“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-03

Improvement of Janus using 1-meter
resolution database with a transputer network

Dundar, Cem Ali

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/30899

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

IMPROVEMENT OF JANUS USING PEGASUS 1-METER
RESOLUTION DATABASE WITH A TRANSPUTER
NETWORK
by
Cem Ali Diindar
March 1994
Thesis Advisor: Se-Hung Kwak

Approved for public release; distribution is unlimited.

Thesis
D78935

DUDLEY KMOX LIRRARY
NAVAL P51 ERACUATE SCHOO!
MONTEREY CA 83843-5101

Fe

REPORT DOCUMENTATION PAGE OB ey o704 0188

Pl reporing burden o s Colecion of MAOTbi & asiraled 10 Sverage | o0 o roapanee, PCAIIG e 1w revarg PeirUChors, Sarciung &Xir des s0uroms

. 1215 Joforscn
Davis bighway, Sute 1204, Aringion, VA 2220242,) Weshington, OC 20603

AT RE SRV e s [EORTORE T RERORYTVRE RO
‘March 1994 Masters Thesis
TTTLE AN SUBTIE - -
Improvement Of Janus Using Pegasus 1-meter Resolution Database
With A Transputer Network(U)

TAUTHOR®)
Diindar, Cem Ali
T RER ORI ORGANZATCR RAWE) A0 RooRess(e% [&- PERFORMING ORGANZATION |
Naval Postgraduate Scho REPORT NUMBER
Monterey, CA 93943-5000
BE TNGI WONITORING AGENCY NAME(S) AND AGORESS(ES) | S AL I—
AGENCY REPORT NUMBER

. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

(o DISTRIBUTION T AVAILABILTY STATEWENT. oo B
Approved for public release; distribution is unlimited.

73, RBSTRACT (Maximum 200
Line-of-sight (LdS) calculation for the Janus combat simulation model is critical to the processes
being simulated and impacts the run speed (ratio of game time to real time), since it may be the single most
: ive algorithm in si N

‘This thesis presents design and i jon of a network with the purpose of providing
an efficient LOS ion in a distri memory and The approach taken
‘was to use a processor farming method to speed up the LOS calculation. The programs were implemented
on a network of 15 transputers using 3L Parallel C++ (version 2.1.1) programming language. A 1-meter
resolution terrain database of Fort Hunter Liggett, California was used to get more reliable LOS results.

Expected gain of our system was 3.873 (J/15). After un’ung tests, we found that we could speed up
the LOS calculation by a factor of 2.581 when ing the a
processor which is equi to a single The di between expected gain and our actual
gain was found to be the communication overhead in the network of transputers. We stated that further
significant improvements can be provided by using our approach with more memory and faster

4. SUBJECT TEI 7. PAGES

Janus, Transpulcx, Pegasus Database, Parallellism, Line-of-sight 225
TEPIRECoeE
77 SEeoRTY 7% SECORITY CLX T SECURTY SR =, RESTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
1 i) i I i SAR
NSN 7540-01-280-5500 ‘Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

IMPROVEMENT OF JANUS USING 1-METER RESOLUTION DATABASE
WITH A TRANSPUTER NETWORK

by
Cem Ali Dindar
LTJG. Turkish Navy
BS, Turkish Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author:

Approved By:

Se-Hung Kwak, Thefsis Advisor

Euglene P. Paulo, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Line-of-sight (LOS) calculation for the Janus combat simulation model is critical to
the processes being simulated and impacts the run speed (ratio of game time to real time),

since it may be the single most i pensive algorithm in si

This thesis presents design and implementation of a transputer network with the

purpose of providing an efficient LOS ion in a distributed memory and
environment. The approach taken was to use a processor farming method to speed up the

LOS calculation. The programs were implemented on a network of 15 transputers using 3L

Paralle] C++ (version 2.1.1) ing language. A 1-meter ion terrain database
of Fort Hunter Liggett, California was used to get more reliable LOS results.

Expected gain of our system was 3.873 (JI5). After timing tests, we found that we.
could speed up the LOS calculation by a factor of 2.581 when comparing the 15 transputer
configuration to a conventional processor which is equivalent to a single transputer. The
difference between expected gain and actual gain was found to be the communication
overhead in the network of transputers. We stated that further significant improvements can

be provided by using our approach with more memory and faster transputers.

THESIS DISCLAIMER

Many terms used in this thesis are regi: of ial products.

Rather than ing to cite each indivi of a all

trademarks appearing in this thesis are listed below the firm holding the trademark:
INMOS Limited. Bristol, United Kingdom:
inmos

Ms

SzeLEY KNOX LIBRARY
/AL POSTGRADUATE SCHOO!
MONTEREY CA 93943-5101

ACKNOWLEDGEMENTS

I would like to thank Dr. Se-Hung Kwak, whose interest in the subject of parallel

with was the ion on which this thesis was produced. His
continued support, enthusiasm, patience, and guidance were invaluable assets for the
completion of this work.
1 also would like to thank Major Eugene P. Paulo, for his helps and supports everytime
we needed to coordinate with TRAC MTRY group during my thesis work.

TABLE OF CONTENTS

1. INTRODUCTION 1

A. BACKGROUND 1

1. Janus. 1

2. The Transputer 2
B. SCOPE OF THESIS 2
3

C. THESIS ORGANIZATION.

=

TRANSPUTERS AND PARALLEL COMPUTING....
A. PARALLELISM

B. THE INMOS TRANSPUTER

1. C icatil ial Processes

2. Transputer

a. Overall

b. Central Processor 11
c. Floating Point Unit 1
d. Memory System. 1
e. Links 12
f. Peripheral Interface 2
g. Error Handling 12
h. P ing IMS T800 12
i. Processes And C 12
j. Priority 13
k. C icati 14

3. P ing Languages 14

a. Occam ing Language 15

b. Alsys Ada P ing Language 16

c. 3L’sParallel C++ ing Language 16

(1) Abstract Model. 16

(2) Hard Model 16

(3) Software Model 17

(4) Parallel ion Threads 18

) & ing An Applicati 19

(6) Processor Farm: 20

1. DETAILED PROBLEM STATEMENT 21
A. PEGASUS DATABASE 21
L i 21

2. Database Organizati 21

3. Post Structure 25

B. LINE-OF-SIGHT CALCULATION 28
1. Line-of-sight for Detection 28

2. LOS Through Smoke/Dust Clouds 30

3. LOS For Dep 31

C. WHY 1-METER RESOLUTION? 31

IV. TRANSPUTER IMPLEMENTATION OF LINE-OF-SIGHT CALCULATION.

A. HARDWARE 34
1. General 34

2. d 34

a. TheT: ionshi 34

b, IBMPC As A Host %

c. The IMS B004 ion Board 37
d. ALTA CTRAM (C« ion TRAnsputer Module). 41
e. ALTA Remote Tram Holder. 41
(1) Jumper Options 44
(2) External Links. 44
(3) TRAM SLOTs and Topology 44
(4) System Services 44
f HSUSB 45
g- The IMS B012 ion Board 46
(1) P1C i 50
@ P2C i 50

(3) IMS B012 as a Slave to a Master Controller
(4) IMS B012 as a System Master. 51
3. Our i 51

(1) Disabling the T414 Transputer on the B004 Board.....

(2) Setting Up the ALTA Remote Tram Holder..

(3) Setting Up the Link Speed 59
B. SOFTWARE 61
1. General 61

a. Installing HSI/Bus and Setting the Link Speed

b. Our Processor Farm Applicati 62

(1) Master, Worker and Router Tasks ..

(2) C ion File. 64
c. Loading the Height Data 68
d. LOS C: i 7

e. The Afserver Task on Host 72

V. EXPERIMENTAL RESULTS FOR LINE-OF-SIGHT CALCULATION....

A. PERFORMANCE ANALYSIS 73
B. THE RESULTS 74

VI. CONCLUSIONS AND RECOMMENDATIONS.......

A. CONCLUSIONS 80
B. RECOMMENDATIONS FOR FURTHER RESEARCH..
1. Ce ion To Janu: 80
2. INMOS T9000 T 81
3. ALPHA AXP Farm P i i 81
4. Parallel Prc ing Support Envi 81

APPENDIX A - SUN SPARC STATION SOURCE CODE
APPENDIX B - HOST COMPUTER (PC) SOURCE CODE
APPENDIX C- SOURCE CODE FOR READING TERRAIN DATA
LIST OF Rl ES.

INITIAL DISTRIBUTION LIST

DEDICATION

1 dedicate my thesis to my parents Nimet and Ahmet Diindar who were my first teachers

and of whom I'm very proud to be their son.

L. INTRODUCTION

A. BACKGROUND

1. Janus

‘The Janus simulation was fielded in 1978 [Ref. 1]. It was developed as a nuclear
effects modeling tool by Lawrence Livermore National Laboratories and became known as
Janus(L). TRADOC Analysis Command (TRAC) at White Sands Missile Range (WSMR)
modified Janus(L) to meet Army combat development needs. The modified Janus(L)
model became known as Janus(T). The Army realized the value of the system for use in the
training arena, and tasked TRAC-WSMR with developing a multipurpose system from the
best of Janus(L) and Janus(T), which was termed Janus(A). Through enhancements and
upgrades, Janus(A) has reached a version level of 4.0 as of January 1994.

‘The Janus model simulates battle between Blue and Red units. It supports conflict

from indivi systems and pany-sized units through bri

d units.

Itis an i i ided, closed, ic, ground combat simulation featuring
precise color graphics. Janus is “interactive” in that the command and control functions are
entered on workstations by military analysts who decide what to do in crucial situations
during simulated combat. “Two-sided” refers to the two opposing forces, blue and red,
directed simultaneously by two sets of players. “Closed” means that the disposition of
opposing forces is largely unknown to the players in control of the other force. “Stochastic™
refers to the way the system determines the results of actions such as direct fire
engagements; according to the laws of probability and chance. “Ground combat” means
that the principal focus is on ground maneuver and artillery units, although Janus also
models weather and its effects, day and night visibility, engineer support, minefield
employment and breaching, rotary and fixed wing aircraft, resupply and a chemical

environment. Janus is an event-driven simulation.

2. The Transputer
The term “transputer” is an acronym for “transistor computer” where it reflects
the ability of this device to be used as a system’s building block, much like the transistor
was in the past [Ref. 2]. The nice feature of the transputer is that it adds a new level of

abstraction, which provides a very simple way to design a concurrent system. As a formal

definition we could state that the is a single-chip mi that has its own
local memory and four communication links. The links may be thought as of as small
special purpose processors which steal no cycles from the main CPU, in such a way that we

could have all four links and the CPU working at the same time, without degrading the

of the program’s
The is a parallel mi generally categorized as a Multiple
Instruction Multiple Data (MIMD) computer [Ref. 3] [Ref. 4:pp. 498-500]. This means that

transputers are used to execute different operations on separate data at the same time. This
is somewhat like a football team where individual players execute their own special
assignments together during a play. A transputer operates as a stand-alone machine or as a
processing element interconnected by their links to form computing arrays and networks.
Modular design enables transputers to be used together in arbitrary numbers to support a
broad range of applications, and the inherit redundancy of multiprocessing can be utilized

for fault tolerance.

B. SCOPE OF THESIS

Line-of-sight (LOS) is a central process in combat simulations that works at item
level. The LOS algorithm is critical to the processes being simulated and impacts the run
speed (ratio of game time to real time), since it may be the single most computationally
expensive algorithm in the simulation.

This study is focused specifically on the following two objectives:

1. Toi an efficient ion of LOS in a distri memory

by using transputers and 1-meter resolution terrain database.

2. To show that the usage of 1-meter resolution terrain database for LOS calculation
purposes gives more precise and reliable results than the current 50 or 100-meter resolution
terrain databases.

C. THESIS ORGANIZATION

This thesis is presented in six chapters and three appendices.

Chapter [is the introduction to the problem and the background for Janus combat
simulation system and the transputer.

Chapter II describes the current issues about parallel computing with transputers.

Chapter III presents a detailed problem statement for this thesis. The current issues
about Janus which are PEGASUS terrain database organization and the algorithm for LOS
calculation are described in this chapter.

Chapter IV describes the P i ion of LOS ion in both

hardware and software aspects.

Chapter V presents the i results of the transputer i ion of LOS
calculation.

Chapter VI states the conclusions and recommendations for further research.

Appendix A includes the Sun SPARC Station source code.

Appendix B includes the Host Computer (PC) source code.

Appendix C includes the source code for reading terrain data from Pegasus Database.

IL. TRANSPUTERS AND PARALLEL COMPUTING

A. PARALLELISM

In the first computing wave, scientific and business computers were more or less
identical as they were all big and slow [Ref. 6:p. 1]. Even the carly electronic computers
were not very fast. This was the “prehistory of computing”, where computing had to be
employed at any cost.

The second and third waves brought on mainframes, minis, and finally micros. This
diversity of computing caused a number of niches to develop which broadened and
deepened the computer industry. Scientific and business computing went their separate

ways, and there seemed to be a computer in just about everyone’s price range.

But the original power users who pi i i to ize speed
above all else. Single-processor supercomputers achieved unheard of speeds beyond 100
million instructions per second, and pushed hardware technology to the physical limits of
chip building. But soon this trend will come an end, because there are physical and
architectural bounds which limit the computational power that can be achieved with a
single-processor system.

We are now enjoying the Parallel Wave [Ref. 6:pp. 1-5] of computing, where
performance is enhanced by using multiple processors. Parallelism is the process of
performing tasks concurrently. It has been touted as a solution to the problem of making
computers faster and faster. When the physical limits for single-processor systems are
reached, parallelism will be the only course. However, even before the speed limit is
reached, there is an economic motivation to use parallel processing in place of faster and
more expensive single-processor systems. Indeed, the economic advantage of low-cost,
multiple processing systems was realized in the mid-1980s. Hence, the 1990s were poised

for the decade of parallelism simply due to economic forces.

Many parallel architectures have been discussed in the past, and there are several

superminicomputer parallel systems available today. However, most of these are unable to

provide the very wide range of pri that parallel ing promises and that
transputer-based systems can provide [Ref. 5].
To understand this, it is worth examining the normal approach to parallel systems

design. Most parallel systems are by ing up multiple with a

single high speed bus. A simplified system can be imagined, consisting of multiple

processors sharing a single global memory accessed via a single high performance bus.
This shape of system will provide very disappointing results for obvious reasons; a

processor can only access memory when no other processor is accessing memory. With

high performance processors, this will provide an upper limit of perhaps two or three

before stops i ing. It is possible to speed the system up, but
only by use of memory that is very much faster than the processors. This is expensive.

In more realistic system each processor has some private, local memory in addition
to bus access to global memory. The local memory could be organized as either a private
address space, or a sufficiently large cache. Now, it is possible to imagine a system where
a processor spends perhaps 90% of its time accessing local memory and only 10%
accessing the shared store. Then with reasonably-priced memory it should be possible to
build a computer which can use perhaps twenty or thirty processors before saturating.

The bottleneck in this system is the shared resource, either the bus or the memory.
The bus itself is a poor choice for interconnect in any case; not only does its logical
performance degrade as more processors contend for it, the extra electrical loads imposed
by adding processors to the bus either slow the system down as more machines are added,
or set a much lower bandwidth on the bus for lower processor counts.

‘Whichever is the bottleneck at present, the apparently inexorable improvement in
semiconductor technology will arrange for it to be the bus since affordable memory and
processor speeds are increasing faster than improved backplane technologies. As a result,

this sort of system is guaranteed non-future proof; as device speeds increase, the system

performance flattens out since the maximum number of processors usable before bus
saturation reduces with time.

The system architecture can be changed slightly to remove the straitjacket imposed
by the bus. An obvious improvement is to use multiple buses, probably arranged in some
regular, structured manner, like a hierarchy. Now, clusters of computers, each with its own
local memory, share some cluster memory via a cluster bus. Clusters are connected by other
buses; these buses themselves can have memory. Then, assuming that 90% of accesses are
local, and that 90% of the non-local accesses are to the local cluster shared memory, the
earlier arguments suggest that for a well-behaved problem, a twenty cluster system could
be built, with each cluster having twenty processors.

This solution should work for a range of applications, but the amount of logic and

needed to i it makes it expensive. It has another problem, too; while

itisan i for a single, ized computer, shared buses do not seem
to be an appropriate paradigm for distributed parallel systems.

These criticisms can be resolved by a small change in attitude to the system

and then a re-i ion. Assume that the system is an actual parallel
computing system, rather than just a collection of computers each with access to some
shared system resource; then the processors must be interacting with one another. Each will
be working on a portion of the problem, and will interchange partial results with other
processors as they jointly progress toward completing the program. To do this, each
machine will likely provide the equivalent of mailboxes, where the other processors can

leave their own results and their requests for information.

But if the are ing by ing messages, then there is no need
to use shared memory to implement the communication. Instead, direct interprocessor data
transfer channels can be used to Direct Memory Access (DMA) [Ref. 4:pp. 297-301]
information from one processor to another. Given such a mechanism, we cure several

problems at once: as we add we add i i the

do not need to be physically located together, and so can be components of a distributed

system without necessarily altering the system design or software; and the cost of the
interprocessor hardware can be much reduced from bus costs (since, for example, there is
no need for an address, we can save by not having address lines; since there is exactly one
destination for each driver, the electrical design is simpler).

‘This is the system architecture chosen for the transputer. Each transputer comes with
one or more interprocessor links, each one DMA-driven to ensure that communication can
take place in parallel with computation. Transputers further reduce system cost by using
serial interconnect; minimizing pin count reduces transputer cost and interconnect cost,

eases board layout and minimizes power consumption.

B. THE INMOS TRANSPUTER

The [Ref. 7:pp. 7-30] ped by INMOS Limited of Bristol, United
Kingdom, and has since expanded into a family of very large scale integrated (VLSI)

components with different ilities. Since the isa designed to
exploit the potential of VLSI, that technology allows large numbers of identical devices to
be manufactured cheaply. For this reason, it is attractive to implement a concurrent system
using a number of identical components, each of which is customized by an appropriate
program. The revolutionary architecture of the transputer enables the potential of
concurrency to be realized for the first time, making today’s applications easier to

implement and creating a new dimension for tomorrow”s systems.

The uses silicon capability to make ing simpler and to make

engineering easier than for any previous microprocessor. The architecture has been

optimized to obtain the maxi of ionality for the mini of silicon. It allows
different trade offs between performance and cost, always giving an intrinsic advantage

over older architectures. The architecture is future-proof. It spans the range of

from mi to T will exploit future

levels of i ion by i ing the amount of ing, memory, ications and

concurrency within the same architecture.

A typical member of the transputer family is a single chip containing processor,
memory, and communication links which provide point to point connection between
transputers. The transputer provides a direct implementation of the process model of
computing. A process is an independent computation, with its own program and data,
which can communicate with other processes executing at the same time. Communication
is by message passing, using explicitly defined channels.

The transputer is designed so that it can i a set of

Special instructions share the processor time between the concurrent processes and perform
interprocess communication.
In addition, the transputer is designed so that its external behavior corresponds to the

formal model of a process. As a consequence, it is possible to program systems containing

multiple i in which each i a set of processes.
Since a program is defined as a set of processes, it can be mapped onto such a systemin a

variety of ways, such as minimizing cost, or optimizi or imizing the

responsiveness to specific events.

The transputer specifically implements the concept of communicating sequential
processes (CSP) defined by C.A.R. Hoare [Ref. 8] and to be used as a building block for
distributed computing systems. The CSP concept describes the interactions between

programs that execute in parallel.

1. Communicating Sequential Processes
Hoare’s Communicating Sequential Processes (CSP) is one model for concurrent

or parallel programming, and it is central to the design of the transputer. In CSP, a program

isa ion of p which can be ined to execute i on a single
processor or in parallel on multiple processors.The data space for any process executing in
parallel is disjoint, thus alleviating the need for sharing memory between processors.

Although shared memory is not available, processes must still communicate with each

other. Therefore, CSP utilizes message passing between any pair of parallel processes via
declared communication channels between two processes.

In order for the concurrent processes to communicate, message passing must be
synchronized. Such communication occurs when one process names another as destination
for output and the second process names the first as source for input. This allows the value
to be output by the source process to be copied into the destination process. Note that the

imposes a i that an output (input) command must be delayed

until the ing input (output) in the other process is ready to be

executed.

2. Transputer Architecture
Several versions of the transputer are currently available. This thesis considers
transputer types IMS T800 and IMS T805". The following sections describe the features of
an IMS T800 20MHz transputer. A complete description of all currently available
transputers can be found in [Ref. 7] and [Ref. 9]. A block diagram of an IMS T800

transputer is shown in Figure 2.1.

a. Overall
The IMS T800 is a 64 bit floating point member of a family of transputers, all
which are consistent with the INMOS transputer architecture. It integrates a 32 bit
microprocessor, a 64 bit floating point unit, four standard transputer communication links,
4Kbytes on-chip RAM for high speed processing, a configurable memory interface and
peripheral interfacing on a single chip, using a 1.5 micron CMOS process.

1. T805 is anew version of T800. They are essentially same processors and our lab has a mixture of
‘T800 and T80S transputers.

Floating Point Unit

System
Services

4K Bytes
of

;n BIT

32 BIT
P

32 Bit

<

On-chip
RAM

External

Processor

32 BIT
Link
Interface

B .
- il Link
& 2 Interface

ktd Link
Interface

2 BIT, K
32BIT Interface
el

Memory
Interface

Figure 2.1: IMS T800 Block Diagram of the 32-bit Transputer

10

b. Central Processor
‘The 32 bit processor provides 10 MIPs performance. The design achieves
compact programs, efficient high level language implementation and provides direct
support for the occam (a programming language that will be mentioned later) model of
concurrency. Procedure calls, process switching and interrupt latency are all sub-
microsecond. The processor shares its time between any number of concurrent processes.
A process waiting for communication or a timer does not consume any processor time. Two

levels of process priority enable fast interrupt response to be achieved.
¢. Floating Point Unit

The 64 bit floating point unit provides single length and double length
operation according to the ANSI-IEEE 754-1985 standard for floating point arithmetic and

able to perform floating point arithmetic i with the
sustaining in excess of 1.5 Mega Flops.

The floating point unit (FPU) on the T800 consists of a microcoded
computing engine which operates concurrently with and under the control of the Central
Processing Unit (CPU). It contains a three deep floating point evaluation stack on which
floating point numbers, represented in the IEEE format can be manipulated. All data
communication between memory and the floating point unit is done under the control of

the CPU.

d. Memory System
The 4Kbytes of on chip static RAM provide a maximum data rate of 80
Mbytes/sec with access for both the processor and links. The IMS T800 can directly access
a linear space up to 4 Gbytes. The 32 bit wide external memory interface uses multiplexed
data and address lines provides a data rate up to 26.6 Mbytes/sec. A configurable memory
controller provides all timing, control and DRAM refresh signals for a wide variety of
memory systems. Intemnal and external memory appear as a single continuous address

space.

e. Links

‘The IMS T800 uses a DMA block transfer mechanism to transfer messages
between memory and another transputer product via the INMOS links. The link interfaces
and the processor all operate concurrently, allowing processing to continue while data is

being transferred on all of the links.
‘The four standard INMOS serial links on the IMS T800 give a unidirectional
data rate of 1.7 Mby anda i idirecti data rate per link of
2.3 Mbytes/sec, at a link speed of 20 Mbits/sec. Link speeds of 10 Mbits/sec and a 5 Mbits/
sec are also available on the IMS T800 making the device compatible with all other INMOS

transputer products.

f. Peripheral Interface

‘The memory controller supports memory mapped peripherals, which may use
DMA. Links may be interfaced to peripherals via an INMOS link adaptor. A peripheral can
request attention via the event pin.
8. Error Handling
High-level language execution is made secure with array bounds checking,

arithmetic overflow detection etc. A flag is set when an error is detected. The error can be

handled internally by software or externally by sensing the error pin.

h. Programming IMS T800

The IMS T800 can be in several including
Occam, C, C++, Ada, Fortran and Pascal.

i Processes And Concurrency

‘The transputer provides direct support for concurrency. It has a microcoded
scheduler which enables any number of concurrent processes to be executed together,

sharing the processing time. This removes the need for a software kemel.

A process starts, performs a number of actions, and then either stops without
completing or terminates complete. Typically, a process is a sequence of instructions. A
transputer can run several processes concuncnr.lyz, Processes may be assigned either high
or low priority, and there may be any number of each.

At any time, a concurrent process may be

Active - Being executed

- On a list waiting to be executed.
Inactive - Ready to input

- Ready to output

- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume
any processor time. It allocates a portion of the processor’s time to each process in turn.
Each process runs until it has completed its action, but is descheduled while waiting for
communication from another process or transputer, or for a time delay to complete.

J. Priority

‘The IMS T800 supports two levels of priority. Priority 1 (low priority)
processes are executed whenever there are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more
high priority processes are able to proceed, then one is selected and runs until it has to wait
for a communication, a timer input, or until it completes processing. If no process at high
priority is able to proceed, but one or more processes at low priority are able to proceed
then one is selected. Low priority processes are periodically timesliced to provide an even
distribution of processor time between computationally intensive tasks.

Note that the intention of having two priority levels for processes is to allow
those high priority tasks, which must be executed when they are invoked, to preempt a

currently executing low priority process and execute to completion. It is important that the
2. This is actually a time-sharing for a single CPU system.

13

high priority tasks have a very short execution time (less than one slicetime period).

Otherwise the low priority p: which should be th ion intensive p 3
will not be given fair access to the processor.
k. Communications

Communications between processes is achieved by means of channels.

Process ication is poi poi ized and As a result, a
channel needs no process queue, no message queue and no message buffer.

A channel between two on the same is

implemented by a single word in memory; a channel between processes executing on

different is i by point-to-point links. The processor provides a
number of operations to support message passing, the most important being input message
and output message.

The input message and output message instructions use the address of the
channel to determine whether the channel is intemal or external. Thus the same instruction
sequence can be used for both, allowing a process to be written and compiled without the
knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also
ready. A process performs an input or output by loading the evaluation stack with a pointer
to a message, the address of a channel, and a count of the number of bytes to be transferred,
and then executing an input message or output message instruction. Data is transferred if
the other process is ready. If the channel is not ready or is an external one the process will
deschedule.

3. Programming Languages
There are several languages which can be used to write programs for use on the
transputer. Among these are Occam, Alsys-Ada, 3L’s Parallel C, C++, Pascal and Fortran.
Three of the languages were considered for this thesis. These three languages were Occam
[Ref. 10], Alsys-Ada [Ref. 11], and 3L’s Parallel C++ [Ref. 12] [Ref. 13].

a. Occam Programming Language

Occam [Ref. 10] is a high level ing language that is designed to run

concurrent processes on a network of i (e.g. There are

two prime concepts in Occam; they are concurrency and communication. These allow

P to run si and transfer i ion, via channels, from process to
process. It is based on concepts founded by David May in Experimental Programming
Language and Tony Hoare in Communicating Sequential Processes.

It allows p: running on a system to i only

through channels. These channels are asynchronous, but require the send and receive
processes to be ready to send and receive at the same time. This idea of being ready to send

and receive sil is known as

Occam has five kinds of constructions that are used to build a process from
smaller processes (primitive or other). These constructions are:

- IF: This construction guards a number of processes by a boolean expression.

- CASE: This construction is used to select one of a number of options.

- WHILE: This construction is used for loops.

- PAR: This construction has the effect of allowing the processes within its
bounds to execute in parailel.

- ALT: This construction is used to allow a processor to select only one of
several guarded processes for execution. The process whose guard is first found to be true
is selected.

This language allows the to on a small,

set of processes which can then be connected with other sets of processes. In Occam a set
of processes or a set of interconnected processes can be regarded as a single process.

The above features make Occam a powerful and versatile language. It has not
gained wide acceptance thus far probably due to the limited use of multiprocessor
(transputer) systems and due to the development of parallel versions of other widely used

languages.

b. Alsys Ada Programming Language

In October 1989, Alsys produced the first compiler capable of supporting
multi-processor programming in Ada [Ref. 11]. Alsys Ada Compilation System consists of
the compiler and binder, operating in the Alsys Multi-Library Environment. The compiler
generates executable code for transputer for T4 or T8 transputer targets. Multi-Library
Environment provides a powerful way of managing Ada development efforts. It allows
compilation units to be flexibly shared among libraries, and eliminates the need to copy
library units to share them, along with the associated version control problems.

Although it has the features mentioned above, we decided against using it,

because the compilation time is too long when compared to the other languages.
¢. 3L’s Parallel C++ Programming Language

(1) Abstract Model. The treatment of parallel processing in transputer

systems is based on the idea of p which is explained in
part B of this chapter. In this model, a ing system is a collection of
active ial p which can only i with each other over channels. A

channel connects exactly one process to exactly one other process and can only carry
messages in one direction. Each process can have any number of input and output channels,
but note that the channels in a system are fixed; new channels cannot be created during its

operation. A process could be a bit of hardware or a software module; in particular it may

also be another complex system, itself isting of a number of

(2) Hardware Model. The transputer was designed to be used as a

in systems. Each processor has four Inmos links, to
connect it with other transputers. Each link has two channels, one in each direction. These

hardware channels provide

Arbitrary networks of transputers can be constructed simply by
connecting their links together with ordinary wires, the only limitation being that each

processor cannot be directly connected to more than four others. A transputer can therefore

16

be viewed as a single process in a multi-transputer system. However, it is also possible for
any number of concurrent processes to be run on an individual transputer. Any word in the
transputer’s memory may be used as a channel to connect one internal process to another.
The address of such a channel word is used to identify it to the transputer instructions (and
Parallel C++ functions) which send or receive messages. The contents of the word are used
by the hardware to synchronize sending and receiving processes.

From a program’s point of view, these internal channels and the hardware
link channels are identical. The same instructions (or parallel C++ functions) are used to
send and receive messages on both internal channels and the hardware link channels.
Hardware link channels are identified by special fixed addresses, but internal channels have
addresses allocated by software.

‘The equivalence of internal channels to hardware link channels means it
is possible to develop a parallel system on a single transputer and then move some of its

processes onto other transputers without having to recompile any code.

(3) Software Model. Parallel C++ is based on the same abstract model of
communicating sequential processes as the transputer hardware.

A complete application is viewed as a collection of one or more
concurrently executing tasks. Each task has its own region of memory for code and data, a
vector of input ports, and a vector of output ports. The port vectors are passed to the task
as arguments to its main function. The code of a task is a single transputer image (.b4) file
generated by the ordinary linker, linkt.

Tasks can be treated as atomic building blocks for parallel systems, to be
wired together rather like electronic components. Indeed, several such basic building-block
tasks are supplied with the compiler.

Each element in the input and output port vectors is of type “pointer to
channel word”, (*CHAN). Ports are bound to real channel addresses by configuration
software external to the task itself; the bindings can be changed without recompiling or

relinking the task. Extended C++ run-time library functions supplied with the compiler

17

allow C++ programs to send and receive messages over the channels bound to a task’s
ports.

The configuration software also provides ways of specifying which
software tasks are to be run on which hardware processors. Each processor can support any
number of tasks, limited only by available memory.

Tasks placed on the same processor can have any number of
interconnecting channels. Tasks placed on different processors can only be connected
where physical wires connect the processors” links. Each logical connection between two
tasks placed on different processors is assigned exclusive use of one the physical link
channels ing the The number of i ions between tasks on

different processors is therefore limited by the number of hardware links each one has.

(4) Parallel Execution Threads. The software features described so far
allow us to build parallel systems by connecting together the ports of a number of relatively
independent tasks. In particular, all the tasks have separate code and data, and are only
allowed to communicate with each other by sending messages over channels.

Al of the code of a task can be written in an ordinary sequential language,
except for one extra feature needed by based on the i it

processes idea. This extra feature is a way of making a process wait until a message is
received on any one of a number of input channels. In Parallel C++, it is catered for by the
ability to create new concurrent threads of execution within a task. The task creates one
thread for each input channel. Each thread executes a sequential message input call and
handles messages received on that channel. Each one of Parallel C’s threads has its own
stack (allocated by its creator), but shares its code, and all of its static and heap data, with
any other threads in the same task. Semaphore functions in the run-time library are used to

prevent threads to interfering with each other.

(5) Ce ing An Applicatic Once an ication has been designed

and written as a collection of communicating tasks, it is loaded into physical network of

p First, each i task is built by iling all its source files with the C++
compiler and using the linker (/ink) to combine the resulting binary (.bin) files with the
Parallel C++ run-time library to produce a task image (.b4) file. Then, a bootable
application image file must be generated from the component task (.b4) files. The program
which does this is called the configurer. It is driven by a user-supplied configuration file
which specifies:

* the hardware i and the wis ing them)

on which the application is to be run;

* the names of the .b4 files containing the component tasks of the
application;

* the connections between the various tasks’ ports;

* the placement of particular tasks onto particular tasks onto particular
processors in the physical network.

The output of the configurer is an application file which can booted into
the specified hardware network and run using the same afserver program used for simple
stand-alone programs. The afserver task is an ordinary MS-DOS executable (.exe) file that
runs on the PC. It loads executable .54 files into the transputer and also acts as a file server,
handling I/O requests made by the transputer. The afserver and the transputer execute in
parallel and communicate via an INMOS link. The messages sent to the afserver are
normally generated by the Parallel C++ run-time library. It converts 1/O operations into
messages requesting the afserver to perform MS-DOS operations and then waits for the
afserver to reply.

(6) Processor Farms. The tools described so far allow you to build
applications which execute on any transputer network the wiring of which can be specified

in advance in a configuration file. For many parallel computations it is useful to be able to

create ications which will i figy 1o run on any network

of Such will i run faster when more transputers are

added to a network, without recompilation or reconfiguration.

19

Parallel C++ allows us to create applications like this, provided the
application can be implemented by a processor farm, and provided that there is enough
memory on each processor in the network to support the required loading and message
handling software.

The processor farm is a method of building applications for the transputer.
Many users have found it a useful technique, for the following reasons:

* It takes full ad ge of the ’s parallel ing facilities

and the ability of transputers to work together in groups.

* Many existing sequential programs can be converted into processor
farms without much difficulty.

* A processor farm is not restricted to a particular network of transputers,
but will i take ge of the it finds.

A processor farm includes two independent programs, or tasks, written by
the user. These are called the master task and the worker task. There is only one copy of the
master task, and this is placed on the root transputer, that is, the transputer which is directly
connected to the host. A copy of the worker task is placed on every transputer in the
network.

The function of the master task is to break up the job which is to be done
into a number of small, independent sub-jobs, each of which is performed by one of the
copies of the worker task. The master does this by sending details of the sub-job to be done
to the worker task. The worker task sends the results of its work back to the master task,
which combines it with the results from all the other worker tasks. The worker task is
written in such a way that immediately after sending its results back to the master, it is ready
to receive details of another sub-job, and so on.

The communication between the master and the workers can be in two
ways. Either another task called router can be written by the user, or special procedures
which are included in the run-time libraries of the parallel languages and automatically

added to the processor farm can be used.

III. DETAILED PROBLEM STATEMENT

A. PEGASUS DATABASE

1. Introduction
‘The PEGASUS Perspective View Database (PVDB) [Ref. 14] is a geographic

database containing elevation data, gray shades taken from aerial photographs, vegetation

heights, and other i ion required for perspective view ion. The PVDB comes
in four resolutions: 1-, 4-, 16-and 64-meter.

The Fort Hunter-Liggett (FHL) PVDB covers a rectangular area on the ground

32x28 kil Its comer is at UTM i 43328,63904 and

its northeast corner is at UTM 76095,92575. The latitude and longitude of these two points
are approximately 35° 48’N, 121° 25’W and 36° 4’ N, 121° 4'W.

2. Database Organization

The PVDB is organized as a collection of tiles, blocks, and posts (see Figure 3.1,
Figure 3.2 and Figure 3.3). A post is the smallest element in the database and covers an area
on the ground measuring 1x1, 4x4, 16x16, or 64x64 meters for the 1-, 4-, 16-, and 64-meter
databases respectively. A post is the only database element for which the area of coverage
is resolution dependent.

A block is a collection of posts that always covers an area on the ground
measuring 256x256 meters, but the number of posts in a block depends on the resolution.
A block in the 1-meter PVDB contains 256x256 posts, a 4-meter block is made up of 64x64
posts, a 16-meter block contains 16x16 posts and a 64-meter block has 4x4 posts.

A tile, the largest element in the database, is a collection of blocks which always
covers an area on the ground measuring 4096x4096 meters. A tile contains a 16x16

of blocks of i

21

aseqeje(2A103ds1a4 snsedag :1°g aandig

43328
28672

245768

20480 -|

12268 -|

PVDB NORTHING

PVDB DATABASE

UTM EASTING

47424 51520 55618 59712 63808 67904 72000 76096

15 25 35 45

JE

92576

- 88480

7
.

7
%
H
2
H

- 72006

8000
IS B -

I =
4096 8192 12288 16384 20480 24576 20672 32768

PVDB EASTING

ONIHLHON WiNn

SMD078 9t

SHO0718 91

o o oo fo [o o [o [| [)
o[M
ula
) N
m
- =
r
b 1 Y o . asvaviva
aifas | o oo
312 |a | ac (o [00| 7
3 | o [[o o o i o o e [] [)

JL 3svaviva

s3LL
Figure 3.2: PVDB Tile Structure

uEren cata mocx
Tra roars’

_—

= vy Teem

3738 A 4 e onigTT

2:8:ALE 4 = TR reueren cara socx
orl o1 terie seas
:-\

R © pasns smmns s w12 s i

CRCICICE (ot rere e e
I" R | o mimimi ! ncrou om0 Fove)
RO :
S Trarans | el @ rrc e

== TS v Jrwn e |
ot B il

= =]
= = .
EIEIE]D a2 - ireas |
I o []
I —
— [a.ala. [
“uETER OaTA moCK ——
pighgietiy winlmia { rocarrome seca v |

EEE ren s e e e

PR) 31 c (pacnisensiecon | FOm iFee s |

LueTen oATA SLOCK -

Figure 3.3: PYDB Block Structure

As shown in Figure 3.1, The Fort Hunter-Liggett (FHL) covers a rectangular area
which consists of 56 tiles totally. The terrain data for 25 of them (white area in Figure 3.1)
forms the actual database. Specifically, it covers 400 km? area of FHL. This area is used for
training purposes.

Now, we can summarize the size information of a tile, a block and a post for 4

different resolutions as follows:

RESOLUTION POSTSIZE BLOCK SIZE TILE SIZE

1 meter 32bits 256 Kbytes 64 Mbytes

4 meter 32 bits 16 Kbytes 4 Mbytes

16 meter 32 bits 1 Kbyte 256 Kbytes

64 meter 32 bits 64Bytes 16 Kbyles
3. Post Structure

Figure 3.4 shows how each post in the PVDB is packed and how the 32 bits are

distributed among the elements:

3 2 1
10987654321(0(98/7654/3210(9876543210

ww»

Figure 3.4: PVDB Post Structure

The element information is as follows:

ELEMENT NUMBER MAXIMUM

CODE OF BITS VALUE DESCRIPTION

ELE 11 2047 Elevation, in meters

EL2 12 4095 Elevation, in half-meters
ucl 2 3 Under Cover Index

NOR 4 15 Surface Normal Indicator
VGH 4 15 Vegetation Height Index
VvID 2 3 Vegetation ID

NAT 1 1 Nature

SSB 1 1 Sun Shade Bit

Gsv 6 63 Gray Shade Value

Each element has the following meanings (see Figure 3.5):

ELE: The bald terrain clevation plus the vegetation height (in meters) above the
lowest point in the database. At FHL the lowest point is sea level.

EL2: Same as ELE except the units are in half-meters.

'UCT: The height, in meters, of a cultural feature above the ground (tree branches,
eaves of buildings, etc.).

NOR: A value which serves as an indication of the surface normal.
VGH: Height of the cultural feature. The stored values of 0 to 15 indicate

vegetation heights of 0 (water), 0 (grass), 1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, and 47

meters.

NOILLINIJAd LNSAITE A4SV VIVA

ey d voneAR v

YAV

el oL

o apengekes® aed

I G Y JAR] 9IS AAOR WONPAT

o M

| M

an | aon fond n

O1TEPSILAGOLTENGILAGOITERSILAGOL FummAsenig
0 i T €

Database Element Definition

Figure 3.5:

27

VID: Indicates the cultural feature. This value is combined with UCI, NOR,
'VGH, and NAT to determine what a particular object is.

NAT: If set to 1, this value indicates the cultural feature is natural, otherwise it is
man-made.

SSB: If set to 0, this post is shaded by another cultural feature. This value is time-
dependent.

GSV: A linear set of values ranging from 0 to 63, where 0 indicates black and 63

is white.
B. LINE-OF-SIGHT CALCULATION
Line-of-sight (LOS) is a central process in combat simulations that works at item

level [Ref. 1]. The LOS algorithm is critical to the processes being simulated and impacts

the run speed (ratio of game time to real time), since it may be the single most

pensi ithm in si ion. Some LOS i ions in Janus

have been simpli to increase

There are three general aspects of LOS processing [Ref. 1:pp. 107-110]:

1. LOS in support of detections.

2. LOS through smoke and/or dust clouds.

3. LOS supporting force deployment.

For this thesis, we implemented the LOS calculation for the first aspect which is LOS

in support of detections. A short description will be given for the other two aspects.
1. Line-of-sight for Detection

The first determination to be made is whether or not terrain features block the

LOS between the observer and the target (see Figure 3.6). The process is as follows:

Figure 3.6: Line-of-sight for Detection

- The direct line between the observer and the target is determined, its length
calculated and it is divided into equidistant points. Each point is tested to
determine if a terrain feature affects the probability of LOS (PLOS).

- The number and the location of points on the line are determined as follows:

- Compute the distance between the observer and the target (delta(X) and
delta(Y)).

- Determine N(X) and N(Y) by dividing delta(X) and delta(Y),
respectively by the terrain grid size. Assign the larger of N(X) or N(Y)
to Np, which is the number of points to be tested along the LOS line.

- Compute dX = delta(X) / Np and Dy = delta(Y) / Np.

- Start at the observer’s position + (dx,dy) and determine the terrain height
(ground elevation) of the grid in which that point rests. If the ground clevation
is greater than that of the observer, LOS is blocked and the process is completed
for that observer-target pair.

- If the terrain height at that point is less than or equal to the height of the observer,
add the height of trees/urban areas in that grid and recompute the terrain height.
If the ground elevation + features height is greater than that of the observer,
PLOS is decremented by the LOS degradation factor caused by features in the
grid.

- If the resulting PLOS is greater than 0.01, dx and dy are added to the old position
and the process continues until LOS is considered blocked or the target position
is reached. A random number is drawn and compared with the resultant PLOS

to determine if acquisition has taken place.

~

. LOS Through Smoke/Dust Clouds

If LOS exists between the target and the observer, the model checks to see if any
smoke or dust blocks the LOS line.

3. LOS For Deployment
The LOS for any unit can be displayed by the gamer from the workstation by

pucking the LOS block on the menu and then the unit. The parameters of the LOS fan are
attached to cach unit, depending on its sensor (height, range) and how the orientation and
width of the fan have been previously set by the gamer.
C. WHY 1-METER RESOLUTION?

To have reliable data that represents a terrain, there are some concepts that should be
considered. First, we will describe these concepts with the help of Figure 3.5 and Figure
3.7.

Ax,t -

H,

TERRAIN PLAIN

BASE ELEVATION PLANE

D D

Figure 3.7: General View of A Terrain

31

The calculation of LOS is based on data stored in a grid of square cells. The elevation,
the height of trees or urban buildings are stored as part of the terrain database and they are
the factors which cause the unevenness of the terrain.

In Figure 3.7, D represents the length of one side of square cells. AX; and AX;
represent the “absolute variation” which shows the unevenness of the terrain. H; and H,
represent the height values to be assigned to those square cells.

The real height values arc mostly expected to have some decimal digits. So, these
values should be rounded by using a resolution value before being assigned to the square
cells. We call this resolution value as “height resolution” and symbolize it as “AH”.

The question at this moment is how we can choose the best AH. To answer this
question, first we consider a flat terrain (see left cell in Figure 3.7)which means that AX is
small. In this case, a small AH can be reasonable. But, when a rough terrain which has a
big AX is considered (see right cell in Figure 3.7), a small AH will not work well. For
example, assume we are using 10 centimeter height resolution when dealing with a terrain
which has 10 meter of absolute variation. Using such a small height resolution i.e.
sensitivity for an absolute variation which is relatively too high for that height resolution
value will not give reliable rounded numbers for the real height values for the square cells.
So, our first conclusion is as follows:

Conclusion 1: The best idea is to equalize AH and AX or, to choose A H which
is bigger than AX.

Before applying the first conclusion to our problem, we should first normalize

absolute variation and height resolution. Eq 3.1 and Eq 3.2 show this process:

Normalized Terrain Variation =

(Eq3.1)

Normalized Height Resolution =

ol %

(Eq3.2)

After normalizing process, we can approach to our problem more specifically as
follows:
‘We assume the reasonable normalized terrain variation for a man-made flat surface
as about 0.5%, for a natural terrain as about 5% and for a rough terrain as about 50%.
Since, The Fort Hunter-Liggett training area can be accepted as a rough terrain, then
our second conclusion is as follows:
Ci ion2: The ized height ion to be chosen should be around

50%.

Another important factor for our problem is the length of one side of a square cell,
namely D. It is obvious that when D increases, AX will increase with a high probability
since more elevation differences, more trees or more urban buildings will be inside the
borders of one square cell. We believe that this situation should be avoided to have reliable
height values for each cell. Because, we will use a constant height resolution value and a
constant D for our all database and we should not increase the probability of having big
values of AX by increasing D. So, our third conclusion is as follows:

Conclusion 3: For rough terrain databases the D value should be as small as it

‘When we considered all of the concepts, factors and conclusions, we see that 1-meter
resolution database with a 50 centimeter height resolution which has a 50% normalized
height resolution is best to apply to our problem, and we believe that it represents The Fort

Hunter-Liggett terrain very reliably.

33

IV. TRANSPUTER IMPLEMENTATION OF LINE-OF-SIGHT
CALCULATION

A. HARDWARE

1. General

The designed network of i ion of LOS ion consist of

following elements:

- AnIBM PC as a host

- An IMS B004 Evaluation Board inside IBM PC

- An ALTA Remote TRAM Holder

- An ALTA CTRAM-25-4F (with 1 T805 25 MHz transputer)

- A SUN SPARC Station

- An ALTA HSI/SBus inside SUN SPARC Station

- An IMS B012 Evaluation Board

- 16 ALTA CTRAM-25-4F (with 16 T800 20 MHz transputers)

A general view of the network is shown in Figure 4.1. In section 2, each of the

network elements will be mentioned in detail. In section 3, the implementation will be

described with the modifications made by us towards our design purposes.
2. Background

a. The Transputer/Host Relationship

The transputer is normally employed as an addition to an existing computer,
referred to as the host. Through the host, the transputer application can receive the services
of a file store, a screen, and a keyboard as shown in Figure 4.2.

‘When the host is equipped with an add-in transputer interface board and the
appropriate software, we call it a transputer development sys -m. Presently, the host

computer can be an IBM PC or compatible, a NEC PC, a DEC MicroVAX II, or a Sun

34

{r-ST-WVHLOD 91|

a
advod zioa

aAYod ¥008

P
LSOH Dd Wl

SNASASH
m

NOLLYLS
JUVdS NNS

ArSTIWYHLO ®

YAATOH
WVAL ILOWTE

Figure 4.1: General View of the Implementation Network

35

SPARC Station in transputer development systems. But with the current capacity of our

laboratory we are able to use an IBM PC for our implementation.

[

ROOT
'TRANSPUTER|

Link

Link

TO OTHER
‘TRANSPUTERS

Local Hard Disk

Figure 4.2: The Transputer/Host Relationship

b. IBM PC As A Host
The transputer communicates with the host along a single INMOS link. A
program called a server [Ref. 15], executes on the host at the same time as the program on
the transputer network runs. The server ensures that the access requirements of the

application in terms of keyboard, screen, and filing are fully satisfied. All communications

between the ication running on the and the host services (like screen,
keyboard, and filling resources) take the form of messages. The standard transputer C, C++,
Pascal, and Fortran development systems uses a server called afserver. The Occam toolset
uses a server called iserver.

‘The root transputer in a network is the transputer connecting to the host bus

via a link adapter. Any other transputers in the network are connected together using

INMOS links, to the root transputer. A transputer network can contain any size and mix of
transputer types.

Transputer components form a unique hardware environment which is not
immediately compatible with most existing personal computers (PC) or main frames upon
which P! work is i The IMS B004 ion board was designed
to meet these needs by interfacing a transputer memory with an [BM type PC allowing the

software developer to edit, compile and test software using the PC as a host.

¢. The IMS B004 Evaluation Board
The IMS B004 board is logically divided into three distinct parts [Ref. 16]:
1. The transputer, with buffered links and one or two megabytes of RAM.
2.The PC subsystem logic, which allows a program running on the
Personal Computer to reset and analyze systems.
3. The IMS C002 link adaptor, which interface to a parallel address/data
bus, such as the one provided on the system expansion slots within an
IBM PC. The link adaptor is accessed by a program running on the
Personal Computer to transfer data to and from the transputer. This
device can convert PC’s byte-wide parallel data into serial link data for
the transputer links, and visa versa.
These three distinct parts of the board are joined together by jumpers. The
“Reset” jumper allows the PC subsystem to respond to addresses from the PC, and connects
the transputer’s reset, analyze, and error signals to those controlled by the PC. The “Link”
jumper connects the link adaptor to one of the transputer’s links, and allows the Link
Adaptor to respond to addresses from the PC. Figure 4.3 shows a block diagram of the BO04
board which fits in a full length eight bit slot of an [BM PC [Ref. 17].
Before any program can be downloaded to a BOO4 board from a PC, two

jumper sockets must be fitted correctly. The use of these jumpers allows more than one

B004 to be present within a PC, but allowing only one of them to respond to the Transputer
Development System (TDS).

T414

Figure 4.3: IMS B004 Evaluation Board Block Diagram

The board which has the jumpers fitted is designated the Master, and any
number of other INMOS evaluation boards can be attached to this one via the links. Figure
4.4 shows the rear edge connectors of the B004, looking from the rear of the board. As can
be seen, there are two columns of pins, and these are grouped into sets of five, suitable for
the five way sockets which terminate the various cables supplied.

The link sockets are self explanatory. The Up, Down and Subsystem sockets
are concerned with system control, initialization and error handling. The simplest way to

use them is to connect the DOWN socket of the Master TDS board to the Up socket of the

next board with the Reset cable, and then daisy chain the Down from each board to the Up
of the next. This method ensures that when the TDS resets the first board, all others in the

chain are also reset (see Figure 4.5).

b a
PCLink D D
Link0 D |:| Link1
Component Side Solder Side

Link2 D D Link3

PCSystem |:| D Subsystem

Up D D Down

Bottom

Figure 4.4: The Rear Edge Connectors of the B004

Master Board

Down
Up
R U Down Down
eset P
Jumper }p \

Figure 4.5: Daisy Chaning of the Subsequent Boards

‘The B004 board uses a group of 5 way connectors, to simplify the location of

the various leads for a system (see Figure 4.6).

Pin_ b a

1 GND NC

2 (missing) (missing)

3 PCLinkOut NC

4 PCLinkIn NC

s GND NC

6 NotLink NC

7 GND GND

8 (missing) (missing)

9 LinkOut 0 LinkOut 1

10 Liokin0 LinkIn 1

1 GND GND

12 (g2p) (®ap)

13 GND GND

14 (missing) (missing)

15 LinkOut2 LinkOut 3

16 Linkin2 Linkln 3

17 GND GND

18 (gap) (&ap)

19 (gap) (gap)

20 (g2p) (gap)

21 (gap) (gap)

22 PCNotReset SubsystemNotReset
23 PCN

24 PCNotError SubsystemNotError
25 GND GND(missing)
26 (missing) (missing)

27 NotSystem NC

28 UpNotReset DownNotReset
29

30 UpNotError DownNotError
31 GND GND(missing)
32 GND(missing) GND(missing)

Figure 4.6: The B004 Board Edge Connector Pinout

‘The NotLink (b6) and NotSystem (b27) are used in conjunction with the Link
and Reset jumpers described previously. When these signals are at logic 0, they sclect the

functions associated with either reset or link to respond to signals from the PC.

d. ALTA CTRAM (Computation TRAnsputer Module)

The ComputeTRAM (or CTRAM) [Ref. 18] consists of a circuit board with
transputer, memory, and connective hardware which is plugged into a TRAM Holder from
ALTATechnology or similar boards from INMOS. The CTRAM includes from 1 to 32
Mbytes of DRAM and supports the IMS T80x transputer (with a chip floating point
processor) or IMS T425 (integer only) transputers. A variety of processor speeds and
memory speeds are available, providing users with a wide range of cost-effective compute
modules.

The CTRAM is the basic unit for computation in parallel processing
applications. With its range of external memory configurations and processor speeds, the
CTRAM is a versatile tool for the system designer or the system integrator. The end-user
can find extra value from the CTRAM by matching the configuration of each CTRAM with
the needs of his application. This customization results in a tailored, economical mix of
processors and memory configurations.

CTRAMs may be connected to other transputer modules via its four
transputer links to form a wide variety of topologies.

‘The module pinouts and descriptions for CTRAM is shown in Table 4.1.

e. ALTA Remote Tram Holder
The Remote TRAM Holder [Ref. 19] may be mounted inside of a disk

enclosure, or in a chassis suitable for holding disk drives and/or transputer modules. Figure
4.7 shows the block diagram of an ALTA Remote Tram Holder.

41

TABLE 4.1: CTRAM MODULE PINOUTS AND DESCRIPTIONS

P;;n Pin Name (l)“u/t Function

1 Link2out Out Link 2 output

2 Link2in In Link 2 input

3 vce Power (+5V)

4 Linklout Out Link 1 output

5 Linklin In Link 1 input

6 LinkSpeedA In Transputer link speed selection A
7 LinkSpeedB In Transputer link speed selection B
8 Clockin In 5MHz clock signal

9 Analyze In Transputer analyze

10 Reset In Transputer reset

1 notError Out | Transputer error indicator (inverted)
12 LinkOout Out Link 0 output

13 LinkOin In Link 0 input

14 GND Ground

15 Link3out Out Link 3 output

16 Link3in In Link 3 input

vesvsrne
.

hocooecee

€ v

— "
TSI |

1 1078

I |

.’

.;‘. .H. *o 0@
! | i

hd

Figure 4.7: The Block Diagram of ALTA Remote Tram Holder

43

(1) Jumper Options. The jumpers in location P8 are provided to allow a high
degree of configuration connects Link 0 of Module 0 with external link 0. The pins are
labeled as to module and the link, and contain an arrow pointing out of the LINKOUT
signal towards the LINKIN signal. The user may insert jumpers to connect any external
links.

Jumper J1 is factory-set to 20 Megabits/Second. The link speed can be
changed to 10 Megabits/Second as a second alternative.

(2) External Links. The differentially-driven links on the module are
connected via modular plugs and jacks. The modular connectors found at locations P1, P2,
P3, and P4 correspond with X0, X1, X2, and X3 of the configuration area (P8). Those links
can be connected to any available links in the TRAM SLOTs by jumpers or configuration
modules.

(3) TRAM SLOTs and Topology. There are four TRAM SLOTs on the
motherboard, labeled SLOTO to SLOT3. They are arranged such that only a single pair of
links (between SLOT1 and SLOT?) is committed (hardwired). All other links are brought

out to the P8 configuration area.

(4) System Services. The Remote TRAM may be used without connecting
system services (Error, Reset, and Analyze) to the host. The board will assert RESET upon
power on. However, in some instances, the user may wish to access system services from
the host. Connector P5 contains the equivalent of UP system services and should be
connected to the host. Connector P6 contains the equivalent of DOWN services and should
be connected towards the next module in the chain. The Error, Reset, and Analyze signals
will be d UP and DOWN ing upon the signal) properly to allow daisy-

chaining of the system services.

The signals on P5 and P6 are as follows:

PIN SIGNAL

1 GROUND

2 ERROR

3 RESET

4 ANALAYZE
f. HSISBus

‘The HSI/SBus [Ref. 20] is a single-slot SBus interface between the Sun
SPARC Station and transputers. It provides a high-speed interface between the SBus found
on a Sun SPARC Station and Transputers.

‘The HSI/SBus is a 32-bit SBus slave interface for a Sun SPARC Station. The

HSI provides system services and four bidirectional transputer links to external transputers,

using modular and twisted-pai pl cables. The links are differentially
driven using AT&T 41L/R series of drivers. The HSI/SBus board is a single slot printed
circuit board which conforms to Sun Microsystem’s published standards for a single slot

SBus card. Figure 4.8 shows the layout of the board and the locations of the major board

components.
ShadCammecto Dual Porfed RAM
us Connector u:
{ Transputer
Links
and
System
Services

| -

Figure 4.8: The HSI/SBus Board Layout

The SBus interface provides an electrical connection between the host and
external transputer modules. It provides four, bi-directional transputer links to external
transputers, and provides a set of control signals (Reset, Analyze, and Error) which are
controlled by the driver on the SPARC Station host.

‘When the interface is initialized, transputer boot code is loaded into the dual-
ported RAM and the transputer is then booted from that RAM. The transputer then executes
the boot code to perform the interface functions.

Connections to external devices are made by using modular telephone handset
jacks. Figure 4.9 shows the six jacks on the end of the HSI-card.

Facing the back of the SPARC Station

LINKO LINK1 LINK2 LINK3 DOWN uP

Figure 4.9: HSI-Card Link and Control Connections

‘The four links from the host interface are designated Link0, Link1, Link2, and

Link3.

Reset, Analyze, and Error signals are provided for both DOWN and UP

‘The DOWN sends the Reset and Analyze signals to remote
transputers.

& The IMS B012 Evaluation Board

The IMS B012 [Ref. 21] is a eurocard TRAM motherboard which is a member
of a family of TRAM which have a i i External signals
enable itto control a of ortobea of sucha

‘The smallest TRAM is “size 1. Each of the 16 sites for modules on the IMS
B012 board accepts a size 1 module. Each module site, or “slot” has connections for four
INMOS links which are designated link 0, link 1, link2, and link 3. TRAMs which are
larger than size 1 can be mounted on the B012. A larger module occupies more than one
slot and need not use all of the available link connections provided by the slots which it
occupies.

‘The B012 has two IMS C004 link switches. These devices are able to connect
together links from the slots and 32 links which are available on an edge connector. The
connections can be changed by control data passed to the board down a configuration link,
which may come from some master system or from one of the TRAMs on the B012 itself.

The BO12 has two DIN41612 96-way edge connectors, P1 and P2. These
carry almost all signals and power to/from the board and are easily identified from the
board silk screen printing and from Figure 4.10. P2 caries power, pipeline and

configuration links and system control signals (reset, analyze, and error).

Slotl Slot2

Slots Slot6 P1
Slot9 Slot10

Slot13 Slot14

Slot0 Slot3

Slot4 Slot7

Slot8 Slot11 »n
Slot12 Slot15

IMS BO12

Figure 4.10: IMS B012 Siot Positions

‘The link connections to the 16 slots are organized as follows:

Two links from each slot (links 1 and 2) are used to connect the 16 slots as a
16-stage pipeline (in a pipeline, multiple processors are connected end-to-end as in Figure
4.11). The pipeline s actually broken by jumper block K 1. K1will usually be jumpered in
the standard way to give a 16-stage pipeline but can allow other combinations. Figure 4.12
shows the standard jumper configuration for K1 which connects all 16 TRAMs in a
pipeline.

3= " Nalia® o3
£ |¥ sLoto % % sLori % % sLoris 3| %
2 |= 3 3 3 Ei 3| £
& - hot—— -

Figure 4.11: A Module Pipeline

ofod][od]jod]ofod
Olod]joglfeojofod]

Figure 4.12: K1 Standard Configuration

48

Link 1 on slot 0 is wired to an edge connector (P2) and is called PipeHead.
Link 2 on slot 15 is also taken to P2 and is called PipeTail. By connecting the pipe heads
and tails from multiple boards together, a large, multi-board pipeline is created.

‘The other two links (links 2 and 3) of each slot are, in general, connected to
two IMS C004 programmable link switches. The IMS C004 has 32 input pins and 32 output
pins, plus an INMOS link (ConfigLink) used to send configuration information to the IMS
C004. Any of the output pins can be “connected” to any of the input pins, so a signal
presented on the input pin would be buffered and transmitted on the output pin (with a slight
delay). The switch i are made ing to i ion sent to the IMS C004
down its ConfigLink. The two IMS C004s on the IMS BO12 allow 64 link connections to

be made under software control.

The Reset, Analyze and Error pins of TRAMs (and transputers) is generally
referred to collectively as “system services”. The system service signals are used to reset
TRAMs and transputers, to place transputers in an analyze state (for debugging) and to
carry the fact that an error has occurred in one processor in an array back to some host
system which will deal with the error condition.

Some TRAMs and most evaluation boards are capable of generating the
system services for other TRAMs and transputers. This is called a subsystem control
capability. The IMS BO12 can be connected to another board with subsystem control and
also accommodate one TRAM with subsystem control. Furthermore, the IMS B012 can
generate subsystem control signals for other boards. The system service signals are
organized in such a way that, another boards can be daisy-chained by using Up and Down
pins on P2. The logic here is same as it is for B0O4 boards.

‘The IMS BO12 has a six-way DIL switch (SW1) located between P1 and P2.
Each of the six switches make up SW1 controls one signal on the board. When a switch is
on, the signal is low and when the switch is off, the signal is high. So, the board link speed
can be set to either 10 Mbits/s or 20 Mbits/s with these switches.

49

(I) PI Connections. Connector P1 has three rows of 32 pins. All the pins in
row “a” are connected to the ground. All the pins in row ‘b” are link inputs and all the pins
in row “c” are link outputs. At each of the 32 positions along P1, the three pins from rows
a, band c carry one link. These signals may be connected to devices with link ports in any
way the user desires.

The link connections on connector Pl are intended mainly for
communication between the IMS B012 and other boards in a card cage. However, it is also
possible to use these P1 links and the IMS C004 link switches to switch link connections

for an external system.

(2) P2 Connections. 1f the IMS BO12 is to be used in an INMOS ITEM card
cage, the ITEM supplies power and has a built-in back-to-back connector which allows link
and reset cables to be connected to P2. Figure 4.13 shows the back-to-back connector pins
as viewed from the rear, i.e. looking towards the pins. The boxes represent plugged-in
cables. A good 5V power supply must be connected to the appropriate pins on P2.

|-l— Power
%—— PipeTail
PipeHead ————»
0 +———— Slot 0, Link 0
Config Up (L le S o)
% ConfigDown

Link Connections

from K1 § & Subsystem
vp— -|:| e Down

Figure 4.13: View of Back-to-back Connector Pins for B012

(3) IMS B012 as a Slave to a Master Controller. In a standard configuration
where the IMS B012 is connected to a master-control system such as an IMS B004,
PipeHead and ConfigUp links would be connected to two links on the host system, with

“Up” system control port connected to the “Subsystem” port of the host (sce Figure 4.14).

Link 2 PipeHead PipeTail
i C
HOST |wxl Confiely IMS B012
Subsystem up

Figure 4.14: The IMS B012 Board as a Slave

(4) IMS B012 as a System Master. If a TRAM with “subsystem” capability
is installed in slot O then the IMS B012 can act in a stand-alone or master role. With switch
6 (on six-way DIL switch) off, the system control to the other modules on the board and the
“Down” system control pins on P2 are driven from the subsystem pins on the TRAM in slot

0.
3. Our Implementation
The steps for our implementation can be summarized as follows:
- To disable T414 transputer on the B004 board inside the PC host.
- To set up a remote tram holder and to place our root transputer on it.
- To connect Sun SPARC Station which has an HSI/SBus to the remote tram
holder.

- To place 16 T805 transputers on a BO12 board and to connect B012 board to
the remote tram holder and B004.
- To set the link speed as 10 Mbits/second.

(1) Disabling the T414 Transputer on the B004 Board. As we have seen in
the section which is related with BOO4 board, only T414 transputer can be used as root
transputer on a B004 board and we can have a total of 2Mbytes RAM. But for our
application, with a purpose of having more memory and speed, it was decided to use a T805
transputer as root transputer with a total of 4Mbytes RAM, namely an ALTA CTRAM-25-
4F. So, the T414 transputer on the board, had to be disabled.

To disable the T414 transputer on the B004 board, two connections were
made between two different pin pairs on the edge connector. These connections are shown

in Figure 4.15.

(2) Setting Up the ALTA Remote Tram Holder . After disabling the T414
transputer, an ALTA CTRAM-25 4F which is actually a 25Mhz T805 transputer and
4Mbytes DRAM, was placed on slot 0 of the remote tram holder. So, this transputer became
the root transputer.

Since a Sun SPARC Station, a B0O04 board and a B012 board connections
were planned for the remote tram holder, each of them had to be taken care of separately
because of the different requirements.

‘The HSI/SBus converts the Sun SPARC Station’s parallel data signals to
serial data signals for the transputer links. The voltage for the produced signal varies
between -15 and +15 AC. But, transputers require 5V DC voltage. This voltage conversion
for the signals is normally done by the converter on the remote tram holder if the jumpers
are used in the P8 Configuration Area. So, two jumpers were used in the P8 Configuration
Area for the link between Sun SPARC Station and remote tram holder to allow the
necessary conversion and to assign Link 3 of the root transputer to the Sun SPARC Station
(see Figure 4.16).

e
To Remote
older]

Link 0

Tram Holder
up

22
23
To Remote 24

Pin_ b a
— 1 GND NC
2 (missing) (missing)
3 PCLinkOut NC
b 4 PCLinkIn NC
b 5. GND NC
6 NOILink e NC
7 GND GND
8 (missing) (missing)
9 LinkOut 0 LinkOut 1
10 Linkin0 Linkln 1
11 GND GND
12 (@p) (gap)
13 GND b GND
14 (missing) (missing)
15 LinkOut2 LinkOut 3
16 Linkin2 Linkln 3
17 GND e GND
18 (gap) (gap)
19 (gap) (gap)
20 (gap) (z3p)
21 (gap) (g2p)
PCNotReset SubsystemNotReset
PC!
PCNotError SubsystemNotError
25 GND GND(missing)
2 (missing) (missing)
27 NotSystem meed NC
28 UpNotReset DownNotReset
29
30 UpNotError
31 GND
32 GND(missing)

Figure 4.15: The B004 Board Edge Connector Pinout After Modification

10

O
O

Jumpers for Link 3

;

0o
000QPOBHO
000 OG.IB‘O

Two wires for é
Link2 X2

32

33,13

@)
O | w20

(0))

(s

xs
O
O

T tor 4O
Link 1 xif O O Xo— Torg wires for
al O O 30
2 OO 23

Figure 4.16: Remote Tram Holder P8 Configuration Area After
Jumpering

Because the PC’s parallel data signals are converted to serial data signals
for the transputer links by the C002 Link Adaptor on the B004 board, we didn’t need the
conversion which was done for the Sun SPARC Station signals. Then, the other 3 links
Link 0, Link 1 and Link 2 of the root transputer had to be connected to the PC and B012
board directly, without using jumpers in the P8 Configuration Area. But, the modular
connectors P1-P6 (P1-P4 for transputer links, P5 and P6 for system services) have
originally AT&T 41L/R series of drivers. So, those three links and UP and DOWN system
services were carried to a connector which was located at the back of the remote tram
holder and which had drivers for transputer link cables and for system service cables. For
carrying links, two wires were used, one for LinkOut and one for Linkln signal (see Figure
4.16). For carrying system services, three wires were used, one for Analyze, one for Reset
and one for Error signal. Figure 4.17 shows the connections made inside the remote tram
holder.

Link In Link Out P8 CONFIGURATION AREA
X2
| [
Lisk Out Lisk la Link Out Link In | |
X1 X3
—
-)
Griand d Groaad
Bak | et | || H o
Link Link
'lll’k —| In 1 In
Cround | d | o |
Link 0 Link 1 Link 2 Up Down

Figure 4.17: The Connections Made Inside the Remote Tram Holder

After the connections were made inside the remote tram holder, the 16
CTRAMs were placed on the BO12 board and 16 T805-20 MHz transputers were placed on
these CTRAMs.

The fixed hard ion for all the in the network can

be checked with the program named “check”. This program runs in PC Host. Figure +.18

shows the output of that “check” program for our application! and Figure 4.19 shows the

physical view of our current fixed hardware configuration that we have for our transputers.

We will see how a parallel is created for a multi system with a fixed
hardware configuration in the software part of this chapter.
Transputer# LINK 0 LINK 1 LINK 2 LINK 3

0 HOST 1:1 2:2 -

1 - 0:1 31 -

2 R 42 0:2 -

3 - 1:2 51 -

4 - 6:2 2:1 -

5 - 3:2 7:1 -

6 - 8:2 41 -

7 - 52 9:1 -

8 - 10:2 6:1 -

9 - 72 11:1 -

10 - 122 8:1 -

11 - 9:2 13:1 -

12 - 142 10:1 -
13 - 11:2 15:1 -
14 - 162 12:1 -
15 - 132 16:1 -
16 - 15:2 14:1 -

Figure 4.18: The Output of “Check” Program for Our Application

1. For example, Figure 4.18 first row shows the following connections for Transputer# 0 (root): Its
Link 0 to Host, its Link 1 to Link 1 of Transputer# 1 and its Link 2 to Link 2 of Transputer# 2.

56

TRANSPUTER 0

TRANSPUTER 13

TRANSPUTER 16

Figure 4.19: The Physical View of the Fixed Hardware Configuration

And finally we made the connections for Sun SPARC Station, B004
board, B012 board and remote tram holder as shown in Figure 4.20 Figure 4.21 and Figure
4.22 (for B004, refer to Figure 4.15).

‘The slot 0 link 0 on the BN12 board usually needs to be connected to IMS
C004s. This standard configuration reqt 5 a connection to be made via P2. A single
connector assembly (termed the “yellow link jumper plug”) are used for this purpose. The

position of the jumper is shown in Figure 4.22.

Facing the back of the Sun SPARC Station

LINKO LINK1I LINK2 LINK3 DOWN UP

\ Telephone Cable

Facing the front of the Remote Tram Holder

LINKO LINK1 LINK2 LINIKJ DOWN upP

Figure 4.20: The Connection Between Sun SPARC Station and Remote
m Holder

(3) Setting Up the Link Speed. Because of the B004 board’s speed
limitation, we set up the link speed as 10 Mbits/sec. To set up link speed for the remote tram
holder, we connected the jumper J1 with the center position and the position labelled “10”.
For the BO12 board, we set the DIL switches for links to operate at 10 Mbits/sec.

The link speed set up for the Sun SPARC Station is made by running an
independent program, before running the real application program. We will mention about
itin the software section of this chapter.

Link Out
Gmld u-u- n7u u-‘u k2 Dw\- Up Error
/ Faanglthg back of lhel Remote Tram Holde}\ A \

EFTRCEPRRICENT

[ordoo][omojool[ordoo][oroo]

Angiyze

4 s
i

To B004 Board To B012 Board To B012 Board

Figure 4.21: The Connections From the Back of Remote Tram Holder

pipshend ~_ |

TO REMOTE TRAM
HOLDER LINK 1

/

slot0linkoutl /

slotOlinkin1 /
ground

v
TO REMOTE TRAM
DOWN %

...:a‘.f:.:::::%

not Up Error

t—— power
|~ pipetail

TO REMOTE TRAM
 HOLDER LINK 2

ground

Vs

~ slot15linkout2
~ slot15linkin2
ground
— slot0, link 0
(C004 signas sually
‘cons
Slot 0, Link 0
‘with “yellow link
Jumper pi

Figure 4.22: The Connections from the Back of B012 Board

B. SOFTWARE

1. General

The elements of the system and their functionalities from the software side of
view is shown in Figure 4.23.

The main processes can be summarized in general as follows:

- The link operations between Sun SPARC Station and Remote Tram Holder and
setting the link speed as 10 Mbits/sec.

- Loading the height data of the selected terrain from Pegasus Database to the
CTRAMs.

- LOS calculation between the start and goal points which are sent to Sun SPARC
Station by a server which represents JANUS.

- Sending the result back to the server from which the LOS calculation request is
made.

- The afserver task on PC.

a. Installing HSI/Bus and Setting the Link Speed

As we have seen in the hardware part of this chapter, the HSI/Bus is a high-
speed interface between the SBus found on a Sun SPARC Station and transputers and it
provides link operations between them. [Ref.20] gives all the detailed information for
installing and usage.

The program which sets up the link speed between Sun SPARC Station and
Remote Tram Holder was supplied by ALTA Technology Corporation upon the request of
us. The link speed should be 10 Mbits/sec before executing the main program because of
the speed limitation of the PC host.

61

SERVER TWO POINTS
wi for LOS REQUEST
JAl DATA READING SUN SPARC
from PEGASUS DATABASE_ | STATION
PHOENIX SERVER SPEED SETTING,
DATA LOADING
L LOS ;::f"“ 1o CTRAMS,
PEGASUS LOS REQUEST
DATABASE TRANSPUTERS
PC
[TRANSPUTERS

Figure 4.23: The Elements of the System from Software Side of View

b. Our Processor Farm Application

Three things must be written to create a processor farm application
[Ref. 12:p. 77]:
1. A master task to split up the job into the independent work packets, i.e. sub-
jobs.

2. A worker task, which is automatically copied to each node of the network
of transputers.

3. A ion file, ibing the memory i and other
attributes of the tasks.

(I) Master, Worker and Router Tasks. There is only one copy of the master
task, and this is placed on the root transputer. A copy of the worker task is placed on every
transputer in the network.

Special procedures are included in the run-time libraries of the Parallel

to enable thy ication between the master and the workers. They work in
conjunction with another task, called the router.

Normally, router task is not written by the user, but is automatically added
to the processor farm. When the master has a sub-job to be done, it calls a procedure which
gives details of the sub-job to the router. The router then finds a worker somewhere in the
network which is currently idle, and sends the work packet to it. The worker task then
processes the work packet, and when it has finished, it calls a procedure to send the result
packet back to the router, which returns it to the master.

For a normal processor farm application:

- A worker task contains three sequences: read a packet, process it, send
back a result packet (i.c. input, process, output).

- Every worker should get the same input.

- For every cycle those three sequences start from the beginning.

But, for our application:

- Since we have a big amount of map data, we should divide it to little
portions and load them to different CTRAMs at a time. Our map is too big to be loaded to
a CTRAM. So every worker has different input.

- If we had used the same three sequences as mentioned above, we would
have to load the whole data for every cycle. This would be too time consuming. So, we
make first an initialization by loading the map data. Then, we send the point information to
workers as input for LOS calculation, they process it and return the LOS result back. And
for the second LOS request we don’t have to make initialization again. Just the second part

that includes input, process and output sequences repeats.

63

Because of the differences which we just described, routing in our
application is done with the programs written by us instead of being done automatically.

The source files for master, worker and router tasks are listed in Appendix B.

(2) Ce ion File. The ion file [Ref. 12:p. 38] describes the

system to be built. It lists all the physical processors in the system, the wires connecting
them, the tasks to be loaded into the system and their logical interconnections. In this
section of the Chapter IV we explained configuration file giving the examples from our
actual configuration file “btest180.cfg” which is listed in Appendix B.

The first thing the configuration needs to describe is the hardware

between the The following ion file lines declares the
processor in the host PC, the processor in the Sun SPARC station and three transputers
including the root transputer and describes the actual physical cables between these
processors for our application:

processor host
Processor sun type=pc

wire ? root[0] host[0]
wire ? root[1] p1[1]
wire ? root[2] p2[2]
wire ? root[3] sun[0]
wire ? pl[2] pI1[1]

The PROCESSOR statement declares a physical processor. Every
processor in the physical network must be declared, including the host processor from
which the network is to be bootstrapped? (normally an IBM PC-type machine). The

configurer assumes that the processor named host is the host processor. In the case of an

2. The linker program, linkt, normally produces an exccutable image file prefixed by a short
bootstrap program which allows the the afserver to load the image into an empty transputer: the
bootstrap initialises the transputer and reads in the rest of the image file.

64

IBM PC host processor, the host will usually be executing the afserver program when the
network is loaded, simply because that is the program which loads the rest of the network.
It is necessary to be able to specify the afserver task to the configurer so that its ports can
be connected to ports in user tasks, but without forcing the configurer to attempt to
bootstrap the IBM PC. Similarly, some processors in the network might be set to bootstrap
from ROM rather than from link. A processor is declared to the configurer as having
already been bootstrapped by means of the “type” attribute. The default for the host is that
it is “type=pc” already. For our application, the Sun SPARC station processor was also
described as “type=pc”.

The WIRE statement declares a physical wire connecting links on two
physical processors. Each wire supports two connections, one in either direction. The two
link specifiers in the WIRE statement may therefore be interchanged without affecting the
statement’s meaning. Each wire is given a name (or *?’ can be used instead of a name if the
name will not be referred later). The numbers in the brackets for the WIRE statements are
the link numbers of those processors which are used for connection. The processor
identifiers used in a wire statement must have been declared in a previous PROCESSOR
statement. This is a general rule: all objects in the configuration language (processors,
wires, tasks) must be declared before they are used.

As well as describing the hardware of a system, the configuration file must

contain details of all its software tasks and their i ions. For each

executing task in the system, the configuration file must contain a TASK statement. The
TASK statement declares a task, which may be either a user-supplied task or one of the
standard tasks provided with the The ing ion file lines declares

the afserver task, filter task, master task, two router tasks and two worker tasks for our
application:

ask afserver ins=1 outs=1

task filter ins=2 outs=2 data=15k

task master ins=5 outs=5 data=15k file="tr_commt.b4"

task router0 ins=20 outs=20 data=2k file="router.b4" urgent
task routerl ins=20 outs=20 data=2k file="router.b4" urgent
task worker00 ins=1 outs=1 data=275k file="worker.b4"

task worker01 ins=1 outs=1 data=275k file="worker.b4"

Each task declaration must include an “ins” attribute, which specifies the
number of elements in the task’s vector of input ports and an “outs” attribute, which
specifies the number of elements in the task’s vector of output ports. The “data” attribute
specifies the amount of memory which a task needs. For example the filter task requires a
minimum of 15 KByte of workspace. A user task for which no memory requirement is
specified gets all the free memory remaining once any other tasks placed on that processor
are loaded. Only one task on each processor can have its memory requirements left
unspecified in this way. The configurer would otherwise have to decide how to split the
remaining memory between several tasks with unspecified requirements; because an even
split is unlikely to be desirable in practice, that is not allowed. The “urgent” attribute
specifies that the task’s initial thread is to be started at the urgent priority level. The default
is that the task’s initial thread is started at the non-urgent priority level. The “file” attribute
specifies the file in which the memory image of the task is to be found. Task image files are
produced by the linker program. The “file” attribute is ignored for the host processor and
for any processor for which the processor attribute “type=pc” has been specified.

The placement of tasks on processors is specified by the PLACE
statement. It determines which processor a particular task is to execute on. Every task must
be placed on some processor. The following configuration file lines describes the
placement of the afserver task, filter task, master task, two of the router tasks and two of
the worker tasks for our application:

place afserver host

place filter root
place master root
place router) root
place worker00 root
place routerl pl
place worker10 pl

‘The CONNECT statement establishes a channel between two tasks, by
connecting an output port to an input port. Because channels (unlike wires) are
unidirectional, two CONNECT statements are needed to create channels going in both
directions between two tasks. The following configuration file lines describes the channels
between the afserver task, filter task, master task, two router tasks and one router-one

worker tasks for our application:

connect ? afserver(0] filter[0]
connect ? filter[0] afserver{0]
connect ? filter[1] master{1]
connect ? master[1] filter[1]
connect ? master[2] router0[0]
connect ? router0[0] master([2)
connect ? router0[1] router1{0]
connect ? router1[0] router0[1]
connect ? router0[4] worker00[0]

connect ? worker00[0] router0[4]

The CONNECT keyword can be followed by an identifier naming the

but all the i which declare new identifiers allow a

question mark to be used in place of the identifier being declared. This is useful when there

67

is no need to refer to an object after it has been declared. After the identifier (or question
‘mark) the output port is coded first, and then the input port is coded.

And, finally the BIND statement allows the contents of a port to be
explicitly set to some literal value. Normally, ports are only bound by means of the
CONNECT statement: ports left unbound are pointed at unique transputer channel words
so that attempts to send or receive messages through them cause the minimum harm; the
thread causing the attempt to communicate over the unbound port simply pauses
indefinitely rather than causing failure of possibly all threads running on the processor. One
application of the BIND statement is to give a task access to the transputer’s external event
mechanism. This appears as a channel word at a specific address. Another application of
the BIND statement is to pass an integer parameter to a user task. We used the first
application and initialized the “input port 4" and “output port 4” of the master task to point
to that channel words at the addresses which are shown in the following configuration file

lines:

bind input master[4] value=&8000001C
bind output master[4] value=&8000000C

The configuration files help to create a parallel application for a multi-
transputer system with a fixed hardware configuration. For our application, the fixed
hardware configuration was shown in Figure 4.19 of the hardware part of this chapter. Our
configuration file btest180.cfg is listed in Appendix B and Figure 4.24 shows our multi-

transputer system application i.e. current topology for transputers.
c. Loading the Height Data
The Pegasus Database has all the terrain height data, as we detailed in Chapter

IIL Because of the memory limitations of CTRAMs (each of them has 4Mbyte RAM), we
can read and load the height data for a limited area at a time.

In our application program, we use an 5120 x 2304m. terrain which includes
the training area whose UTM coordinates are 54000 - 59000 WE and 78000 - 80000 SN
and PVDB coordinates are 10692 - 15672 WE and 14096 - 16096 SN. This area was
selected because, its vegetation has the desired istics for a tank battle training.

The loading process occurs in two basic steps. First, the data is read by the Sun
SPARC Station from Pegasus Database and then transferred (loaded) to CTRAMs. Pegasus
Database is accessible through the Phoenix Server which is not a member of our department
Local Area Network. However, the Pegasus Database was mounted through NFS (Network
File System), so the database can be simply accessed by a read function. But, most of the
time is still spent during this read function. The source code which we use for this data
reading is listed in Appendix C.

For the second part of loading process, if we call all data to be loaded to
CTRAMs as map, every CTRAM will have a portion of that map in its own memory after
loading. The speed of this transfer is 10 Mbits/sec and the transfer occurs through the links.

The data are loaded to totally 15 CTRAMs. 14 of them are located on the
B012 board and one of them is the on the Remote Tram Holder. Each CTRAM in our
current system has a 4Mbyte memory. Since the router occupies some memory in each of
them, we can load at most 15 blocks (256Kbyte each) to one CTRAM. But, to use as many
transputers as we can for efficient calculation and meanwhile to load those CTRAMs
equally, we usel5 CTRAMSs and each of them has 12 blocks. In each CTRAM, 12 blocks
are loaded to 12 different workers. These workers are the smallest portions in which an
LOS calculation occurs. Figure 4.25 shows the map we load at a time and the distribution
of blocks to CTRAMs.

$(RoUTER 111111)
O ittty

ZIs a5
o o

) -

2

ROUTER 1111110

TRANSPUTER
i

TRANSPUTER|
2

Note: s represents Hardware Links, <——» represents Software Links

Figure 4.24: Current Topology of the Transputers

70

2304m

TRANSPUTER TRANSPUTER

2 111 pretiiny 2111 2111111
WITH 12 WITH 12 WITH 12 WITH 12 WITH 12
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

1536m

TRANSPUTER | TRANSPUTER | TRANSPUTER | TRANSPUTER | TRANSPUTER
1 m JLitiey 211 211111

WITH 12 WITH 12 WITH 12 WITH 12 WITH 12
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS
768m
ROOT TRANSPUTER | TRANSPUTER | TRANSPUTER | TRANSPUTER
TRANSPUTER 11 1t 21 21111
WITH 12 WITH 12 WITH 12 WITH 12 WITH 12
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS
0 1024m. 2048m. 3072m. 4096m. 5120m.

Figure 4.25: The Map Size and the Distribution of Blocks to CTRAMs

d. LOS Calculation

The LOS calculation request between two points is made by a server that
represents JANUS system. The information about the start and goal points is sent to Sun
SPARC Station using the link communication established between them (the program
which is used for this purpose is listed in Appendix A as client_main.C). Then, this
information is broadcasted by the Sun SPARC Station to the transputers after receiving the
point information.

‘The LOS calculation is made in each of the transputers. Since each transputer
knows the borders of its map portion, the transputers whose map portions don’t include the
coordinates of those two points and of the line between them returns “0” as an answer
automatically. The transputers whose map portions include the coordinates of those two
points and of the line between them make LOS calculations for their map portions, and
return “0” if LOS exists or “1” otherwise. Then all the answers from transputers are added,

and if the total is “0”, that means LOS exists between them, but if the total is greater than
or equal to “1”, that means LOS doesn’t exist between them. This answer is sent to the
server that represents JANUS by way of Sun SPARC Station.

e. The Afserver Task on Host

The afserver task is an ordinary MS-DOS executable (.exe) file that runs on
the PC. It loads executable .b4 files into the transputer and also acts as a file server,
handling 1/O requests made by the transputer. The afserver and the transputer execute in
parallel and communicate via an Inmos link. The messages sent to the afserver are normally
generated by the Parallel C++ run-time library. It converts I/O operations into messages
requesting the afserver to perform MS-DOS operations and then waits for the afserver to
Teply.

In principle, the afserver task could be directly connected to the user program.
In practice, a filter task is interposed between them. The filter runs in parallel with the
afserver and the user task; it simply passes on messages travelling in both directions. The
filter is required because sometimes the messages passed between the user program and the
afserver are only one byte long and the revision chip cannot handle single-byte message
transfers on its hardware links. The filter pads out 1-byte messages to 2 bytes to avoid this
problem. The connections for afserver and filter tasks can be seen in btest180.cfg
configuration file which is listed in Appendix B.

V. EXPERIMENTAL RESULTS FOR LINE-OF-SIGHT
CALCULATION

A. PERFORMANCE ANALYSIS

When a line-of-sight request is received by our system, the information about start
and goal points is broadcasted to all transputers in the network. Since each transputer has
height data for a different portion of all area, LOS calculations are done only by the
transputers along the line between start and goal points. The advantage of parallelism for

our application is that each transputer starts doing LOS calculations at the same time. So,

when we neglect the time spent for ications between the total LOS
lation time for all which particij the ion should be equal to the
time spent by the which does i LOS it

The most important factor for measuring performance increase with our parallel
system is the distance between the two points which are subjects to LOS calculation. If the
distance between those two points is too short and only one transputer does the calculation,
then this is the worst case and we have no performance gain when we compare with a one
processor system, If the distance between those two points is maximum, which is equal to
the diagonal of the simulation area, then this is the best case and the performance gain is
Jn where n represents the number of processors (transputers).

So, ideally the expected average gain after some number of consecutive LOS
calculations will be:

EXPECTED AVERAGE GAIN = 4 (Eq5.1)

And the expected average utility of the system will be:

EXPECTED AVERAGE SYSTEM UTILITY = (Eq5.2)

Since we used 15 transputers in our application, by using Eq 5.1 and Eq 5.2 we can
say that the expected average gain of our system is ((/15)/2) = 1.936 and the expected

average system utility is (1/(2J/15)) = 0.129.

B. THE RESULTS

In order to test our i ion of line-of-sight ion, we had to
run our program such that all calculations would be done by one transputer. Then we could
directly make comparison and see the improvement. But this could be possible only if the
points between which the LOS calculation was required were inside the map borders of that
transputer module. Since CTRAMs had approximately 4 Mbyte of limited available
memory and the total training area required approximately 46 Mbyte memory, it was
impossible to do timing testing with one transputer. Then, we decided to use another Sun
SPARC station! with a large memory to hold all training area data in its memory. We made
a modification to our application programs to run them on that Sun station as being a non-
transputer or a non-parallel version. So, every LOS calculation was done by a single
processor whatever the distance between start and goal points were. Then we could test our
implementation by using the scale factor between transputer and that Sun station which will
be described below.

‘We used two different start and goal point pairs for testing. The height values for both
pairs were entered as big numbers, so we were sure that there was line-of-sight between
start and goal points. This was important to provide a full calculation time. Because, the
LOS calculation algorithm stops and returns the answer when a bigger height data is
encountered before reaching to the end point. This could take a very short time. But, when
there is line-of-sight between two points, this means every data on the line is checked and
a full time LOS calculation occurs.

1. The Sun station we used was a SPARCsystem 630MP Model 120 with 128 Mbytes memory and
two 40 MHz SPARC2 processors. Its performance was 25 MIPS and 4 MFLOPS for our
application. This performance is almost twice of the performance of a SPARCstation] which
features 20 Mhz clock speed, 12 MIPS and 2.5 MFLOPS.

74

For the first pair, the distance between start and goal points were selected such that

the coordinates of the points remained inside the borders of one transputer module. The

purpose here was to allow only one to do LOS ion in our

and to get one LOS time. ile we used the
same points to get the Sun station LOS calculation time. These results? are shown in Table
5.1 and Table 5.2. The comparison between two calculation times gave us the scale factor

between transputer and Sun station:

TRTIMEL

SCALE FACTOR = SUNTIMEL

= 1117
For the second pair, the distance between start and goal points were selected as
maximum (as the diagonal of the area). The purpose here was to allow as many transputers

as we could to do LOS ion in our i ion. We also used the same

points to get the Sun station LOS calculation time for a maximum distance. These results®
are shown in Table 5.3 and Table 5.4. Then, we simulated a transputer with enough
memory to hold all map data by using the SCALE FACTOR, named that simulated time as
SIMTRTIME?2 and found the SPEEDUP RATIO for the best case of our implementation:

SIMTRTIME2 = SCALE FACTORx SUNTIME2 = 18.956

SIMTRTIME2

SPEEDUP RATIO = TRTTMEZ

= 2581

2. These timing results are for 100 consecutive LOS calculations of each point.
3. These timing results are for 100 consecutive LOS calculations of each point.

75

TABLE 5.1: THE TIMING RESULTS OF TRANSPUTER VERSION FOR SHORT
DISTANCE (LIMITED TO ONE TRANSPUTER)

TEST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT
1 10672, 14096 11695, 14683 0 5.995
2 10672, 14096 11695, 14683 0 5.983
3 10672, 14096 11695, 14683 0 5974
r AVERAGE TIME = TRTIMEI1 =5.984 I

TABLE 5.2: THE TIMING RESULTS OF NON-PARALLEL VERSION
(SUN STATION VERSION) FOR SHORT DISTANCE

TEST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE 'COORDINATE RESULT
1 10672, 14096 11695, 14683 0 5.250
2 10672, 14096 11695, 14683 0 5.935
3 10672, 14096 11695, 14683 0 4.877

AVERAGE TIME = SUNTIMEI = 5.354 I

TABLE 5.3: THE TIMING RESULTS OF TRANSPUTER VERSION

FOR MAXIMUM DISTANCE
TEST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT
1 10672, 14096 15672, 16096 0 7.337
2 10672, 14096 15672, 16096 0 7.356
3 10672, 14096 15672, 16096 0 7.337

AVERAGE TIME = TRTIME2 = 7.343

TABLE 5.4: THE TIMING RESULTS OF NON-PARALLEL VERSION
(SUN STATION VERSION) FOR MAXIMUM DISTANCE

TEST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT
10672, 14096 15672, 16096 0 17.028
10672, 14096 15672, 16096 0 17.226
10672, 14096 15672, 16096 0 16.661

AVERAGE TIME = SUNTIME2 = 16.971

The communication overhead slowed down the processing time of transputers. The
ratio between the expected best case gain which was /n and the SPEEDUP RATIO showed
us the maximum communication overhead between the transputers. We found that we had

33.3 percent of communication overhead as a maximum value for our system:

'PEEDUP RATIO

MAXIMUM COMMUNICATION OVERHEAD = |v(s

] = 0333

The next step was to determine the average gain and the average communication
overhead for the system. First, we had to find the average LOS calculation times for both
transputers and the Sun station to do that. We kept the lower left corner of the map as the
start point and used a random number generator to generate 50 different goal points for
LOS calculations. We used these 50 pairs of points for our transputer system and for the

Sun station. The results* were as follows:

AVERAGE LOS CALCULATION TIME FOR TRANSPUTERS = 6.541sec

AVERAGE LOS CALCULATION FOR SUN STATION = 8.89sec

Then, by using these two average time values and the SCALE FACTOR, we found
the AVERAGE GAIN:

AVERAGE GAIN = E%w = 1518

4. These timing results are for100 consecutive LOS calculations for each 50 points.

8

And, the comparison of EXPECTED AVERAGE GAIN which was (Jr)/2 and the
AVERAGE GAIN gave us the average communication overhead between the transputers.
‘We found that we had about 21.5 percent of communication overhead as an average value

for our system:

AVERAGE COMMUNICATION OVERHEAD = 1 = 0215

(A VERAGE GAIN'
(1572

Finally, we calculated the average system utility for our application:

= 01012

AVERAGE SYSTEM UTILITY = w

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
This thesis was an effort to improve Janus combat simulation model in a distributed

memory and it i using and PEGASUS 1-meter resolution

database. We have shown that line-of-sight (LOS) calculation can be done using a multi
transputer system with some modifications in the processor farming idea.

Due to the memory limitations placed on us by the Sun SPARC station’ that we used
in our application, we had to place 12 worker tasks on each transputer in the network. The
number of worker tasks could be less only if the Sun SPARC station could keep bigger map
data in its memory during each data loading process to the transputers. Because of the big
number of worker tasks, we had a high communication overhead which affected the
performance of our application.

Although the performance increase is less than the expected values, the timing results
have shown that further significant improvements can be provided for LOS calculation

time with faster transputers and a Sun SPARC station that has more memory.
B. RECOMMENDATIONS FOR FURTHER RESEARCH
The further research opportunities can be classified under the following main topics:

1. Connection To Janus

Inideal itions, the line-of -

requests should be made by Janus

system itself and the start and goal point information should be provided to Sun SPARC

station. But Janus is not available in NPS Computer Science Department yet. After the

1. The Sun SPARC station in our application (see Figure 4.23) is a SPARCstation IPX with 16
MBytes memory.

completion of setting up the Janus in our department, the future work will be providing the

connections between our application and the Janus system and make them work together.

2. INMOS T9000 Transputers
The INMOS T9000 [Ref. 6:p. 351] is the latest member of the transputer family.
It is designed to provide far higher performance and greatly improved communication
facilities. INMOS has used advanced CMOS technology to integrate a 32-bit integer
processor, a 64-bit floating point processor, 16 Kbytes of cache memory, a communications
processor and four high bandwidth serial communications links on a single IMS T9000
chip. The IMS T9000 transputer excels in real-time embedded applications, dehvenng

exceptional single processor and scalable i ip: . In

addition to executing several instructions each cycle, the number of cycles required to
perform many arithmetic and logical operations has been reduced from previous
transputers by adding extra hardware. Because of its superior characteristics, IMS T9000

should improve our system performance significantly.

3. ALPHA AXP Farm Programming Environment
Alpha AXP Farms which are produced by Digital Equipment Corporation are
another choice for distributed memory parallelism. They also provide tools and libraries for
farms. These AXP Farms use DECchip 21064 (Alpha AXP microprocessor) which is the
fastest microprocessor in the industry [Ref. 6:p. 351]. DECchnp 21064 offers the highest
available performance with a 400 peak ions per i a cache idth of

3.2 GBY/s, controls up to 16 MB cache and a 64-bit design. Therefore we believe that the
applicability of Alpha AXP Farms to our problem can be a future research area.

4. Parallel P ing Support Envil

A parallel p; i L isa ion of tools for ing part
or all of the steps in writing a parallel program [Ref. 6:p. 351]. A variety of environments

and tools have been proposed, and a few i available

systems marketed to parallel programmers. Among these EXPRESS [Ref. 6:p. 351] and
‘The HELIOS [Ref. 6:p. 351] are available in our laboratory.

EXPRESS is a collection of routine calls that form a toolbox for writing
distributed-memory parallel programs. The toolbox routines are used as built-in functions
to distribute data among and i during parallel program

execution. EXPRESS has been implemented on Intel, Mark III, nCUBE, and transputer-
based machines [Ref. 6:p. 351].

The HELIOS Parallel Operating System has been designed to run on parallel

Such

p contain ing units, and fast ication between the
processors. Many such parallel computers are built using transputers, and Helios runs on
these machines. However, Helios also runs on parallel computers built using processors
other than transputers.

So, another future research area is to check the applicability of these parallel

support i to our problem and to investigate how much

improvements they can provide for us.

APPENDIX A - SUN SPARC STATION SOURCE CODE

This appendix contains the source listings of the C++ code developed for the Sun
SPARC station that is used in this thesis. They are stored in files as listed below:

1. link.h

2. hsilink.h

3. los_com.h

4. los_global.h

5. map.h

6. map_c.h

7. map_s_com.h

8.s_comm.h

9. unix_comm.h

10. vector.h

11. map.C

12. map_c.C

13. map_s_com.C

14. s_comm.C

15. vector.C

16. manager.C

17. client_main.C

ontains the description of link communication functions which are written in C
language.

!
/* Writes “Count “ bytes from “Buffer” to the specified link. “Linkld" is a valid link identifier.
“Timeout” is a non-negative integer representing tenths of a second. A “Timeout” of zero is an infinite
timeout. */

extern “C” int WriteLink(int Linkld, char* Buffer, int Count, int Timeout):

/* Reads “Count” bytes into “Buffer” from the specified link. */
extern “C” int ReadLink(int LinkId, char* Buffer, int Count, int Timeout);

/* Ready the link associated with “Name”. */
exter “C” int OpenLink(char* Name);

/* Closes the active link “LinkId". */
extern “C” int CloseLink(int Linkld);

* @(#) Module: hsilink h, revision 1.0 6/2/92 */
#include <sys/ioccom.h>
#define h *h” /* the h actually means nothing as used here */
»
* /O controls
*
struct HSI_SETF {
unsignedint op:16;
unsigned int val:16;
B

union HSL_IO (
struct HSI_SETF set:
k

#define RESET m

#define ANALYSE @

#define SETTIMEOUT [&)]

#define TESTERROR @)

#define TESTREAD [©]

#define TESTWRITE ©)

»

* _IOW write instructions to the kemel within the
* ioct! command code.

*

#define SETFLAGS _IOW(h, 1, union HSI_IO)
”

* End of hsilink.h
*

85

los_com.h

: Dr. Se-Hung KWAK & Cem Ali DUNDAR

eptember 1993

: Header file for two structs, One of them is for information about map and the
other is for information about two points in the area.

#ifndef LOS_COM_H
#define LOS_COM_H

#include “vector.h”

/* Contains the lower left comer coordinates, the size and the grid size of map portion which is sent to
transputers at a time. */
struct MAP_INFO[
int start_x, start_y, size_x, size_y;
double grid_size;
b

1+ Contains two vectors which have the information of two points between which LOS calculation is
made. */

struct CMD_INFO(

vector start, goal;

k

#endif LOS_COM_H

los_global.h
Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993

Defines three global values used in the program.

/* Defines thal the size of a map portion which is sent to fransputers at a time is 256m.x256m. */
#define MAP_SIZE 256

/* Defines that the grid size showing the resolution is Im. */
#define GRID_SIZE 1.0

/* It is assumed that the beginning and end points of a line in the area are 10m. above the terrain.*/
#define AGENT_HEIGHT 10.0

: maph
Dr. Se-Hung KWAK & Cem Ali DUNDAR

: September 1993

Header file for the declarations of the map class and the map class functions.

#ifndef MAP_H
#define MAP_H
#include “vector.h”

class map (
public:
struct map_rep{

int start_x, start_y, size_x, size_y;
double grid_size;
int* data;
int refs;

map_rep() {refs = 1;|

k

map(): /* Constructors */

map(int start_xint start_y,int size_x,int size_y,double grid_size,int* data);
map(const map& map); /* Copy constructor */

map& operator=(const map& map); /* Assignment operator */

~map(;

1 Gets the lower left comer coordinates, the size and the grid size information of map. */
int get_start_x() {rewrn p->start_x;);

int get_start_y() {retum p->start_y;};

int get_size_x() {rewrn p->size_x;};

int get_size_y() (retur p->size_y;};

double get_grid_size() {return p->grid_size:};

int* get_data() {retumn p->data;);

vector to_map_coord(vector loc);

int higher_than(vector& loc);

int terrain_height(inté grid_x, int& grid_y);
int map_post(int grid_x, int grid_y);

I3

#endif MAP_H

: map_ch

. Se-Hung KWAK & Cem Ali DUNDAR

eptember 1993

eader fill for the source code which constructs the map portion to be sent to
transputers at a time.

#ifndef MAP_C_H
#define MAP_C_H

#include “map.h”

class map_c: public map {

public:
map_c(int stari_x, int start_y, int size_x, int size_y, double grid_size);
map map_c_to_map(); /* only x.y are used */

I8

#endif MAP_C_H

: map_s_com.h

 Dr. Se-Hung KWAK & Cem Al DUNDAR

eptember 1993

: Header file for the source code written for sending the map portions 1o
transputers.

#ifndef MAP_COM
#define MAP_COM

#include “los_com.h"
#include “map_c.h"
#include “s_comm.h"

class map_s_com{
MAP_INFO map_info;

publ
map_s_com(){ };

void map_send(int n_tr, int n_pro, map& map, s_commé s_comm1); /* Sends map portions. */

k

#endif MAP_COM

s_comm.h

: Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993

Header file for ich

SUN station and the transputers.

between

#include “link.h™
#include “hsilink.h™
#ifndef S_COMM_H
#define S_COMM_H

const int ROUTER_INIT = 1;
const int SEND = 2;

class s_comm {
int out_link_num;
int in_link_num;
int out_link;
int in_ink;
public:
s_comm() (};
s_comm(int out_link_num1, int in_link_num1);
~s_comm(){ CloseLink(out_link); CloseLink(in_link
it(int num_trs, int* trs, int* unders, int* prs, int timeout);
int send(int dst, int nts, int size, char* buf, int timeout); /* Plain send. */
int send_i(int dst, int nts, int size, char* buf, int timeout); /* Send integers. */
int beast_d(int size, char® buf, int timeoutf); /* Send doubles (byte convert). */
int listen(int timeout); /* Byte conversion. */
int terminate(int timeout);
/* Conversion functions for little-indian(transputer) and big-indian(SUN) problem. */
void convertd(char* buf1, char* buf2),
void convert_i_array(int* bufl, int* buf2, int size);
void convert3(char* bufl, char* buf2);
void convert_d_array(double* buf1, double* buf2, int size);
|3

#endif S_COMM_H

unix_comm.h

Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

Header file for the link communication functions between two SUN Stations.

d

#define SERVER_PORT_NUMBER 1053
#define CLIENT_PORT_NUMBER 1053

/* Link communication functions from “C library” for sender */

extern “C” int open_stream_s (int port_number); /* Opens link */
extern “C int send_buf_s(char* buf, int size); /* Sends buffer */
extern “C” int receive_buf_s(char* buf, int* sizep); /* Receives buffer */
extem “C” int close_stream_s (void); /* Closes link */

/* Link communication functions from C library"for receiver. */
extemn “C” int open_stream_c (char® host_name, int port_number); /* Opens link */

extern “C” int send_buf_c(char* buf, int size) /* Sends buffer */
extern “C” int receive_buf_c(char* buf, int* sizep); /* Receives buffer */
extern “C™ int close_stream_c (void); /* Closes link */

. Se-Hung KWAK & Cem Ali DUNDAR
epiember 1993
+ Header fille for the description of the vector class and vector class operations.

#ifndef VECTOR_H
#define VECTOR_H

class vector {
double x,y.z;
‘public:

e 3
vector(double x1, double y1, double z1);

double get_x() {retum x;};
double get_y() {retum y;};
double get_z() (retum z;};
friend int operator==(vector v1, vector v2);
friend vector operator+{vector v1, vectar v2);
friend vector operator-(vector v1, vector v2);
friend vector operator*(double a, vector v1);
double dotprod(vector v1);
double magnitude(void):
vector normalize(void);

B

#endif VECTOR_H

mapC

Dr. Se-Hung KWAK & Cem Ali DUNDAR

: September 1993

‘This source code defines the map class functions.

#include “map.h”

map::map() /* Constructor */
1
P = new map_rep;
p->start_x = 0; p->start_y = 0; p->size_x = 0; p->size_y =0;
p->grid_size = 0.0;
p->data = 0; // null pointer
}

map::map(int start_x,int start_y,int size_xint size_y double grid_size int* data) /* Constructor */
(

P = new map_rep;

p->start_x = start_x; p->start_y = start_y;

p->size_x = size_x; p->size_y = size_y;

p->grid_size = grid_size;

p->data = data;
}
‘map::map(const map& map) /* Copy constructor */
{
map.p->refsi+;
p=mapp;
)
map& map& map) * Assi operator */

map.p>refsit;

if (-p->refs =0) {
delete[] p->data;
delete p;

map::~map() /* Destructor */
(
if (-~(p->refs) == 0) (
delete[] p->data;
delete p;
}
)

vector map::to_map_coord(vector loc)
{
vector map_offset(((double)p->start_x)*p->grid_size,
((double)p->start_y)*p->grid_size,0);
vector loc_wrt_map = loc - map_offset;
return (loc_wrt_map);
)

int map::higher_than(vectoré loc)

{
int grid_x = (int) ((loc.get_x() - p->start_x*p->grid_size)/p->grid_size);
int grid_y = (int) ((loc.get_y() - p->stant_y*p->grid_size)/p->grid_size);
int height = p->data[grid_y*p->size_x+grid_x]:
retumn ((double)terrain_height(grid_xgrid_y) > loc.get_z0);

}

int map::terrain_height(int& grid_x, int& grid_y)
{

return map_post(grid_x,grid_y);
)

int map::map_post(int grid_x, int grid_y)
{
int index;
* index = size_y*grid_loc.x + grid_loc.y; */
index = p->size_x*grid_y + grid_x;
return p->datafindex];
)

:map_cC

Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

: This source code constructs a map portion to be send to transputers at a time.

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
#include "PVG_DECH"
#include “PVG_DEF.IN"
#include <pvdb.h>
#include “map_ch”

1* Reads one block of terrain data to a buffer and then loads elevation data to data array of map portion
by using the data in the buffer. */

map_c::map_c(int start_x, int start_yint size_x. int size_y, double grid_size)

{

imi;

P =new map_rep;
p->start_x = start_x;
p->start_y = start_y;
p->size_x = size_x;
p>size_y =size_y;
p->grid_size = grid_size;
p->data = new intlsize_x*size_yl:
/* One block of 1m, resolution terrain data is read 1o a buffer here. */
get_terr(RESOLUTION_1, start_x, start_y. 1);
1* 65536 elevation data is loaded to data array of map portion here. */
for (i=0; i<65536; i++)(
p->datali}=PVDB_UNPACK_ELE(TERRAINI[1]fi}):
}
}

/* Converts map_c class to map class. */
‘map map_c::map_c_to_map()
1
map mapl(p->start_x,p->start_y .p->size_x,p->size_y,p->grid_size.p->data);
retun(mapl);
}

map_s_com.C

: Dr. Se-Hung KWAK & Cem Ali DUNDAR

epiember 1993

+ This source code is for sending one map portion to transputers through the link
atatime.

#include “map_s_com.h"
#include <iostream h>

void map_s_com::map_send(int n_tr, int n_pro, map& map, s_commé& s_comm1)
{
MAP_INFO map_info, map_infol;

‘map_info.start_x = map.p->start_x;
map_info.stan_y = map.p->start_y;
map_info.size_x = map.p->size,
map_infosize_y = map.p->size_y;
/* Converts double,
solves little_indian(transputer), big._indian(sun) problem,
sends header,
converts start_x, start_y, size _x, size_y */
s_comm]1.convert_i_array((int*)&map_info,(int*)&map_infol 4);
double x = map.p->grid_size;
double y;
s_comm1.convert8((char*)&x, (char*)&y);
map_infol.grid_size = y;
s_comm1.send(n_tr, n_pro, sizeof(map_infol), (char*)&map_info1 50);
/* Sends real data (integer is 4 chars) */
s_comm1.send_i(n_tr, n_pro, map_info.size_x * map_infosize_y * 4,(char*)(map.p->data), S0);
5

s_comm.C

: Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993

performing i
transputers. It also has conversion functions
indian(transputer) and big-indian(SUN) problem.

between SUN station and
for solving the litlle-

d
#include <iostream.h>
#include “s_comm.h”

1 Opens link. %/
s_comm::s_comm(int out_link_num1, int in_link_num1)
{

out_link_num = out_link_num1;

in_link_num = in_link_num1;

char link _str{2];

link _str[0}= char(out_link_num1);
link_ste[1] = \0';

out_llink = OpenLink(link_str);

if (out_link_num1 = in_link_num1) {
link _str{O}= char(in_link_num1);
link_str{1] = "\0";
in_link = OpenLink(link_str):}

else
in_link = out_link;

/* Does router initialization for transputers. */

int s_comm::router_init(int num_trs, int* trs, int* unders, int* prs, int timeout)
1

convertd((char*)&code, (char*)&val);

if (WriteLink(out_Link, (char*)&val, sizeof(int), timeout) < 0)
retm -1;

convertd((char*)&num_trs, (char*)&val);

9%

if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
retum -1;

int* vals;

vals = new intfnum_trs];

convert_i_array(trs, vals, num_trs);

if (WriteLink(out_link, (char*)vals, sizeof(int)*num_trs, timeout) < 0)
retmn -1
convert_i_array(unders, vals, num_trs);
if (WriteLink(out_link,(char*)vals, sizeof(int)*num_trs, timeout) < 0)
retum -1;
convert_i_array(prs, vals, num_trs);
if (WriteLink(out_link, (char*)vals, sizeof(int)*num_trs, timeout) < 0)
retun -1;
retum 1;

/* Plain sending. No conversion, */
int s_comm::send(int dst, int nts, int size, char* buf, int timeout)
{
int code = SEND;
int val;
conventd((char*)&code, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
return 0;
convertd((char*)&dst, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
return 0;
convertd((char*)&nts, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
return 0;
convertd((char*)&size, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
return 0;
// No conversion. Send buf directly
if (WriteLink(out_link, buf, size, timeout) < 0)
retumn 0;
retumn 1;
)

/* Sends integers. */
int s_comm::send_i(int dst, int nts, int size, char* buf, int timeout)
{
int code = SEND;
int val;
convert4((char*)&code, (char*)&val);
if (WriteLink (out_link, (char*)&val, sizeof(int), timeout) < 0)
return 0;
convertd((char*)&dst, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
rewm 0;
convertd((char*)&nts, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
retum 0;
convertd((char*)&size, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
rewm 05
char* vals;
vals = new char[size];
convert_i_array((int*)buf, (int*)vals, size/sizeof(int));
if (WriteLink(out_link, vals, size, timeout) < 0) {
delete[] vals;
rewm 0;)
else
delete]] vals;
retum 13}
}
* Sends doubles. */
int s_comm::bcast_d(int size, char* buf, int timeout)
{
int code = BCAST;
int val;
convertd((char*)&code, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
retum 0;
convertd((char*)&size, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
retum 0;
char* vals;
vals= new charfsize};
convert_d_array((double®)buf, (double*)vals, size/sizeof(double));

100

* Reads the value coming from transputers. */
int s_comm::listen(int timeout)
{

int code = LISTEN;

int val, result;

convertd((char*)&code, (char*)&val);

if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)

retumn 0;

if (ReadLink(in_link, (char*)&val, sizeof(int), timeout) < 0)
return 0;

convertd((char*)&val,(char*)&result);

return result;

)

int s_comm::terminate(int timeout)
{
int code = TERMINATE;
int val;
convertd((char*)&code, (char*)&val);
if (WriteLink(out_link, (char*)&val, sizeof(int), timeout) < 0)
retum 0;
return 1;

)
/* CONVERSION FUNCTIONS FOR LITTLE-INDIAN(TRANSPUTER) AND BIG-INDIAN(SUN)

PROBLEM STARTS HERE. */
void s_comm::convert4(char* buf1, char* buf2)

{
buf2(3] = buf1[0];
buf2[2] = buf1[1};
buf2(1] = buf1[2];
buf2[0] = buf 131

101

void s_comm::convert_i_array(int* bufl, int* buf2, int size)
{

for (int i=0; i<size; i++)

}

void s_comm::convert8(char* buf1, char* buf2)
{

buf2(7] = buf1[0];

buf2[6] = buf1[1];

buf2[5] = buf1{2];

buf2(4] = buf1[3];

buf2[3] = buf1[4];

buf2[2] = buf1[S);

buf2(1] = buf1(6});

buf2(0] = buf1[7];
I}
void s_comm::convert_d_array(double* buf1, double* buf2, int size)
{

for (int i=0; i<size; i++) {

}
)

vector.C

Dr. Se-Hung KWAK & Cem Ali DUNDAR
Sepiember 1993

‘This source code defines the vector class operations.

#include “vector.h”
#include <math.h>

vector::vector() (x=0.0; y=0.0; 2=0.0;);
vector::vector(double x1, double y1, double z1) {x=x1; y=y1; z=z1;};
int operator==(vector v1, vector v2)
(

return((v1.
}

v2.x) && (v1.y==v2y) && (v1.z==v22));

vector operator+(vector v1, vector v2)

(
vector v(v1.x+V2.x, VLy+v2y, v1.24v2.2),
return v;

vector operator-(vector v1, vector v2)

{
vector v(v1x-v2x, vLy-v2.y, v12-v22);
return v;

)

vector operator*(double a, vector v1)
{

vector v(a*vL.x, a*vLy, a*v1.z);

retum v;
)
double vector:dotprod(vector v2) /* Dot product */
{

retumn(this->x*v2.x + this->y*v2y + this->z*v2.2);
}

103

double vector::magnitude(void)

{
return(sqrt((*this).dotprod(*this)));

)

vector vector::normalize(void)
{
vector result;
double mag = (*this).magnitude();
if (mag < 1E-100) {
result.x =0
resulty = 0.0;
result.z = 0.0;)
else {
result = (1.0/mag) * (*this);
I
return(result);
i

/* Vector normalization */

: manager.C

Dr. Se-Hung KWAK & Cem Ali DUNDAR

 September 1993
: This is the main program. The number of transputers, workers and task

distribution are defined here. The user is asked to enter the lower left comer
coordinates of the 5120m.x2304m. map area first. Then after loading of the
whole map to transputers, the information about the two points in the area
between which LOS calculation will be made is expected to be entered and sent
from another server via the communication link established between them. This
information then is sent to the transputers and the result is expected from them.
When the result is received, it is sent to the station from which the point
information comes. This procedure can be repeated as many as the user wants.

"/
/* THIS VERSION OF MANAGER C IS FOR 15 TRANSPUTERS, THERE ARE 180 WORKERS. */

#include <iostream.h>

#include “unix_comm.h™

#include <fstream h>
#include “los_com.h"

#include “map_s_com.h”
#include “los_global h"

#include “map_ch”

#define NUM_OF_WORKERS 180 /* Each transputer has 12 workers. */

intorg_x, org_y. orgl_x, orgl_y;
intx_counter, y_counter, tr_x, tr_y;

float info[6];
int size;
ifstream source;
int sum;

float los_result;

vector agent(0,0, AGENT_HEIGHT);

double ab.c.x.y.z;
intaddr = 0;

105

int main(void)

(

s_comm s_comm1(0,0); // output link and input link

/* Total number of transputers. */

const int total_prs = 15;

/* Total number of workers. */

const int total_n_pr= 180;

/* Names of transputers. */

static int trsftotal_prs] = {
0.1,2,112L111211, 1111211 L, 11111211 L1210 1L 1 L 210 E)
/* The number of children for each transputer for the current topology. */
static int Lprs] = (2,1,1,1,1,1,1,1,1,1,1,1,1,0,0};

/* The number of workers for each transputer. */

static int prsftotal_prs] = {12,12,12,12,12,12,12,12,12,12,12,12,12,12,12};

/* The distribution of workers o transputers. */

static int n_trjtotal_n_pr] = {

0,0,0.0,0,0,0.0.0,0.0,0,

LLLLLLLLLLLIL,

222222222222,

JIBINIRERINININININIRININ

21.21,21,21,21,21,21 2121212121,
JRSRITNITHINITNITRIIRIIRIPRIINIINIIN
211211211211.211,211,211.211,211,.211,211 211,

LGN LIN LTI LT I LT LT LTI,
201112111,2111,2111.2111,2111,2111,2111 2111 2111,2111,.2111,
NHLIHLHINLIIL LI L L T L UL I LY,
21111,21111,21111.21111,21111.21111,21111, 21111 21111, 21111 21111,21111,
LI LU LI LI L 1 L 1T DT,
1L LI,
211111,211111.211111.211111, 211111 211111.211111 211111,
211111211111 211111211111,

1L LI LI T LT L L T LT,
1L LI,
2111111,2111111,2111111. 2111111 2111111,2111111,2111111 211111,
2111111,.2111111,2111111. 2111111)

/* Names of workers in each transputer. */
static int n_pr{total_n_pr] = {
0,123,4,56,7.89,10,11,

0,1,234,5,6,7.89,10,11,
0,1,234,56,789.10,11,
0,1,234,56,789,10,11);

s_comm 1.router_init(total_prs,trs,unders,prs,100);

/* User enters the lower left comer coordinates of the whole map here. */
cout <<"ENTER X COORDINATE FOR ORIGIN : * <<\n';
cin>>org_x;

cout <<“ENTER Y COORDINATE FOR ORIGIN : <<\n';
cin>>org y;
for (ir_x=0; w_x<5; tr_x++){

for (tr_y=0; r_y<3; tr_y++){

for (x_counter=0; x_counter<4; x_counter++)(
for (y_counter=0;

/_counter<3; y_counter++){
orgl_x=0rg_x+{tr_x*4*256)+x_counter*256;

orgl_y=org_yH(r_y*3*256)+y_counter*256;

map_c mapl(orgl_x, orgl_y, MAP_SIZE MAP_SIZE ,GRID_SIZE);
‘map c_map;

map_s_com map_s_com;
/* Sends map */

map = mapl.map

>_map();

/* Conversion of map_c class to map class before sending is done®/
if (addr < total_n_pr) {
map_s_com.map_send(n_tr{addr], n_prfaddr], c_map, s_comm1);
}
addr++; /* Determines the worker address for map portion to be sent. %/
)

)
cout<<12 blocks of elevation data sent to transputer *
<<addr/12<<\n’;
}

1
cout<<“Each 15 transputer is loaded with 12 blocks of elevation data “<<"\n’;

‘CMD_INFO cmd_info;

cout<<“The server is ready to receive the start and goal point information 1"
<<

/* The communication link is established between two Sun stations here and the
information of two points in the area for LOS calculation is received. */

/* Opens socket on server */
if (open_stream_s(SERVER_PORT_NUMBER) < 0}
cout <<"Error open\a™;

for ()
if (receive_buf_s((char*)info,&size) < 0) cout << “Error in receiving \n";

a=double(info[0]);
b=doubleinfo[11);
c=double(info(2]);
x=double(infof3]);
y=double(infof4]);
2=double(info[S]);

vector start(a,b.c);
start = start + agent;

vector goal(x,y.z);
goal = goal + agent;

ccmd_info.start = start;

«cmd_info.goal = goal;
s_comm1.beast_d(sizeof(cmd_info),(char*)&cmd_info,50);
sum = 5_commLlisten(100);

/* The LOS result will be “0" if LOS exists, or will be “1” if LOS doesn't exist and it will be sent
to the server which represents Janus, */
if (sum!=0)
los_result=float(sum/sum);
else
los_result=float(sum);

cout << “Sum is “ << dec << sum << \n’ << flush;
cout << “LOS Result is “ << dec << los_result << “\n’ << flush;

send_buf_s((char*)&los_result, sizeof(float));
}
s_comm 1.terminate(S0);

lient_main.C

: Dr. Se-Hung KWAK & Cem Ali DUNDAR
October 1993

+ This program runs in a server other than the one in which the main program runs.
The user is asked 10 enter the information about the two points in the area
between which LOS calculation will be made.This information is sent to the
main server via the communication link established between them. Ideally the
sender s considered to be Janus. After sending the point information, the result
is expected from the main sever. When the result is received, it is displayed on
the screen.This procedure can be repeated as many as the user wants.

#include <iostream.h>
#include “unix_comm.h"™

void main(int argc, char *argv(2])
{

floatab.ex.y.z;

float buf{6];

int size;

float *sum;

if (open_stream_c(argv{1],CLIENT_PORT_NUMBER) < 0)
cout << “Error open \n";

for) {

cout << “Enter the x-coordinate of start point :"<<*\n";
cin>>a;
bufl0]=a;

cout << “Enter the y-coordinate of start point :"<<"
cin>>b;

bufl1l=b;

cout << “Enter the height of start point :"<<"\a™;
cin >>c;
bufi2}=c;

cout << “Enter the x-coordinate of goal point :"<<"\n”;

110

cout << “Enter the height of start point :"<<"\n";

cin>>z;
buf(Sl=z;

send_buf_c((char *)bu.sizeof(float)*6);
cout << “Two points sent to serveAn”;

receive_buf_c((char *)buf, &size);
sum = (float *)buf;

cout << “Resultis :" << *sum << “\n";

cout << * If you want (o continue, type 'y’ \n";
char ch;
cin >>ch;
if (ch == *n’) break:
)
close_stream_c();

111

APPENDIX B - HOST COMPUTER (PC) SOURCE CODE

This appendix contains the source listings of the C++ code developed for the host
computer which is a PC that is used in this thesis. They are stored in files as listed below:

1. lineh

2.los_com.h

3. map.h

4. map_crx.h

5. plane.h

6. rout_cmd.h

7. router.h

8. router2.h

9. router3.h

10.s_los.h

11. tr_comm.h

12. vector.h

13. line.cpp

14. map.cpp

15. map_crx.cpp

6. plane.cpp

17. router.cpp

18. routert.cpp
19. router2.cpp
20. router3.cpp
21.s_los.cpp

22. tr_comm.cpp
23. tr_commt.cpp
24. vector.cpp

12

25. worker.cpp
26. worker.Ink
27. brest180.cfg

13

line.h
Dr. Se-Hung KWAK & Cem Ali DUNDAR
: September 1993

Header file for description of line equation class and its functions.

#ifndef LINE_H
#define LINE_H

#include “vector.h™

class line { PR =Pr+PR, *

line(vector ptl, vector dir);

vector get_start() {retum start; };
vector get_direction() {return direction; };

k

#endif LINE_H

114

los_com.h
Dr. Se-Hung KWAK & Cem Ali DUNDAR

. September 1993

DESCRIPTION.......: Header fill for two structs. One of them is for information about map and the
other is for information about two points in the arca.

#ifndef LOS_COM_H
#define LOS_COM_H

#include “vector.h”

/* Contains the lower left comer coordinates, the size and the grid size of map portion which is sent to
transputers at a time. */
struct MAP_INFO(
int start_x, start_y, size_x, size_y;
double grid_size;
3

/* Contains two vectors which have the information of two points between which LOS calculation is
made. */
struct CMD_INFO(
vector start, goal;
13

#endif LOS_COM_H

115

maph
Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

Header file for the declarations of the map class and the map class functions.

#ifndef MAP_H
#define MAP_H
#include “vector.h”
class map {
public:
struct map_rep{
int start_x, start_y, size_x, size_y;
double grid_size;
int* data;
int refs;
map_rep() {refs = 1:)
I
map_rep *p;
map(); /* Constructors */
map(int start_x.int start_y, nt size_xint size_y,double grid_size.int* data);
map(const map& map); /* Copy constructor */
map& operator=(const map& map); /* Assignment operator®/
~map();
/* Gets the lower left comer coordinates, the size and the grid size information of map. */
int get_stant_x() {retum p->start_x;;
int get_start_y() (rewrn p->start_y;};
int get_size_x() {retum p->size_x;);
int get_size_y() {retumn p->size_y;);
double get_grid_size() {retum p->grid_size:);
int* get_data() (retum p->data;);

vector to_map_coord(vector loc);

int higher_than(vector& loc);

int terrain_height(int& grid_x, int& grid_y);
int map_post(int grid_x, int grid_y);

|3

#endif MAP_H

116

’
FILENAME: map_crxh

Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

Header file for the hich checks whether LOS pas

contained in a transputer.

#ifndef MAP_CRX_H
#define MAP_CRX_H

#include “plane.h”
#include “map.h”

class map_erx
double map_x_min, map_y_min, map_s_max, map_y_max;
public:
map_crx() { }:
map_crx(map mapl):

void set_value(map map1);

int inside_p(vector pt);

int map_crossing(vector pl, vector p2, vector& start, vector& end);

int map_intersect(vector pl, vector p2, vector& start, vector& end);
13

#endif MAP_CRX_H

1u7

Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993
DESCRIPTION: Header file for description of plane class and its functions.

#ifndef PLANE_H
#define PLANE_H

#include “vector.h”
#include “line.h"

class plane {
vector unit_normal; /*unit normal vector */
double distance; /* -distance from origin */
public:
plane() (};
plane(vector normal, double dist) {
unit_normal = normal.normalize();
distance = dist;
)

/* 1f ine is parallel t a plane, then 16100 is returned */
/* If line is parallel to a plane and on the plane, this routine also return 1¢100. */
P If start of a it i thenit

double plane_distance(vector velocity, vector position);

int plane_intersection(line line, vector& pt, double& distance);
int plane_line_cross(line line1, vector& pt, double& distance);
k

#endif

118

*

: rout_cmdh

Dr. Se-Hung KWAK & Cem Ali DUNDAR

 September 1993

Header file which contains the routing information for use of all routing source
codes.

#ifndef ROUT_CMD_H
#define ROUT_CMD_H

#define ROUTER_BUF_SIZE 1024

/* Network definition (actually tree)

master
router() -- workers
router Irouter2

router11 router12 router21 router22 router23

one node can have up to three descendant nodes.
one node can have many workers.
*/

”
1D number for router12 is 1001

ID number for router123 is 111001
*/

”
Task number

start from O!!!! (cf, routers, 0, 1.2, 11,12,13,21.22..))

For example, first task connected router 12 is task120 and
NNTS field in send_map is 0.

*
~
Port Numbers
0: upper
123 : lower (may none connected)
4. :tasks
*

19

/* init message format (cmd=0 or 1) */

/0 cmd #_of_tasks ¥_of_lower_router destination current_level®/
M3 4 4 16 4bits */

M0 CMD NTS LOW DST CLL ¥

/* send_map message format (cmd=2) */
/*0 cmd task# 2?7 destination ?72%/
M1 2 4 4 16 4 bis*
/M0 CMD NTS 1?72 DST 2%
/+ map-size %/

»o32 Y

* map data */

/* variable length */

* beast_req message format (cmd=3) */
M0 cmd size 1724

M1 3 8 20bits*/

0 CMD BCS M ¥/

/* BCS size message follows */

* terminate message format (cmd=4) */

M1 3 28bis/
M0 CMD M ¥/

/* cmd 0 init (start)

1: terminate init

2:send map

3 beast reqest (los request, automatically replied by workers)
4: terminate

¥

#define START_INIT 0
#define TERMINATE_INIT 1
#define SEND_MAP 2
#define BCAST_REQ 3
#define TERMINATE 4

#define ROUTE_CMD_MASK 0x70000000
#define ROUTE_NTS_MASK 0x0F000000
#define ROUTE_LOW_MASK 0x00F00000

#define ROUTE_DST_MASK 0x000FFFFO
#define ROUTE_CLL_MASK 0x0000000F
#define ROUTE_BCS_MASK 0x0FF00000

d#define ROUTE_CMD_SHIFT 0x10000000
#define ROUTE_NTS_SHIFT 0x01000000
#define ROUTE_LOW_SHIFT 0x00100000
#define ROUTE_DST_SHIFT 0x00000010
#define ROUTE_CLL_SHIFT 0x00000001
#define ROUTE_BCS_SHIFT 0x00100000

[* Use divides and multiplies instead of shifts for speed */
#define ROUTE_UNPACK_CMD(n) ((n & ROUTE_CMD_MASK) / ROUTE_CMD_SHIFT)
#define ROUTE_UNPACK_NTS() ((n & ROUTE_NTS_MASK)/ ROUTE_NTS_SHIFT)
#define ROUTE_UNPACK_LOW(n) (n & ROUTE_LOW_MASK) / ROUTE_LOW_SHIFT)
#define ROUTE_UNPACK_DST(n) ((n & ROUTE_DST_MASK) / ROUTE_DST_SHIFT)
#define ROUTE_UNPACK_CLL(n) (n & ROUTE_CLL_MASK) / ROUTE_CLL_SHIFT)
#define ROUTE_UNPACK_BCS(n) ((n & ROUTE_BCS_MASK) / ROUTE_BCS_SHIFT)

#define ROUTE_PACK_CMD(p.n) p=(p & (~ROUTE_CMD_MASK)) | (n*ROUTE_CMD_SHIFT)
#define ROUTE_PACK_NTS(p.n) p=(p & (-ROUTE_NTS_MASK)) | (n*ROUTE_NTS_SHIFT)
#define ROUTE_PACK_LOW (p.n) p=(p & (-ROUTE_LOW_MASK)) | (*ROUTE_LOW_SHIFT)
#define ROUTE_PACK_DST(p.n) p=(p & (-ROUTE_DST_MASK)) | ("*ROUTE_DST_SHIFT)
#define ROUTE_PACK_CLL(p.n) p=(p & (-ROUTE_CLL_MASK)) | (n*ROUTE_CLL_SHIFT)
#define ROUTE_PACK_BCS(p.n) p=(p & (~ROUTE_BCS_MASK)) | (n*ROUTE_BCS_SHIFT)

#endif ROUT_CMD_H

121

routerh

Dr. Se-Hung KWAK & Cem Ali DUNDAR

: September 1993

Header file for the source code which performs the routing for the current
topology of transputer network.

#ifndef ROUTER_H
#define ROUTER_H

#include <chan.h>
#include “rout_cmd.h™

3
Port Numbers

0: upper

1.2,3 : lower (may none connected)

4 .. :tasks

*

#define UPPER_PORT 0

#define FIRST_LOWER_PORT_NUMBER 1
#define FIRST_TASK_PORT_NUMBER 4

class router {
int router_id;
int level;
int has_leaf_node_p;
int last_lower_port_number;
int last_task_port_number;
CHAN **in_ports;
int ins;
‘CHAN **out_ports;
int outs;
int message;
char router_buffROUTER_BUF_SIZE];

‘public:
router(CHAN *in_ports(],int ins, CHAN *out_ports(].int outs);
void init(void);
int cmd_type(void);

122

void send_map(void);

void beast_req(void);

void terminate(void):

void answer(void);

void trans_map(int port_number.int map_size);
5

#endif ROUTER_H

 Touter2.h

Dr. Se-Hung KWAK & Cem Ali DUNDAR

: September 1993

‘Header file for the source code which performs routing between transputers.

#ifadef ROUTER2_H
#define ROUTER2_H

#include <chanh>
#include “rout_cmd "

class router2 {
CHAN **in_pons;
int ins;
CHAN **out_ports;
int outs;

public:
router20)(};
router2(CHAN *in_ports[].int ins, CHAN *out_ports{].int outs);

void router_init(int dts, int low, int nts);
void router_init_done(void);
'void send(int dst, it nts, int size, char* buf);
void beast(int size, char* buf);
int listen(void);
void terminate(void);

i

#endif ROUTER2_H

router3.h

Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

Header file for the source code which performs routing in a transputer.

#ifndef ROUTER3_H
#define ROUTER3_H

#include <chan.h>
#include “rout_cmd.h”

#define SEND SEND_MAP
#define BCAST BCAST_REQ
/*TERMINATE comes from “rout_cmd.h™ */

class router3 {
CHAN **in_ponts;
intins;
CHAN **out_ports;
int outs;
int message;
int return_value:

public:
router3(CHAN *in_ports1[].int ins1, CHAN *out_ports! [J,int outs1);
int cmd_type(int& size); /* return type as well as size of data */
void receive(int size, char* buf);
void answer(int value);
void terminate(void);
h

#endif ROUTER3_H

125

s_los.h
Dr. Se-Hung KWAK & Cem Ali DUNDAR

eptember 1993
Header file for the source code which performs LOS calculations between two
points.
#ifndef S_LOS_H
#define S_LOS_H

#include “vector.h™
#include “map.h™

class s_los {

public:

s_losO {}

/* Performs LOS calculations. */

int do_s_los(vector start, vector goal, map& mapl);
k

#endif S_LOS_H

Header file for the source code which performs the communication between
SUN station and transputers.

#ifndef TR_COMM_H
#define TR_COMM_H

#include <chanh>
#include “router2.h”

const int ROUTER_INIT_S
const int SEND_S =2;
const int BCAST_S =3;
const int LISTEN_S = 4;
const int TERMINATE S = §;

class tr_comm {

public:
tr_comm(CHAN *in_ports(], int ins, CHAN *out_ports[], int outs);

int cmd_type(; /* Retum type */

void router_init(void);

void send(void);

void beast(void);

void listen(void);

void terminate(void);
k

#endif TR_COMM_H

127

vector.h

Dr. Se-Hung KWAK & Cem Ali DUNDAR

eptember 1993

Header file for the description of the vector class and vector class operations.

#ifndef VECTOR_H
#define VECTOR_H

class vector {
double x,y.z;
publ
vector();
vector(double x1, double y1, double z1);

double get_x() {return x:};
double get_y() {rewm y:);
double get_z() {retum z;};

friend int operator==(vector v1, vector v2);
friend vector operator+(vector v1, vector v2);
friend vector operator-(vector v1, vector v2);
friend vector operator*(double a, vector v1);
double dotprod(vector v1);
double magnitude(void);
vector normalize(void);

b

#endif vector_H

: line.cpp
. Se-Hung KWAK & Cem Ali DUNDAR
Seplember 1993

‘This source code is for a line equation.

#include “line.h”

line::line(vector pt1, vector dir)
{ start = ptl; direction = dir; }

129

: map.cpp

Dr. Se-Hung KWAK & Cem Ali DUNDAR

: September 1993

‘This source code defines the map class functions.

#include “map.h™

map::map() /* Constructor */
{
P =new map_rep;
P->start_x = 0; p->start_y = 0; p->size_x = 0; p->size_y = 0;

>size_y = size_y;
p->grid_size = grid_size;
p->data = data;

}

map::map(const map& map) 1* Copy constructor */
{

map.p->refs+;

p=mapp;
)

map& map::operator=(const map& map) /* Assignment operator */
(

map.p->refsi+;

if (-porefs=0)

delete() p->data;

delete p;

)

p=map.p;

return *this;

i

130

map::~map() /* Destructor */
{

if (~(p->refs) = 0) {

delete(] p->data;

delete p;

)
)

vector map::to_map_coord(vector loc)
1

vector map_offset(((double)p->start_x)*p->grid_size,
((double)p->start_y)*p->grid_size,0);

vector loc_wrt_map = loc - map_offset;
return (loc_wrt_map);
i

int map::higher_than(vector& loc)

{
int grid_x = (int) ((loc.get_x() - p->start_x*p->grid_size)/p->grid_size);
int grid_y = (int) ((loc.get_y() - p->start_y*p->grid_size)/p->grid_size);
retun(p->datafgrid_y*p->size_x+grid_x] > loc.get_z0);

i

int map::terrain_height(int& grid_x, int& grid_y)
{
return map_post(grid_x,grid_y);
)
int map::map_post(int grid_x, int grid_y)
1
int index;
index = p->size_x*grid_y + grid.
return p->datalindex};
i

131

map_crx.cpp

Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

‘This source file checks whether LOS passes through a map contained in a
transputer ot not

#include “map_crx.h”

‘map_crx::map_crx(map map1)

{
map_x_min = double(map1.get_start_x()) * map1.get_grid_size(:
map_y_min = double(mapl.get_start_y()) * mapl.get_grid_size(
map_x_max = map_x_min + double(map1.get_size_x()) * map1.get_grid_size();
map_y_max = map_y_min + double(map1.get_size_y()) * map1.get_grid_size():

)

void map_crx::set_value(map map1)
(
map_x_min = double(mapl.get_start_x0) * map1.get_grid_size(;
map_y_min = double(mapl.get_start_y0) * map1.get_grid_size(;
map_x_max = map_x_min + double(map1.get_size_x() * mapl.get_grid_size(;
map_y_max = map_y_min + double(map1.get_size_y0) * map1.get_grid_size();
}

int map_
{
/ inside_p includes boundary 100. */
double delta = 0.00005;
if ((pt.get_x() > map_x_min-delta) && (pt.get_x() < map_x_max+delta) &&
(pt.get_y() > map_y_min-delta) && (pt.get_y() < map_y_max+delta))
rewm(1);
else
return(0);
b

inside_p(vector pt)

132

int map_crx::map_crossing(vector pl, vector p2,
vector& start, vector& end)
{

vector px1,px2;

if ((inside_p(p1))&&(inside_p(p2)))
start=pl;
end =p2;
return 1;}
else |
if (inside_p(p1)) {
‘map_intersect(pl,p2,px1,px2);
start=pl;
end=pxl;
retum 1;}
else if (inside_p(p2)) {
start=p2;
map_intersect(p1,p2,px1,px2);
end=pxl;
return 1;}
else |
if (map_intersect(p1,p2,px1,px2)) (
start = pxl;
end =px2;
rewm 1;}
else
rewm 0;
)
}
}

int map_crx::map_intersect(vector pl, vector p2, vector& px1, vector& px2)
{

1+ This routine retums two intersection pts: px1, px2 */
/* 1f they are identical, then px1 = px2 */
/103D pis, pl & P2, are given, then px1 and px2 are 3D pts */

wvector pt, pis[2];
double dist;

133

vector x_normal(1,0,0), y_normal(0,1,0);

plane plane_x1(x_normal, -1.0*map_x_min);
plane plane_x2(x_normal, -1.0*map_x_max);
plane plane_y1(y_normal, -1.0°map_y_min);
plane plane_y2(y_normal, -1.0*map_y_max);
vector delta = p2 - pl;

line line1(p1,p2-p1);

int num = 0;
/* There are two distinct pts */
if (plane_x1.plane_line_cross(line1, pt, dist))
if (inside_p(pt)) {
pis[num] = pt;
num-++;)
if (plane_x2.plane_line_cross(linel, pt, dist))
if ((inside_p(pt) && num && !(pts[num-1]==pt)) I inside_p(po)) {
pis[num] = pt;
num++; }
if (plane_y1.plane_Line_cross(linel, pt, dist)) {
if ((inside_p(pt) && num && !(pts[num-1]==pt)) Il inside_p(pt)) {
pts[num] = pt;
num-+; §
I
if (plane_y2.plane_line_cross(linel, pt, dist))
if ((inside_p(pt) && num && !(pts[num-1}==p)) Il inside_p(pt)) {
pis(num] = pt;
num++; }
if (num = 0)
retumn 0;
else if (num=1){
Ppxl = pis{0);
px2 =pis[0];
retumn 1;}
else {
pxl = pts[0];
px2 = pis{1];
retum 13}
}

plane.cpp

: Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993

This source code is for plane equations and functions.

#include “plane.h™
#include “vector.h™
#include <math.h>

double plane::plane_distance (vector velocity, vector position)
{

* plane (X-Q)N=0, line X=P+1A.

1= (Q-P)N/(AN), if A is normalized then t is signed distance.
If tis infinitive, then plane-distance returns NULL.
otherwise, plane-distance returns distance. */

vector A = velocity.normalize();

vector N = unit_normal;

double dis = -1.0 * distance;

vector Q= dis * N;

vector Q_P = Q - position;

double AN = A.dotprod(N);

double numerator = Q_P.dotprod(N);

if (fabs(AN) < LE-100)
return(IE100);

else
return(numerator/AN);

}

int plane::plane_intersection(line linel, vector& pt, double& distance)
{
vector velocity = line1.get_direction().normalize();
distance = (*this).plane_distance(velocity, line1.get_startQ);
if (distance < 1E100) (
pt=linel.get_start() + distance * velocity;
retm 13}
else
retum 0;

135

int plane::plane_line_cross(line line1, vector pt, double4: distance)
{
vector velocity = line1.get_direction().normalize();
distance = (*this).plane_distance(velocity, linel.get_start());
if ((distance >= 0) && (distance < linel.get_direction().magnitude())) {
pt=linel.get_start() + distance * velocity;
retum 1;}
else
return 0;

: router.cpp

Dr. Se-Hung KWAK & Cem Ali DUNDAR

: Sepiember 1993

‘This is the main routing source code. It handles routing for the current topology
of transputer network.

#include “router.h™
#include <alth>
#include <chan.h>

router::router(CHAN *in_ports1{J.int ins1, CHAN *out_ports1{},int outs1)
{

in_ports= in_pors1;

ins =insl;

out_ports = out_ports1;

outs = outs1;

}

int next_address(int destination, int current_level)

{

return((destination >> (current_level * 2)) & 0x00000003);
i

void router:init(void)

{

/* message format */

/*0 cmd # _of_tasks #_of_lower_router destination current_level*/
P 1344164bits*/

/*0CMD NTS LOW DSTCLL */

for) {
int message:
chan_in_word(&message.in_ports[0));

/* Checks whether to terminate init routine.
‘This is detected by the first node. */

137

if ROUTE_UNPACK_CMD(message) == TERMINATE_INIT) {
for (int i=FIRST_LOWER_PORT_NUMBER; i<=last_lower_port_number; i++)
chan_out_word(message,out_ports[i]);
‘break;
} /* 1f there is no lower routers, then it automatically does not
send anything. */

int destination = ROUTE_UNPACK_DST(message);
int current_level = ROUTE_UNPACK_CLL(message);
int next_chan = next_address(destination, current_level);

if ('next_chan) { /* This is the destination. */
router_id = destination; /* Destination is ID. */
level = current_level;
int num_of_lower_routers = ROUTE_UNPACK_LOW(message);
Iast_lower_port_number = num_of_lower_routers + FIRST_LOWER_PORT_NUMBER-1;
*0, 1.. num_of_lower_routers, task_ports.... */
int num_of_tasks = ROUTE_UNPACK_NTS(message);
last_task_port_number = num_of_tasks + FIRST_TASK_PORT_NUMBER-1;
if (num_of_lower_routers !=0)
has_leaf_node_p=1;
else
has_leaf_node_p=0;
}
else {
message++; /* Increments current_level counter. ¥/
chan_out_word(message, out_ports[next_chan]);
}
}
)

int router::cmd_type(void)
{
chan_in_word(&message,in_ports[0]);
reum(ROUTE_UNPACK_CMD(message));
)

Void router::trans_map(int port_number, int map_size)

{
chan_out_word(message.out_ports[port_number]); /* Sends header first. */
int num_of_packets = map_size/ROUTER_BUF_SIZE + I;

138

int last_packet_size = map_size % ROUTER_BUF_SIZE;
chan_out_word(map._size,out_poris[port_number]); /* Sends map size. */
while (num_of_packets>0) {
if (num_of_packets=1)
if (last_packet_size > 0) (
chan_in_message(last_packet_size,router_bufin_ports[0));
chan_out_message(last_packet_size router_buf,out_ports[port_number]);}
else (/* nothing o transfer */}
else
chan_in_message(ROUTER_BUF_SIZE router_buf.in_ports(0]);
chan_out_message(ROUTER_BUF_SIZE router_buf,out_ports[pori_number]);
b
num_of_packets—;
1
}

void router::send_map(void)

{
int map_size;
chan_in_word(&map_size.in_ports[0});

int destination = ROUTE_UNPACK_DST(message):
/* Two cases: This node’s task or pass down */
int next_chan = next_address(destination, level);

if (Inext_chan) (/* This is the destination. */

/* Gets task number. */

int task_port_number = ROUTE_UNPACK_NTS(message)+FIRST_TASK_PORT_NUMBER;
trans_map(task_port_number,map_size): }

else
trans_map(next_chan,map_size);

)

void router::bcast_req(void)
{
int size = ROUTE_UNPACK_BCS(message);
chan_in_message(size,router_buf.in_ports[0]):
for (int i=FIRST_LOWER_PORT_NUMBER; i<=last_lower_port_number; i++) {
chan_out_word(message.out_ports[il); /* Sends down */
chan_out_message(size router_buf.out_ports(il);
}

139

for (i=FIRST_TASK_PORT_NUMBER; i<=last_task_port_number: i++) {
chan_out_ tportsfil)i /* Sends down. */
chan_out_message{size.outer_buf.out_portsfi};
}
)

void router::answer(void)

{
intsum=0; /* Should be zero, now just testing mode. */
int lower_sum, task_sum=0;
int chan;

for (int i=FIRST_TASK_PORT_NUMBER; i<=last_task_port_number:i++) {
chan = alt_wait_vec(ins, in_ports);
chan_in_word(&task_sum,in_ports[chan]):
sum = sum + task_sum;
}
for (i=FIRST_LOWER_PORT_NUMBER; i<=last_lower_port_number; i++) {
chan = alt_wait_vec(ins, in_ports);
chan_in_word(&lower_sum,in_ports(chan]);
sum = sum + lower_sum;
}
chan_out_word(sum.out_ports[0]);
i

void router::terminate(void)
(
for (int i=FIRST_LOWER_PORT_NUMBER; i<=last_lower_port_number; i++)
chan_out_word(message,out_ports(i]);
for (i=FIRST_TASK_PORT_NUMBER; i<=last_task_port_number; i++)
chan_out_word(message,out_ports[il);
)

140

routert.cpp

: Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993
 This source code performs routing for transputers.

#include <chan.h>
#include “router.h”™

void main(int arge, char *argv{], char *envp{),
CHAN *in_ports(], int ins, CHAN *out_ports[], int outs)
(
int exit_flag = 0;
‘router router 1 (in_ports,ins,out_ports,outs);

routerl.i

0:

while (lexit_flag)
switch (routerl.cmd_type() {
case SEND_MAP:
router].send_map();
break;
case BCAST_REQ:
router] beast_req();
routerl.answer();
‘break;
case TERMINATE :
routerl terminate();
exit_flag=1;
‘break;
default:
rerror*/
break;
}
)

141

: Dr. Se-Hung KWAK & Cem Ali DUNDAR

epiember 1993

#include “router2.h”
#include <iostream.h>

const int OUT_PORT_NUM =
const int IN_PORT_NUM =2;

router2::router2(CHAN *in_ports1[l.int ins1, CHAN *out_ports1[],int outs1)

out_ports = out_ports1;
outs = outs1;

)

int convert_to_dst(int destination)
(
/* Destination address does not contain zero. */
int dst=0;
int digit = destination % 10;
destination = destination / 10;
while (digit) (
dst = (dst << 2) | dij
digit = destination % 10;
destination = destination / 10;
}
return dst;
)

void router2::router_init(int destination, int low, int nts)
{
int message =0;
intcll=0; /*Current level number */
ROUTE_PACK_CMD(message,START_INIT);
ROUTE_PACK_NTS(message,nts);
ROUTE_PACK_LOW(message,low);

142

ROUTE_PACK_DST{(message,convert_to_dst(destination));
ROUTE_PACK_CLL(message cll);
chan_out_word(message,out_ports{OUT_PORT_NUM]);

}

void router2::router_init_done(void)
{
int message =0;
ROUTE_PACK_CMD(message, TERMINATE_INIT);
ROUTE_PACK_LOW(message.?);
chan_out_word(message,out_portsOUT_PORT_NUM]);
}

void router2::terminate(void)
(
int message = 0;
ROUTE_PACK_CMD(message, TERMINATE);
chan_out_word(message,out_pors{OUT_PORT_NUM));
)

void router2::send(int destination, int nts, int size, char* buf)
1
int message =0;
ROUTE_PACK_CMID(message, SEND_MAP);
ROUTE_PACK_NTS(message, nis);
ROUTE_PACK_DST(message, convert_to_dst(destination));
/* Sends “header” */
chan_out_word(message,out_portsOUT_PORT_NUM]);
/* Sends “size” */
chan_out_word(size,out_portsOUT_PORT_NUM]);
char* bp = buf;

int num_of_packets = size / ROUTER_BUF_SIZE + 1;
int last_packet_size = size % ROUTER_BUF_SIZE;
while (num_of_packets>0) {
if (num_of_packets==1)
if (last_packet_size > 0) {
chan_out_message(last_packet_size bp.out_ports(OUT_PORT_NUM]);}
else (/* Nothing to send */ }

143

else {
chan_out_message(ROUTER_BUF_SIZE bp.out_ports{OUT_PORT_NUM]):
bp += ROUTER_BUF_SIZE;
}
num_of_packets--;
1
'

void router2::beast(int size, char* buf)
{
int message = 0;
ROUTE_PACK_CMD(message, BCAST_REQ);
ROUTE_PACK_BCS(message size);
chan_out+~rd(message,out_ports(OUT_PORT_NUM]);
chan_out sage(size,buf out_ports{OUT_PORT_NUMI);
}

int router2:listen(void)
{
int message;
chan_in_word(&message, in_ports{IN_PORT_NUMJ);
return message;
)

#include “router3.h™

router3::router3(CHAN *in_ports1[Jint ins1, CHAN *out_ports1(l,int outs1)
{

in_ports= in_ports1;

ins = ins1;

out_ports = out_ports1;

outs = outsl;

)

int router3:zemd_type(inté: size)
{
chan_in_word(&message.in_ports[0]);
int cmd = ROUTE_UNPACK_CMD(message);
if (cmd == SEND)
chan_in_word(&:size.in_ports(0]);
else
size = ROUTE_UNPACK_BCS(message);
retumn(cmd);
}

void router3:ireceive(int size, char* buf)
{
char* bp = buf;

int num_of_packets = size / ROUTER_BUF_SIZE + I;
int last_packet_size = size % ROUTER_BUF_SIZE;

while (num_of_packets>0) {
if (num_of_packets=1)
if (last_packet_size > 0) {
chan_in_message(last_packet_size.bp,in_ports[O]);}
else (/* Nothing to send */ }

145

else |
chan_in_message(ROUTER_BUF_SIZE bp,in_poris{0]);
bp += ROUTER_BUF_SIZE;
}
num_of_packets--;
}

}
void router3::answer(int value)
{
chan_out_word(value out_ports[0});
}

void router3::terminate(void) { }

_los.cpp
: Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993

+ Thi LO! ions between

Retums 0if LOS exists, returns 1 otherwise.

#include <math.h>

#include “s_losh”
#include “maph”

int s_los
{

int steps.i;

vector del = goal-start;

|_xi, del_yi;

(int) (fabs(del.get_x())/ map1.get_grid_size());
del_yi = (int) (fabs(del.get_y())/ mapl.get_grid_size():
steps = (del_xi > del_yi) ? del_xi : del_yi;

_s_los(vector start, vector goal, map& mapl)

/* Steps + 1 is necessary , because without adding 1, the last goal point is not tested. */
vector delia_step = (1.0/steps)*del;
vector check_loc = start;

for (=0ii<stepsii+H){
if (map].higher_than(check_loc))
retum 1;
check_loc = check_loc + delta_step;
1
rewmn 0;

}

147

: tr_comm.cpp

Dr. Se-Hung KWAK & Cem Ali DUNDAR

: September 1993

‘This source code handles the communication between transputers.

#include “r_comm.h™
#include <chan.h>
#include <iostream.h>
#include “los_com.h™

const int IN_PORT_NUM=4;
const int OUT_PORT_NUM=4;

tr_comm::tr_comm(CHAN *in_ports1[], int ins1, CHAN *out_ports1[], int outs1)
{
Touter2a = router2(in_portsl, ins1, out_ports1, outs1);

out_ports = out_ports1;
outs = outs1;

)

int tr_comm::cmd_type()

{
int cmd;
chan_in_word(&cmd,in_ports[IN_PORT_NUM]);
retum(cmd);

)

void tr_comm::router_init(void)

{
int num_trs;
int *trs, *unders, *prs;
chan_in_word(&num_trs,in_ports{IN_PORT_NUM]);
s = new int{num_urs];
unders = new int[num_trs};

prs = new intlnum_urs];

int size=num_trs*sizeof{(int);

148

chan_in_message(size,(char*)trs,in_ports[IN_PORT_NUM]);
message(size,(char*)unders,in_ports{IN_PORT_NUM]);
message(size,(char*)prs.in_ports[IN_PORT_NUM]);

for (int i=0; i<num_trs; i++)
router2a.router_init(trsfil.undersil, prslil);

/* Terminates initialization. */
router2a.router_init_done();

void tr_comm::send(void)

(

int dst;
chan_in_word(&dst,in_ports[IN_PORT_NUM]):

word(&nts,in_ports[IN_PORT_NUM]);

int size;
char* buf;
chan_in_word(&size.in_ports[IN_PORT_NUM]);

buf = new char{size];
chan_in_message(size,buf.in_ports[IN_PORT_NUM]);

router2a.send(dst, nts, size, buf);
}

void tr_comm::beast(void)

{
int size;
chan_in_word(&size in_ports[IN_PORT_NUMI);
char* buf;

‘buf = new char[size];
chan_in_message(size,buf.in_ports[IN_PORT_NUM]);

CMD_INFO *cmd_infop;

cmd_infop = (CMD_INFO*)buf;

149

‘router2a beast(size, buf);
)

void tr_comm::listen(void)
{

int value = router2a listen();

chan_out_word(value out_poris{OUT_PORT_NUM]);
)

void tr_comm::terminate(void)
(

router2a.terminate();
)

150

r_commt.cpp

: Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

+ This source code handles the communication between SUN and transputers.

#include “tr_comm.h™
#include <iostream.h>

'void main(int argc, char *argv{], char *envp(],
CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)
(
int exit_flag=0;
tr_comm tr_comm 1(in_ports,ins,out_ports,outs);
while (‘exit_flag)
switch (_comm1.cmd_typeQ) {
case ROUTER _INIT.
tr_comm1.router_ini
break;
case SEND_S:
tr_comm1.send();
break;
case BCAST_S:
tr_comm Lbcast();
break;
case LISTEN_S:
tr_comm 1 listen();
break;
case TERMINATE_S:
tr_comm 1.terminate();
exit_flag
break;
default: /* Error */
‘break;
i

151

'Vector.cpp
Dr. Se-Hung KWAK & Cem Ali DUNDAR
September 1993

defines the vector operati

#include “vector.h™
#include <math.h>

vector::vector() (x=0.0; y=0.0; z=0.0;};
vector::vector(double x1, double y1, double z1) {x=x1; y=yl; z=z1;);

int operator==(vector v1, vector v2)
{

retum((v1 x==v2.x) && (v1.y==v2.y) && (vl.z==v2.2));
)

vector operator+(vector v1, vector v2)

{
vector v(v1x+v2.x, vLy+V2y, vIz+v2.2);
retum v;

)

Vector operator-(vector v1, vector v2)

{
vector v(v1.x-v2.x, vLy-v2.y, vl 2-v2.2);
Tetum v;

)

vector operator*(double a, vector v1)
{
vector v(a*vL.x, a*vLy, a*vL.2);
retumn v;

)

double vector::dotprod(vector v2) /* Dot product */
\

retun(this->Xx*v2.x + this->y*v2.y + this->z*v2.2);
)

152

double vector::magnitude(void)

{
return(sqrt((*this).dotprod(*this)));
1

vector i i * Vector

{
vector result;
double mag = (*this). magnitude();

if (mag < 1E-100) {
0;

resultz =0.0;}
else {

result = (1.0/mag) * (*this);
i
return(result);

153

worker.cpp

: Dr. Se-Hung KWAK & Cem Ali DUNDAR

September 1993

This source code handles the communication between routers and workers,
passes all information to workers and gets the result which they found.

#include “router3.h”
#include “los_com.h”
#include “s_los.h”
#include “map_crx.h”

int num_cnt(int num, int* buf, int buf_size)
{
intent =0;
for (int i=0; i<buf_size; i++)
if (buf[;
return cnt;

NUM) CAt++;

void main(int arge. char *argv(], char *envpll,
CHAN *in_ports[], int ins, CHAN *out_ports], int outs)

{
/* three cases: get_map
get_req & retum answer
terminate
*/

int exit_flag = 0;
intsize = 0;
int* buf;

vector test_s, test_g;

int c_result;

map ¢_map;

router3 router3a(in_ports,ins,out_ports,outs);
map_crx map_crxer;

s_los losl;

while (lexit_flag)
switch (router3a.cmd_type(size)) {

case SEND:
router3a receive(size, (char*)&map_info);
router3a.cmd_type(size):
buf_size = size / 4;
‘buf = new int[buf_size];
router3areceive(size,(char*)buf);
c_map = map(map_info.start_x, map_info.start_y,
‘map_info.size_x, map_info.size_y,
‘map_info.grid_size, buf);
break;

case BCAST:
router3a receive(size,(char*)&cmd_info);
‘map_crer.set_value(c_map);
if (map_crxer.map_crossing(cmd_info.start, cmd_info.goal, test_s, test_g)) {
c_result = los1.do_s_los(test_s, test_g, c_map);
}

else
c_result =0;
router3a.answer(c_result);
‘break;
case TERMINATE:
router3a.terminate();
exit_flag=1;
break;
default: /* Error */
break;

)

155

Does the necessary links for workers.

worker.bin
router3.bin
map.bin
‘map_crx.bin
s_los.bin
‘plane.bin
line.bin
‘vector.bin

!
!
'
!

This configuration file are for 15 transputers, one Sun SPARC Station and one

PC Host.! ‘There are one router and 12 worker tasks for each transputers.

processor host

PrOCESSor sun type=pc

[processor root

processor pl

processor p2

processor pl1

processor p21

processor pl11

processor p211

processor p1111

processor p2111

processor pl1111

processor p21111

processor pl11111

processor p211111

processor p1111111

processor p2111111

wire ? root[0] host[0]
wire ? root(1] plll
wire? root(2] P22
wire? root[3] sun0]
wire ? pIL2] P11
wire? 211 p21021
wire? pl1[2] L1
wire ? p21(1) p21112]
wire? pL112] pHIIT)
wire? p211[1] p2111(2]
wire ? pl111[2] LD
wire ? p2111(1] p21111[2]
wire ? pH11IR] Pl
wire ? p21111(1) p211111[2]
wire ? pUIIIIER] plIIIINI[Y)
wire ? p21111I{1] p2111111[2)

! Task connected to filter cannot use 0 channel of task therefore, master has to have S ins & outs
! Also a channel to filter has to be lowest number.

task afserver ins=1 outs=1
task filter ins=2 outs=2 data=15k
‘task master ins=5 outs=5 data=15k file="tr_commt.b4"

157

task routerQ

task router]

task router2

task router1 1
task router21

task router111
task router211
task router1111
task router2111
task router11111
task router21111
task router 111111
task router211111
task router1 111111
task router2111111

task worker00
task workerO1
task worker02
task worker03
task worker(4
task worker0S
task worker06
task worker07
task worker08
task worker09
task worker0100
task worker0101

task worker10
task worker11
task worker12
task worker13
task worker14
task worker15
task worker16
task worker17
task worker18
task worker19
task worker1100
task worker1101

task worker20

ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="routerb4" urgent
ins=20 outs=20 data=2k file="router,b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router,b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent
ins=20 outs=20 data=2k file="router.b4" urgent

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

158

task worker28
task worker29
task worker2100
task worker2101
task worker110
task worker111
task worker112
task worker113
task worker114
task worker115
task workerl16
task worker117
task worker118
task worker119
task worker11100
task worker11101

task worker1110
task worker1111
task worker1112
task worker1113
task worker1114
task worker1115
task worker1116
task worker1117
task worker1118
task worker1119
task worker111100
task worker111101

task worker11110
task worker11111
task worker11112
task worker11113
task worker11114
task worker11115
task worker11116
task worker11117
task worker11118
task worker11119
task worker1111100
task worker1111101

task worker111110
task worker111111
task worker111112
task worker111113
task worker111114
task worker111115
task worker111116
task worker111117

ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
1 outs=1 data=275k file="worker.b4”
1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
1 outs=1 data=275k file="worker.b4"
=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.bd"™
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

159

task worker111118
task worker111119
task worker11111100
task worker11111101

task worker1111110
task worker1111111
task worker1111112
task worker1111113
task worker1111114
task worker1111115
task worker1111116
task worker1111117
task worker1111118
task worker1111119
task worker111111100
task worker111111101

task worker11111110
task worker11111111
task worker11111112
task worker11111113
task worker11111114
task worker11111115
task worker11111116
task worker11111117
task worker11111118
task worker11111119
task worker 1111111100
task worker 1111111101

task worker210

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

160

task worker2114
task worker2115
task worker2116
task worker2117
task worker2118
task worker2119
task worker211100
task worker211101

task worker21110
task worker21111
task worker21112
task worker21113
task worker21114
task worker21115
task worker21116
task worker21117
task worker21118
task worker21119
task worker2111100
task worker2111101

task worker211110
task worker211111
task worker211112
task worker211113

task worker211116
task worker211117
task worker211118
task worker211119
task worker21111100
task worker21111101

task worker2111110
task worker2111111
task worker2111112
task worker2111113
task worker2111114
task worker2111115
task worker2111116
task worker2111117
task worker2111118
task worker2111119
task worker211111100
task worker211111101

task worker21111110
task worker21111111
task worker21111112

ins=1 outs=1 data=275k file="worker,bd™
ins=1 outs=1 data=275k file="worker.b4"™
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.bd™
ins=1 outs=1 data=275k file="worker.b4"™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="workezr.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4™

ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4™
ins=1 outs=1 data=275k file="worker.bd™
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.bd"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"

ins=1 outs=1 data=275k file="worker.b4"
ins=1 outs=1 data=275k file="worker.b4"

161

task worker21111113 ins=1 outs=1 data=275k file="worker.bd"

task worker21111114 ins=1 outs=1 data=275k file="worker.bd"
task worker21111115 ins=1 outs=1 data=275k file="worker.bd4"
task worker21111116 ins=1 outs=1 data=275k file="worker.b4"
task worker21111117 ins=1 outs=1 data=275k file="worker.bd™
task worker21111118 ins=1 outs=1 data=275k file="worker.b4"
task worker21111119 ins=1 outs=1 data=275k file="worker.b4"
task worker2111111100 ins=1 outs=1 data=275k file="worker.b4"
task worker2111111101 ins=1 outs=1 data=275k file="worker.b4"

{Port numbers 0 ... 3 for routers.
!Port numbers 4 ... for tasks(workers).

place afserver host
place filter root
place master oot
place router) root
place worker00 root
place worker01 oot
place worker02 root
place worker03 root
place worker04 root
place worker0S root
place worker06 root
place worker07 oot
place worker08 root
worker(09 root
place worker0100 root
place worker0101 root
place routerl p1
place worker10 p1
place worker1 1 pl
place worker12 p1
place worker13 pl
place worker14 pl
place worker15 Pl
place worker16 pl
place worker17 p1
place worker18 pl
place worker19 pt
place worker1 100 pl
place worker1101 pl
place router11 pil
place worker110 pl1
place worker111 pil
place worker112 pi1

162

place worker113
place workerl 14
place worker115
place worker116
place worker117
place worker118
place worker119
place worker11100
place worker11101

place router111
place worker1110
place worker1111
place workerl 112
place worker1113
place worker1114
place worker1115
place worker1116
place worker1117
place worker]118
place worker]119
place worker1 11100
place worker1 11101

place router] 111
place worker11110
place worker1 1111
place worker11112
place worker11113
place worker11114
place worker11115
place worker11116
place worker11117
place worker1 1118
place worker11119
place worker1111100
place worker1111101

place router]1111

place worker1 11110
place workerl 11111
place worker111112
place worker111113
place worker111114
place worker1 11115
place worker111116
place worker111117
place worker111118
place worker111119

pl1
pl1
plt
pil
pIL
pll
pll
pil
pi1

plil
plit
plil
plil
plil
plil
pi11
pii1
pli1
plil
plil
plll
plil

plill
plinl
plill
pl1L
plill
plill
plill
pli1l
piiIL
pllil
plill
plill
plill

pl111L
il
plil1L
plilll
plilll
plilil
pltIn
plll1l
plilIL
Il
pli1l

163

place worker11111100
place worker11111101

place router111111
place worker1111110
place worker1111111
place worker1111112
place worker1111113
place worker 111114
place worker1111115
place worker 111116
place worker1111117
place worker1111118
place worker1111119
place worker111111100
place worker111111101

place router1 111111
place worker11111110
place workerl 1111111
place worker11111112
place worker! 1111113
place worker] 1111114
place worker 11111115
place worker] 1111116
place worker1 1111117
place worker1 1111118
place worker11111119
place worker 111111100
place worker1 111111101

place router2
place worker20
place worker21
place worker22
place worker23
place worker24
place worker25

place worker2101

place router21

place worker210
place worker211
place worker212
place worker213

pliiin
plillL

piiiLlL
piiitnl
pl111I
plILIIL
plllLlL
pHIIIIL
plit1IL
piiIINL
pliILIL
piIIIIL
pliIIIL
plLIIL
pli1111

piIIIIIL
pLILIIL
pl1111I1
pliIII
pliIIIIL
pliIINIL
plIIINIL
plIIIIL
plIIIIIL
pliIIIIL
plIIIIIL
pliIIIIL
plIIIIIL

place worker214
place worker215
place worker216
place worker217
place worker218
place worker219
place worker21100
place worker21 101

place router211

place worker2113
place worker2114
place worker2115
place worker2116
place worker2117
place worker2118
place worker2119
place worker211100
place worker211101

place router2111
place worker21110
place worker21111
place worker21112
place worker21113
place worker21 114
place worker21115
place worker21116
place worker21117
place worker21118
place worker21119
place worker2111100
place worker2111101

place router21111
place worker211110
place worker21 1111
place worker211112
place worker211113
place worker211114
place worker211115
place worker211116
place worker21 1117
place worker211118
place worker211119
place worker21111100
place worker21111101

21t
p21l
p211
p2t1
patl
pail
p2tl
p211
p211
p211
p211
p211
211

p2111
p2111
p2111
p21il
P11l
p21ll
p2111
paill
p211l
p2111
p21tl
p2111
p2111

pR1111
p21111
p21111
p21111
p21111
p2uiil
p21111
p21111
p21111
pau1iL
p21ll1
p21111
p211tl

165

place router211111
place worker2111110
place worker2111111
place worker2111112
place worker2111113
place worker2111114
place worker2111115
place worker2111116
place worker2111117
place worker2111118
place worker21 11119
place worker211111100
place worker211111101

place router2111111
place worker21111110
place worker21111111
place worker21111112
place worker21111113
place worker21 111114
place worker21111115
place worker21111116
place worker21111117
place worker21 111118
place worker21111119
place worker2111111100
place worker2111111101

connect ? afserver[0]
connect ? filter[0]

connect ? filter(1]
connect ? master{1]

connect ? master{2]
connect ? router0{0]
connect ? routerQ[1]
connect ? router1{0]
connect ? router0[2]
connect ? router2[0]
connect ? router0(4]
connect ? worker00[0]

connect ? router0[5)
connect ? worker01{0]

p211111
p211111
p211111
p211111
p211111
p211111
p211111
p211111
p11111
p211111
p211111
p211111
p211111

p2111111
p2111111
p2111111
p2111111
p2iI
p2111111
p2111111
p2111111
p2111111
p2111111
p2111111
p2111111
p2111111

filter[0]
afserver(0]

master{1]
filter{1}

router0[0]
master({2]
router1{0]
router0[1]

router2[0]
router0[2]

‘worker00{0]
router0[4]

worker01[0]
router0[S}

connect ? router0(6]
connect ? worker02[0]

connect ? router0{7)
connect ? worker03(0]

connect ? router0(8]
connect ? worker(4[0]

connect ? router0[9]
connect ? worker05[0]

connect ? router0[10]
connect ? worker06[0]

connect ? router0[11]
connect ? worker07(0]

connect ? router0{12]
connect ? worker08[0]

connect ? router0{13]
connect ? worker09[0]

connect ? router0[14]
connect ? worker0100{0)

connect ? router0[15]
connect ? worker0101(0]
connect ? routeri[1]
connect ? router] 1[0]

connect ? router1 (4]
connect ? worker10[0]

connect ? router1[5]
connect ? worker11[0]

connect ? router1[6]
connect ? worker12[0]

connect ? router1(7]
connect ? worker13[0]

connect ? router1[8]
connect ? worker 14[0]

worker02(0]
router0[6]

worker03(0]
router0(7]

worker04(0]
router0[8]
worker05[0)
router0[9]

worker06(0]
router0(10]

worker07(0)
routerO[11]

worker08[0]
router0{12]

worker09(0]
router0{13]

worker0100{0]
router0[14]

worker0101[0]
router0[15]
router] 1[0)
routerl[1]

worker10[0]
router1[4]

worker11[0]
router1[5]

worker12[0]
router1[6]

worker13[0]
router1(7)

worker14[0]
routerl (8]

167

connect ? router1 (9]
connect ? worker15[0)

connect ? router1 [10]
connect ? worker16[0]

connect ? router1[11]
connect ? worker17[0]

connect ? router1[12]
connect ? worker18[0]

connect ? router1{13]
connect ? worker19(0]

connect ? router1[14]
connect ? worker1100[0]

connect ? router1[15]
connect ? worker1101[0]
connect ? router11{1]
connect ? router111{0)

connect ? router114]
connect ? worker110{0]

connect ? routerl 1[5}
connect ? worker111[0]

connect ? router11[6]
connect ? worker112[0]

connect ? router11[7]
connect ? worker113{0]

connect ? router]1[8]
connect ? worker114[0]

connect ? router] 1[9]
connect ? worker115[0]

connect ? router] 1{10]
connect ? worker116[0]

connect ? router1 1{11]
connect ? worker117[0]

worker15[0]
router1[9]

worker16(0]
router![10]

‘worker17(0]
routerl[11]

worker18[0]
router1[12]

worker19[0]
router]{13]

worker1100{0]
router1[14]

worker1101[0]
router1[15]
router111[0]
router11[1]

worker110[0]
router11[4]

worker111[0]
router11[5]

worker112{0]
router11(6)

worker113[0]
router11[7]

worker114{0]
router11{8]

worker115[0]
router11[9]

worker116[0]
router11{10]

‘worker117[0]
router11{11]

connect ? router] 1[12]
coanect ? worker118[0]

coanect ? router11[13]
connect ? worker119[0)

connect ? router] 1{14]
connect ? worker11100[0)

connect ? router11[15]
connect ? worker11101[0)
connect ? router1 11[1]
connect ? router] 111[0)

connect ? routerl 11(4]
connect ? worker1110[0]

connect ? router111(5)
connect ? worker1111[0]

connect ? router1 11[6]
connect ? worker1112[0]

connect ? router111(7)
connect ? worker1113(0)

connect ? router] 11(8]
connect ? worker1114[0]

connect ? router1 11(9]
connect ? worker1115[0]

connect ? router111[10)
connect ? worker1116[0]

connect ? router111[11]
connect ? worker1117[0]

connect ? router1 11[12)
connect ? worker1118(0)

connect ? router111[13]
connect ? worker1119(0}

connect ? router1 11[14}
connect ? worker111100{0]

connect ? routerl 11{15]
connect ? worker111101(0]

worker118[0]
router] 1[12]

worker119[0]
router11(13)

‘worker11100(0]
router] 1[14]

‘worker11101({0]
router] 1{15)
router1 111[0]
routerl 11{1]

worker1110{0]
router111[4]

worker1111[0]
router1 11[5)

worker1112[0]
router111(6]

worker1113[0)
router111(7)

worker1114[0]
routerl 11[8]

workerl115[0)
router] 11[9)

worker1116(0]
router111(10]

worker1 1170}
router] 11{11)

worker1118(0]
router] 11(12)

worker1119(0]
router111{13]

worker111100{0}
router] 11[14]

worker111101(0]
router 11[15])

169

connect ? router1 111[1)
connect ? router11111(0)

connect ? router1111[4]
connect ? worker11110[0]

connect ? router] 111[S]
connect ? worker11111[0]

connect ? router1111[6)
connect ? worker11112(0]

connect ? router] 111{7]
connect ? worker11113[0)

connect ? router1111[8)
connect ? worker11114[0]

connect ? routerl 111{9)
connect ? worker11115[0)

connect ? router1111[10]
connect ? worker11116{0]

connect ? router1 111[11]
connect ? worker11117(0)

connect ? router1 111[12)
connect ? worker11118[0]

connect ? router1 111{13]
connect ? worker11119[0)

connect ? router1 111[14]
connect ? worker1111100{0)

connect ? router1 111{15)
connect ? worker1111101[0]

connect ? router11111[1)
connect ? router111111[0]

connect ? router1 1111[4]
connect ? worker111110[0)

connect ? router1 1111[5]
connect ? worker111111[0)

router11111{0]
router1111{1]

worker11110[0]
router1111[4]

worker11111[0)
router1 111[5]

worker11112[0]
router1 111[6]

worker11113{0]
routerl 111[7)

worker11114[0]
router1 111(8]

worker11115[0)
router1111{9)

worker11116(0]
router1 111[10]

worker11117[0)
router! 111[11]

worker11118[0]
router1111{12)

worker11119[0)
router1111[13]

worker1111100[0]
router1 111{14]

worker1111101[0]
router1111{15]

router111111[0)
router11111[1]

worker111110[0]
router11111(4]

worker111111[0]
router1 1111[5]

170

connect ? router] 1111[6]
connect ? worker111112[0]

connect ? router1 1111[7]
connect ? worker111113(0]

connect ? router1 1111(8]
connect ? worker111114[0]

connect ? router11111[9]
connect ? worker111115[0]

connect ? router11111(10)
connect ? worker111116[0}

connect ? router1 1111[11]
connect ? worker111117{0]

connect ? routerl 1111[12]
connect ? worker111118[0]

connect ? router] 1111[13]
connect ? worker111119(0)

connect ? router11111[14]
connect ? worker11111100[0]

connect ? router] 1111{15]
connect ? worker11111101(0}
connect ? routerl 11111(1]
connect ? router]111111(0]

connect ? router111111[4]
connect ? worker1111110[0]

connect ? routerl 11111([5)
connect ? worker1111111[0]
connect ? router1 11111(6]
connect ? worker1111112(0]

connect ? router111111{7)
connect ? worker1111113(0]

connect ? router1 11111[8]
connect ? worker1111114[0]

workerl11112[0]
router11111[6]

worker111113(0]
router] 1111(7)

worker111114[0]
routerl 1111[8]

worker]11115[0]
routerl 1111{9]

worker111116{0]
router] 1111[10]

worker111117(0)
router1 1111[11]

worker111118[0]
router1 1111{12]

worker111119(0)
routerl 1111[13]

worker] 1111100{0]
router] 1111{14]

worker11111101(0]
router1 1111{15]
router1111111{0)
router] 11111[1]

worker1111110{0]
router] 11111(4]

worker1111111[0]
router] 11111(5)
worker]111112(0]
routerl 11111(6]

worker1111113[0]
routerl 11111[7]

worker1111114[0]
router111111{8]

m

connect ? router111111[9)
connect ? worker1111115[0]

connect ? router111111{10)
connect ? worker1111116[0]

connect ? routerl 11111{11)
connect ? worker] 111117(0]

connect ? router111111[12]
connect ? worker1111118[0)

connect ? routerl 11111[13)
connect ? worker1111119(0]

connect ? routerl11111[14)
connect ? worker111111100[0]

connect ? router1 11111[15)
connect ? worker111111101[0]
connect ? router1111111[4]
connect ? worker11111110[0]

connect ? router1111111(5])
connect ? worker11111111[0)

connect ? router1 111111(6]
connect ? worker11111112[0)

connect ? router1111111(7]
connect ? worker11111113[0]

connect ? router1 111111(8)
connect ? worker11111114[0])

connect ? router1 111111[9]
connect ? worker11111115[0])

connect ? router1 111111[10}
connect ? worker11111116[0]

connect ? router1 111111[11}
connect ? worker] 1111117[0]

connect ? router1111111[12]
connect ? worker11111118[0]

connect ? router1111111[13]
connect ? worker11111119[0]

worker1111115(0]
router1 11111[9]

worker1111116[0]
router1 11111{10]

worker1111117(0)
router] 11111[11]

worker1111118[0]
router1 11111{12]

worker1111119[0)
router111111[13]

worker111111100(0)
routerl 11111[14]

worker111111101[0]
router111111[15]
worker11111110[0)
router1111111[4)

workerl 1111111{0)
router] 111111(5)

worker11111112{0)
router1 111111{6]

worker11111113[0)
router1111111(7]

worker11111114{0]
router1111111(8]

worker11111115(0]
router1111111(9)

worker11111116[0]
router1111111[10]

worker11111117(0)
router1 111111[11)

worker11111118[0]
router1 111111[12]

worker!1111119[0]
router1 111111(13]

172

connect ? router1111111(14]
connect ? worker1111111100[0)

connect ? routerl 111111[15]
connect ? worker1111111101[0]

connect ? router2(1]
connect ? router21{0]
connect ? router2(4]
connect ? worker20{0]

connect ? router2(5]
connect ? worker21(0]

connect ? router2(6]
connect ? worker22[0]

connect ? router2(7)
connect ? worker23[0]

connect ? router2(8]
connect ? worker24[0]

connect ? router2(9]
connect ? worker25[0]

connect ? router2[10]
connect ? worker26[0]

connect ? router2[11]
connect ? worker27[0]

connect ? router2[12]
connect ? worker28(0]

connect ? router2[13)
connect ? worker29[0]

connect ? router2{14]
connect ? worker21000]

connect ? router2(15]
connect ? worker2101[0]

connect ? router21[1]
connect ? router2110]

worker1111111100(0)
router [111111[14]

worker1111111101(0)
router1 111111[15]

router21[0}
router2(1]
worker20{0)
router2[4)

worker21[0]
router2(5)

worker22(0]
router2(6]

worker23(0]
router2(7]

worker24(0]
router2(8]

worker25(0]
router2[9]

worker26[0]
router2(10]

worker27(0]
outer2[11]

worker28{0]
router2(12]

‘worker29[0]
router2[13]

worker2100[0]
router2(14]

‘worker2101[0}
router2[15]

router211(0]
router21[1]

1m

connect ? router21(4]
connect ? worker210{0]

connect ? router21(5)
connect ? worker211[0]

connect ? router21(6]
connect ? worker212(0]

connect ? router21(7]
connect ? worker213(0]

connect ? router21(8]
connect ? worker214[0]

connect ? router21(9)
connect ? worker215[0]

connect ? router21(10]
connect ? worker216{0]

connect ? router21(11]
connect ? worker217(0]

connect ? router21[12]
connect ? worker218(0]

connect ? router21(13]
connect ? worker219[0]

connect ? router21[14)
connect ? worker21100(0]

connect ? router21[15]
connect ? worker21101(0]
connect ? router211(1]
connect ? router2111[0]

connect ? router211(4]
connect ? worker2110{0]

connect ? router211(5]
connect ? worker2111[0)

connect ? router211(6]
connect ? worker2112(0]

connect ? router211(7]
connect ? worker2113[0]

worker210[0]
router21[4]

worker211[0)
router21(5]

worker212(0]
router21[6]

worker213[0]
router21(7]

worker214[0]
router21(8]

worker215(0]
router21[9]

worker216{0]
router21{10]

worker217(0]
router21[11]

worker218[0]
router21[12]

worker219(0]
router21(13]

worker21100[0]
router21(14]

worker21101(0)
router21(15]
router2111(0]
router211[1]

worker2110[0)
router211(4]

worker2111[0)
router211[5)

worker2112{0]
router211(6]

worker2113[0]
router211(7]

174

connect ? router211(8]
connect ? worker2114[0]

connect ? router211[9]
connect ? worker2115[0]

connect ? router211[10]
connect ? worker2116[0]

connect ? router211[11]
connect ? worker2117[0]

connect ? router211[12]
connect ? worker2118[0]

connect ? router211[13]
connect ? worker2119[0]

connect ? router211[14]
connect ? worker211100[0]

connect ? router211{15]
connect ? worker211101(0]
connect ? router2111{1]
connect ? router21111[0]

connect ? router2111[4]
connect ? worker21110{0]

connect ? router2111{5]
connect ? worker21111[0}

connect ? router2111(6]
connect ? worker21112(0]

connect ? router2111{7]
connect ? worker21113[0]

connect ? router2111(8]
connect ? worker21114{0]

connect ? router2111[9]
connect ? worker21115[0]

connect ? router2111[10}
connect ? worker21116[0]

worker2114[0]
router211(8]

worker2115[0]
router211(9]

worker2116[0]
router211(10]

worker2117(0]
router211[11]

worker2118[0]
router211{12]

worker2119(0]
router211[13]

worker211100[0]
router211{14]

worker211101{0]
router211(15]
router21111{0}
router2111(1]

worker21110[0]
router2111(4]

worker21111[0]
router2111[5}

worker21112[0]
router2111[6]

worker21113[0]
router2111{7}

worker21114[0]
router2111(8]

worker21115[0]
router2111(9]

worker21116[0]
router2111[10]

175

connect ? router2111[11]
connect ? worker21117[0]

connect ? router2111{12]
connect ? worker21118[0)
connect ? router2111{13}
connect ? worker21119{0]

connect ? router2111(14]
connect ? worker2111100[0]

connect ? router2111{15]
connect ? worker2111101{0]
connect ? router21111[1]
connect ? router211111[0]

connect ? router21111{4]
connect ? worker211110{0}

connect ? router21111[5]
connect ? worker211111{0}

connect ? router21111(6]
connect ? worker211112(0]

connect ? router21111[7}
connect ? worker211113[0]

connect ? router21111{8]
connect ? worker211114[0]

connect ? router21111(9]
connect ? worker211115[0}

connect ? router21111{10]
connect ? worker211116(0)

connect ? router21111[11]
connect ? worker211117[0]

conniect ? router21111(12]
connect ? worker211118[0}

connect ? router21111{13]
connect ? worker211119[0)

connect ? router21111{14]
connect ? worker21111100[0)

worker21117(0]
router2111(11]

worker21118[0]
router2111{12)
worker21 119[0]
router2111{13]

‘worker2111100{0]
router2111(14]

‘worker2111101[0]
router2111[15}
router211111(0]
router21111{1}

worker211110{0)
router21111[4)

worker211111{0]
router21111(5]

worker211112[0]
router21111[6]

worker211113(0]
router21111(7}

worker211114{0)
router21111[8)

worker211115[0]
router21111{9)

worker211116[0]
router21111[10]

worker211117{0]
router21111[11]

worker211118{0)
router21111[12]

worker211119[0)
router21111{13]

worker21111100[0]
router21111[14]

176

connect ? router21111(15)
connect ? worker21111101{0]

connect ? router211111[1]
connect ? router2111111(0]

connect ? router211111(4]
connect ? worker2111110[0]

connect ? router211111(5]
connect ? worker2111111[0]

connect ? router211111{6]
connect ? worker2111112(0]

connect ? router211111(7]
connect ? worker2111113[0)

connect ? router211111(8]
connect ? worker2111114[0]

connect ? router211111[9]
connect ? worker2111115[0]

connect ? router211111[10]
connect ? worker2111116[0]

connect ? router211111[11]
connect ? worker2111117[0]

connect ? router211111[12]
connect ? worker2111118[0]

connect ? router21 1111[13)
connect ? worker2111119[0]

connect ? router211111(14]
connect ? worker211111100(0]

connect ? router21 1111[15]
connect ? worker211111101[0]
connect ? router2111111{4]
connect ? worker21111110(0]

connect ? router2111111[5]
connect ? worker21111111[0]

worker21111101(0]
router21111[15]

router2111111[0]
router211111{1]

worker2111110(0]
router211111[4)

worker2111111{0]
router211111(5]

worker2111112[0]
router211111(6)

worker2111113(0]
Touter211111(7)

worker2111114[0)
router211111(8)

worker2111115[0]
router21 1111[9)

worker2111116{0]
router211111[10]

worker2111117[0]
router211111{11}

worker2111118[0]
router211111[12]

worker2111119[0]
router21 1111[13]

worker211111100{0]
router211111[14]

worker211111101[0}
router211111(15]
worker21111110{0)
router2111111[4]

worker21111111[0]
router2111111[5]

1m

connect ? router2111111{6] ‘worker21111112[0]
connect ? worker21111112[0] router2111111[6]

connect ? router2111111[7] worker21111113[0]
connect ? worker21111113[0] router2111111[7]

connect ? router2111111(8] worker21111114[0]
connect ? worker21111114[0] router2111111(8]

connect ? router21111119] worker21111115[0]
connect ? worker21 111115[0] router2111111[9]

connect ? router2111111{10) worker21111116[0]
connect ? worker21111116[0] router2111111[10]

connect ? router2111111[11] worker21111117[0]
connect ? worker21111117[0] router21 11111[11]

connect ? router2111111[12] worker21111118[0]
connect ? worker21111118(0] router2111111[12]

connect ? router2111111[13] worker21111119(0]
connect ? worker21111119[0] router2111111[13]

connect ? router2111111[14] worker2111111100{0]
connect ? worker2111111100[0] router2111111[14]

connect ? router21 11111[15] worker2111111101{0]
connect ? worker2111111101(0] router2111111{15]

bind input master(4] value=&8000001C !Link3
bind output master(4] value=&8000000C

178

APPENDIX C - SOURCE CODE FOR READING TERRAIN DATA

‘This appendix contains the source listings of the C code developed for reading a block
of terrain data from PEGASUS database into a specified buffer location which is stored in
SUN memory. The source code is stored in files as listed below:

1. PVG_DECH
2.PVG_DEC.IN
3.PVG_DEF.IN

4. get_terr.c

179

#ifndef PVG_INCLUDED
#define PVG_INCLUDED

l
FILENAME: PVG_DECH

PURPOSE: GLOBAL PARAMETER DECLARATION FILE FOR PVG ALGORITHMS

DESCRIPTION: The PVG_DEC.H include file includes all global variables
required for sharing data between major software components of

PVG software.

Parameters are divided into major categories using asteric lines.

All global variables shall be ALL CAPITAL letters.

USE EXAMPLE:
#include “PVG_DEC.H"

'ODE START d
#include “PVG_DEF.IN"
assresssursursns COLOR PARAMETERS DECLARATIONS**#4++ssssssssssunsusss/

[e++eassnssassssssss TERRAIN DATA BASE DECLARATIONS**s#+ssssssssssssnss)

/* Sun main memory terrain storage buffers*/
u_int TERRAIN1[MAX_BLOCK1][BLOCK1_SIZE];/*one meter
terrain buffer*/

/* Terrain data bit assignments valid for all resolutions:

321
10987654321098765432109876543210
|ELE | SPARE | NOR IS| VEG IGSV |

where:

ELE = elevation from sea level (o top of vegetation in meters
SPARE = not used

NOR =4 bit surface normal

S = sun shade bit

GSV = gray shade value

*

180

int TERRAINMAP[MAX_EAST_BLOCK|[MAX_NORTH_BLOCKJ/* terrsin map
contains pointers to terrain data blocks®/

int HAVEMAP[MAX_EAST_BLOCKJ[MAX_NORTH_BLOCK]* Terrain resolution
map tells what resolution blocks are in memory*/

/* range resolution parameters */

int SRMIN[RES_RANGE_NUM];/*minimum resolution in meters */
int SRMAX[RES_RANGE_NUM]:/*maximum resolution in meters*/
int SRSTEP[RES_RANGE_NUM]./* step size in meters*/

/* HSPVG terrain data management %/
int [FOVGRID[MAX_EAST_BLOCKIMAX_NORTH_BLOCK}/* Temrain grid
to image map. Specifies the image location of
ground points.

EX: IFOVGRID[E]INJ= image i coordinate
in upper word
= image j (row) coordinate
in lower word
= -1 if terrain point s not
in the IFOV image®/

/* HSPVG terrain data communication variables®/
u_short TER_PROC_HAS[MAX_EAST_BLOCK](MAX_NORTH_BLOCK]
[RAY_PROC_MAX][RES_RANGE_NUM]J/*Map of terrain
data in the HSPVG ray trace processors.
Dimensions are:
~easting quarter kilometer block numbers
-northing quarter kilometer block numbers
~ray processor number
-resolution ranges
for each resolution range a 16 bit value is stored
with the following meaning
bit 15 BitsOto14 description
0 0no data no need
10no data but needs it
0 block#has data no need
1 block# has data and needs it
*/

181

u_short TER_PROC_SENDIRAY_PROC_MAX+1J[MAX_BLOCK64](4];
/* Terrain processor send list. Dimensions are
-HSPVG processor number were data is to come from
0= SUN processor

list entry index sized to allow a full

of every quarter kilometer

[[[0]-destination processor number

if -1 means delete this terrain data

[J01{1]-easting block number of data to be sent
[10{2)-northing block number of data to be sent
[10[3]-resolution of data to be sent*/

u_short SEND[RAY_PROC_MAX:+1];/* list entry pointer for
TER_PROC_SEND contains the number of blocks
each processor needs to send.

esunssnssunssssnessTARGET DATA BASE DECLARATIONS***sssssssssssrsssuns)
int TARGETLIST[MAX_TARGETS][10]/* target information list
[0)=target type ID

[1]=easting position of target in meters

[2]=northing position of target in meters

[3]=altitude position of target in meters

[4]= target heading in millirads clockwise from northing

[5]= target pitch in millirads positive up

[6]= target roll in millirads clockwise positive

[7)= speed in millimeters/sec

[8]= status

[91= spare configuration parameter®/

struct HAVELISTEL {

unsigned char TAR_PTR; /* pointer to target data in memory */
int RES; /* resolution index of target data */

} HAVELISTIMAX_TARGETS]; /* list of data in SUN memory */

/*SUN resident target file buffers. These buffers are sized to hold

entire target file for a binary write®/
unsigned char TARBUF1[MAX_TARI1][TAR1_SIZE];

182

/* s resolution SUN resident target buffer */

unsigned char TARBUF2[MAX_TAR2J[TAR2_SIZE];
1 2'nd resolution SUN resident target buffer */

unsigned char TARBUF3[MAX_TAR3][TAR3_SIZE};
/* 3'd resolution SUN resident target buffer */

unsigned char TARBUF4[MAX_TAR4][TAR4_SIZE];
/* th resolution SUN resident target buffer */

int TAR_SEND_LISTIMAX_TARGETS]{4]:/* list of data io be sent to the
target processor
[0}=source of data processor ID
[1)=destination of data processor ID
[2}=source data start address of data packet (UNUSED)
[3]=number of data elements to send*/
unsigned char *TAR_SEND_LIST_PTR[MAX_TARGETS];
/* replaces [2] of above */

int TAR_HAVE_LISTIMAX_TARGETS][20]/* information block buffer
used to collect and store information about what data
the target processor has.
[0}=target type ID
>0 target type ID
<0 player not needed or ot in field of view
[1]=easting position of target in meters
[2)=northing position of target in meters
[3]=altitude position of target in meters
[4]= target heading in milliradians clockwise from northing
[5)= target pitch in milliradians positive up
[6]= target roll in milliradians clockwisc positive
[7)= speed in meters/sec
[8)= status
[9]= spare configuration parameter*/
/#[10]=data transfer instruction parameter
=0 no change
=1 delete old view data
=2 delete old view data and add new data
[11]=view resolution
[12]=resolution linear array dimension
[13]=view heading milliradians
[14}=view pitch milliradians

183

[16]= image center in column pixels, i
[17)= image center in row pixels, j

[18]= image scale in pixels per millimeter
[19)= spare view parameter*/

int NUM_TAR_TRIAL; /* number of targets in trial */

[esasasansrassrsrsasCAMERA AND FLIGHT DECLARATIONS#**s#sassssssnsansns)

int FLIGHT_CHAR[10];/* Missile flight characteristics
[0)= flight speed in meters per second

[1)=tum rate in degrees per second

[2]=launch acceleration in meters/sec/sec

[3] 1o [9] = undefined*/

int FOVNOW[10]y/* instantaneous field of view vector
[0]=casting position of camera in meters
[1)=northing position of camera in meters
[2]=altitude position of camera relative to sea level
[3]=boresight direction heading clockwise from
northing axis(milliradians)

[4]=boresight direction pitch positive up from
horizontal plane(milliradians)

[5]=field of view roll about boresight vector
clockwise positive looking out(millirads)
[6]=zoom factor in milliradians

[71=curser location, x pixels in upper word

¥ pixels in lower word

[8]=auto pilot control status,
O=pre launch

1=launch under auto pilot control

2=flight under auto pilot control

3=flight no autopilot
4=flight lock on target

S=crash no signal

[9)= spare*/

int IFOV_PREDICT[PREDICT_INT_MAX](8];/* IFOV predict matrix
[Ol=easting position of missile in meters
[1]=northing position of missile in meters
[2}=altitude position of missile in meters
[3]= easting velocity direction cosine
[41= northing velocity direction cosine
[5]= vertical velocity direction cosine
[6]= speed in meters/sec

[7)=autopilot control status

O=pre launch

1=launch under auto pilot control
2=flight under auto pilot control

3=flight no autopilot

4=flight lock on target

S=crash no signal*/

int PREDICT_INT[PREDICT_INT_MAX];/* Predict interval
array in seconds. */

int WAYPOINTS{WAYPOINT_MAX][3]/* point coordinate vectors*/

int LOCK_POS_IMAGE([3]; /* target lock position and status in
image coordinates retumed to PVG from flyout model

{01 = pixel row count

[1] = pixel column count

2] = lock status <0 not locked, >0 locked*/

int LOCK_POS_UTMIA4J; /* target or terrain position and status
of locked on pixel location sent o flyout model

from PVG in UTM coordinates

[0]= easting in meters

[1] = northing in meters

[2] = altitude in meters from sea level

[31 = miss distance from closest target if zero lock

on identified target otherwise it is locked on

a termain feature*/

185

osssarsresersesasssQUTPUT IMAGE PARAMETERS DECLARATIONS#*o#*sssssssss/

int OUTPUT_IMAGE[PVG_HEIGHTI[PVG_WIDTH];/* output image buffer

bits 0107 red

bits 8 10 15 green

bits 16 t0 23 blue

bits 24 to 31 alpha*/

/* THIS WILL NOT WORK!! YOU PLOT A COLOR INDEX, NOT AN RGB VALUE. */

short RAY_SEG[RAY_PROC_MAXI[4]* ray trace calculation image
window definitions the first dimension is the

processor number, the four parameters represent

0= lower left row

1= lower left column

2= upper right row

3= upper right column®/

u_short TAR_OUT[PVG_HEIGHT][PVG_WIDTH](2];
/* Target PVG output array

[0)= gray shade

[1]=slant range®/

int TER_OUT[PVG_HEIGHT][PVG_WIDTH](2);
1* Terrain PVG ray trace output array

[0)= terrain data base element

[1)= slant range*/

u_char RLUT[RLUT_BYTES]:/* Rendering lookup table converts terrain
data base and environmental parameters to gray shade*/

u_char ATTLUT[ATTLUT_BYTES];/* Attmospheric attenuation lookup*/

esressensennsarres ADMINISTRATIVE SOFTWARE DECLARATIONS*###+ s ssaves/
) 'MEMORY NT DECLARATIONS' "/

[r+ersesrssstsasarssss TAAC BOARD PARAMETERS DECLARATIONS®##++s+enssnss/

! HSPVG PARAMETERS DECLARATIONS****++++

#ifndef PVG_INCLUDED
#define PVG_INCLUDED

FILENAME: PVG_DEC.IN
PURPOSE: GLOBAL PARAMETER DECLARATION FILE FOR PVG ALGORITHMS

DESCRIPTION: The PVG_DEC.IN include file includes all global variables
roquired for sharing data between major software components of

PVG software.

Parameters are divided into major categories using asteric lines.

Al global variables shall be ALL CAPITAL letters.

USE EXAMPLE:
#include <PVG_DEC.IN>

'ODE START
#include “PVG_DEF.IN"
ressararsesrsaiss COLOR PARAMETERS DECLARATIONS*#4+s+ssssssnssssssassn;

[w#snesnnsrssuressssTERRAIN DATA BASE DECLARATIONS***+#ssssssssasssnss)

/* Sun main memory terrain storage buffers*/
extern u_int TERRAINI[MAX_BLOCK1}{BLOCK1_SIZE};/*one meter
terrain buffer?/

/* Terrain data bit assignments valid for all resolutions:

321
10987654321098765432109876543210
IELE | SPARE | NOR ISI VEG I GSV |

where:

ELE = elevation from sea level to top of vegetation in meters
SPARE = not used

NOR = 4 bit surface normal

S = sun shade bit

GSV = gray shade value

*!

187

extern int TERRAINMAP[MAX_EAST_BLOCK][MAX_NORTH_BLOCK]/* terrain map
contains pointers to terrain data blocks*/

extern int HAVEMAP[MAX_EAST_BLOCK][MAX_NORTH_BLOCK];/* Terrain resolution
‘map tells what resolution blocks are in memory*/

/* range resolution parameters */

extem int SRMIN[RES_RANGE_NUM];/*minimum resolution in meters */
extem int SRMAX[RES_RANGE_NUMJ;/*maximum resolution in meters*/
extern int SRSTEP[RES_RANGE_NUM];/* step size in meters*/

/* HSPVG terrain data management */

extem int [FOVGRID[MAX_EAST_BLOCK](MAX_NORTH_BLOCK]:/* Terrain grid
to image map. Specifies the image location of

ground points.

EX: I[FOVGRID[E]IN}=
in upper word

= image j (row) coordinate
in lower word

-1 if terrain point is not
in the IFOV image®/

image i coordinate

/* HSPVG terrain data communication variables*/
extern u_short TER_PROC_HAS[MAX_EAST_BLOCK][MAX_NORTH_BLOCK]
[RAY_PROC_MAX][RES_RANGE_NUMI/*Map of terrain
data in the HSPVG ray trace processaors.
Dimensions are:
~easting quarter kilometer block numbers
-northing quarter kilometer block numbers
-ray processor number
~resolution ranges
for each resolution range a 16 bit value is stored
with the following meaning
bit 15 BitsOto14 description
0 0no data no need
10no data but needs it
0 block#has data no need
1 block# has data and needs it

188

*

extern u_short TER_PROC_SEND[RAY_PROC_MAX+1}[MAX_BLOCK6&4][4];
/* Terrain processor send list. Dimensions are
-HSPVG processor number were data is to come from
0= SUN processor

list entry index sized to allow a full

of every quarter kilometer

[1(1{0]-destination processor number

if -1 means delete this terrain data

[J01[1]-easting block number of data to be sent
[10112}-northing block number of data to be sent
[03]-resolution of data to be sent*/

extem u_short SEND[RAY_PROC_MAX+1];* list entry pointer for
TER_PROC_SEND contains the number of blocks
each processor needs to send.

ossssresssssssassssTARGET DATA BASE DECLARATIONS**+++ssenssssssssssnss
extem int TARGETLISTIMAX_TARGETS][10}/* target information List
[O=target type ID

[1]=easting position of target in meters

[2}=northing position of target in meters

[3]=altitude position of target in meters

[4)= target heading in millirads clockwise from northing

[5)= target pitch in millirads positive up

[6]= target roll in millirads clockwise positive

[7)= speed in millimeters/sec

[81= status

[9]= spare configuration parameter*/

extem struct HAVELISTEL {

unsigned char *TAR_PTR; /* pointer to target data in memory */
int RES; /* resolution index of target data */

) HAVELIST[MAX_TARGETS]: /* list of data in SUN memory */

/*SUN resident target file buffers. These buffers are sized to hold

entire target file for a binary write*/
extem unsigned char TARBUF1[MAX_TARII[TARI_SIZE];

189

/* 1's resolution SUN resident target buffer */

extern unsigned char TARBUF2[MAX_TAR2][TAR2_SIZE];
/* 2'nd resolution SUN resident target buffer */

extern unsigned char TARBUF3[MAX_TARS3][TAR3_SIZE];
/* 3'd resolution SUN resident target buffer */

extern unsigned char TARBUF4[MAX_TAR4][TAR4_SIZE];
/* 4'th resolution SUN resident target buffer */

extem int TAR_SEND_LIST[MAX_TARGETS}[4]:/* list of data to be sent to the
target processor

[0]=source of data processor ID

[1]=destination of data processor ID

[21=source data start address of data packet (UNUSED)

[3]=number of data elements to send*/

extern unsigned char *TAR_SEND_LIST_PTRIMAX_TARGETS];

1* replaces [2] of above */

extern int TAR_HAVE_LISTIMAX_TARGETS][20]:/* information block buffer
used to collect and store information about what data
the target processor has.

[0)=target type ID

>0 target type ID

<0 player not needed or not in field of view
[1]=easting position of target in meters

[2}=northing position of target in meters

[31=altitude position of target in meters

[4]= target heading in milliradians clockwise from northing
(5]= target pitch in milliradians positive up

[6]= target roll in milliradians clockwise positive
[71= speed in meters/sec

[Bl=status

[9)= spare configuration parameter*/

/*[10}=data transfer instruction parameter

=0 no change

=1 delete old view data

=2 delete old view data and add new data

[11]=view resolution

{12}=resolution linear array dimension

[13]=view heading milliradians

[14}=view pitch milliradians

[15)=view roll milliradians

[16)= image center in column pixels, i
[17)= image center in row pixels, j

[18}= image scale in pixels per millimeter
[19]= spare view parameter*/

extern int NUM_TAR_TRIAL; /* number of targets in trial */

osssessarersasresssCAMERA AND FLIGHT DECLARATIONS**+++++++ssasasssanees

extem int FLIGHT_CHAR[10]./* Missile flight characteristics
0= flight speed in meters per second

[1]=turn rate in degrees per second

[2)=launch acceleration in meters/sec/sec

[3] 10 {9) = undefined*/

extermn int IFOVNOW([10]y/* instantaneous field of view vector
[0}=easting position of camera in meters
[1}=northing position of camera in meters
[2)=altitude position of camera relative to sea level
[31=boresight direction heading clockwise from
northing axis(milliradians)

[4]=boresight direction pitch positive up from
horizontal plane(milliradians)

[5]=field of view roll about boresight vector
clockwise positive looking out(millirads)
[6]=z00m factor in milliradians

[T=curser location, x pixels in upper word

y pixels in lower word

[8}=auto pilot control status,

O=pre launch

1=launch under auto pilot control

2=flight under auto pilot control

3=flight no autopilot

4=(light lock on target

S=crash no signal

[9)= spare*/

191

extern int [FOV_PREDICT{PREDICT_INT_MAX][8]/* IFOV predict matrix
[0)=easting position of missile in meters
[1]=northing position of missile in meters
[2])=altitude position of missile in meters
[3]= easting velocity direction cosine
[4]= northing velocity direction cosine
[5)= vertical velocity direction cosine
[6]= speed in meters/sec

(7= autopilot control status

O=pre launch

1=launch under auto pilot control
2=flight under auto pilot control

3=flight no autopilot

4=flight lock on target

S=crash no signal*/

extem int PREDICT_INT[PREDICT_INT_MAX];/* Predict interval
array in seconds. */

extemn int WAYPOINTS[WAYPOINT_MAX][3]/* point coordinate vectors*/

ext__". int LOCK_POS_IMAGE[3]; /* target lock position and status in
im - coondinates returned to PVG from flyout model

[0 pixel row count

1] = pixel column count

[2] = lock status <0 not locked, >0 locked*/

extemn int LOCK_POS_UTMI4]; /* target or terrain position and status
of locked on pixel location sent to flyout model
from PVG in UTM coordinates
[0}= easting in meters
[1] = northing in meters
{2] = altitude in meters from sea level
{3] = miss distance from closest target if zero lock
on identified target otherwise it is locked on
aterrain feature®/

[resssassssssnassss s QUTPUT IMAGE PARAMETERS DECLARATIONS®****:

extem int OUTPUT_IMAGE[PVG_HEIGHT][PVG_WIDTH]/* output image buffer

bits 0 to 7 red

bits 8 10 15 green

bits 16 t0 23 blue

bits 24 to 31 alpha®/

/¢ THIS WILL NOT WORK!! YOU PLOT A COLOR INDEX, NOT AN RGB VALUE. */

extern short RAY_SEGIRAY_PROC_MAXI4]:/* ray trace calculation image
window definitions the first dimension is the

processor number, the four parameters represent

0= lower left row

1= lower left column

2= upper right row

3= upper right column®/

extern u_short TAR_OUT{PVG_HEIGHT)[PVG_WIDTHJ[2);
/* Target PVG output array

[0]= gray shade

[1]= slant range*/

extern int TER_OUT[PVG_HEIGHT]|[PVG_WIDTH][2];
/* Terrain PVG ray trace output array

[0]= terrain data base element

[1}= slant range*/

extern u_char RLUT[RLUT_BYTES]/* Rendering lookup table converts terrain
data base and environmental parameters to gray shade®/

extern u_char ATTLUTIATTLUT_BYTES]:/* Attmospheric attenuation lookup*/

[oessannsssasarareess ADMINISTRATIVE SOFTWARE DECLARATIONS#4++++sssssss/
b MEMORY NT DECLARATIONS**s**sssssssssssas)

[ssenranesarsansasnssTAAC BOARD PARAMETERS DECLARATIONS***44+sssssses)
rxsanrsarsarsareaness JSPVG HARDWARE PARAMETERS DECLARATIONS®*#ss#esss)

#endif

193

#ifndef PVG_DEF_INCLUDED
#define PVG_DEF_INCLUDED

FILENAME: PVG_DEF.LARGE
PURPOSE: GLOBAL PARAMETER DEFINITION FILE FOR PVG ALGORITHMS

DESCRIPTION: The PVG_DEF.IN include file includes all global constants
required for defining global constants used by PVG software

components.

Parameters are divided into major categories using asteric

lines.

All global constants shall be ALL CAPITAL letters.

'USE EXAMPLE:

#include “PVG_DEF.IN
in your directory link to /home/fogmyinclude/PVG_DEF.IN

‘ODE START /
#include <FOGM/stdef.hi> /*standard definitions */

[+#include “stdefh™/

#include <sys/types.h>

[s+snansnsssararas COLOR PARAMETERS DECLARATIONS***++sasssssssssssssnss)
o4susransnrsnrsssssTERRAIN DATA BASE DECLARATIONS****ssssssssssusanes)

/* Sun main memory terrain storage buffers*/
/* terrain data blocks all cover a 256meterx256 meter arca®/

#define MAX_BLOCK1 4 /* # one meter terrain BLOCK1_SIZE*4byte blocks*/
#define BLOCK1_SIZE 65536 /* # elements in 1 meter block */

#define MAX_BLOCK4 1024 /* # 4 meter terrain BLOCK4_SIZE*4byte blocks*/
#define BLOCK4_SIZE 4096 /* # elements in 4 meter block */

#define MAX_BLOCK16 14336 /* # 16 meter terrain BLOCK 16_SIZE*4byte blocks*/

194

#define BLOCK16_SIZE 256 /* # elements in 16 meter block */

#define MAX_BLOCK64 14336 /* # 64 meter terrain BLOCK64_SIZE*4byte blocks*/
#define BLOCK64_SIZE 16 /* # elements in 64 meter block */

#define MAX_BLOCK256 14336 /* # 256 meter terrain 4byteblocks*/

#define MAX_EAST_BLOCK 128 /* # 256 meter blocks in east direction®/
#define MAX_NORTH_BLOCK 112 /* # 256 meter blocks in north direction®/

#define MIN_EAST_UTM 43328 /* lower left hand comer of data base UTM east*/
#define MIN_NORTH_UTM 63904 /* lower left hand comner of data base UTM north*/

/* Range resolution parameters */
#define RES_RANGE_NUM 4 /* # resolution ranges */
/* Resolution codes */

#define RESOLUTION_1 0
#define RESOLUTION 4 1
#define RESOLUTION_16 2
#definc RESOLUTION_64 3

essesseessessseeess TARGET DATA BASE DECLARATIONS**++ssssuansasssasone;

/* SUN target data buffers*/

#define MAX_TARGETS 256/* Maximum number of targets in PVG*/

#define MAX_TAR_TYPE 32/*Maximum number of different targets*/
#define MAX_TAR1 8/* Maximum number of target types in 1'st
resolution level*/

#define MAX_TAR2 8/* Maximum number of target types in 2'nd
resolution level*/

#define MAX_TARS3 8/* Maximum number of target types in 3'd
resolution level*/

#define MAX_TAR4 8/* Maximum number of target types in 4'th
resolution level*/

#define TAR]_SIZE 1069056/* Buffer size in bytes for 64pictures of 1'st
resolution level*/

#define TAR2_SIZE 282624/* Buffer size in bytes for 64 pictures of 2'nd
resolution level*/

#define TAR3_SIZE 86016/* Buffer size in bytes for 64 pictures of 3'd

195

resolution level*/
#define TAR4_SIZE 36864/* Buffer size in bytes for 64 pictures of 4'th
resolution level*/

essresssarsarsersssCAMERA AND FLIGHT DECLARATIONS*#*4#sessansansasses)

#define PREDICT_INT_MAX 4 /* Number of IFOV predict intervals*/
#define WAYPOINT_MAX 20 /* Maximum # way point coordinate vectors*/

[rs+sasasararsrsasss QUTPUT IMAGE PARAMETERS DECLARATIONS®*+s+#ssssssssa)

#define PVG_HEIGHT 256 /* output image # pixel rows*/
#define PVG_WIDTH 256 /* output image #pixel columns*/

#dcfine PYG_PIX_SIZE 65536 /* output image size in pixels®/

#define RLUT_BYTES 2097152 /* # bytes in the RLUT*/
#define RLUT_BIT_SIZE 21 /* # bits in RLUT input addess*/

#define VIEW_INDEX_SIZE 3 /*# bits in view vector of the RLUT input address*/
#define NORM_INDEX_SIZE 4 /*# bits in surface normal of the RLUT input address®/

#define ATTLUT_BYTES 2097152 /*# bytes in attenuation table ATTLUT*/
#define ATTLUT_BIT_SIZE 21 /* # bits in ATTLUT input address*/

#define TAR_VIS_MASK 255 /*if target gray shade is 255 let background through */
[+sssssnsnsssarsrsres ADMINISTRATIVE SOFTWARE DECLARATIONS###sssasasess/
#define D2R 0.0174532 /* degrees to radians */

#define D2MR 17.4532 /* degrees to milliradians */

#define R2D 57.295827 /* radians to degrees */
#define MR2D 0.057295827 /* milliradians to degrees */

! 'MEMORY T DECLARATIONS!
#define MAX_SEND 14336 /* maximum number of messages in
TER_PROC_SEND */

[#o#sasarsrsararsrenssTAAC BOARD PARAMETERS DECLARATIONS#++s++ssssssns)

196

reswrsnrsnsrsarssnrssHSPVG HARDWARE PARAMETERS DECLARATIONS*####s+es/

#define RAY_PROC_MAX 1 /* maximum # ray trace processors */
#define TAR_PROC_MAX 1 /* maximum # target processors */

#endif

”
* (C) Copyright Nascent Systems Development Inc. 1991

* Developed under contract DABT62-90-C-0006, Subcontract CSC/ATD-WR-FO-0101
*

!
FILENAME: get_terr
AUTHOR: J.R. Akin, August 1989
PURPOSE: Read a block of terrain data into a specified buffer location
which is stored in SUN main memory. The block needed has a

lower-left comer at DB coordinates x, y.

DESCRIPTION:

Opening and closing files eats up a lot of time. Ideally, this function
should open up every file at start-up but it can't because the number of
files that can be opened at one time is 60 and the number of PVDB files

is 83. Since other functions will open up who-knows-how-many files, I've
set the open file limit to MAX_FILE_HANDLES, an arbitrary value. Files
are opened and usage statistics maintained until the file handle list is
exhausted, at which point the least often used file is closed, and a new

file is opened to take its place.

Instead of using time-wasting string comparisons for file opens, a list

of hash values for file names is maintained. The hash value for a file

is computed as:

hash_value = (resolution_code << 8) | tile_number

‘This way, time can be saved by not using nested “if” statements to
determine disk partition numbers.

Processing Steps:
make sure the x.y coordinates are in bounds

based upon the resolution code

198

{

compute the block length

set the data block pointer to the starting address of the
appropriate (global) TERRAIN buffer

compute the tile number

compute the block number

)

compute the hash value based upon the tile and block number
i the file with this hash value is aiready open

{

get the file handle for it

increment the number of times this file handle has been used
i

else

{

find least used file handle

if there is already an open file associated with it
close the file

open a new file for this file handle index

set number of times file handle has been used to 1
i

compute file offset for block number
seek to that file offset

compute the number of bytes that need to be read
read the block into the array referenced by bufindex

return number of elements successfully read

RETURN VARIABLE: Retumns number of elements successfully loaded, else ERROR.
REQUIRED INCLUDE FILES:

PVG_DEC.IN
PVG_DEF.IN

LIBRARIES REQUIRED:
INPUT/OUTPUT FILES: use name description
EXTERNAL PARAMETERS: use name include description
Sun main memory terrain storage buffers (declared in PVG_DEC.IN) updated
by get_terr() and called by tstwter.c. MAX_BLOCK sizes are declared in
PVG_DEF.IN.
10 TERRAINI [MAX_BLOCK1] (BLOCK1_SIZE]
10 TERRAIN4 [MAX_BLOCK4] [BLOCK4_SIZE]
10 TERRAIN16 [MAX_BLOCK16] [BLOCK16_SIZE]
10 TERRAING64 [MAX_BLOCK64] [BLOCK64_SIZE]
FUNCTIONS/SUBROUTINES CALLED: None.
USAGE EXAMPLE:

get_terr_stat = get_terr(RESOLUTION_L, x, y, bufindex);

‘This call reads a quarter kilometer (block) of 1-meter data at location
index x.y and puts it into TERRAINnbufindex].

'CODE START

#include “PVG_DEF.IN"
#include “PVG_DEC.IN"

#include <stdio h>
#include <fontl.h> /* for binary 1O */

#define MAX_FILE_HANDLES 32

#define MAX_PVDB_FILES 83
#define MAX_FILE_NAME_LEN 32

#define MAX_PVDB_EAST 32767
#define MAX_PVDB_NORTH 28671

#define UNUSED -1

int get_terr(res_code, X, y, bufindex)

int res_code; /* Resolution: 1,4, 16, or 64 */
int x, y; /* terrain map coordinate indices */

int bufindex; /* buffer index of block to be read */

{

l

extem unsigned int TERRAIN1 [MAX_BLOCK1} [BLOCK1_SIZE]:
extem unsigned int TERRAIN4 [MAX_BLOCK4] [BLOCK4_SIZE];
exten unsigned int TERRAIN16 [MAX_BLOCK16] [BLOCK16_SIZE];
extern unsigned int TERRAING4 [MAX_BLOCK64] [BLOCK64_SIZE];

/* Acal file names, only used for open() */

static char file_name [MAX_PVDB_FILES] [MAX_FILE_NAME_LEN] =
{
“fpvdb_data/pvdb.64”, “fpvdb_data/pvdb.16”,

“fpvdb_data/pvdb.4.00", “fpvdb_data/pvdb.4.01”, “/pvdb_data/pvdb.4.02",

“Ipvdb_datapvdb 4.03", “fpvdb_data/pvdb.4.04", “/pvdb_data/pvdb.4.05”,
“/pvdb_datafpvdb.4.06”, “fpvdb_data/pvdb.4.10", “/pvdb_data/pvdb.4.11”,

201

“/pvdb_data/pvdb.4.12", “fpvdb_data/pvdb.4.13”, “/pvdb_data/pvdb.4.14",
“Ipvdb_data/pvdb.4.15”, “fpvdb_data/pvdb.4.16”, “/pvdb_data/pvdb.4.20",
“Ipvdb_data/pvdb.4.21", “fpvdb_data/pvdb.4.22", “/pvdb_data/pvdb.4.23",
“Ipvdb_daa/pvdb.4.24", “fpvdb_data/pvdb.4.25", “/pvdb_data/pvdb.4.26”,
“Ipvdb_data/pvdb.4.30", “/pvdb_data/pvdb.4.31", “/pvdb_data/pvdb.4.32",
“/pvdb_data/pvdb.4.33", “fpvdb_data/pvdb.4.34”, “/pvdb_data/pvdb.4.35",
“/pvdb_data/pvdb.4.36", “/pvdb_data/pvdb.4.40”, “/pvdb_data/pvdb.4.41",
“/pvdb_dawa/pvdb 442", “/pvdb_data/pvdb.4.43”, “/pvdb_data/pdb.4.44",
“Ipvdb_data/pvdb.4.45”, “/pvdb_data/pvdb 446", “fpvdb_data/pvdb.4.50”,
“fpvdb_data/pvdb.4.51", “fpvdb_data/pvdb.4.52", “fpvdb_data/pvdb.4.53",
“/pvdb_data/pvdb.4.54", “/pvdb_data/pvdb.4.55”, “/pvdb_data/pvdb.4.56",
“/pvdb_daw/pvdb.4.60", “/fpvdb_data/pvdb.4.61”, “/pvdb_data/pvdb.4.62",
“/pvdb_data/pvdb.4.63", “fpvdb_data/pvdb.4.64”, “/pvdb_data/pvdb.4.65,
“fpvdb_data/pvdb.4.66”, “/pvdb_data/pvdb.4.70", “/pvdb_data/pvdb.4.71",
“/pvdb_data/pvdb.4.72", “fpvdb_data/pvdb.4.73", “/pvdb_data/pvdb.4.74",
“/pvdb_data/pvdb.4.75", “fpvdb_data/pvdb.4.76",

“/pvdb_data/pvdb.1.13", “/fpvdb_data/pvdb.1.14", “/pvdb_data/pvdb.1.15",
“/pvdb_data/pvdb.1.22", “/pvdb_data/pvdb.1.23", “/pvdb_data/pvdb.1.24,
“/pvdb_data/pvdb.1.25", “/pvdb_data/pvdb.1.31", “/pvdb_data/pvdb.1.32",
“Ipvdb_data/pvdb.1.33", “/pvdb_data/pvdb.1.34”, “/pvdb_data/pvdb.1.35",
“fpvdb_data/pvdb.1.41", “/pvdb_data/pvdb.1.42", “/pvdb_data/pvdb.1.43",
“fpvdb_data/pvdb.1.44", “fpvdb_data/pvdb.1.45”, “/pvdb_data/pvdb.1.51,
“fpvdb_data/pvdb.1.52", “/pvdb_data/pvdb.1.53", “/pvdb_data/pvdb.1.54",
“/pvdb_data/pvdb.1.61", “/pvdb_data/pvdb.1.62", “/pvdb_data/pvdb.1.63",
“fpvdb_data/pvdb.1.64”

)

/* Hash values for file names */

static int file_name_hash_value [MAX_PVDB_FILES] =
{

(RESOLUTION_64<<8)i0x00,

(RESOLUTION _16<<8)I0x00,

/* 4-meter files */
(RESOLUTION_4<<8)i0x00, (RESOLUTION_4<<8)I0x01, (RESOLUTION_4<<8)I0x02,

(RESOLUTION_4<<8)i0x03, (RESOLUTION_4<<8)I0x04, (RESOLUTION_4<<8)I0x05,
(RESOLUTION_4<<8)0x06,

(RESOLUTION_4<<8)I0x 10, (RESOLUTION_4<<8)i0x11, (RESOLUTION_4<<8)I0x12,
(RESOLUTION_4<<8)0x13, (RESOLUTION_4<<8)I0x 14, (RESOLUTION_4<<8)i0x15,
(RESOLUTION_4<<8)i0x16,

(RESOLUTION_4<<8)i0x20, (RESOLUTION_4<<8)i0x21, (RESOLUTION_4<<8)i0x22,
(RESOLUTION_4<<8)l0x23, (RESOLUTION_4<<8)i0x24, (RESOLUTION_4<<8)I0x25,
(RESOLUTION_4<<8)I0x26,

(RESOLUTION_4<<8)0x30, (RESOLUTION_4<<8)I0x31, (RESOLUTION_4<<8)I0x32,
(RESOLUTION_4<<8)0x33, (RESOLUTION_4<<8)I0x34, (RESOLUTION_4<<8)i0x35.
(RESOLUTION_4<<8)K0x36,

(RESOLUTION_4<<8)i0x40, (RESOLUTION_4<<8)i0x41, (RESOLUTION_4<<8)I0x42,
(RESOLUTION_4<<8)I0x43, (RESOLUTION_4<<8)i0x44, (RESOLUTION_4<<8)i0x45,
(RESOLUTION_4<<8)l0x46,

(RESOLUTION_4<<8)0x50, (RESOLUTION_4<<8)I0x51, (RESOLUTION_4<<8)I0x52,
(RESOLUTION_4<<8)K0x53, (RESOLUTION_4<<8)0x54, (RESOLUTION_4<<8)I055,
(RESOLUTION_4<<8)Kx56.

(RESOLUTION_4<<8)I0x60, (RESOLUTION_4<<8)l0x61, (RESOLUTION_4<<8)i0x62,
(RESOLUTION_4<<8)l0%63, (RESOLUTION_4<<8)i0x64, (RESOLUTION_4<<8)I0x65,
(RESOLUTION_4<<8)K0x66,

(RESOLUTION_4<<8)i0x70, (RESOLUTION_4<<8)i0x71, (RESOLUTION_4<<8)0x72,
(RESOLUTION_4<<8)0x73, (RESOLUTION_4<<8)0x74, (RESOLUTION_4<<8)I075,
(RESOLUTION_4<<8)Kx76,

* 1-meter files */

(RESOLUTION_1<<8)/0x13, (RESOLUTION_1<<8)i0x 14, (RESOLUTION_1<<8)I0x15,

(RESOLUTION_1<<8)l0x22, (RESOLUTION_1<<8)0x23, (RESOLUTION_1<<8)0x24,
(RESOLUTION_1<<8)i0x25,

(RESOLUTION_1<<8)i0x31, (RESOLUTION_1<<8)i0x32, (RESOLUTION_1<<8)i0x33,
(RESOLUTION_1<<8)l0x34, (RESOLUTION_1<<8)0x35,

(RESOLUTION_1<<8)l0x41, (RESOLUTION_1<<8)I0x42, (RESOLUTION_1<<8)i0x43,
(RESOLUTION_1<<8)I0x44, (RESOLUTION_1<<8)i0x45,

203

(RESOLUTION_1<<8)I0x51, (RESOLUTION_1<<8)I0x52, (RESOLUTION_1<<8)l0x53,
(RESOLUTION_1<<8)I0x54,

(RESOLUTION_1<<8)0x61, (RESOLUTION_1<<8)/0x62, (RESOLUTION_1<<8)I0x63,
(RESOLUTION_1<<8)0x64
bk

/* file_opened[n] tells whether a file has been opened. Static storage */
/* without initilization garauntees that elements will be set to 0 (NO) */

static int file_opened [MAX_PVDB_FILES] =
(
UNUSED, UNUSED,

'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED

b

/* List of file handles used for /O */

static int fh [MAX_FILE_HANDLES] =

{

'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED
3

/* List of hash value indices for opened files */

static int fh_hash_value_index [MAX_FILE_HANDLES] =

{

'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED

%

static int file_usage [MAX_FILE_HANDLES] =

{

'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
'UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED
k

static int fh_index_to_use = 0; /* file handle index to use */
int tile_num, block_num; /* tile and block numbers */

int hash_value;

int hash_index; /* hash index */
int usage;

int min_usage;

int

int block_length;

unsigned int block pointer */
unsigned int file_offset;

unsigned int bytes_to_read, bytes_read;
int elements_read;

205

[rassassssasesussssssssss BEGIN EXECUTION *+ossstesssrssssesarsssnses)

if(x <01l x > MAX_PVDB_EAST)

(

fprintf(stdout, “get_ter: X coordinate (%d) OOB\1", x);
return(ERROR);

}

if(y <0ly > MAX_PVDB_NORTH)

{

fprintf(stdout, “get_ter: Y coordinate (%d) OOB\I™, y);
retun(ERROR);

}

if((x % 256) 1=0)
{

fprintf(stdout, “get_ter: X (%d) not an even multiple of 256\”, x);
return(ERROR);
)

if((y %256)1=0)

(

fprintf(stdout, “get_ter: Y (%d) not an even multiple of 256\n”, y);
return(ERROR);

)

switch(res_code)

1

case RESOLUTION_1:
block_length = BLOCK1_SIZE;
bp = &TERRAIN1 [bufindex][0);
break;

default:

fprintf(stdout, “get_ter: Invalid res_code (%d)\n”, res_code);
return(ERROR); /* invalid resolution */

}

/* Tile and block numbers are the same regardless of resolution */

tile_num = ((x>>8) & OxF0) | (y>>12);
block_num = ((x>>4) & 0xF0) | ((y>>8) & OxF);

206

/* ... but the hash values aren’t. The 16- and 64-meter databases ARE */
/* broken into tile numbers but they aren’t stored in multiple files. */

if(res_code < RESOLUTION_16)
hash_value = (res_code << 8) | tile_num;
else

hash_value = (res_code << 8);

/* Find the index to the file name’s hash value */

for(hash_index=0; hash_index < MAX_PVDB_FILES; hash_index++)
{

if(hash_value == file_name_hash_value[hash_index])

break;

i

if(hash_index == MAX_PVDB_FILES) /* no match was found */
{

fprintf(stdout, “No data available at %d,%d, for resolution %d\n”,
X, y, res_code);

return(ERROR);

1

i file_openedfhash_index] = UNUSED) /* file is already open */
{
/* Get the proper file handle and increment the number of times used */

fh_index_to_use = file_opened[hash_index];
file_usagelfh_index_to_use}++;

)

else /* this file needs to be opened */

{

1* Open a new file. Find the least used file handle; %/
/i itis used (open), close it first. %/

fh_index_to_use = 0;
min_usage = file_usage(fh_index_to_use];

for(n=0; n < MAX_FILE_HANDLES; n++)
{
usage = file_usagefnl;

if(usage < min_usage)
{

min_usage = usage;
fh_index_to_use =n;

i

)

if(f{fh_index_to_use] = UNUSED) /* close it first */

{

close(fhifh_index_to_use])

fh{fh_index_to_use] = UNUSED;

file_opened| th_hash_value_index|[fh_index_to_use]] = UNUSED;
Il

/* Open the new file */
{fh_index_to_use] = open file_namefhash_index], O_RDONLY);

if(fhifh_index_to_use] == ERROR)

{

fprintf(stdout, “get_ter: Can't open filew™);
retum(ERROR);

)

else

i

file_opened[hash_index] = fh_index_to_use;
file_usage{fh_index_to_use] = 1
fh_hash_valuc_index[fh_index_to_use] = hash_index;
}

)

/* Compute file offset for this block_num, based upon the resolution */
/* and seek to that location. */

switch(res_code)

{

case RESOLUTION_1:

case RESOLUTION_4:

file_offset = block_num * block_length * sizeof(it);
‘break;

/* For 16- and 64-meter resolutions compute the tle sequence number */
/* number (Tike_x*7+Tile_y), multiply it by the number of elements in */
/* atile, add the block offset and multiply by the number of bytes */
/*inanint. %/

case RESOLUTION_I6:

case RESOLUTION_64:

file_offset = ((tle_num>>4)*7+(tile_num&0xF))
* (256*block_length) + (block_num*block _length))
* sizeof(int)

break;

)

if(Iseek(fh(fh_index_to_use], file_offset, 0) == ERROR)
(

fprintf(stdout, “Can’t seek on filewn™);

return(ERROR);

i

/* Read block into address at bp */
bytes_to_read = block_length * sizeof(int);
bytes_read = read(fh[fh_index_to_use], (char *)bp, bytes_to_read).

if(bytes_read != bytes_to_read)

(

fprintf(stdout, “Bad read, X:%d Y:%d res:%d\n", x, y, res_code);
fprintf(stdout, “%d bytes read instead of %d\n”,

bytes_read, bytes_to_read);

return(ERROR);

)

elements_read = bytes_read / sizeof(int);

fprintf(stdout, “X:%d, Y:%5d, res_code:%d bufindex:%d address: %08X\n",
x, y, res_code, bufindex, bp);

return(elements_read);
}

#undef MAX_FILE_HANDLES
#undef MAX_PVDB_FILES
#undef MAX_FILE_NAME_LEN
#undef MAX_PVDB_EAST
#undef MAX_PVDB_NORTH
#undef UNUSED

210

[Ref.

1

[Ref. 2]

[Ref.

3]

[Ref. 4]

[Ref. 5]

[Ref. 6]

[Ref. 7]

[Ref.

8]

[Ref. 9]

[Ref.
[Ref.
[Ref.
[Ref.
[Ref.

[Ref.

[Ref.
[Ref.

10]
1
12]
13
14]

17]

LIST OF REFERENCES

Titan Tactical Applications, JANUS (A) 2.1 Software Design Manual, 1992.
INMOS Limited, The Transputer Family 1987, p. 4, April 1987.

INMOS Limited, Transputer Handbook, p. 1, October 1989.

Shiva, S.G., Computer Design & Architecture, 2nd ed., Harper Collins
Publishers Inc., 1991.

INMOS Limited, An Introduction To Transputers, Draft 2.0, pp. 5-6, January
1988.

Lewis, T.G., El-Rewini, H., Introduction To Parallel Computing, Prentice-Hall
Inc, 1992.

INMOS Limited, The Transputer Databook, 2nd ed., 1989.

Hoare, CAR., “C icating S ial Processes"
the ACM", v. 21, n. 8, pp. 666-667, August 1978.
INMOS Limited, 79000 Transputer Products Overview Manual, 1991.
INMOS Limited, OCCAM 2 Reference Manual, Prentice-Hall Inc., 1988.

of

Alsys Inc., Alsys Ada Compilation System User Manual, 1989.

3L Ltd,, Parallel C User Guide, 1988.

3L Ltd,, Parallel C++ User Guide, 1991.

NASCENT Systems Development Inc., The Pegasus Documentation Package
Book-1, December 1992.

Inmos Ltd., Inmos Technical Note 53 - Some Issues in Scientific Language
Application Portion and Farming Using Transputers, by A. Hamilton, pp.

7-8, July 1989.

Inmos Ltd., IMS B0O4 Evaluation Board User Manual, pp. 1-18, 1985.

Inmos Ltd., Inmos Technical Note 11 - IMS B004 IBM PC Add-In Board, by S.
Ghee, 1989.

211

[Ref. 18]

[Ref. 19]

[Ref. 20]

[Ref. 21]

[Ref. 22)

[Ref. 23]
[Ref. 24)

Alta T C ion, CTRAM C ion Transputer Module Data
Sheet, 1993.

Alta Technology Corporation, Remote Tram Holder Installation Guide and
User Manual (Version 1.0), September 1991.

Alta Technology Corporation, HSI/SBUS Installation Guide and User
Reference (Version 1.1), October 1992.

Inmos Ltd., IMS B012 User Guide and Reference Manual, 1988.

Digital Equi c ion, Alpha AXP Systems book, 1993.
ParaSoft Corporation, EXPRESS 3.0 Introductory Guide, 1990.

Perihelion Software Ltd., The HELIOS Parallel Operating System, Prentice
Hall International (UK) Ltd., 1991.

212

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexanderia, VA 22304-6145

Dudley Knox Library
Code 52

Naval Postgraduate School
Monterey, CA 93943-5002

Dr. Ted Lewis

Code CS/Lt

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Se-Hung Kwak
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Se-Hung Kwak
75 Adams Avenue
‘West Newton, MA 02165

Maj. Eugene Paulo
-MTRY

Naval Postgraduate School
Monterey, CA 93943

Dr. Amr M. Zaky

Code CS/Za

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Wolfgang Baer

Code CS/Ba

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000
Deniz Kuvvetleri Komutanligi

Personel Daire Baskanligi
Bakanliklar, Ankara / TURKEY

213

Golcuk Tersanesi Komutanligi
Golcuk, Kocaeli / TURKEY

Deniz Harp Okulu Komutanligi
Tuzla, Istanbul / TURKEY 81704

Taskizak Tersanesi Komutanligi
Kasimpasa, Istanbul / TURKEY

LTJG Cem Ali Diindar
Ziya Bey Cad. Etibank Sitesi No:14
Balgat, Ankara/ TURKEY

214

AN
‘ il
3 2768 00038511 6

