.60 ERRORS DETECTED
TOTAL ERRORS ESCAPED 152.97 ERRORS THAT ESCAPED
SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 338.00 DAYS
TOTAL EFFORT 1,583.72 MAN-DAYS
QA EFFORT 388.36 MAN-DAYS
DEVELOP EFFORT 877.84 MAN-DAYS
REWORK EFFORT 104.84 MAN-DAYS
TESTING EFFORT 147.69 MAN-DAYS
TRAINING EFFORT 64.98 MAN-DAYS
TOTAL ERRORS GENERATED 245.93 ERRORS GENERATED
TOTAL ERRORS DETECTED 137.87 ERRORS DETECTED
TOTAL ERRORS ESCAPED 107.63 ERRORS THAT ESCAPED
EXPERIMENT 3b: QA DISTRIBUTION COMPARISON
10 20 30 40 50 60 70 80 90 100
DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400
Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020
Test QA .500 .450 .020 .100 .350 .020 .020 .020 .020 .020
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EXPERIMENT 3
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4. Experiment 4: Rework Manpower

This experiment examines the ESS model's sensitivity
to changes in rework manpower levels. This analysis was
divided into two sub-experiments. Experiment 4a increased
rework manpower by 50%, and 4b decreased it by 50%. A single
QA and rework table function in the system dynamics model was
altered: nominal rework manpower needed per error (TNRWME).

The experimental values are shown in Table 5-4 below.

TABLE 5-4

REWORK MANPOWER

TNRWME
Exp. 4a 0.9 0.8625 0.75 0.6 0.4875 0.45
Exp. 4b 0.3 0.2875 0.25 0.2 0.1625 0.15

An increase in the rework manpower required to resolve
each error (4a) means any correction activity prior to testing
will be extremely costly. The actual project results (DE-A),
placed significant emphasis on QA, rework, and training. As
expected, the cost of rework and its related activities
produced a high final project cost.

The ESS model (Test QA) effectively reduced costs to
within the base case results (Base QA). This was accomplished
by focusing QA and rework effort during the first third of the
life cycle, and virtually eliminating this effort over the
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latter two-thirds. Since the rework capabilities of the
development team were reduced, leaving non-design errors in
the system until testing was the most cost effective solution.

A decrease in the rework manpower required to resolve
an error (4b) creates the exact opposite environment from
above. Reducing the cost of rework means more errors can be
handled prior to testing at a fraction of the base case cost
(Base QA).

Analyzing the ESS model results (Test QA) we see cost
savings were obtained by reducing QA and rework below the
levels contained in the base case (Base QA). This seems to be
counter intuitive. With rework being 1less costly it is
expected that the ESS model would attempt to capitalize on
resolving more errors prior to testing. However, this was not
the case. Rework has been reduced to almost half of the base
case value. The resulting distribution scheme is also very
erratic (similar to experiment 3b). Large disparities between
consecutive life cycle points indicates the ESS model is
"hunting" for an optimal solution. Once again we have an
environment where increases and decreases in QA values have
limited impact on overall project cost. Experiment 4b failed

to produce the expected results.
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EXPERIMENT 4a

This experiment examines the model’s sensitivity when nominal rework
manpower required per error is increased by 50 percent (+50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 333.00 DAYS
TOTAL EFFORT 1,490.38 MAN-DAYS
QA EFFORT 134.85 MAN-DAYS
DEVELOP EFFORT 913.09 MAN-DAYS
REWORK EFFORT 171.52 MAN-DAYS
TESTING EFFORT 208.40 MAN-DAYS
TRAINING EFFORT 62.51 MAN-DAYS
TOTAL ERRORS GENERATED 489.14 ERRORS GENERATED
TOTAL ERRORS DETECTED 126.74 ERRORS DETECTED
TOTAL ERRORS ESCAPED 361.86 ERRORS THAT ESCAPED

SYSTEM LYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 413.00 DAYS
TOTAL EFFORT 2,597.02 MAN-DAYS

QA EFFORT 664.51 MAN-DAYS

DEVELOP EFFORT 1,004.90 MAN- DAYS

REWORK EFFORT 431.34 MAN-DAYS

TESTING EFFORT 325.82 MAN-DAYS

TRAINING EFFGRT 170.48 MAN-DAYS
TOTAL ERRORS GENERATED 506.26 ERRORS GENERATED
TOTAL ERRORS DETECTED 373.90 ERRORS DETECTED
TOTAL ERRORS ESCAPED 131.24 ERRORS THAT ESCAPED

EXPERIMENT 4a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325  .290 .275 .255 .250 .2/5 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .450 .150 .100 .020 .020 .020 .020 .020 .020 .020
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EXPERIMENT 4b

This experiment examines the model’s sensitivity when nominal rework
manpower required per error is decreased by 50 percent (-50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 330.00 DAYS
TOTAL EFFORT 1,501.03 MAN-DAYS
QA EFFORT 254.03 MAN-DAYS
DEVELOP EFFORT 902.37 MAN-DAYS
REWORK EFFORT 96.07 MAN-DAYS
TESTING EFFORT 184 .44 MAN - DAYS
TRAINING EFFORT 63.46 MAN-DAYS
TOTAL FRRORS GENERATED  491.69 ERRORS GENERATED
TOTAL ERRORS DETECTED 229.94 ERRORS DETECTED
TOTAL ERRORS ESCAPED 260.84 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PRQJECT STATISTICS (DE-A):
COMPLETION TIME 353.00 DAYS
TOTAL EFFORT 1,689.44 MAN-DAYS
QA EFFORT 398.35 MAN-DAYS
DEVELOP EFFORT 874.97 MAN-DAYS
REWORK EFFORT 134.04 MAN-DAYS
TESTING EFFORT 212.82 MAN-DAYS
TRAINING EFFORT 69.25 MAN-DAYS
TOTAL ERRORS GENERATED 492.79 ERRORS GENERATED
TOTAL ERRORS DETECTED 356.79 ERRORS DETECTED
TOTAL ERRORS ESCAPED 135.58 ERRORS THAT ESCAPED

EXPERIMENT 4b: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .187 .500 .020 .112 .200 .225 .099 .020 .020 .020
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EXPERIMENT 4
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S. Experiment 5: OA Manpower

This experiment examines the ESS model's sensitivity
to changes in quality assurance manpower levels. This
analysis was divided into two sub-experiments. Experiment 5a
increased QA manpower by 50%, and 5b decreased it by 50%. A
single QA and rework table function in the system dynamics
model was altered: nominal QA manpower needed to detect
average errors (TNQAPE). The experimental values are shown in

Table 5-5 below.

TABLE 5-5

QA MANPOWER

Experiment 5 a & b (TNQAPE)

.6 .6 .585 |.5625].525 .45 1.375 |.3375].315 .3 .3

.2 .2 .195 |.1875(.175 .15 1.125 |.1125].105 .1 .1

An increase in the QA manpower required to detect
errors (5a) will caused a rise project costs when large levels
of quality assurance are used. This is very apparent in the
actual project's results (DE-A) where a high level of QA was
scheduled.

The ESS model (Test QA) reduced project cost by
minimizing the total man-days devoted to QA and rework.
Interestingly, the model allowed a large majority of errors to
escape, yet still managed to reduce testing man-days below

105




those required by the actual project (DE-A). The ESS model's
resulting distribution scheme and statistics closely resemble
the base case results (Base QA). Model performance in this
environment was as expected.

A decrease in the QA manpower required to detect
errors (5b) means that any additional QA effort used should be
more economical énd effective than in the base case (Base QA).
The actual project results (DE-A) indicate that this
environment has increased QA effectiveness though the
detection of most error prior to testing. However, the high
project cost does not indicate that any monetary advantage can
be gain with increased QA.

The ESS effectively reduce QA effort with only minor
increases in escaped errors. Taking advantage of the project
team's efficiency at QA, the ESS model developed a distribu-
tion scheme which significantly reduced project costs. The
relative position of the ESS pattern (Test QA) above the base
case distribution indicates that the model is capable of
capitalizing on some limited cost reduction by increasing QA.
Likewise, the ESS pattern position below the actual project
curve (DE-A), indicates that the model is able to discern the

environmental limits when developing a QA scheme.
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EXPERIMENT 3a

This experiment examines the model’s sensitivity when nominal QA manpnwer
required to detect average errors is increased by 50 percent (+50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 331.00 DAYS
TOTAL EFFORT 1,491.51 MAN-DAYS
QA EFFORT 177.87 MAN-DAYS
DEVELOP EFFORT 928.74 MAN-DAYS
REWORK EFFORT 112.55 MAN-DAYS
TESTING EFFORT 208.93 MAN -DAYS
TRAINING EFFORT 63.42 MAN-DAYS
TOTAL ERRORS GENERATED 488,24 ERRORS GENERATED
TOTAL ERRORS DETECTED 125.52 ERRORS DETECTED
TOTAL ERRORS ESCAPED 362.00 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 384.00 DAYS
. TOTAL EFFORT 2,050.56 MAN-DAYS
QA EFFORT 510.00 MAN-DAYS
DEVELOP EFFORT 902.84 MAN-DAYS
- REWORK EFFORT 259.85 MAN-DAYS
TESTING EFFORT 264.74 MAN-DAYS
TRAINING EFFORT 113.13 MAN-DAYS
TOTAL ERRORS GENERATED 496.30 ERRORS GENERATED
TOTAL ERRORS DETECTED 348.65 ERRORS DETECTED
TOTAL ERRORS ESCAPED 146.68 ERRORS THAT ESCAPED

EXPERIMENT 5a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

B Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .325 .400 .050 .020 .020 .020 .125 .020 .020 .020
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EXPERIMENT 3b

This experiment examines the model’s sensitivity when nominal QA manpower
required to detect average errors is decreased by 50 percent (-50%).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 327.00 DAYS
TOTAL EFFORT 1,528.53 MAN-DAYS
QA EFFORT 160.66 MAN-DAYS
DEVELOP EFFORT 909.80 MAN-DAYS
REWORK EFFORT 239.35 MAN-DAYS
TESTING EFFORT 153.66 MAN-DAYS
TRAINING EFFORT 65.05 MAN-DAYS
TOTAL ERRORS GENERATED 492.14 ERRORS GENERATED
TOTAL ERRORS DETECTED 317.90 ERRORS DETECTED
TOTAL ERRORS ESCAPED 173.66 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 390.00 DAYS
TOTAL EFFORT 2,139.22 MAN-DAYS
QA EFFORT 542 .88 MAN -DAYS
DEVELOP EFFORT 918.70 MAN-DAYS
REWORK EFFORT 287.94 MAN-DAYS
TESTING EFFORT 268.23 MAN-DAYS
TRAINING EFFORT 121.47 MAN-DAYS
TOTAL ERRORS GENERATED 496.98 ERRORS GENERATED
TOTAL ERRORS DETECTED 386.06 ERRORS DETECTED
TOTAL ERRORS ESCAPED 109.94 ERRORS THAT ESCAPED

EXPERIMENT 5b: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .200 .175 .050 .100 .075 .020 .150 .300 .025 .200
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EXPERIMENT 5
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6. Experiment 6: Bad Fixes

This experiment examines the ESS model's sensitivity
to changes in the number of bad fixes. This analysis was
divided into two sub-experiments. Experiment 6a increased the
overall bad fix percentage, and 6b decreased the percentage.
A single system test constant in the system dynamics model was
altered: percent of bad fixes (PBADFX). The experimental

values are shown in Table 5-6 below.

TABLE 5-6

BAD FIXES
Experiment 6a Experiment 6b
PBADFX = .15 PBADFX = .05

An increase in bad fixes (6a: from 7.5% to 15%) had
only minor influence on project results. In the actual
project (DE-A) this environment caused increases in the QA,
rework, training, and testing effort areas. These effort
increases subsequently caused a rise in the project's cost.

As expected, the ESS model (Test QA) allocated more
effort to QA and rework than the base case (Base QA). QA was
established at a little less than half the total effort, and
allowed to declined steadily over the entire design phase.
Once reaching the coding phase the model virtually eliminated
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T

QA in an attempt to reduce project cost. The total errors
that escaped were comparable to the number in the base case.
However, project costs were inflated due to the doubling of
bad fixes.

A decrease 1in bad fixes (6b: from 7.5% to 5%)
subsequently reduced the number of errors that escaped. This
provided substantial cost savings in testing for both the ESS
model (Test QA) and the actual project (DE-A) results.

The ESS model attempted to redistribute the bad fix
savings into the QA and rework effort areas. Although there
was a reduction in the number of errors that escaped to
testing, total project cost was higher than anticipated. The

model's final distribution scheme was also quite erratic

(similar to experiments 3b and 4b). QA was emphasized at the
beginning of the life cycle process as was done in all prior
experiments. However, the model allocated a considerable
amount of QA during the bulk of the coding phase. This
allocation technique does not occur in any of the other
experiments and is well above level of QA the base case (Base
QA) allocates. It was anticipated that a reduction in bad
fixes would have a more positive impact on the experiment's
results. The opposite resulted, indicating the ESS model is
sensitive to this environment. Experiment 6b failed to

produce the expected results.
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EXPERIMENT 6a

This experiment examines the model’s sensitivity when bad fixes are
estimated to be 15 percent of total fixes (original project estimated at
7.5 percent).

PATTERN SEARCH ESS MODEL PROJECT STATISTICS (TEST QA):
COMPLETION TIME 331.00 DAYS
TOTAL EFFORT 1,507.92 MAN-DAYS
QA EFFORT 150.55 MAN-DAYS
DEVELOP EFFORT 931.71 MAN-DAYS
REWORK EFFORT 144.93 MAN-DAYS
TESTING EFFORT 217.04 . MAN-DAYS
TRAINING EFFORT 63.68 MAN-DAYS
TOTAL ERRORS GENERATED 488.23 ERRORS GENERATED
TOTAL ERRORS DETECTED 160.29 ERRORS DETECTED
TOTAL ERRORS ESCAPED 327.35 ERRORS THAT ESCAPED

SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):

COMPLETION TIME 389.00 DAYS

TOTAL EFFORT 2,142 .50 MAN-DAYS
QA EFFORT 526.36 MAN-DAYS
DEVELOP EFFORT 912.94 MAN-DAYS
REWORK EFFORT 273.49 MAN-DAYS
TESTING EFFORT 304.51 MAN-DAYS
TRAINING EFFORT 125.20 MAN-DAYS

TOTAL ERRORS GENERATED 497 .37 ERRORS GENERATED

TOTAL ERRORS DETECTED 365.85 ERRORS DETECTED

TOTAL ERRORS ESCAPED 130.74 ERRORS THAT ESCAPED

EXPERIMENT 6a: QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100

DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400

Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020

Test QA .350 .250 .150 .050 .063 .020 .020 .020 .020 .020
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EXPERIMENT 6b

This experiment examines the model’s

7.5 percent).

sensitivity when "ad fixes are
estimated to be 5 percent of total fixes (original project estimated at

COMPLETION TIME 329.
TOTAL EFFORT 1,526.
QA EFFORT 191.
DEVELOP EFFORT 902.
REWORK EFFORT 193.
TESTING EFFORT 175.
TRAINING EFFORT 64 .
TOTAL ERRORS GENERATED 492.
TOTAL ERRORS DETECTED 245
TOTAL ERRORS ESCAPED 246 .
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SYSTEM DYNAMICS MODEL PROJECT STATISTICS (DE-A):
COMPLETION TIME 390.
TOTAL EFFORT 2,139,

QA EFFORT 542
DEVELOP EFFORT 918
REWORK EFFORT 287.
TESTING EFFORT 268
TRAINING EFFORT 121
TOTAL ERRORS GENERATED 496
TOTAL ERRORS DETECTED 386.
TOTAL ERRORS ESCAPED 109

EXPERIMENT 6b:

QA DISTRIBUTION COMPARISON

10 20 30 40 50 60 70 80 90 100
DE-A .325 .290 .275 .255 .250 .275 .325 .375 .400 .400
Base QA .300 .350 .100 .100 .020 .020 .020 .150 .020 .020
Test QA .300 .200 .170 .100 .050 .200 .200 .150 .050 .050
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EXPERIMENT 6
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C. RESULTS

The pattern search ESS model was able to effect some cost,
effort, and time reductions in all 11 sensitivity experiments.
Eight of these experiments produced results similar to what
was anticipated. Identifying close to optimal solutions for
their specific environment, these eight developed QA
distribution schemes that significantly reduced project costs.

Experiment 3b (errors per KDSI reduced), experiment 4b
(rework manpower required per error reduced), and experiment
6b (percentage of bad fixes reduced) all produced unexpected
results. Although their QA distribution schemes did render
lower project costs, their allocation patterns were very
erratic. These three experiments exist in environments were
significant changes in QA allocation have minimal effect on
total cost (CUMMD). This would mean that a high percentage of
alternate distribution schemes are capable of providing
similar results.

The ESS model 1is vulnerable to these "low impact"
environments. When operating in this environment it |is
possible for the ESS model to continue in the same direction
that was first established for each life cycle point. Since
most patterns produce similar results, the model has no reason
to change directions. Once the model terminates the final QA
distribution can be an erratic pattern ranging between
predetermined limits (set at .02 to .5 for all experiment

runs). This is exactly the product of the three unsuccessful
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experiments. Further experimentation is required to identify

and eliminate the ESS model's sensitivity to this environment.
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VI. CONCLUSION

A. ACCOMPLISHMENTS

The focus of this thesis was to enhance the performance of
an existing expert system simulation (ESS) model. Through a
series of experiments, the performance limitations of the
prototype system were identified. These limitations were
resolved by the addition of a pattern search technique within
the existing expert system program.

Evaluating the performance of the pattern search ESS model
showed great improvements over the prototype system. The
pattern search technique minimized the QA environment's bi-
modal problems, thus enabling the model to identify similar QA
distribution schemes independent of where the system was
initialized. All system results were established in fewer
cycles, at a lower cost, and with a "smoother" curve than the

prototype was capable of achieving.

B. SUGGESTIONS FOR FURTHER RESEARCH

The pattern search methodology effectively resolved the
problem areas identified in the prototype ESS model. However,
this new technique is not devoid of its own sensitivity
problens.

Eleven experimental scenarios were used to evaluate the
performance of the new system. Of these experiments, three
failed to produce the expected results. These failed
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scenarios were classified as "low impact" environments, where
large changes in QA effort had minimal effect on project cost.
In this environment the ESS model was able to make almost any
allocation decision with similar cost results. This lead to
extremely erratic QA distribution schemes.

Further research can be broken down into two areas: (1)
improving the pattern search ESS model, and (2) developing a
new expert system model using a more sophisticated
optimization technique.

Improvements to the ESS model will require further
experimentation in "low impact" environments. Additions to
the system should include mechanisms to identify low impact
situations, and possibly bias the system towards minimizing QA
when impact on costs is insignificant. The desired outcome is
a model which provides a more predictable and less erratic
solution to all project scenarios.

A separate and smaller expert system (seven-ten rules) can
be developed as a test vehicle for further development effort.
This system may provide valuable insights into the
complexities surrounding the distribution of quality
assurance. Any discoveries could be used to enhance the
existing model or may identify a technique that better handles
this environment.

One possible technique to replace pattern search is,
"Optimization by Simulated Annealing." This technique makes

use of statistical evaluation mechanisms to derive optimal
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patterns in a complex environment. Using an analogy to metal
annealing, this technique makes small adjustment to a
particular variable and allows the system to move to
eqilibrium before making the next change. A complex
optimization methodology may be the best method of handling an

equally complex environment. [Ref. 14:pp. 1-9]
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APPENDIX A

PROGRAM LISTING OF PATTERN.ARI

/***************************************************************/

J* */
/* PROGRAM - pattern.ari */
/* */
/* This program utilizes a "Pattern Search" technique, * /
/* developed by R. Hooke and T. Jeeves, to adjust percentage */
/* of Quality Assurance (TPFMQA) allocated for each of 10 */
/* lifecycle points (Design thru Coding phases). This */
/* technique identifies an optimal QA scheme and subsequently */
/* reduces total cummulative man-months (CUMMD) required to * /
/* complete the project. */
/* */

/***************************************************************/

/*************************************************x*************/

/* */
/* RULE - pga */
/* */
/* This rule initializes the system parameters and gets the *x/
/* system started. */ 1
/* */

/***************************************************************/

pga: -

/* sets initial global values */
asserta(number (1)),
asserta(calc(0)),
asserta(flag(0)),
asserta(newcycle(l)),

/* user input queries */
write('What is your desired pulse size factor? '),
read (PU),
asserta(size(PU)),

write('What is the minimum QA value? '),
read (MN),
asserta(min(MN)), L

write('What is the maximum QA value? '),
read (AX),
asserta(max (AX)),




/*

/*

/*

write('What is your minimum desired pulse size?
read (MP) ,
asserta(minpsf (MP)),

write('Enter the initial QA distribution.
read (QAl),

write('
read (QA2),

write('
read (QA3),

write('
read(QA4),

write(!
read (QAS),

write('
read (QA6) ,

write('
read (QA7),

write('
read (QAS8),

write(!
read (QA9),

write('
read (QA10),

Point

Point

Point

Point

Point

Point

Point

Point

Point

Point

10

prints starting values into the summary output */

print head(PU,MN,AX,MP),

initializes the system with user inputs #*/

"),

')

"),

"),

")

"),

'),

initial run(QAl,QA2,QA3,QA4,QA5,QA6,QA7,QA8,QA9,QA10),

dopga.

end of pga */

/**************************************************************/

/*
/*
/*

/* Creates a repeat-fail loop to execute main rule until the

RULE - dopga

/* step size (PSF) falls below the user input minimumn.

/*

*/

/**************************************************************/
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dopga: -
repeat,
main,
fail.

/* end of dopga */

/**************************************************************/

/% */
/* RULE - main * /
J* */
/* This module controls the perturbation activity of the */
/* pattern search technique. */
/* */

/**************************************************************/
main:-

/* gets the x value for the pulse */
call (number (ITER)),
call (calc(TYPE)),

/* gets the previous man days */
PREV is [[(ITER + 8] mod 10] + 1],
call (cummdold (PREV,CHECK)),
call (cummdold (ITER,OLD)),

/* gets the man days from the last QA numbers */
read_cummd,
call (cummd (NEW) ),
/* calculates the new y value (QA) for the current x value */
case([{NEW =< CHECK =-> calc_less(ITER,NEW,OLD,TYPE),
NEW > CHECK -> calc_more(ITER,NEW,OLD,CHECK,TYPE) ]),

/* prints to screen module statistics for monitoring */
statistics,

write(' Iteration = '),write(ITER).

/* end of main */
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/***************************************************************/

/* */
/* RULE - end cycle */
/* */
/* Advances cycle count and initiates pattern search technique #*/
/* after initial perturbations have occurred. */
/* */

/***************************************************************/
end_cycle(NEW,ITER):-
call (newcycle (NOW)),
/* initializes the "Pattern Search" algorithm */
ifthenelse(NOW > 1,pattern search(NEW, ITER),
output cummd (NEW,ITER)),
/* advances cycle number */
NEXT is NOW + 1,
write('Cycle number = ') ,write(NOW),
retract (newcycle (NOW) ),
asserta(newcycle (NEXT)).
/* end of end cycle */

/***************************************************************/

/* */
/* RULE - pattern_search */
/* */
/* Evaluation rule that monitors past preformance to determine */
/* the next course of action. */
/* */

/***************************************************************/
pattern search(NEW,ITER):-
call(flag(TYPE)),
case([TYPE =:= 0 -> temp_ base (NEW, ITER),
TYPE =:= 1 -> reduction_test(NEW,ITER)]),!.

/* end of pattern_search #*/

/***************************************************************/

/* */
/* RULE - reduction_test */
/* */
/* Further evaluation rule that determines if local */
/* perturbations or pulse size reduction is the next logical * /
/* course of action. *x/
/* */

/***************************************************************/
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reduction_ test (NEW, ITER):-

/*

call (bl _cummd(BASE)),
ifthenelse (NEW < BASE,temp base(NEW,ITER),
reduce_pulse (NEW,ITER)),!.

end of reduction test */

/***************************************************************/

/*
/*
/*
/*
/*
/*

*

*/
RULE - temp base */
*/
"Pattern Search" algorithm that captilizes on a */
preestablished pattern in determining the next QA value */
for the 10 lifecycle points. */
*/

/***************************************************************/

temp base (NEW,ITER) :-

/*

/*

/*

output cummd(NEW, ITER),

resets "flag" to establish a record of last action taken */
abolish(flag/1),
asserta(flag(0)),

resets the 3 CUMMD value holders */
call(bl_cummd(OLD)),
abolish(b0_cummd/1),
asserta(b0_cummd (OLD)),
abolish(bl_cummd/1),
asserta(bl_cummd (NEW)),

pattern search algorithm */
call(b0(1,Q1)),
call(tpfmga(1l,QAl)),

Al is Q1+[2*[QA1-Q1l]],
ga_test(Al,Tl1),
asserta(t(1l,T1)),

call (b0(2,0Q2)),
call(tpfmga(2,QA2)),
A2 is Q2+[2*[QA2-Q2]],
gqa_test(A2,T2),
asserta(t(2,T2)),

call(b0(3,Q3)),
call(tpfmga(3,QA3)),
A3 is Q3+[2*[QA3-Q3]],
ga_test(A3,T3),
asserta(t(3,T3)),
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/*

/*

call(b0(4,Q4)),
call(tpfmga(4,QA4d)),
A4 is Q4+[2*[QA4-04)],
ga_test(A4,T4),
asserta(t(4,T4)),

call (b0(5,Q5)),

call (tpfmga(5,QA5)),
A5 is Q5+[2*[QA5-Q5]],
ga test (A5,TS5),
asserta(t(5,T5)),

call(b0(6,Q6)),

call (tpfmga(6,QA6)),
A6 is Q6+{2*[QA6-Q6]],
ga_test (A6,T6),
asserta(t(6,T6)),

call(b0(7,Q7)),

call (tpfmga(7,QA7)),
A7 is Q7+(2*[QA7-Q7]],
ga_test (A7,T7),
asserta(t(7,T7)),

call(b0(8,Q8)),
call(tpfmga(8,QA8)),
A8 is Q8+[2*[QA8-Q8]],
ga_test(A8,T8),
asserta(t(8,T8)),

call(b0(9,09)),

call (tpfmga (9,QA9)),
A9 is Q9+[2*[QA9~-Q9]],
ga test(A9,T9),
asserta(t(9,T9)),

call (b0(10,Q10)),
call(tpfmga(10,QA10)),

Al0 is Q1l0+[2*[{QA10-Q10]],
ga_test (Al0,T10),
asserta(t(10,T10)),

establishes a new temporary base */
new_base,

notification in the output that a pattern search occurred #*/
open(S, 'summary.dat',a),

nl(S),write(Ss,

Thkkhkhkkhhhkkhkhkkkhkhkhkhkkkk® Pattern Search *********************')'
nl(s),nl(S),close(S),
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/* runs the system dynamics model for a pattern search CUMMD */
output tpfmqga,

shell (model),
read_cummd,

call (cummd (HEAD) ),
output cummd (HEAD, ITER),

/* if CUMMD is not an improvement, local explorations occur */
ifthen(HEAD >= NEW,local explorations),

/* resets CUMMD recording system for perturbation comparisons */
retract (cummdold (ITER,NEW)),
asserta(cummdold (ITER,HEAD)),

/* erases temporary head (T) values */
abolish(t/2),!.

/* end of temp base */

/***************************************************************/

/* */
/* RULE - ga_test */
/* */
/* Used in the "temp base" rule to keep the pattern from * /
/* jumping below the minimum QA value. */
/* */

/***************************************************************/
ga_test(IN,OUT):-

call (min(MINQA)),
ifthenelse (IN < MINQA,OUT is MINQA,OUT is IN).

/* end of ga_test */

/***************************************************************/

/% */
/* RULE - new base */
/* */
/* This rule actually records the "Pattern Search" values */
/* into the program. */
/* */

/***************************************************************/

new_base: -

/* calls last perturbation values and pattern search values */
call(tpfmga(1l,QAl)),
call(tpfmga(2,QA2)),
call(tpfmga(3,QA3)),
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call(tpfmga(4,QA4)),
call (tpfmga(5,QA5)),
call(tpfmga(6,QA6)),
call (tpfmga(7,QA7)),
call (tpfmga(8,QA8)),
call(tpfmga(9,QA%)),
call(tpfmga(10,QA10)

call(t(1,Al)),
call(t(2,A2)),
call(t(3,A3)),
call(t(4,A4)),
call(t(5,A5)),
call(t(6,A6)),
call(t(7,A7)),
call(t(8,A8)),
call(t(9,A9)),
call(<c(10,A10)

).

/* resets a new base */
abolish(k0/2),

asserta(b0(1,QAl)),
asserta(b0(2,QA2)),
asserta (b0 (3,QA3)),
asserta(b0(4,0A4)),
asserta (b0 (5,QA5)),
asserta (b0 (6,QA6)),
asserta (b0 (7,QA7)),
asserta (b0 (8,QA8)),
asserta(b0(9,QA9)),

0)

asserta(b0(10,QA10))

).

’

/* resets a new temporary base */

abolish(tpfmga/2),

asserta(tpfmga(1l,Al)
asserta(tpfmga(2,A2)
asserta(tpfmga(3,A3)
asserta(tpfmga(4,A4)
asserta(tpfmga(5,AS5)
asserta(tpfmga(6,A6)
asserta(tpfmga(7,A7)
asserta(tpfmga(8,A8)
asserta(tpfmga(9,A9)
asserta(tpfmga(10,Al

/* end of new_base */

).
)+
)+
),
)y
)y
)
),
)y
0)

). L.
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/***************************************************************/

/* */
/* RULE - local explorations */
/* */
/* This rule is invoked when the last pattern search did not */
/* result in an improved CUMMD than the previous base (bl). */
/% */

/***************************************************************/

local _explorations:-

/* resets "flag" to establish a record of last action taken */
abolish(flag/1),
asserta(flag(l)),

/* notification in output that a local exploration occurred */
open(S, 'summary.dat',a),
nl(S),write(s,
Thkkkkkkkkkkkkkkkkkkkx [ocal Explorations *******************'),
nl(s),nl(s),close(S),!.

/* end of local explorations */

/***************************************************************/

/* */
/* RULE - reduce pulse * /
/* */

/* Decreases the pulse size factor by half and reestablishes */
/* the previous base values (TPFMQA) after local explorations */
/* failed to produce an improved CUMMD. */
/* */

/***************************************************************/

reduce pulse (NEW,ITER) :-
output cummd (NEW, ITER),

call(size(PULSE)),
call (minpsf (MPSF)),
call (b0 _cummd(OLD)),

/* reducer current pulse size (PSF) by half */
REDUCED is round(PULSE / 2,3),

/* notification in the output that a pulse reduction occurred */
open(S, 'summary.dat',a),
nl(S),write(s,
v ke e ok A A de e dedeodk de de ke Pulse reduction ****************')’
nl(s),write(S, 'Pulse size is: '),write(S,REDUCED),
nl(s),nl(s),
close(S),
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/*
/*

/*

/*

/*

resets old base TPFMQA values to those prior */
to the pattern search and local explorations */
call(b0(1,QA1)),

call(b0(2,QA2))
call (b0 (3,QA3))
call(b0(4,QA4))
call (b0 (5,QA5))
call (b0 (6,QA6))
call (b0 (7,QA7))
call (b0 (8,QA8)),
call (b0 (9,0QA9)),
call(b0(10,QA10)),

’
!
’
’
!
14

abolish(tpfmga/2),

asserta(tpfmga(l,QAl)),
asserta(tpfmga(2,QA2)),
asserta(tpfmga(3,QA3)),
asserta(tpfmga(4,QA4)),
asserta(tpfmga(5,QA%5)),
asserta(tpfmga(6,QA6)),
asserta(tpfmga(7,QA7)),
asserta(tpfmga(8,QA8)),
asserta(tpfmga(9,QA9)),
asserta(tpfmga(10,QA10)),

output_tpfmga,
shell (model),

read cumnd,
call (cummd (AFTER)),
output cummd (AFTER, ITER),

resets CUMMD recording system for perturbation comparisons */
abolish(bl cummd/1),
asserta(bl_cummd(OLD)),

retract (cummdold (10, BEFORE)),
asserta (cummdold (10,AFTER) ),
retract (cummdold (ITER,NEW) ),
asserta(cummdold (ITER,AFTER) ),

terminates the model if pulse is below user input mininmum */

retract(size(PULSE)),

ifthenelse (REDUCED >= MPSF,asserta(size(REDUCED)),
run_stop(OLD)),

resets "flag" to establish a record of last action taken */

abolish(flag/1),
asserta(flag(0)),!.
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/* end of reduce pulse */

/***************************************************************/

/* */
/* RULE - print head */
/* */

/* Creates summary data file (summary.dat) for recording all */
/* TPFMQA values sent to the system dynamics module and total */
/* project costs data (CUMMD) that is returned. Secondly, it */
/* records all user input data as the header of this file. */
/* */

/***************************************************************/
print head(PU,MN,AX,MP):-
create(S, 'summary.dat'),

write(s, Pulse size factor

' 'y,write(S,PU),nl(S),
write(s," Minimum QA value

t

v

'y,write(S,MN),nl(Ss),

write(S, Maximum QA value 'y,write(S,AX),nl(S),
write(S, Minimum pulse size 'y,write(S,MP),nl(S),nl(S),
close(S).

/* end of print head */

/***************************************************************/

/% */
/* RULE - calc_less */
/* */
/* Negative perturbation (pulse). */
/* */

/***************************************************************/

calc_less(ITER,NEW,OLD,TYPE) : -

/* records man-days for this cycle */
retract (cummdold (ITER,OLD)),
asserta(cummdold (ITER,NEW) ),

ifthenelse(ITER =:= 1,end_cycle(NEW,ITER),
output cummd (NEW, ITER)),

/* reads the current QA values */
call (tpfmga (ITER,QA)),

/* establishes an "initial" QA holder for perturbation use */
abolish(holder/1),
asserta(holder(QA)),

call(size(PULSE)),
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/* calculates a new QA value (NEWQA) */
NEWQA is round (QA-PULSE,3),

/* checks if the new QA is less than the minimum (MINQA) */
/* add the new QA value to the database */
call(min(MINQA)),
retract (tpfmga (ITER,QA)),
ifthenelse (NEWQA < MINQA,asserta(tpfmga(ITER,MINQA)),
asserta(tpfmga (ITER,NEWQA))),

/* moves to the next life cycle position */
retract (number (ITER)),

NEWITER is [ITER mod 10] + 1,
asserta (number (NEWITER) ),

ifthen(ITER =:= 1,output break),
output tpfmqga,

shell (model),
/* records that last pulse was negative */
retract (calc(TYPE)),

asserta(calc(0)).

/* end of calc_less */

/***************************************************************/

/* */
/* RULE - calc_more */
/* */
/* Calculates a positive perturbation (pulse) if the previous */
/* negative pulse resulted in a higher man-days value. */
/* If the man-days resulting from the positive pulse also * /
/* results in a higher man-days value then the QA value will * /
/* be returned to its original value for this cycle. */
/* */

/***************************************************************/

calc_more(ITER,NEW,OLD,CHECK,TYPE) : -

/* resets the life cycle position back 1 */
NEWITER is [[[ITER + 8] mod 10] + 1],

call (tpfmga (NEWITER,QA)),

/* calls the "initial" QA value for perturbation use */
call (holder (VALUE)),

call(size(PULSE)),
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/* calculates the new QA value depending on whether the last */
/* pulse was negative (TYPE = 0) or positive (TYPE = 1) */
case([TYPE =:= 0 -> NEWQA is round(VALUE+PULSE, 3),
TYPE =:= 1 -> NEWQA is VALUE]),

/* checks if the new QA is greater than the maximum (MAXQA) */
call (max (MAXQA)),
retract (tpfmga (NEWITER,QA)),
ifthenelse (NEWQA > MAXQA,asserta(tpfmga (NEWITER,MAXQA)),
asserta(tpfmga (NEWITER,NEWQA))),

retract(calc(TYPE)),
/* resets the type of calculation */

case([TYPE =:= 0 -> calc up(NEW,NEWITER),
TYPE =:= 1 -> calc orig(NEWITER,ITER,NEW,OLD,CHECK)]).

/* end of calc _more */

/**************************************************************/

/* */
/* RULE -~ calc_up */
/* */
/* Runs the dynamo model after an increase in the current * /
/* QA position. * /

* */

/**************************************************************/

calc up(NEW,NEWITER) : -

asserta(calc(l)),

output_cummd (NEW,NEWITER),
output tpfmqga,

shell (model).

/* end of calc_up */

/***************************************************************/

/* */
/* RULE - calc_orig */
/* */
/* After the QA value at a point has been returned to its */
/* original value, this rule continues with the next point. * /

*/

/***************************************************************/

calc orig(NEWITER, ITER,NEW,OLD,CHECK) : - -
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asserta(calc(0)),

output cummd (NEW,NEWITER),
output tpfmqa,
calc_less(ITER,CHECK,OLD,0).

/* end of calc_orig */

/***************************************************************/

/* */
/* RULE - run_stop */
/* */
/* Halts the program when an exit condition is met. */
/* */

/***************************************************************/
run_stop(NEW) :~
call (cummdold (10, BEST)),

open (S, 'summary.dat’',a),
nl(s),nl(s),

write(S, 'The best CUMMD is: '),
ifthenelse(BEST < NEW,write(S,BEST),write(S,NEW)),

nl(s),
close(S),

halt.

/* end of run_stop */

/***************************************************************/

/* */
/* RULE - output tpfmga */
/* */
/* Creates one file and updates one file: */
/* */
/* 1. project.dnx - created with the format required by the */
/* system dynamics simulation model. */
/* */
/* 2. summary.dat - updated by adding the current TPFMQA */
/* values to the end of the list of all previous values. */
/* */

/***************************************************************/
output tpfmga:-

call(tpfmga(1l,QAl)),
call (tpfmga(2,QA2)),
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call(tpfmga(3,QA3)),
call(tpfmga(4,QA4)),
call (tpfmga(5,QAS)),
call (tpfmga(6,QA6)),
call (tpfmga(7,QA7)),
call(tpfmga(8,QA8)),
call (tpfmga(9,QA9)),
call(tpfmga(10,QA10)

)

create(D, 'project.dnx'),
write(D,'T TPFMQA='),
write(D,QAl) ,write(D,
write(D,QA2) ,write(D,
write(D,QA3) ,write(D,
write(D,QA4) ,write(D,
write(D,QA5) ,write(D,
write(D,QA6) ,write(D,
write(D,QA7) ,write(D,
write(D,QA8) ,write(D,
write(D,QA9) ,write(D,
write(D,QAl10),nl (D),
close (D),

et N N s’ Vs st N N
- W™ W™ N W™ wm W™ W ow

open(S, 'summary.dat',a),
write(S, 'TPFMQA="'),
write(S,QAl) ,write(S,
write(S,QA2) ,write(S,
write(S,QA3),write(S,
write(S,QA4) ,write (S,
write(S,QAS5) ,write(S,
write(S,QA6) ,write(S,
write(S,QA7) ,write(sS,
write(S,QA8) ,write(S,
write(S,QA9) ,write(s,
write(S,QA10),nl(Ss),
close(S).

NN NN

/* end of output tpfmga */

/***************************************************************/

/* */
/* RULE - output cummd */
/* */
/* Outputs cumulative man-days total to the SUMMARY.DAT file. */
/* */

/***************************************************************/

output cummd (NEW, ITER) : -

open(S, 'summary.dat',a),
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/*

write(S,ITER) ,write(S,'. '),
write(S, 'CUMMD="') ,write(S,NEW),nl(S),

close(S).

end of output cummd */

/***************************************************************/

/*
/*
/*
/*
/*
/*

RULE - output break

Outputs a line denoting the start of a new cycle to the
SUMMARY.DAT file.

*/
*/
*/
*/
*/

*/

/***************************************************************/

output break:-

/*

open(S, 'summary.dat',a),

nl(s),write(S,

Thkkhkkhkhkhkhkhkkhkkhikk Start of a new cycle ****************')’

nl(s),nl(s),
close(S).

end of output break */

/***************************************************************/

/*
/*
/*
/*
/*
/*

RULE - read cummd

Reads from PROJECT.OUT file the man-days total output by
the system dynamics simulation model.

*/
*/
*/
*/
*/
*/

/***************************************************************/

read cummd: -

/*

open(C, 'project.out',r),
read (C,CUMMD),
abolish(cummd/1),
asserta (CUMMD) ,
close(C).

end of read cummd */
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/**************************************************************/

/*
/*
/*
/*
/*
/*

RULE - initial_run

Runs the system dynamics simulation model with the

initial TPFMQA values.

*/
*/
*/
*/
*/
*/

/**************************************************************/

initial run(QAl,QA2,QA3,QA4,0A5,QA6,QA7,QA8,0A9,0A10):~

/*

/*

/*

establishes the initial
asserta(tpfmga(1,QAl)),
asserta(tpfmga(2,QAz2)),
asserta(tpfmga(3,QA3)),
asserta(tpfmga(4,QA4)),
asserta(tpfmga(5,QA5)),
asserta(tpfmga(6,QA6)),
asserta(tpfmga(7,QA7)),
asserta(tpfmga(8,QA8)),
asserta(tpfmga(9,QA9)),

temporary base for pattern search */

asserta(tpfmga(10,QAl0)),

establishes the initial
asserta(b0(1,QA1)),
asserta(b0(2,QAa2)),
asserta(b0(3,QA3)),
asserta(b0(4,QA4)),
asserta(b0(5,QA5)),
asserta(b0(6,QA6)),
asserta(b0(7,QA7)),
asserta(b0o(8,QA8)),
asserta(b0(9,Qa9)),
asserta(b0(10,QA10)),

base for pattern search */

runs the system dynamics model */

output_tpfmga,
shell (model),

read_cummd,
call{(cummd {(INITIAL)),

records initial CUMMDs for perturbation comparisons */
asserta(b0_cummd (INITIAL)),
asserta(bl_cummd (INITIAL)),

asserta(cummdold(1,0)),
asserta(cummdold(2,0)),
asserta(cummdold(3,0)),
asserta(cummdold(4,0)),
asserta(cummdold(5,0)),
asserta(cummdold(6,0)),
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asserta(cummdold(7,0)),
asserta(cummdold(8,0)),
asserta(cummdold(9,0)),
asserta(cummdold (10, INITIAL)),
retract (cummd (INITIAL)).

/* end of initial run */

/* end of program pattern.ari */
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APPENDIX B

PATTERN SEARCH RESULTS

Pulse size factor = 0.05
Minimum QA value = 0.02
Maximum QA value = 0.5
Minimum pulse size = 0.01

TPFMQA=0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15
1. CUMMD=1656.71

khkhkhhkkkhkhkkkhkk Start of a new cycle hkkkkkkhhkkkkkkk

TPFMQA=0.1/0.15,/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15
1. CUMMD=1786.84
TPFMQA=0.2/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15
2. CUMMD=1597.04
TPFMQA=0.2/0.1/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15
2. CUMMD=1604.8
TPFMQA=0.2/0.2/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15
2. CUMMD=1606.44
TPFMQA=0.2/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15/0.15
3. CUMMD=1597.04
TPFMQA=0.2/0.15/0.1/0.15/0.15/0.15/0.15/0.15/0.15/0.15
4. CUMMD=1586.96
TPFMQA=0.2/0.15/0.1/0.1/0.15/0.15/0.15/0.15/0.15/0.15
5. CUMMD=1573.78
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.15/0.15/0.15/0.15/0.15
6. CUMMD=1556.6
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.15

7. CUMMD=1551.05
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.1/0.15/0.15/0.15

7. CUMMD=1558.14
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.2/0.15/0.15/0.15

7. CUMMD=1557.33
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.15

8. CUMMD=1551.05
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.1/0.15/0.15

8. CUMMD=1557.77
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.2/0.15/0.15

8. CUMMD=1557.66
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.15

9. CUMMD=1551.05
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.1/0.15

9. CUMMD=1557.69
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.2/0.15
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9. CUMMD=1557.72
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.15
10. CUMMD=1551.05
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.1
10. CUMMD=1557.68
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.2
10. CUMMD=1557.74
TPFMQA=0.2/0.15/0.1/0.1/0.1/0.1/0.15/0.15/0.15/0.15
1. CUMMD=1551.05

khkkkkkhkkhhkkhkkkhkhkkkkkkx Pattern Search Xk kkixxkkkkkkhkkhkkkkkhkk

TPFMQA=0.25/0.15/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
1. CUMMD=1570.05

kkkkkkkkkxkxkkkkkkkx [ocal Explorations rkkkkikkkkknkkktkhk

khkkkhkkhkhkhkkhkhkhkkkk Start of a new cycle %k %k Je o d K K Kk ok Kk Kk Kk ok ok

TPFMQA=0.2/0.15/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
1. CUMMD=1579.31
TPFMQA=0.3/0.15/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
2. CUMMD=1560.65
TPFMQA=0.3/0.1/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
2. CUMMD=1585.35
TPFMQA=0.3/0.2/0.05/0.05/0.05/0.05/0.15/0.15/0.15/0.15
3. CUMMD=1545.7
TPFMQA=0.3/0.2/0.02/0.05/0.05/0.05/0.15/0.15/0.15/0.15
3. CUMMD=1554.31
TPFMQA=0.3/0.2/0.1/0.05/0.05/0.05/0.15/0.15/0.15/0.15
4. CUMMD=1537.04
TPFMQA=0.3/0.2/0.1/0.02/0.05/0.05/0.15/0.15/0.15/0.15
4. CUMMD=1541.09
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
5. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.02/0.05/0.15/0.15/0.15/0.15
5. CUMMD=1531.51
TPFMQA=0.3/0.2/0.1/0.1/0.1/0.05/0.15/0.15/0.15/0.15

5. CUMMD=1540.31
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
6. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.02/0.15/0.15/0.15/0.15
6. CUMMD=1530.47
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.1/0.15/0.15/0.15/0.15

6. CUMMD=1535.59
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
7. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.1/0.15/0.15/0.15

7. CUMMD=1530.21
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.2/0.15/0.15/0.15
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7. CUMMD=1536.25

TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
8. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.1/0.15/0.15
8. CUMMD=1529.95
TPFMQA=0.3/0.2/0.1/0.1/G.05/0.05/0.15/0.2/0.15/0.15
8. CUMMD=1536.42
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
9. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.1/0.15
9. CUMMD=1529.89

" TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.2/0.15
9. CUMMD=1529.91
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.15
10. CUMMD=1529.88
TPFMQA=0.3/0.2/0.1/0.1/0.05/0.05/0.15/0.15/0.15/0.1

1. CUMMD=1529.88

kkkkkkkkkkkkhkkkkkkkkkx DPattern Search **kxkkkkkhkkkhkhkkkdkkk*x

TPFMQA=0.4/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
1. CUMMD=1524.59

Je ke ke ke de ok ko ok ok ok dkokkk % %k de K K Je kK k Kk ok ok k ok kk

Start of a new cycle

TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
2. CUMMD=1516.34
TPFMQA=0.35/0.2/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
2. CUMMD=1528.66
TPFMQA=0.35/0.3/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
2. CUMMD=1530.23
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
3. CUMMD=1516.34
TPFMQA=0.35/0.25/0.05/0.1/0.02/0.02/0.15/0.15/0.15/0.05
3. CUMMD=1524.42
TPFMQA=0.35/0.25/0.15/0.1/0.02/0.02/0.15/0.15/0.15/0.05
3. CUMMD=1528.3
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
4. CUMMD=1516.34
TPFMQA=0.35/0.25/0.1/0.05/0.02/0.02/0.15/0.15/0.15/0.05
4. CUMMD=1516.94
TPFMQA=0.35/0.25/0.1/0.15/0.02/0.02/0.15/0.15/0.15/0.05
4. CUMMD=1534.82
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
5. CUMMD=1516.34
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
6. CUMMD=1516.34
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.15/0.15/0.15/0.05
7. CUMMD=1516.34
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.15/0.15/0.05
8. CUMMD=1510.08
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.1/0.15/0.05
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8. CUMMD=1510.13
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.2/0.15/0.05
8. CUMMD=1516.53
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.15/0.15/0.05
9. CUMMD=1510.08
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.15/0.1/0.05
10. CUMMD=1510.08
TPFMQA=0.35/0.25/0.1/0.1/0.02/0.02/0.1/0.15/0.1/0.02
1. CUMMD=1510.08

kkkhkkkhkhkhkkhkkkhkkkkhkkkx Pattern Search *kxkkikkdkkkkkhkkkkkh*

TPFMQA=0.4/0.3/0.1/0.1/0.02/0.02/0.05/0.15/0.05/0.02
1. CUMMD=1505.19

khkkkhkkkkkkkkhkkk Start of a new cycle Fokkdokhdkokkdko