
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-03

Improvement of Janus using 1-meter
resolution database with a transputer network

Dundar, Cem Ali
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/30899

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

'l'hes l s
078935

THESIS

IMPROVEMENT OF JANUS USING PEGASUS I·METER
RESOLlITlON DATABASE WITH A TRANSPUTER

NETWORK

by

CcmAIi DUndar

March 1994

Thesis Advisor: Se-Hung Kwak

Approved for public release; disuibution is unlimiled.

0U0Lf-Y ~W)X L!!!P.ARY
Wl,VI<. P>0S 11iJW,'I,j,\"l!: SCflOO!
~y CA i3"":1-~101

REPORT DOCUMENTATION PAGE
P_-'""t_b -."'_ • .-",_,_.... v.. ___ -..-...._--. __ --. -,. ... _""''''_, SonoI_--. __, __ _oI_ ... , "".-...ItIII_ .. _tmpn......-_.~Ior_~ J\oo>OrIo,.2'$_
0rM~.S ... ,_ ,0Q..~._ .. lhootr.oool.........- 9""""'P ___ Pn>jod(01044188).~.DC2OII03,

I.AaENCVU$!!ONlYH Blln" a.REPOR DA a.
March 1994 Master'5 Thesis

4. TITLE AND SUBmLE
Improvement Of Janus Using Pegasus I-meter Resolution Database
With A Transputer NetWork(U)

l·~:~~:;~~~c~rANDADDAESS(ES)

Monterey, CA 93943-5000

II. SPONSORIMGI MONITORING AG£NCY NAM&:(SI ADD ... ,88(E8)

11. PPLEMEHTARYNOTES

LPEAFOIIMlNGO
REPOATNUMln

The views expressed in this lhens are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government

1211. DISTfUlUTIONI AYAILAIIIUTY STATE_NT
Approved for public release; distribution is unlimired.

13 STIU.CT(Maw:fmum2fJOwads)
Line-of-sight (LOS) calculation for the Janus combat simulation model is critical to the processes

being simulated and impacts the run speed (ratio of game time to real time), since it may be the single most
computationally expensive algorithm in simulation.

TIlls thesis presents design and implementation of a transputer network with the purpose ofproYiding
an efficient LOS calculation in a distributed memory and computing environment. The approach taken
was to use a processor fanning method to speed up the LOS calculation. The programs were implemented
on a network of 15 transputers using 3L Parallel C++ (version 2.1.1) programming language. A l*meter
resolution terrain database of Fort Hunter Liggett, California was used to get more reliable LOS results.

Expected gain of our system was 3.873 (.[[5). After timing tests, we found that we could speed up
the LOS calculation by a factorof2.581 when comparing the 15 transputer configuration to a conventional
processor which is equivalent to a single transputer. The difference between expected gain and our actual
gain was found to be the communication overhead in the network of transputers. We stated that further
significant improvements can be provided by using our approach with more memory and faster
transputers.

14. SUBJECT TERMS
Janus, Transputer, Pegasus Database.. Parallellism, Line-of-sight

• OFAEPClRT

Unclassified

NSN7S40-01-28Q.5500

I OFTHISPAOE

Unclassified I:' OFABBTRACT

Unclassified

15.NUUHAOFPAGES

225

SAR

Standard Ponn 298 (Rev. 2-89)
Preambed by ANSI Std. 239·\S

Approved for public release; distribution is unlimited

IMPROVEMENT OF JANUS USING l-METER RESOLUTION DATABASE
WITH A TRANSPUTER NETWORK

Author:

Approved By:

by
CemAliDilndar

LTJG. Turkish Navy
BS, Turkish Naval Academy, 1988

Submitted in partial fulflilment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Line-of-sight (LOS) calculation for the Janus combat simulation model is critical to

the processes being simulated and impacts the run speed (ratio of game time to real time).

since it may be the single most computationally expensive algorithm in simulation.

This thesis presents design and implementation of a transputer network with the

purpose of providing an efficient LOS calculation in a distributed memory and computing

environment. 1hc: approach taken was to use a processor fanning method to speed up the

LOS calculation. The programs were implemented on a network of 15 transputers using 3L

Parallel C++ (version 2.1.1) progranuning language. A I-meter resolution terrain database

of Fen Hunter Liggett, California was used to get more reliable LOS results.

Expected gain of our system was 3.873 (.m). After timing tests, we found that we

could speed up the LOS calculation by a factor of 2.581 when comparing the 15 transputer

configuration to a conventional processor which is equivalent to a single transputer. TIle

difference between expected gain and actual gain was found to be the communication

overhead in the network of transputers. We stated that further significant improvements can

be provided by using our approach with more memoIY and faster transputers.

iii

--;7:"0
/J7,RL.J
rJ..

TIlESIS DISCLAIMER

Many terms used in this thesis are registered trademarks of commercial products.

Rather than attempting to cite each individual OCCUICllCC of a trademark, all registered

trademarks appearing in this thesis are listed below the finn holding the trademark:

[NMOS I 'roiled Bristol [loW KJngdmm

Uuno.

IMS

Intematjgoal Rusin. MaMi. Cnrpgratjoo'

mM
3l...LId.;.

3L

Dlgita' Fnuj!UJ'l!Dt Cnrmrathm.
AXP

DEQ:hip

Prrjbdgp Sgftpare' ttl •

Helios

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOl
MONTEREY CA 9394~101

ACKNOWLEDGEMENTS

I would like to thank: Dr. Se-Hung Kwak:, whose interest in the subject of parallel

computing with transputers was the foundation on which this thesis was produced. His

continued support. enthusiasm, patience, and guidance were invaluable assets for the

completion of this work.

I also would like to thank Major Eugene P. Paulo, for his helps and supports everytime

we needed to coordinate with TRAC MTRY group during my thesis work.

TABLE OF CONTENTS

l. INI'RODUCITON

A. BACKGROUND

1. Janus

2. The Transputer 0,

R SCOPE OF TIlESIS

C. THESIS ORGANIZATION

n. TRANSPUTERS AND PARALLEL COMPUTING

A. PARALLELISM

B. THE !NMOS TRANSPUTER

1. Conmunicating Sequential Processes

f' Transputer Architecture

a. OveralL

b. Central Processor

c. Floating Point Unit

d. Memory System

e. Links ..

f. PeripheIalInterface ..

g. Error Handling

h. Progranuning IMS 1'800 .•

i. Processes And Concurrency

j. Priority

k. Communications ...

3. Programming Languages ...

.................. 1

. 1

. 1

...................... 2

.... 2

.. 3

............ 4

.......... 4

. 7

........................... 8

..9

............ 9

. 11

... 11

. 11

. 12

. .. 12

. 12

................... 12

....... 12

. ... 13

.. .. 14

.• 14

a. {)ccam Programming Language ... 15

b. Alsys Ada Programming Language .. 16

c. 3L's Parallel C++ Programming Language .. 16

(1) Abstract Model .. 16

(2) Hardware Model ... 16

(3) Software Model. .. 17

(4) Parallel Execution 1breads ... 18

(5) Configuring An Application ... 19

(6) PnJcessoc Fanns .. 20

Ill. DETAILED PROBLEM STATEMENT .. 21

A. PEGASUS DATABASE .. 21

1. Introduction ... 21

2. Database Organization .. 21

3. Post Structure .. 25

B. L1NE-OF~SJGHT CALCULATION .. 28

1. Line~of·sight for Detection ... 28

2. LOS Through Smokc/Dust Clouds ... 30

3. LOS For Dcployanent. ... 31

C. WHY I-METER RESOLU110N? ... 31

IV. TRANSPUTER IMPLEMENTATION OF LINE-OF·SIGHT CALCULATION 34

A. HARDWARE .. 34

1. Oeneral .. 34

2. Background ... 34

a. The TransputcrJH:ost Relationship .. 34

..

b. mMpc As AHost ... 36

c. The IMS BOO4 Evaluation Board ... 37

d. ALTA CIRAM (Computation TRAnsputer Module) 41

e. ALTA Ren10te Tram Holder....................................... 41

(1) Jumper Options ... 44

(2) Externol Lmks•..............................•••......•...•.•.•••..••..••........... 44

(3) TRAM SLOTs and Topology ... 44

(4) SySten1 Services .. 44

f. lISI/SBus .. 45

g. The IMS B012 Evaluation Board ... 46

(I) Pl Connections ... 50

(2) P2 Connections ... 50

(3) IMS B012 as a Slave to a Master Controller 51

(4) IMS B012 as a Systen1Master .. 51

3. Our Impienlentation .. 51

(1) Disabling the T414 Transputer on the BOO4 Board 52

(2) Setting Up the ALTA Remote Tram Holder 52

(3) Setting Up the Link: Speed .. 59

B. SOFIWARE .. 61

1. Gencral .. 61

a. Installing HSI/Bus and Setting the Link Speed .. 61

b. Our Processor Farm Application .. 62

(1) Master, Workc:rand Router Tasks .. 63

(2) Configuration File ... 64

c. Loading the Height Data 68

d. LOS Calculation 7l

viii

e. The Afserver Task on Host. 72

V. EXPERIMENTAL RESULTS FOR LINE-OF-SIGHT CALCULATION 73

A. PERFORMANCE ANALYSIS ... 73

B. TIfE RESULTS .. 74

VI. CONCLUSIONS AND RECOMMENDATIONS .. SO

A. CONCLUSIONS... . .. SO

B. RECOMMENDATIONS FOR RJRlHER RESEARCH SO

I. ConnectionToJanus .. SO

2. IN110S T9000 Transputers ... SI

3. ALPHA AXP Farm Progranuning Environment .. 81

4. Parallel Programming Support Environments ... 81

APPENDIX A - SUN SPARC STATION SOURCE CODE 83
APPENDIX B - HOST COMPUTER (PC) SOURCE CODE 112
APPENDIX C- SOURCE CODE FOR READING TERRAIN DATA 179
LIST OF REFERENCES... 211
INITIAL DISTRIBUTION LIST 213

DEDICATION

I dedicate my thesis to my parentsNimet and Ahme~ Diindar who were my fJl'St teachers

and of whom I'm very proud to be their son.

I. INTRODUCTION

A. BACKGROUND

1. Janus

The Janus simulation was fielded in 1978 [Ref. 1]. It was developed as a nuclear

effects modeling tool by Lawrence Livennore National Laboratories and became known as

Janus(L). TRADOC Analysis Command (TRAC) at White Sands Missile Range (WSMR)

modified Janus(L) to meet Anny combat development needs. The modified Janus(L)

model became known as Janus(T). The Army realized the value of the system for use in the

training arena, and tasked TRAC-WSMR with developing a mUltipurpose system from the

best of Janus(L) and Janus(l), which was tenned lanus(A). Through enhancements and

upgrades, Janus(A) has reached a version level of 4.0 as of January 1994.

The Janus model simulates battle between Blue and Red uniK It supports conflict

from individual sy~tems and company-sized units through brigade/regimental-sized units.

It is an interactive, two·sided, closed, stochastic, ground combat simulation featuring

precise color graphics. Janus is "interactive" in that the command and control functions are

entered on wOJkstations by military analyst~ who decide what to do in crucial situations

during simulated combat. "Two-sided" refers to the two opposing forces, blue and red,

directed simultaneously by two sets of players. "Closed" means that the disposition of

opposing fOJces is largely unknown to the players in control of the other force. "Stochastic"

refers to the way the system detennines the Tt"sults of actions such as dire<:t fue

engagements; according to the laws of probability and chance. "Ground combat" means

that the principal focus is on ground maneuver and artillery unit.~, although Janus also

models weather and its effects, day and night visibility, engineer support, minefield

employment and breaching, rotary and fIXed wing aircraft, resupply and a chemical

environment. Janus is an event-driven simulation.

2. The Transputer

The term "transputer" is an acronym for "transistor computer" where It reflect~

the ability of this device to be used as a system's building block, much like the transistor

was in the past [Ref. 2]. The nice feature of the transputer is that it adds a new level of

abstraction, which provides a very simple way to design a concurrent system. As a formal

defmition we could state that the tran~'Puter is a single-chip microcomputer that has it~ own

local memory and four communication links. The links may be thought as of as small

special purpose processors which steal no cycles from the main CPU, in such a way that we

could have all four links and the CPU working at the same time. without degrading the

performance of the program's execution.

The transputer is a parallel microprocessor, generally categorized as a Multiple

Instruction Multiple Data (MIMD) computer [Ref. 3} [Ref. 4:pp. 498-500]. This means that

transputers are used to execute different operations on separate data at the same time. This

is somewhat like a football team where individual players execute their own special

assignments together during a play. A transputer operates as a ~tand-alone machine or as a

processing element interconnected by their links to form computing arrays and networks.

Modular design enables transputers to be used together in arbitrary numbers to support a

broad range of applications, and the inherit redundancy of multiprocessing can be utilized

for fault tolerance.

H. SCOPE OF THESIS

Line-of-sight (LOS) is a central process in combat simulations that works at item

level. The LOS algorithm is critical to the processes being simulated and impacts the run

speed (ratio of game time to real time), since it may be the single most computationally

expensive algorithm in the simulation.

This study is focused specifically on the following two objectives:

I. To implement an efficient calculation of illS in a distributed memory environment

by using transputers and I-meter resolution terrain database.

2. To show that the usage of I-meter resolution terrain database for LOS calculation

purposes gives more pra:ise and reliable results than the current 50 or lOO-meter resolution

terrain databases.

C. THESIS ORGANIZATION

This thesis is presented in six chapters and three appendices.

Chapter I is the introduction to the problem and the background for Janus combat

simulation system and the transputer.

Chapter II describes the current issues about parallel computing with transputers.

Chapter III presents a detailed problem statement for this thesis. The current issues

about Janus which are PEGASUS terrain database organization and the algorithm for LOS

calculation are described in this chapter.

Chapter IV describes the transputer implementation of LOS calculation in both

hardware and soflware aspects.

Chapter V presents the experimental results of the transputer implementation of LOS

calculation.

Chapter VI states the conclusions and recommendations for further research.

Appendix A includes the Sun SPARe Station source code.

Appendix B includes the Host Computer (PC) source code.

Appendix C includes the source code for reading terrain data from Pegasus Database.

IL TRANSPUTERS AND PARALLEL COMPUTING

A. PARALLELISM

In the flTst computing wave, scientific and business computers were more or less

identical as they were all big and slow [Ref. 6:p. I]. Even the early electronic computers

were not very fast. This was the ''prehistory of computing", where computing had to be

employed at any cost

The second and third waves brought on mainframes, minis, and fmally micros. This

diversity of computing caused a number of niches to develop which broadened and

deepened the computer industry. Scientific and business computing went their separate

ways, and there seemed to be a computer in just about everyone's price range.

But the original power users who pioneered computing continued to emphasize speed

above all else. Single-processor supercomputers achieved unheard of speeds beyond 100

million instructions per second. and pushed hardware technology to the physical limits of

chip building. But soon this trend will come an end, because there are physical and

architectural bounds which limit the computational power that can be achieved with a

single-processor system.

We are now enjoying the Parallel Wave [Ref. 6:pp. 1-5] of computing, where

performance is enhanced by using multiple processors. Parallelism is the process of

performing tasks concurrently. It has been touted as a solution to the problem of making

computers faster and faster. When the physical limits for single-processor systems are

reached, parallelism will be the only course. However, even before the speed limit is

reached, there is an economic motivation to use parallel processing in place of faster and

more expensive single-processor systems. Indeed, the economic advantage of low-cost,

multiple processing systems was realized in the mid-1980s. Hence, the 1990s were poised

for the decade of parallelism simply due to economic forces.

Many parallel architectures have been discussed in the past, and there are several

supenninicomputer paraUd systems available today. However, most of these are unable to

provide the very wide range ofprice/perfonnance that parallel processing promises and that

transputer-based systems can provide lRef. 5].

To understand this, it is worth examining the nonnal approach to parallel systems

design. Most parallel systems are constructed by connecting up multiple computers with a

single high speed bus. A simplified system can be imagined, consisting of multiple

processors sharing a single global memory accessed via a single high performance bus.

This shape of system will provide very disappointing results for obvious reasons; a

processor can only access memory when no other processor is accessing memory. With

high perfonnance processors, this will provide an upper limit of perhaps two or three

processors before performance stops increasing. It is possible to speed the system up, but

only by use of memory that is very much faster than the processors. This is expensive.

In more realistic system each processor has some private, local memory in addition

to bus access to global memory. The local memory could be organized as either a private

address space, or a sufficiently large cache. Now, it is possible to imagine a system where

a processor spends perhaps 90% of its time accessing local memory and only 10%

accessing the shared store. Then with reasonably-priced memory it should be possible to

build a computer which can use perhaps twenty or thirty processors before saturating.

The bottleneck in this system is the shared resource, either the bus or the memory.

The bus itself is a poor choice for interconnect in any case; not only does its logical

perfonnance degrade as more processors contend for it, the extra elecmcalloads imposed

by adding processors to the bus either slow the system down as more machines are added,

or set a much lower bandwidth on the bus for lower processor counts.

Whichever is the bottleneck at present, the apparently inexorable improvement in

semiconductor technology will arrange for it to be the bus since affordable memory and

processor speeds are increasing faster than improved backplane technologies. As a result,

this sort of system is guaranteed non-future proof; as device speeds increase, the system

performance flattens out since the maximum number of processors usable before bus

saturation reduces ~ith time.

The system architecture can be changed slightly to remove the straitjacket imposed

by the bus. An obvious improvement is to use multiple buses, probably arranged in some

regular, structured manner, like a hierarchy. Now, clusters of computers, each with its own

local memory, share some cluster memory via a cluster bus. Clusters are connected by other

buses; these buses themselves can have memory. Then, assuming that 90% of accesses are

local, and that 90% of the non-local accesses are to the local cluster shared memory, the

earlier argument~ suggest that for a well-behaved problem, a twenty cluster system could

be built, with each cluster having twenty processors.

This solution should work for a range of applications, but the amount of logic and

interconnect needed to implement it makes it expensive. It has another problem, too; while

it is an acceptable architecture for a single, centralized computer, shared buses do not seem

to be an appropriate paradigm for distributed parallel systems.

These criticisms can be resolved by a small change in attitude to the system

architecture, and then a re-implementation. Assume that the system is an actual parallel

computing system, rather than just a collection of computers each with access to some

shared system resource; then the processors must be interacting with one another. Each will

be working on a portion of the problem, and will interchange partial results with other

processors as they jointly progress toward completing the program. To do this, each

machine wililikeJy provide the equivalent of mailboxes, where the other processors can

leave their own results and their requests for infonnation.

But if the processors are cooperating by exchanging messages, then there is no need

to use shared memory to implement the communication. Instead, direct interprocessor data

transfer channels can be used to Direct Memory Access (OMA) [Ref. 4;pp. 297-301]

information from one processor to another. Given such a mechanism, we CllI'e several

problems at once: as we add processors, we add interprocessor bandwidth; the processors

do not need to be physically located together, and so can be components of a distributed

system without necessarily altering the system design or software; and the cost of the

interprocessor hardware can be much reduced from bus costs (since, for example, there is

no need for an address, we can save by not having address lines; since there is exactly one

destination for each driver, the electrical design is simpler).

This is the system architecture chosen for the transputer. Each transputer comes with

one or more interprocessor links, each one DMA-driven to ensure that communication can

take place in parallel with computation. Transputers further reduce system cost by using

serial interconnect; minimizing pin count reduces transputer cost and interconnect cost,

eases board layout and minimizes power consumption.

B. THE INMOS TRANSPUTER

The transputer [Ref. 7:pp. 7-30] was developed by !NMOS Limited of Bristol. United

Kingdom, and has since expanded into a family of very large scale integrated (VLSI)

components with different capabilities. Since the transputer is a component designed to

exploit the potential of VLSI, that technology allows large numbers of identical devices to

be manufactured cheaply. For this reason, it is attractive to implement a concurrent system

using a number of identical components, each of which is customized by an appropriate

program. The revolutionary architecture of the transputer enables the potential of

concurrency to be realized for the fIrst time, making today's applications easier to

implement and creating a new dimension for tomorrow's systems.

The transputer uses silicon capability to make programming simpler and to make

engineering easier than for any previous microprocessor. The architecture has been

optimized to obtain the maximum of functionality for the minimum of silicon. It allows

different trade offs between performance and cost, always giving an intrinsic advantage

over older architectures. The architecture is future-proof. It spans the range of

applications from microcontrollers to supercomputers. Transputers will exploit future

levels of integration by increasing the amount of processing, memory, communications and

concurrency within the same architecture.

A typical member of the transputer family is a single chip containing processor,

memory, and communication links which provide point to point connection between

transputers. The transputer provides a direct implementation of the process model of

computing. A process is an independent computation, with its own program and data,

which can communicate with other processes executing at the same time. Communication

is by message passing, using explicitly defined channels.

The transputer is designed so that it can implement a set of concurrent processes.

Special instructions share the processortime between the concurrent processes and perform

interprocess communication.

In addition, the transputer is designed so that its external behavior corresponds to the

fonnal model of a process. As a consequence, it is possible to program systems containing

multiple interconnected transputers in which each transputer implements a set of processes.

Since a program is defmed as a set of processes, it can be mapped onto such a system in a

variety of ways, such as minimizing cost, or optimizing throughput, or maximizing the

responsiveness to specific events.

The transputer specifically implements the concept of communicating sequential

processes (CSP) defined by CAR. Hoare [Ref. 8] and to be used as a building block for

distributed computing systems. 1be CSP concept describes the interactions between

programs that execute in parallel

1. Communicating Sequential Processes

Hoare's Communicating Sequential Processes (CSP) is one model for concurrent

or parallel programming, and it is central to the design of the transputer. In CSP, a program

is a collection of processes which can be combined to execute sequentially on a single

processor or in parallel on multiple processors.The data space for any process executing in

parallel is disjoint, thus alleviating the need for sharing memory between processors.

Although shared memory is not available, processes must still communicate with each

other. Therefore., CSP utilizes message passing between any pair of parallel processes via

declared communication channels between two processes.

In order for the concurrent processes to communicate. message passing must be

synchronized. Such communication occurs when one process names another as destination

for output and the second process names the flrst as source for input. This allows the value

to be output by the source process to be copied into the destination process. Note that the

synchronization imposes a requirement that an output (input) command must be delayed

until the corresponding input (output) command in the other process is ready to be

executed.

2. Transputer Architecture

Several versions of the transputer are currently available. This thesis considers

transputer types IMS T800 and IMS T80S t . The following sections describe the features of

an IMS TBOO 20MHz transputer. A complete description of all currently available

transputers can be found in [Ref. 7] and [Ref. 9]. A block diagram of an IMS T800

transputer is shown in Figure 2.1.

a. Overo/l

The IMS T800 is a 64 bit floating point member of a family of transputers. all

which are consistent with the INMOS transputer architecture. It integrates a 32 bit

microprocessor. a 64 bit floating point unit, four standard transputer communication links,

4Kbytes on-chip RAM for high speed processing, a configurable memory interface and

peripheral interfacing on a single chip. using a 1.5 micron CMOS process.

1.1'805 is B new version ofT800. They areessentially same pmcllliSOIS and ourIab tw Bmixture or
T800 and 1'805 tnmspulen!.

Floating Point Unit

Figure 2.1: IMS T800 Block Diagram of the 32-bit Transputer

10

b. Central Processor

The 32 bit processor provides 10 MIPs perfonnance. The design achieves

compact programs, efficient high level language implementation and provides direct

support for the occam (a programming language that will be mentioned later) model of

concurrency. Procedure calls, process switching and interrupt latency are all sub­

micro.<;eCond. The processor shares its time between any number of concurrent processes.

A process waiting for communication or a timer does not consume any processor time. Two

levels of proce.~s priority enable fast interrupt response to be achieved.

c. Floating Point Unit

The M bit floating point unit provides single length and double length

operation according to the ANSI-IEEE 754-1985 standard for floating point arithmetic and

able to perfonn floating point arithmetic operations concurrently with the processor;

sustaining in excess of 1.5 Mega Hops.

The floating point unit (FPU) on the T800 consists of a microcoded

computing engine which operates concurrently with and under the control of the Central

Processing Unit (CPU). It contains a three deep floating point evaluation stack on which

floating point numbers, represented in the IEEE fonnat can be manipulated. All data

communication between memory and the tloating point unit is done under the control of

the CPU.

d. Memory System

The 4Kbytes of on chip static RAM provide a maximum data rate of 80

Mbytes/sec with access for both the processor and links. The IMS T800 can directly access

a linear space up to 4 Gbytes. The 32 bit wide external memory interface uses multiplexed

data and address lines provides a data rate up to 26.6 Mbytes/sec. A configurable memory

controller provides all timing, control and DRAM refresh signals for a wide variety of

memory systems. Internal and external memory appear as a single continuous addre.~s

space.

e. Links

The IMS 1'800 uses a DMA block transfer mechanism to transfer messages

between memory and another transputer product via the INMOS links. The link interfaces

and the processor all operate concurrently, allowing processing to continue while data is

being transferred on all of the links.

The four standard INMOS serial links on the IMS THOO give a unidirectional

transmitted data rate of 1.7 Mbytes/sec and a combined (bidirel:tional) data rate per link of

2.3 Mbytes!sec, at a link speed of20 Mbits/sec. Link speeds of 10 Mbits!sec and a 5 Mbits/

sec are also available on the IMS T800 making the device compatible with all other INMOS

transputer products.

j. Peripheral Interface

The memory controller supports memory mapped peripherals, which may use

DMA. Links may be interfaced to peripherals via an INM:OS link adaptor. A peripheral can

request attention via the event pin.

g. ETTor Ilandling

High-level language execution is made secure with array bounds <:hecking,

arithmetic overflow detection etc. A flag is set when an error is detected. The error can be

handled internally by software or externally by sensing the error pin.

h. Programming IMS T800

The IMS T800 transputer can be programmed in several languages induding

Occam, C, C++, Ada, Fortran and Pascal.

i. Processes And Concurrency

The transputer provides direct support for concurrency. It has a microcoded

scheduler which enables any number of concurrent processes to be executed together,

sharing the processing time. This removes the need for a software kernel.

A process starts, perfOlTl1s a number of actions, and then either stops without

completing or tenninates complete. Typically, a process is a sequence of instructions. A

transputer can run several processes concurrently2. Processes may be assigned either high

or low priority, and there may be any number of each.

At any time, a concurrent process may be

Active - Being executed

- On a list waiting to be executed.

Inactive - Ready to input

- Ready to output

- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume

any processor time. It allocates a portion of the processor's time to each process in tum.

Each process runs until it has completed its action, but is descheduled while waiting for

conununication from another process or transputer, or for a time delay to complete.

j. Priority

The IMS T800 supports two levels of priority. Priority 1 (low priority)

processes are executed whenever there are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. IT one or more

high priority processes are able to proceed, then one is selected and runs until it has to wait

for a communication, a timer input. or until it completes processing. If no process at high

priority is able to procoed, but one or more processes at low priority are able to proceed

then one is selected. Low priority processes are periodically timesliced to provide an even

distribution of processor time between computationally intensive tasks.

Note that the intention of having two priority levels for processes is to allow

those high priority tasks, which must be executed when they are invoked, to preempt a

currently executing low priority process and execute to completion. It is important that the

2. This is actually a time-sharing fI.r a single CPU system.

n

high priority tasks have a very short execution time (less than one slicetime period).

Otherwise the low priority processes, which should be the computation intensive processes,

will not be given fair access to the processor.

k. Communications

Communications between processes is achieved by means of channels.

Process communication is point-to-point, synchronized and unbuffered. As a result, a

channel needs no process queue, no message queue and no message buffer.

A channel between two processes executing on the same transputer is

implemented by a single word in memory; a channel between processes executing on

different transputers is implemented by point-to-point links. The processor provides a

number of operations to support message passing, the most important being input message

and output message.

The input message and output message instructions use the address of the

channel to determine whether the channel is internal or external. Thus the same instruction

sequence can be used for both, allowing a process to be written and compiled without the

knowledge of where its channels are connected.

The process which ftrst becomes ready must wail until the second one is also

ready. A process performs an input or output by loading the evaluation stack with a pointer

10 a message, the address ofa channel, and a count of the number of bytes to be transferred,

and then executing an input message or output message instruction. Data is transferred if

the other process is ready. H the channel is not ready or is an external one the process will

deschedule.

3. Programming Languages

There are several languages which can be used to write programs for use on the

transputer. Among these are Occam, Alsys-Ada, 3L's Parallel C, C++, Pascal and Fortran.

Three of the languages were considered for this thesis. These three languages were Occam

[Ref. 10], Alsys-Ada lRef. IIJ, and 3L's Parallel C++ [Ref. 12] [Ref. 13).

a. Occam Programming Language

Occam [Ref. 10] is a high level programming language that is designed to run

concurrent processes on a network of processing components (e.g. transputers). There are

two prime concepts in Occam; they are concurrency and communication. These allow

processes to run simultaneously and transfer information. via channels. from process to

process. It is based on concepts founded by David May in Experimental Programming

Language and Tony Hoare in Communicating Sequential Processes.

It allows processes running on a transputer system to communicate only

through channels. These channe1s are asynchronous. but require the send and receive

processes to be ready to send and receive at the same time. This idea of being ready to send

and receive simultaneously is known as rendezvous.

Occam has five kinds of constructions that are used to build a process from

smaller processes (primitive or other). These constructions are:

- IF: This construction guards a number of processes by a boolean expression.

- CASE: This construction is used to select one of a number of options.

- WHILE: This construction is used for loops.

- PAR: This construction has the effect of allowing the processes within its

bounds to execute in parallel.

- ALT: This construction is used to allow a processor to select only one of

several guarded processes for execution. The process whose guard is first found to be true

is selected.

This language allows the programmer to concentrate on a small, manageable

set of processes which can then be connected with other sets of processes. In Occam a set

of processes or a set of interconnected processes can be regarded as a single process.

The above features make Occam a powerful and versatile language. It has not

gained wide aCceptance thus far probably due to the limited use of multiprocessor

(transputer) systems and due to the development of parallel versions of other widely used

languages.

"

b. Alsy.r Ada Programming Language

In October 1989, Alsys produced the first compiler capable of supporting

multi-processor programming in Ada [Ref. I I J. Alsys Ada Compilation System consists of

the compiler and binder, operating in the Alsys Multi-Library Environment. The compiler

generates executable code for transputer for T4 or 1'8 transputer targets. Multi-Library

Environment provides a powerful way of managing Ada development efforts. It allows

compilation units to be flexibly shared among libraries, and eliminates the need to copy

library units to share them, along with the associated version control problems.

Although it has the features mentioned above, we decided against using it,

because the compilation time is too long when compared to the other languages.

c. 3L'.r Parallel C++ Programming Language

(I) Ab.rlTactModel. The treatment of parallel processing in transputer

systems is based on the idea of communicating sequential processes which is explained in

part B of this chapter. In this model, a computing system is a collection of concurrently

active sequential processes which can only communicate with each other over channels. A

channel connects exactly one process to exactly one other process and can only cany

messages in one direction. Each process can have any number of input and output channels,

but note that the channels in a system are fixed; new channels cannot be created during its

operation. A process could be a bit of hardware or a software module; in particular it may

also be another complex system, itself consisting of a number of communicating processes.

(2) Hardware Model. The transputer was designed to be used as a

component in concurrent systems. Each transputer processor has four Inmos links, to

connect it with other transputers. Each link has two channels, one in each direction. These

hardware channels provide synchronized, unidirectional communication.

Arbitrary networks of transputers can be constru<.:ted simply by

connecting their links together with ordinary wires, the only limitation being that each

processor cannot be directly connected to more than four others. A transputer can therefore

16

be viewed as a single process in a multi-transputer system However, it is also possible for

any number of concurrent processes to be run on an individual transputer. Any word in the

transputer's memory may be used as a channel to connect one internal process to another.

The address of such a channel word is used to identify it to the transputer instructions (and

Parallel C++ functions) which send oneceive messages. The contents of the word are used

by the hardware to synchronize sending and receiving processes.

From a program's point of view, these internal channels and the hardware

link channels are identical. The same instructions (or parallel C++ functions) are used to

send and receive messages on both internal channels and the hardware link chalUlels.

Hardware link: channels are identified by special fixed addresses, but internal channels have

addresses allocated by software.

The equivalence of internal channels to hardware link channels means it

is possible to develop a parallel system on a single transputer and then move some of its

processes onto other transputers without having to recompile any code.

(3) Software Model. Parallel C++ is based on the same abstract model of

communicating sequential processes as the transputer hardware.

A complete application is viewed as a collection of one or more

concurrently executing tasks. Each task has its own region of memory for code and data, a

vector of input ports, and a vector of output ports. The port vectors are passed to the task

as arguments to its main function. The code of a task is a single transputer image (.b4) file

generated by the ordinary linker, linkt.

Tasks can be treated as atomic building blocks for parallel systems, to be

wired together rather like electronic components. Indeed, several such basic building-block

tasks are supplied with the compiler.

Each element in the input and output port vectors is of type "pointer to

channel word", (*CHAN). Ports are bound to real channel addresses by configuration

software external to the task itself, the bindings can be changed without recompiling or

relinking the task. Extended C++ run-time library functions supplied with the compiler

11

allow C++ programs to send and receive messages over the channels bound to a task's

peru.

The confl8uration software also provides ways of specifying which

software tasks are to be run on which hardware processors. Each processor can support any

number of tasks, limited only by available memory.

Tasks placed on the same processor can have any nwnber of

interconnecting channels. Tasks placed on different processors can only be connected

where physical wires connect the processors' links. Each logical connection between two

tasks placed on different processors is assigned exclusive use of one the physical link

channels connecting the processors. The nwnber of interconnections between tasks on

different processors is therefore limited by the number of hardware links each one has.

(4) PtlTtlllelExeclllion Th,.,ads. The software features described so far

allow us to build parallel systems by connecting together the ports of a number of relatively

independent tasks. In particular, all the tasks have separate code and data, and are only

allowed to communicate with each other by sending messages over channels.

All of the code of a task can be written in an ordinary sequential language,

except for one extra feature needed by languages based on the communicating sequential

processes idea. This extra feature is a way of making a process wait until a message is

received on anyone of a number of input channels. In Parallel C++, it is catered for by the

ability to create new concurrent threads of execution within a task. The task creates one

thread for each input channel. Each thread executes a sequential message input call and

handles messages received on that channeL Each one of Parallel C's threads has its own

stack (allocated by its creator), but shares its code, and all of its static and heap data, with

any other threads in the same task. Semaphore functions in the run-time library are used to

prevent threads to interfering with each other.

(5) ConjiguringAnAppllcanon. Once an application has been designed

and written as a collection of communicating tasks, it is loaded into physical network of

IS

transputers. First, each individual task is built by compiling all its source files with the C++

compiler and using the linker ((ink/) to combine the resulting binary Chin) files with the

Parallel c++ run-time library to produce a task image (.b4) file, Then, a bootable

application image file must be generated from the component task (.M) files. The program

which does this is called the configurer. It is driven by a user-supplied configuration file

which specifies:

* the hardware configuration (processors, and the wires connecting them)

on which the application is to be run;

* the names of the .M files containing the component tasks of the

application;

* the connections between the various tasks' ports;

* the placement of particular tasks onto particular tasks onto particular

processors in the physical network.

The output of the configurer is an application file which can booted into

the specified hardware network and run using the same afserver program used for simple

stand-alone programs. The afserver task is an ordinary MS-DOS executable (.exe) file that

runs on the Pc. It loads executable .b4 files into the transputer and also acts as a file server,

handling I/O requests made by the transputer. The afserver and the transputer execute in

parallel and communicate via an INMOS link. The messages sent to the afserver are

nonnally generated by the Parallel C++ run-time library. It converts I/O operations into

messages requesting the afserver to perform MS-DOS operations and then waits for the

af!leTVer to reply.

(6) Processor Farms. The tools described so far allow you to build

applications which execute on any transputer network the wiring of which can be specified

in advance in a configuration file. For many parallel computations it is useful to be able to

create applications which will automatically configure themselves to run on any network

of transputers. Such applications will automatically run faster when more transputers are

added to a network, without recompilation or reconfiguration.

19

Parallel C++ allows us to create applications like this, provided the

application can be implemented by a processor farm, and provided that there is enough

memory on each processor in the network to support the required loading and message

handling software.

The processor farm is a method of building applications for the transputer.

Many users have found it a useful technique, for the following reasons:

.. It takes full advantage of the transputer's parallel processing facilities

and the ability of transputers to work together in groups .

.. Many existing sequential programs can be converted into processor

fanns without much difficulty .

.. A processor farm is not restricted to a particular network of transputers,

but will automatically take advantage of the processors it finds.

A processor farm includes two independent programs, or tasks, written by

the user. These are called the master task and the worker task. There is only one copy of the

master task, and this is placed on the root transputer, that is, the transputer which is diroctly

connected to the host. A copy of the worker task is placed on every transputer in the

network.

The function of the master task is to break up the job which is to be done

into a number of small, independent sub-jobs, each of which is performed by one of the

copies of the worker task. The master does this by sending details of the sub-job to be done

to the worker task. The worker task sends the results of its work back to the master task,

which combines it with the results from all the other worker tasks. The worker task is

written in such a way that immediately after sending its results back to the master, it is ready

to receive details of another sub-job, and so on.

The communication between the master and the workers can be in two

ways. Bither another task caned router can be written by the user, or specjal procedures

which are included in the run-time libraries of the parallel languages and automatically

added to the processor fann can be used.

20

III. DETAILED PROBLEM STATEMENT

A. PEGASUS DATABASE

1. Introduction

The PEGASUS Perspective View Database (pYDB) [Ref. 14] is a geographic

database containing elevation data, gray shades taken from aerial photographs. vegetation

heights, and other information required for perspective view generation. The PVDB comes

in four resolutions: 1-,4-, 16-and 64-meter.

The Fort Hunter-Uggett (FHL) PVDB covers a rectangular area on the ground

measuring 32x28 kilometers. Its southwest comer is at UTM coordinates 43328.63904 and

its northeast corner is at UTM 76095,92575. The latitude and longitude of these two points

are approximately 35Q 48'N. 121" 25'W and 36 0 4' N, 121" 4'W.

2. Database Organization

The PYDB is organized as a collection of tiles., blocks, and posts (see Figure 3.1,

Figure 3.2 and Figure 3.3). A post is the smallest clement in the database andcovers an area

on the ground measuring lxt, 4x4, 16x16,or64x64 meters for the 1-,4-, 16-, and 64-meter

databases respectively. A post is the only database element for which the area of coverage

is resolution dependent.

A block is a collection of posts that always covers an area on the ground

measuring 256x256 meters, but the number of posts in a block depends on the resolution.

A block in the I-meter PVDB contains 256x256 posts, a4-meter block is made up of 64x64

posts, a 16-meter block contains 16x16 posts and aM-meter block has 4x4 posts.

A tile, the largest element in the database, is a collection of blocks which always

covers an area on the ground measuring 4096x4O% meters. A tile contains a i6xI6

arrangement of blocks regardless of resolution.

21

~
;:

l;
:I'

~ 11
1-
S'
" ~

'" z
I 163M
f-a:
0
z

,,"

PVDB DATABASE

UTM EASTING

PVOB EASTING

~

" z o
:D
-t
:r
Z
'"

I :: I ~ I e: ~ : ~ , :
I ~ ;: I E; I ~ I

I is! II i!. I I I

Il:l ; ~ i

l:al I I I

1'1, I I
I., I
i ~ i I I

I I

I
: ~ i ~ I I
_ ~ I !: I ~ i

s)tOOla 9~

: :

S31tl.L

Figure 3.2: PVDB Tile Structure

23

1;'

I ,

~
'

.... 1

., ·1- ,
01, .. 1-1=

.. " " I If ; '" :," i
·,·1··1-1"

.... ~""' ""' .. _ ... >0,.,...

Figure 3.3: PVDB Block Structure

As shown in Figure 3.1, The Fort Hunter.Liggett (FHL) covers a rectangular area

which consists of 56 tiles totally. The terrain data for 25 of them (white area in Figure 3.1)

forms the actual database. Specifically, it covers 400 kml area ofFHL This area is used for

training purposes.

Now, we can sununarize the size information of a tile, a block and a post for 4

different resolutions as follows:

RESOLUTION

1 motcr

4 mot"
16 meter
64 meter

3. Post Structure

POST SIZE

32 bits
32 bits
32 bits
32 bits

BLOCK SIZE

256 Kbytes
16 Kbytes
lKbyte

64 Bytes

TILE SIZE

64 Mbytes
4 Mbytes

256 Kbytes
16 Kbytes

Figure 3.4 shows how each post in the PVDB is packed and how the 32 bits are

distributed among the elements:

3 , 1

1098"54321 o , • , , 5 4 3 2 1 0 , • 7 6543210

E N S
ELE L vcr NOR VGT VID A S GSV , T.

Figure 3A: PVDB Post Structure

25

The element information is as follows:

ELEMENT NUMBER MAXIMUM

CODE OF BITS VALUE DESCRIPTION

ELE 11 2047 Elevation, in meters

EL2 12 4095 Elevation, in half-meters

UCI 2 3 Under Cover Index

NOR 4 15 Surface Normal Indicator
VGH 15 Vegetation Height Index

V1D 3 Vegetation ID
NAT N,,,,,,,

SSB 1 Sun Shade Bit
GSV 63 Gray Shade Value

Each element has the following meanings (see Figure 3.5):

ELE: 1be bald teITain elevation plus the vegetation height (in meters) above the

lowest point in the database. At FHL the lowest point is sea level.

EL2! Same as ELE except the units are in half-meters.

uel: The height, in meters, of a cultural feature above the ground (ttee branches,

eaves of buildings, etc.).

NOR: A value which serves as an indication of the surface nonnaI.

VGH: Height of the cultural feature. The stored values of 0 to 15 indicate

vegetation heights of 0 (water), 0 (grass), 1,2,3,4,5,8,10, 15,20,25,30,35,40, and 47

meters.

26

Figure 3.5: Database Element Definition

27

VID: Indicates the cultural feature. This value is combined with UCI, NOR,

VGH. and NAT to determine what a particular object is.

NAT: If set to 1, this value indicates the cultural feature is natural, otherwise it is

man-made.

SSB: If set to 0, this post is shaded by another cultural feature. This value is time­

dependent

GSV: A linear set of values ranging from 0 to 63, where 0 indicates black and 63

is white.

B. LINE-OF-SIGHT CALCULATION

Line-of-sight (LOS) is a central process in combat simulations that works at item

level [Ref. I]. The LOS algorithm is critical to the processes being simulated and impacts

the run speed (ratio of game time to reaJ. time), since it may be the single most

computationally expensive algorithm in simulation. Some LOS considerations in Janus

have been simplified to increase computational efficiency.

There are three general aspects of LOS processing [Ref. I:pp. 107-110):

1. LOS in support of detections.

2. LOS through smoke and/or dust clouds.

3. LOS supporting force deployment.

For this thesis, we implemented the LOS calculation for the first aspect which is LOS

in support of detections. A short description will be given for the other two aspects.

1. Line-ofwSight for Detection

The fllSt detennination to be made is whether or not terrain features block the

LOS between the observer and the target (see Figure 3.6). The process is as follows:

28

Figure 3.6: Line-of-sight for Detection

29

~ The direct line between the observer and the target is determined, its length

calculated and it is divided into equidistant points. Each point is tested to

determine if a terrain feature affects the probability of LOS (PLOS).

- The number and the location of points on the line are detennined as follows:

~ Compute the distance between the observer and the target (delta(X) and

delta(Y» .

• Determine N(X) and N(y) by dividing delta(X) and delta(y),

respectively by the terrain grid size. Assign the larger of N(X) or N(y)

to Np, which is the number of points to be tested along the LOS line.

• Compute dX:::: delta(X) I Np and Dy ::: delta(y) I Np.

~ Start at the observer's position + (dx,dy) and determine the terrain height

(ground elevation) of the grid in which that point rests. If the ground elevation

is greater than that of the observer, LOS is blocked and the process is completed

for that observer~target pair .

. If the terrain height at thatpointis less than or equal to the height of the observer,

add the height of trees/Urban areas in that grid and recompute the terrain height.

If the ground elevation + features height is greater than that of the observer,

PLOS is decremented by the LOS degradation factor caused by features in the

grid.

-If the resulting PLOS is greater than O.ol, dx and dy are added to the old position

and the process continues until LOS is considered blocked or the target position

is reached. A random number is drawn and compared with the resultant PLOS

to deternrine if acquisition has taken place.

2. LOS Through Smoke/Dust Clouds

!fLOS exists between the target and the observer, the model checks to see if any

smoke or dust blocks the LOS line.

30

3. LOS For Deployment

The illS for any unit can be displayed by the gamer from the workstation by

pucking the LOS block on the menu and then the unit. The parameters of the illS fan are

attached 10 each unit. depending on its sensor (height. range) and how the orientation and

width of the fan have been previously set by the gamer.

C. WHY I·METER RESOLunON?

To have reliable data that represents a terrain, there are some concepts that should be

considered. First. we will describe these concepts with the help of Figure 3.5 and Figure

3.7.

Figure 3.7: General View of A Terrain

31

The calculation of LOS is based on data stored in a grid of square cells. The elevation,

the height of trees or urban buildings are stored as part of the terrain database and they are

the factors which cause the unevenness of the terrain.

In Figure 3.7, D represents the length of one side of square cells. 6.X1 and AXz
represent the "absolute variation" which shows the unevenness of the terrain. HI and Hz

represent the height values to be assigned to those: square cells.

The real height values are mostly expected to have some decimal digits. So, these

values should be rounded by using a resolution value before being assigned to the square

cells. We call this resolution value as "height resolution" and symbolize it as" 6.H".

The question at this moment is how we can choose the best A H. To answer this

question, first we consider a flat terrain (see left cell in Figure 3.7)whlch means that 6.X is

small. In this case, a small A H can be reasonable. But, when a rough terrain which has a

big 6.X is considered (see right cell in Figure 3.7), a small 6.H will not work. well For

example.. assume we are using 10 centimeter height resolution when dealing with a terrain

which has 10 meter of absolute variation. Using such a small height resolution Le.

sensitivity for an absolute variation which is relatively too high for that height resolution

value will not give reliable rounded numbers for the real height values for the square cells.

So, our first conclusion is as follows:

Conclusion 1: The best idea is to equalize 6.H and 6.X or, to choose AH which

is bigger than AX.

Before applying the first conclusion to our problem, we should fllst normalize

absolute variation and height resolution. Eq 3.1 and Eq 3.2 show this process:

NorlnQliud Terrain Variation = ~ (Eq3.1)

Normali:ed Height R~sollliion = 7f (Eq3.2)

32

After normalizing process. we can approach to our problem more specifically as

follows:

We assume the reasonable normalized terrain variation for a man-made flat surface

as about 0,5%, for a natural terrain as about 5% and for a rough terrain as about 50%.

Since, The Fort Hunter-Liggett training area can be accepted as a rough terrain, then

our second conclusion is as follows:

Conclusion2: TIle normalized height resolution to be chosen should be around

50%.

Another important factor for our problem is the length of one side of a square cell,

namely D. It is obvious that when D increases, l!.X will increase with a high probability

since more elevation differences. more trees or more urban buildings will be inside the

borders of one squan: cell. We believe that this situation should be avoided to have reliable

height values for each cell. B«:ause, we will use a constant height resolution value and a

constant D for our all database and we should not increase the probability of having big

values of l!.X by increasing D. So, our third conclusion is as follows:

Conclusion 3: For rough terrain databases the D value should be as small as it

When we considered all of the concepts, factors and conclusions, we see that I-meter

resolution database with a 50 centimeter height resolution which has a 50% nonnalizeci

height resolution is best to apply to our problem, and we believe that it represents The Fort

Hunter-Liggett terrain very reliably.

33

IV. TRANSPUTER IMPLEMENTATION OF LINE-OF-SIGHT
CALCULATION

A. HARDWARE

1. General

The designed network of transputer implementation of LOS calculation consist of

following elements:

- An IBM PC as a host

- An IMS BOO4 Evaluation Board inside IBM PC

- An ALTA Remote TRAM Holder

- An ALTA CI'RAM-25-4F (with 1 T80525 MHz transputer)

- A SUN SPARe Station

-An ALTA HSI/SBwinside SUN SPARCStation

- An IMS B012 Evaluation Board

- 16 ALTA CTRAM-25-4F (with 16T80020 MHztranspUfers)

A general view of the network is shown in Figure 4.1. In section 2, each of tht­

network elements will be mentioned in detail. In section 3, the implementation will be

described with the modifications made by us towards our design purposes.

2. Background

a. The TrtmsputMIHost Relationship

The transputer is normally employed as an addition to an existing computer,

referred to as the host. Through the host. the ttansputer application can receive the services

of a file store, a screen, and a keyboard as shown in Figure 4.2.

When the host is equipped with an add-in transputer interface board and the

appropriate software. we call it a transputer development sys '·111. Presently. the host

computer can be an ffiM PC or compatible, a NEe PC. a DEC MicroVAX II, or a Sun

34

Figure 4.1: General View of the Implementation Network

3S

SPARC Station in transputer development systems. But with the current capacity of our

laboratory we are able to use an IBM PC for our implementation.

Figure 4.2: The TransputerffiOflt Relationship

b. IBM FC As A Host

The transputer communicates with the host along a single !NMOS link. A

program called a server [Ref. 15], executes on the host at the same time as the program on

the transputer network runs. The server ensures that the access requirements of the

application in terms of keyboard, screen, and filing are fully satisfied. All communications

between the application running on the transputer and the host services (like screen.

keyboard, and filling resources) take the fonn of messages. The standard transputer C, C++,

Pascal, and Fortran development systems uses a server called afserver. The Occam toolset

uses a server called iserver.

The root transputer in a network is the transputer connecting to the host bus

via a link adapter. Any other transputers in the network are connected together using

36

TNMOS links, to the root transputer. A transputer network can contain any size and mix of

transputer types.

Transputer components form a unique hardware environment which is not

immediately compatible with most existing personal computers (PC) or main frames upon

which development work is accomplished. The TMS BOO4 evaluation board was designed

to meet these needs by interfacing a transputer memory with an ffiM type PC allowing the

software developer to edit, compile and test software using the PC as a host.

c. The IMS B004 Eva/ualion Board

The LMS BOO4 board is logically divided into three distinct parts [Ref. 16]'

1. The transputer, with buffered links and one or two megabytes of RAM.

2. The PC subsystem logic, which allows a program running on the

Personal Computer to reset and analyze systems.

3. The IMS Q)()2 link adaptor, which interface to a parallel addre.~s/data

bus, such as the one provided on the system expansion slots within an

IBM PC. The link adaptor is accessed by a program running on the

Penonal Computer to transfer data to and from the transputer. This

device can convert PC's byte-wide parallel data into serial link data for

the transputer links, and visa versa.

These three distinct pans of the board are joined together by jumpers. The

"Reset" jumper al10ws the PC sub.~ystem to respond to addresses from the PC, and connects

the transputer's reset, analyze, and error signals to those controlled by the PC. The "Link"

jumper connects the link adaptor to one of the transputer's links, and allows the Link

Adaptor to respond to addresses from the PC. Figure 4.3 shows a block diagram of the BOO4

board which fits in a ful11ength eight bit slot of an IBM PC [Ref. 17J

Before any program can be downloaded to a BOO4 board from a PC, two

jumper ~ockets must be fitted correctly. The use of these jumpers allows more than one

37

8004 to be present within a PC, but allowing only one of them to respond to the Transputer

Development System (TDS).

Figure 4.3: IMS BOO4 Evaluation Board Block Diagram

The board which has the jumpers fitted is designated the Master, and any

number of other INMOS evaluation boards can be attached to this one via the links. Figure

4.4 shows the rear edge connectors of the 8004, looking from the rear of the board. As can

be seen, there are two columns of pins, and these are grouped into sets of five, suitable for

the five way sockets which terminate the various cables supplied.

The link sockets are self explanatory. The Up, Down and Subsystem sockets

are concerned with system control, initialization and error handling. The simplest way to

use them is to connect the DOWN socket of the Master TDS board to the Up socket of the

38

next board with the Reset cable, and then daisy chain the Down from each board to the Up

of the next. This method ensures that when the IDS resets the fllSt board, aU others in the

chain are also reset (see Figure 4.5).

b .
PCLink D D
LinkO D D Link)

Component Side Solder Side

Linkl D D Link3

PCSystem D D Subsystem

Up D D Down

Bottom

Figure 4A: The Rear Edge COhnecton of the BOO4

Master Board

~~M~M~
Figure 4.5: Daisy Chaning 01 the Subsequent Boards

39

The BOO4 board uses a group of 5 way connectors. to simplify the location of

the various leads for a system (see Figure 4.6).

P;n b

GND NC
(missing) (missillg)
PCLlnkOut NC
PCLlnkIn NC
GND NC
NotLink NC

GND GND
(missing) (missing)
LInkOutO LlnkOutl I. LinkInO LlnkInl

11 GND GND

11 (Pp) (Pp)

13 GND GND I. (miss.iag) (missing)

I' LlnkOut2 LlnkOuC:3

I' LlnkIn2 LlnkIn3
17 GND GND

18 (Pp))
1, (P,) (Pp) ,. (P,) (P,)
II (P,) (Pp)

" PCNotRestt SubsystemNotReset

" PCNolAnalyse SubsystemNotAnalyse

" PCNotErrur SubsystemNotEnvr
15 GND GND{miIiBing)

" (missing) '-" NotSyslem NC
18 UpNotReset DownNotRt5et

" UpNotADBlyse DownNotAnaly.se
30 UpNotErn,Jr DownNotError
31 GND GND(missill8)

" GND(missiJll} GND{missillg)

Figure 4.6: The BOO4 Board Edge Connector Pinout

40

The NotLink: (b6) and NotSystem (b27) are used in conjunction with the Link

and Reset jumpers described previously. When these signals are at logic 0, they select the

functions associated with either reset or link to respond to signals from the PC.

d. ALTA CTRAM (Computation TRAnsputer Module)

The ComputeTRAM (or CfRAM) [Ref. 18J consists of a circuit board with

transputer, memory, and connective hardware which is plugged into a TRAM Holder from

ALTATechnology or similar boards from !NMOS. The CTRAM includes from 1 to 32

Mbytes of DRAM and supports the IMS T80x transputer (with a chip floating point

processor) or IMS T425 (integer only) transputers. A variety of processor speeds and

memory speeds are available, providing users with a wide range of cost-effective compute

modules.

The CfRAM is the basic unit for computation in parallel processing

applications. With its range of ex.ternal memory configurations and processor speeds, the

crRAM is a versatile tool for the system designer or the system integrator. The end-user

can find extra value from the CI'RAM by matching the configuration of each CIRAM with

the needs of his application. This customization results in a tailored, economical mix. of

processors and memory configurations.

CTRAMs may be connected to other transputer modules via its four

transputer links to form a wide variety of topologies.

The mod.ule pinoul~ and descriptions for CfRAM is shown in Table 4.1.

e. ALTA Remote Tram Holder

The Remote TRAM Holder [Ref. 19] may be mounted inside of a disk

enclosure, or in a chassis suitable for holding disk drives and/or transputer modules. Figure

4.7 shows the block diagram of an ALTA Remote Tram Holder.

TABLE 4.1: CTRAM MODULE PINours AND DESCRIPTIONS

Pin
Pin Name

In! Function • Out

[Link20ut Out Link 2 output

2 Link2in In Link 2 input

3 vee Power (+5V)

4 Linklout Out Link I output

5 Linklin In Link 1 input

" UnkSpeedA In Transputer link speed selection A

7 LmkSpeedB In Transputer link speed selection B

8 Qockin In 5MHz clock signal

9 Analyze In Transputer analyze

to Reset In Transputer reset

II notErro< Out 'Ii"ansputer error indicator (inverted)

12 LinkOout Out Link 0 output

[3 LinkOin In Link 0 input

[4 GND Ground

15 Link30ut Out Link 3 output

[" Link3in [n Link 3 input

42

f : ..
I.

j:.
1:.°.
j:

!:
~; :
0:
I

.'

.1 ..
j: ...
'j
.1 .. '

:1 :.
:.

:1: ..•
'1

l~nl~~l~ L~~~~:·~~~
~c:~:-:::sQ-:·:~:-:~ :;;:::S! ':~::Im n' .. I ~ f-.,;,;I ~ r-:::", ,L,...-I -
... I·· II·· j i •• i 1_"· _!, I r.--.-.-...-: ., ,~ ,
""""I~I~

Figure 4.7: The Block Diagram of ALTA Remote Tram Holder

43

(1) Jumper Options. The jumpers in location PS are provided to allow ahigh

degree of configuration connects Link 0 of Module 0 with external link O. The pins are

labeled as to module and the link, and contain an arrow pointing out of the LINKOUT

signal towards the LINKIN signal. The user may insert jumpers to connect any external

links.

Jumper n is factory-set to 20 Megabits/Second. The link speed can be

changed to 10 Megabits/Second as a second alternative.

(2) ExtemalLink$. The differentially-driven links on the module are

connected via modular plugs andjacks. The modular connectors found at locations PI, P2,

P3, and P4 correspond with XO, Xl, X2, and X3 of the configuration area (PS). Those links

can be connected to any available links in the TRAM SLOTs by jumpers or configuration

modules.

(3) TRAM SWTs tmd Topology. There are four TRAM SLOTs on the

motherboard, labeled. SLOTO to SL0T3. They are arranged such that only a single pair of

links (between SLOTI and SL0T2) is conunitted (hardwired). All other links are brought

out to the P8 configuration area.

(4) System Services. The Remote TRAM may be used without connecting

system services (Error, Reset, and Analyze) to the host. The board will assert RESET upon

power on. However, in some instances, the user may wish to access system services from

the host. Connector P5 contains the equivalent of UP system services and should be

connected to the host Connector P6 contains the equivalent of DOWN services and should

be connected towards the next mcx1ule in the chain. The Error, Reset, and Analyze signals

will be propagated UP and DOWN (depending upon the signal) properly to allow daisy­

Chaining of the system services.

44

The signals on P5 and P6 are as follows:

PIN SIGNAL

1 GROUND

f HSIISBus

ERROR
RESET
ANALAYZE

The HSVSBus [Ref. 201 is a single-slot SBu.~ interface between the Sun

SPARe Station and transputers. It provides a high-speed interface between the SBus found

on a Sun SPARe Station and Transputers.

The HSVSBus is a 32-bit SBus slave interface for a Sun SPARe Station. The

HSI provides system services and four bidirectional transputer links to external transputers,

using modular connectors and twisted-pair telephone cables. The links are differentially

driven using AT&T 4][)R series of drivers. The HSVSBus board is a single slot printed

circuit board which conforms to Sun Microsystem's published standards for a single slot

SBus l:ard. Figure 4.11 shows the layout of the board and the locations of the major board

l:omponents.

HalldlellDd
SBus Connector

Transputer
Link.~

System
Services

L---,=*=i---=i=- Transputer

Figure 4.1'1: The HSI/SBus Board Layout

4.1

The SBus interface provides an electrical connection between the host and

external transputer modules. It provides four, bi-directional transputer links to external

transputers, and provides a set of control signals (Reset, Analyze, and Error) which are

controlled by the driver on the SPARe Station host.

When the interface is initialized, transputer boot code is loaded into the dual­

ported RAM and the transputer is then booted from that RAM. The transputer then executes

the boot code to perfonn the interface functions.

Connections to extemal devices are made by using modular telephone handset

jacks. Figure 4.9 shows the six jacks on the end of the HSI-card.

Facina the back of' the SPARC Station
LINKO LINKl LINKl LINKJ DOWN UP

Figure 4.9: HSI·Card Link and Control Connections

The four links from the host interface are designated LinkO, Linkl, Link2, and

Link3.

Reset, Analyze, and Error signals are provided for both 00\\0""'1 and UP

connections. The DOWN connector sends the Reset and Analyze signals to remote

transputers.

g. The IMS B012 Evaluation Board

The IMS BOI2 [Ref. 21] is aeurocard TRAM motherboard which is a member

of a family of TRAM motherboards which have a compatible architecture. External signals

enable it to control a subsystem of motherboards, or to be acomponent of such a subsystem.

46

The smallest TRAM is "size 1". Each of the 16 sites for modules on theIMS

BOI2 board acceptS a size I module. Each module site, or "slot" has connections for four

INMOS links which are designated link 0, link 1, 1ink2, and link 3. TRAMs which are

larger than size 1 can be mounted on the B0l2. A larger module occupies more than one

slot and need not use all of the available link connections provided by the slots which it

occupies.

The BOl2 has two IMS COO4link switches. These devices ate able to connect

together links from the slots and 32 links which are available on an edge connector. The

connections can be changed by control data passed to the board down a configuration link,

which may come from some master system or from one of the 1RAMs on the BOI2 itself.

The B0l2 has two DIN41612 96-way edge connectors, PI and n. These

carry almost all signals and power to/from the board and are easily identified from the

board silk screen printing and from Figwe 4.10. P2 carries power, pipeline and

configuration links and system control signals (reset, analyze, and error).

Slott Slotl
SlotS Slot6

SI0t9 SlotlO

SlotlJ SIotl4

SloW Slot)

SlotA Slot7

SlotS SlotU

Slotll SlottS

IMSB0I2

Figure 4.10: IMS B0I2 Slot Positions

The link connections to the 16 slots are organized as follows:

Two links from each slot (links 1 and 2) are used to connect the 16 slots as a

16~stage pipeline (in a pipeline. multiple processors are connected end-to-end as in Figure

4.11). The pipeline is actually broken by jumper block Kl. Klwill usually be jumpered in

the standard way to give a 16-stage pipeline but can allow other combinations. Figure 4.12

shows the standard jumper configuration for Kl which connects all 16 TRAMs in a

pipeline.

Figure 4.11: A Module Pipeline

18][E]
o 0

[8][8]
[8][8]
[8][8]
o 0

Figure 4.12: Kt Standard Configuration

48

Link I on slot 0 is wired to an edge connector (P2) and is called PipeHead.

Link: 2 on slot 15 is also taken to P2 and is called PipeT ail. By connecting the pipe heads

and tails from multiple boards together, a large, multi·board pipeline is created.

The other two links (links 2 and 3) of each slot are, in general, connected to

two IMS COO4 prograrrunable link switches. The IMS COO4 has 32 input pins and 32 output

pins, plus an INMOS link (ConfigLink:) used to send configuration infonnation to the IMS

c004. Any of the output pins can be "connected" to any of the input pins. so a signal

presented on the input pin would be buffered and transmitted on the output pin (with a slight

delay). The switch connections are made according to infonnation sent to the IMS COO4

down its ConfigLink. The two IMS COO4s on the IMS B012 allow 64 link connections to

be made under software control.

The Reset, Analyze and Error pins of TRAMs (and transputers) is generally

referred to collectively as "system services". The system service signals are used to reset

TRAMs and transputers, to place transputers in an analyze state (for debugging) and to

carry the fact that an error has occWTed in one processor in an array back to some host

system which will deal with the error condition.

Some TRAMs and most evaluation boards are capable of generating the

system services for other l~.AMs and transputers. This is called a subsystem control

capability. The IMS BOl2 can be connected to another board with subsystem control and

also accommodate one TRAM with subsystem control. Furthermore, the IMS BOl2 can

generate subsystem control signals for other boards. The system service signals are

organized in such a way that, another boards can be daisy..chained by using Up and Down

pins on P2. The logic here is same as it is for BOO4 boards.

The IMS BOl2 has a six·way OIL switch (SWI) located between PI and P2.

Each of the six switches make up SWI controls one signal on the board. When a switch is

on, the signal is low and when the switch is off, the signal is high. So, the board link speed

can be set to either 10 Mbits/s or 20 Mbits/s with these switches.

49

(1) PI COIJIJIICtiom. Connector PI has three rows of32 pins. All the pins in

row "a" are connected to the ground. All the pins in row 'b" are link inputs and all the pins

in row "c" are link: outputs. At each of the 32 positions along PI, the three pins from rows

a, b and c carry one link. These signals may be connected to devices with link ports in any

way the user desires.

The link connections on connectoI PI are intended mainly for

communication between the IMS BO 12 and other boards in a card cage. However, it is also

possible to use these PI links and the IMS COO4link switches to switch link connections

for an external system.

(2) P2 COlJlJectWm. If the IMS BOl2is to be used in an !NMOS TIEM card

cage, the ITEM supplies power and has a built-in back-to-back connector which allows link

and reset cables to be connected to P2. Figure 4.13 shows the back-to-back connector pins

as viewed from the rear, Le. looking towards the pins. The boxes represent plugged-in

cables. A good 5V power supply must be connected to the appropriate pins on P2.

PipeHud

ConligUp

LIDkCwnections
.... Kl

Up

Fi&ure 4.13: View of 8ack-to-back Connector Pins for B012

so

(3) IMS BOIl as a Slave to a MasJe,.Conl1'oUe,.. In a standard conflguration

where the IMS B012 is connected to a master-control system such as an IMS BOO4,

PipeHead and ConfigUp links would be connected to two links on the host system, with

"Up" system control port connected to the "Subsystem" port of the host (see Figure 4.14).

Link 1 PlpeHead
-p; peTail

HOST
Link 1 ConfigUp

IMSB012

Subsystem Up

•
Figure 4.14: The IMS B0l2 Board as a Slave

(4) IMS BOIl as a System Maste,.. H a TRAM with "subsystem" capability

is installed in slot 0 then the IMS B012 can act in a stand-alone or master role. With switch

6 (on six-way OIL switch) off, the system control to the other modules on the board and the

"Down" system control pins on P2 are driven from the subsystem pins on the TRAM in slot

o.

3. Our Implementation

The steps for our implementation can be summarized as follows:

• To disable T414 transputer on the BOO4 board inside the PC host.

- To set up a remote tram holder and to place our root transputer on it.

- To connect Sun SPARe Station which has an HSI/SBus to the remote tram

holder.

51

- To place 16 1'8OS transputers on a BOl2 board and to connectB012 board to

the remote tram holder and BOO4.

- To set the link speed as 10 Mbitslsecond.

(1) DisabZingthe T414 TranspuJeron the B004 Botud. As we have seen in

the section which is related with BOO4 board, only T414 transputer can be used as root

transputer on a BOO4 board and we can have a total of 2Mbytes RAM. But for our

application, with a purpose of having more memory and spocd. it was decided to use a 1'8OS

transputer as root transputer with a total of 4Mbytes RAM, namely an ALTA CI'RAM-25-

4F. So, the T414 transputer on the board, had to be disabled.

To disable the T414 transputer on the BOO4 board, two connections were

made between two different pin pairs on the edge connector. These connections are shown

in Figure 4.1S.

(Z)SettingUptheALTARemoteTramHobkr.Mter disabling the T414

transputer, an ALTA CI'RAM-25 4F which is actually a 2SMhz T805 transputer and

4Mbytes DRAM, ~as placed on slo1O of the remote tram holder. So, this transputer became

the root transputer.

Since a Sun SPARC Station, a BOO4 board and a B012 board connections

were planned for the remote tram holder, each of them had to be taken care of separately

because of the different requirements.

The HSI/SBus converts the Sun SPARC Station's parallel data signals to

serial data signals for the transputer links. The voltage for the produced signal varies

between -IS and + IS AC. But, transputers require SV DC voltage. This voltage conversion

for the signals is normally done by the converter on the remote tram holder if the jumpers

are used in the P8 Configuration Area. So, two jumpers were used in the P8 Configuration

Area for the link between Sun SPARC Station and remote tram holder to allow the

necessary conversion and to assign Link: 3 of the root transputer to the Sun SPARe Station

(see Figure 4.16).

52

Pin

,·~il TramHo
UnkO 5

6

,
[0

t2
t3

IS

16

19

20

27
28
29
30
Jl

NC
(missing) (missing)

PCLinkOut NC
PCLinkin NC
GND NC

NO'UDklNC GND GND

(missing) (miSliing)

LinkOnt 0 LinkOut I
LinkInO LinkIn I
GND GND

(gap) (gap)

liND liND
(missing) (missing)

LinkOnt3

LinkIn2 Linkfo3
GND r-- liND

(gap) ","p)

(gap) ","p)

(gap) (gap)

(gap) (gap)

I'CNotRe<jI!t SubsystemNotReset

PCNotAolll)'!'ie SubsystemNotAnalyse

reNotError SubsysiemNotError

GND GND(missing)
(mi~sing) (missing)

NotSystem - NC

UpNotReset DOWDNotReset
UpNotAolilyse l)oWbNotAnalys~

UpNotError DownNotErmr
GND GND(m;Slj;ng)
GND(missing) GND(miSljing)

:Figure 4.15: The 8004 Board Edge Connector Pinout After Modification

53

11 0 0 0 0 10

~ ~
03 Jumpers for Lmk 3

Two wires for
X3 LiDkl

33,13

00,20
Two wires for

Link 1 Two wires for
Link 0

31 30

22 23

Figure 4.16: Remote Tram Holder P8 Configuration Area After
Jumpering

Because the PC's parallel data signals are converted to seriaI data signals

for the transputer links by the c002 Link Adaptor on the BOO4 board, we didn't need the

conversion which was done for the Sun SPARe Station signals. Then, the other 3 links

Link 0, Link: 1 and Link 2 of the root transputer had to be connected to the PC and B0l2

board directly, without using jumpers in the P8 Configuration Area. But, the modular

connectors Pl*P6 (PI-P4 for transputer links, P5 and P6 for system services) have

originally AT&T 41L/R series of drivers. So, those three links and UP and DOWN system

services were canicd to a connector which was located at the back of the remote tram

holder and which had drivers for transputer link cables and for system service cables. For

carrying links, two wires were used, one for LinkOut and one for LinkIn signal (see Figure

4.16). For carrying system services, three wires were used, one for Analyze, one for Reset

and one for Error signal. Figure 4.17 shows the connections made inside the remote tram

holder.

Figure 4.17: The Connections Made Inside the Remote Tram Holder

After the connections were made inside the remote tram holder, the 16

CfRAMs were placed on the B0l2 board and 16 T805-20 MHz transputers were pla.;ed on

these CI'RAMs.

The fixed hardware configuration for all the transputers in the network can

be checked with the program named "check". This program runs in PC Host. Figuret18

55

shows the output of that "check" program for our application1 and Figure 4.19 shows the

physical view of our current fixed hardware configuration that we have for our transputers.

We will see how a parallel application is created for a multi-transputer system with a fixed

hardware configuration in the software part of this chapter.

Transputer# LINK 0 LINK I UNK2 LINK 3

HOST 1:1 2:2

0:1 3:1

4:2 0:2

1:2 5:1

6:2 2:1

3,2 7:1

8:2 4:1

5:2 9:1

10:2 6:1

7:2 11:1

10 12:2 8:1

II 9:2 13:1

12 14:2 10:1

13 11:2 15:1

14 16:2 12:1

15 13:2 16:1

16 15:2 14:1

Figure 4.18: The Output ot "Chock" Program tor Our Application

1. For example, FiJure 4.18 first row shows !be foJlowing conneclions fa- Transputert 0 (root): Its
Link 0 to Host. its Link 110 Link 1 ofTranspuler# 1 and its Link 2 10 Link 2 ofTranspuler# 2.

HOST SUN SPARe

r----~TRANSPUTERO

Figure 4.19: The Physical View of the Fixed Hardware Configuration

"

And finally we made the connections for Sun SPARC Station, BOO4

board, BOl2 board and remote tram holder as shown in Figure 4.20 Figure 4.21 and Figure

4.22 (for BOO4, refer to Figure 4.15).

The slot 0 link 0 on the B012 board usually needs to be connected to IMS

CXlO4s. This standard configuration reql ., a connection to be made via P2. A single

connector assembly (termed the "yellow link jumper plug") are used for this purpose. The

position of the jumper is shown in Figure 4.22.

Facing the back o(tbe Sun SPARC Station
LINKO LINKl LINKl LINKJ DOWN UP

-----.... Telepbone Cable

Facing tbe front of the Remote Tram Holder
LINKO LINKl LINKl LINKJ DOWN UP

Figure 4.20: The Connection Between Sun SPARC Station and Remote
Tram Holder

58

(3) Setting Up tIu Link Speed. Because of the BOO4 board's speed

limitation, we set up the link speed as 10 Mbitslsec. To set up link speed for the remote ttam

holder, we connected the jumper 11 with the center position and the position labelled "10".

For the B012 board, we set the Dll.. switches for links to operate at 10 Mhitslsec.

The link: speed set up for the Sun SPARe Station is made by running an

independent program, before running the real application program. We will mention about

it in the software section of this chapter.

To BOO4 Board To BOll BlIBrd To BOll Board To To
BOll Board B004 Board

Figure 4.21: Tbe Connections From tbe Back of Remote Tram Holder

59

pipebead

TO REMOTE TRAM
HOLDER LINK l~ "",..o

pipet.il

TO REMOTE TRA

<:>':*"H~HOWERUNKl

Figure 4.22: The Connections from the Back of B012 Board

60

B. SOFIWARE

1. General

The elements of the system and their functionalities from the software side of

view is shown in Figure 4.23.

The main processes can be summarized in general as follows:

- The link opemtions between Sun SPARC Station and Remote Tram Holder and

setting the link speed as 10 Mbits/scc.

- Loading the height data of the selected terrain from Pegasus Database to the

CTRAMs.

- LOS calculation between the start and goal points which are sent to Sun SPARe

Station by a server which represents JANUS.

- Sending the result back to the server from which the LOS calculation request is

mad,.

- The afserver task on pe.

a. Installing HSIIBus and Setting the Link Speed

As we have seen in the hardware part of this chapter. the HSI/Bus is a high­

speed interface between the SBus found on a Sun SPARe Station and transputers and it

provides link operations between them. [Ref.20] gives all the detailed information for

installing and usage.

The program which sets up the link speed between Sun SPARe Station and

Remote Tram Holder was supplied by ALTA Technology Corporation upon the request of

us. The link: speed should be 10 Mbits/sec before executing the main program because of

the speed limitation of the PC host.

61

SPEEDSIITI'ING,

DATA LOADING

toCTRAMs,
LOS REQUEST

Figure 4.23: The Elements of the System from Software Side of View

b. Our Processor Farm ApplicatWn

'Three things. must be written to create a processor farm application

[Ref. 12:p. 77]:

1. A master task to split up the job into the independent work packets. i.e. sub-

jobs.

2. A worker task. which is automatically copied to each node of the network

of transputers.

3. A configuration file. describing the memory requirements and other

attributes of the tasks.

62

(1) Mater, Worur tuUl Router Tales. There is only one copy of the master

task, and this is placed on the root transputer. A copy of the worker task is placed on every

transputer in the network.

Special procedures are included in the run-time libraries of the Parallel

languages to enable the comnmnication between the master and the workers. They work in

conjunction with another task, called the router.

Nonnally, router task is not written by the user, but is automatically added

to the processor farm. When the master has a sub-job to be done, it calls a procedure which

gives details of the sub-job to the router. The router then finds a worker somewhere in the

network which is currently idle, and sends the work packet to it. The worker task then

processes the work packet, and when it has finished, it calls a procedure to send the result

packet back to the router, which returns it to the master.

For a nonnal processor farm application:

- A worker task contains three sequences: read a packet. process it, send

back a result packet (i.e. input, process, output).

- Every worker should get the same input.

- For every cycle those three sequences start from the beginning.

But, for our application:

- Since we have a big amount of map data, we should divide it to little

portions and load them to different CI'RAMs at a time. Our map is too big to be loaded to

a CI'RAM. So every worker has different input.

- If we had used the same three sequences as mentioned above, we would

have to load the whole data for every cycle. This would be too time consuming. So, we

make first an initialization by loading the map data. Then, we send the point information to

workers as input for LOS calculation, they process it and return the LOS result back. And

for the second LOS request we don't have to make initialization again. Just the second part

that includes input, process and output sequences repeats.

63

Because of the differences which we just described, routing in our

application is done with the programs written by us instead of being done automatically.

The source files for master, worker and router tasks are listed in Appendix B.

(2) Configuration File. The configuration file [Ref. l2:p. 38] describes the

system to be built. It lists all the physical processors in the system, the wires connecting

them, the tasks to be loaded into th.e system and their logical interconnections. In this

section of the Chapter IV we explained configuration file giving the examples from our

actual configuration file "btestl80.cfg" which is listed in Appendix B.

The flIst thing the configuration needs to describe is the hardware

configuration between the processors. The following configuration me lines declares the

processor in the host PC, the processor in the SWl SPARe station and three transputers

including the root transputer and describes the actual physical cables between these

processors for our application:

processor host
processor sun type=pc
processor root
processor pI
processor pH

wire? ruot[O]
wire? root[l]
wire? ruot[2]
wire? root[3]
wire? p1[2]

host[O]
p1[1]
p2[2]
sun[O]
pll[J]

The PROCESSOR statement declares a physical processor. Every

processor in the physical network must be declared, including the host processor from

which the network is to be bootstrapped2 (nonnally an IBM PC-type machine). The

configurer assumes that the processor named host is the host processor. In the case of an

2. The linker program, link!., normally produces an executable image lile prefixed by a short
boofstrap progmm which allows the the afservec to load the image into an empty II'lIfIsputer: the
boofstrap initialL~es the transputer and reads in the rest of the image lile.

64

IBM PC host processor, the host will usually be executing the afserver program when the

network is loaded, simply because that is the program which loads the rest of the network.

It is necessary to be able to specify the afserver task to the configurer so that its ports can

be connected to ports in user tasks, but without forcing the configurer to attempt to

bootstrap the IBM Pc. Similarly, some processors in the network might be set to bootstrap

from ROM rather than from link. A processor is declared to the configurer as having

already been bootstrapped by means of the "type" attribute. The default for the host is that

it is "type9JC" already. For our application, the Sun SPARC station processor was also

described as "type=pc".

The WIRE statement declares a physical wire connecting links on two

physical processors. Each wire suppons two connections, one in either direction. The two

link specifiers in the WIRE statement may therefore be interchanged without affecting the

statement's meaning. Each wire is given a name (or '"!' can be used instead ofa name if the

name will not be referred later). The numbers in the brackets for the WIRE statements are

the link numbers of those processors which are used for connection. The processor

identifiers used in a wire statement must have been declared in a previous PROCESSOR

statement. This is a general rule: all objects in the configuration language (processors,

wires, tasks) must be declared before they are used.

As well as describing the hardware of a system, the configuration file must

contain details of all its software tasks and their interconnections. For each concurrently

executing task in the system, the configuration file must contain a TASK statement. The

TASK statement declares a task, which may be either a user-supplied task or one of the

standard tasks provided with the configurer. The following configuration file lines declares

the afserver task, filter task, master task, two router tasks and two worker tasks for our

application:

65

taSk afserver
task filter
task master

task routerO
task routerl

task workerOO
task workerOl

ins=louts=l
ins=2 outs=2 dat.a=15k
ins=5 outs=5 dala=15k file="tr_commLb4"

ins=20 outs=20 dala=2k file="router.b4" urgent
ins=20 outs=20 dat.a=2k file="router.b4" urgent

ins=l outs=l dala=27Sk file="worker.b4"
ins=l outs=l dat.a=275k file="worker.b4"

Each task declaration must include an "ins" attribute, which specifies the

number of elements in the task's vector of input ports and an "outs" attribute, which

specifies the number of elements in the task's vector of output ports. The "data" attribute

specifies the amount of memory which a task needs. For example the filter task requires a

minimwn of 15 KByte of workspace. A user task for which no memory requirement is

specified gets all the free memory remaining once any other tasks placed on that processor

are loaded. Only one task on each processor can have its memory requirements left

unspecified in this way. The configurer would otherwise have to decide how to split the

remaining memory between several tasks with unspecified requirements; because an even

split is unlikely to be desirable in practice, that is not allowed. The "urgent" attribute

specifies that the task's initial thread is to be started at the urgent priority level. The default

is that the task's initial thread is started at the non-urgent priority level. The ''file'' attribute

specifies the fllein which the memory image of the task is to be found. Task image files are

produced by the linker program. The "file" attribute is ignored for the host processor and

for any processor for which the processor attribute "type--pc" has been specified.

The placement of tasks on processors is specified by the PLACE

statement. It detennines which processor a particular task is to execute on. Every task: must

be placed on some processor. The following configuration file lines describes the

placement of the afserver task:, filter task, master task, two of the router tasks and two of

the worker tasks for our application:

66

place afserver h",t
place filter root
place master root

place routerO root
place workerOO root

place router I pI
place workerlO pI

The CONNECT statement establishes a channel between two tasks, by

connlXting an output port to an input port. Because channels (unlike wires) are

unidirectional, two CONNECT statements are needed to create channels going in both

directions between two tasb. The following configuration file lines describes the channels

between the afserver task, filler task, master task, two router tasks and one router-one

worker tasks for our application:

connect? afserver[O] IiIter[O]
connect? filter[OJ afserver[O]

connect? filter[l] master{lJ
connect? master[l] filLer{IJ

connect? master[2] nJUterll[O]
connect? routerO[O] master{2]

connect? routerO{l] routerl[O]
connect? router I [OJ routerO[ll

connect? routerO[4J workerOO[O]
connect? workerOO[O] routerO[4]

The CONNECT keyword can be followed by an identifier naming the

connection, bUl all the configuration statements which declare new identifiers allow a

question mark to be used in place of the identifier being declared. This is useful when there

67

is no need to refer to an object after it has been declared. After the identifier (or question

mark) the output port is coded first, and then the input pon is coded.

And, fmally the BIND statement allows the contents of a port to be

explicitly set to some literal value. Normally, portS are only bound by means of the

CONNEl.' statement: portS left unbound are pointed at unique transputer channel words

so that attempts to send or receive messages through them cause the minimum harm; the

thread causing the attempt to communicate over the unbound pon simply pauses

indefinitely rather than causing failure of possibly all threads running on the processor. One

application of the BIND statement is to give a task access to the tmnsputer's external event

mechanism. This appears as a channel word at a specific address. Another application of

the BIND statement is to pass an integer parameter to a user task. We used the first

application and initialized the "input port 4" and "output port 4" of the master task to point

to that channel words at the addresses which are shown in the following configuration ftle

lines:

bind input master[4]
bind output master[4]

value=&8000001C
value=&8000000C

The configuration files help to create a parallel application for a multi­

transputer system with a fixed hardware configuration. For our application, the fixed

hardware configuration was shown in Figure 4.19 of the hardware part of this chapter. Our

configuration file btestl80.cfg is listed in Appendix B and Figure 4.24 shows our multi­

transputer system application i.e. current topology for transputers.

c. Loading the Height Dala

The Pegasus Database has all the terrain height data, as we detailed in Chapter

Ill. Because of the memory limitations of CTRAMs (each of them has 4Mbyte RAM), we

can read and load the height data for a limited area at a time.

68

In our application program, we use an 5120 x 2304m. terrain which includes

the training area whose UTM coordinates are 54000 - 59000 WE and 78000 - 80000 SN

and PVDB coordinates are 10692 - 15672 WE and 14096 - 16096 SN. This area was

selected because, its vegetation has the desired characteristics for a tank: battle training.

The loading process occurs in two basic steps. First, thedata is read by the Sun

SPARC Station from Pegasus Database and then transferred (loaded) to CTRAMs. Pegasus

Database is accessible through the Phoenix Server which is not a member of our department

Local Area Network. However, the Pegasus Database was mounted through NFS (Network

File System), so the database can be simply accessed by a read function. But, most of the

time is still spent dwing this read function. The source code which we use for this data

reading is listed in Appendix C.

For the second part of loading process, if we call all data to be loaded to

CfRAMs as map, every CI'RAM will have a portion of that map in its own memory after

loading. The speed of this transfer is 10 Mbitslsec and the transfer occurs through the links.

The data are loaded to totally 15 crRAMs. 14 of them are located on the

B0l2 board and one of them is the on the Remote Tram Holder. Each CfRAM in our

current system has a 4Mbyte memory. Since the router occupies some memory in each of

them, we can load at most 15 blocks (256Kbytc each) to one crRAM. But, to use as many

transputers as we can for efficient calculation and meanwhile to load those C'I'RAMs

equally, we welS CTRAMs and each of them has 12 blocks. In each crRAM, 12 blocks

are loaded to 12 different workers. These workers are the smallest portions in which an

LOS calculation occurs. Figure 4.25 shows the map we load at a time and the distribution

of blocks to CfRAMs.

•••

~­Z11l111

•••

Note: ___ represents Hardware Links.---. represents Software Links

Figure 4.14: Current Topology of tbe Transputers

70

2304m

TRANSPlTT'ER TRANSPUTER TRANSPUTER TRANSPUTER TRANSPUTER , 1111 1111111 2111 2111111
WI'I1'" WI'I1IIl WI'I1IIl wm,., WI1HIl
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

1536m

TRANSPUTER TRANSPlTT'ER TRANSPUTER TRANSPlJTER TRANSPUTER
I III lUll! '" 211111

WI'I1IIl Wl11IIl Wl11IIl WI'I1IIl WI'I1IIl
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

768m

TRANSPUTER TRANSPtrrER TRANSPUTER TRANSPUTER
TRANSPUTER " 11111 1I 21111

WTIHIl WTIHIl WI'I1IIl WI'I1IIl WI'I1IIl
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

1024m. 2048m. 3072m. 4096m. 5 120m.

Figure 4.25: The Map Size and the Distribution of Blocks to CfRAMs

d. WSCalculaJum

The LOS calculation request between two points is made by a server that

represents JANUS system. The information about the stan and goal points is sent to Sun

SPARe Station using the link communication established between them (the program

which is used for this purpose is listed in Appendix A as clienLmain.q. Then, this

infonnation is broadcasted by the Sun SPARe Station to the transputers after receiving the

point information.

The LOS calculation is made in each of the transputers. Since each transputer

knows the borders of its map portion, the transputers whose map portions don't include the

coordinates of those two points and of the line between them returns "0" as an answer

automatically. The transputers whose map portions include the coordinates of those two

points and of the line between them make LOS calculations for their map portions, and

return "0" if LOS exists or"l" otherwise. Then all the answers from transputers are added,

71

and if the total is "0", that means LOS exists between them, but if the total is greater than

or equal to "1", that means LOS doesn't exist between them. This answer is sent to the

server that represents JANUS by way of Sun SPARC Station.

e. The A/server Ttuk on Host

The afserver task is an ordinary MS-DOS executable (.exe) me that runs on

the PC. It loads executable .M files into the transputer and also acts as a file server,

handling I/O requests made by the transputer. The afserver and the transputer execute in

parallel and communicate via an Inmos link. The messages sent to the afserver are nonnally

generated by the Parallel C++ run-time library. It converts I/O operations into messages

requesting the afserver to perfonn MS·DOS operations and then waits for the afserver to

reply.

In principle, the afserver task could be directly connected to the user program.

In practice. a fllter task is interposed between them. The filter runs in parallel with the

afserver and the user task; it simply passes on messages travelling in both directions. The

fIlter is required because sometimes the messages passed between the user program and the

afserver are only one byte long and the revision chip cannot handle single-byte message

transfers on its hardware links. The fllterpads out I-byte messages to 2 bytes to avoid this

problem. The connections for afserver and filter tasks can be seen in btestl80.cfg

configuration me which is listed in Appendix B.

72

v. EXPERIMENTAL RESULTS FOR LINE·OF-SIGHT
CALCULATION

A. PERFORMANCE ANALYSIS

When a line-of-sight request is received by our system, the infonnation about start

and goal points is broadcasted to all transputers in the network. Since each transputer has

height data for a different portion of aU area, LOS calculations are done only by the

transputers along the line between start and goal points. The advantage of parallelism for

our application is that each transputer starts doing LOS calculations at the same time. So.

when we neglect the time spent for communications between transputers, the total LOS

calculation time for all transputers which participate the calculation should be equal to the

time spent by the transputer which does maximum LOS calculations.

The most important factor fOf measuring perfonnance increase with our parallel

system is the distance between the two points which are subjects to LOS calculation. If the

distance between those two points is too short and only one transputer does the calculation,

then this is the worst case and we have no performance gain when we compare with a one

processor system. If the distance between those two points is maximum, which is equal to

the diagonal of the simulation area, then this is the best case and the performance gain is

In where n represents the number of processors (transputers).

So, ideally the expected average gain after some number of consecutive LOS

calculations will be:

EXPECTED AVERAGE GAIN = ~ (Eq5.1)

And the expected average utility of the sys1r:m will be:

EXPECTED AVERAGE SYSTEM UTILITY = ~/n = &n (Eq5.2)

73

Since we used 15 transputers in our application, by using Eq 5.1 and Eq 5.2 we can

say that the expected average gain of our system is «JiS) 12} '" 1.936 and the expected

average system utility is (1/ (2JlS}) .. 0.129.

B. THE RESULTS

In order to test our transputer implementation of line-of-sight calculation. we had to

run our program such that all calculations would be done by one transputer. Then we could

directly make comparison and see the improvement. But this could be possible only if the

points between which the LOS calculation was required were inside the map borders of that

transputer module. Since CIRAMs had approximately 4 Mbyte of limited available

memory and the total training area required approximately 46 Mbyte memory, it was

impossible to do timing testing with one transputer. Then. we decided to use another Sun

SPARe station' with a large memory to hold all training area data in its memory. We made

a modiflcation to our application programs to run them on that Sun station as being a non­

transputer or a non-parallel version. So, every LOS calculation was done by a single

processor whatever the distance between start and goal points were. Then we could test our

implementation by using the scale factor between transputer and that Sun station which will

be described below.

We used two different start and goal point pairs for testing. The height values for both

pairs were entered as big numbers, so we were sure that there was line-of-sight between

start and goal points. This was important to provide a full calculation time. Because, the

LOS calculation algorithm stops and returns the answer when a bigger height data is

encountered before reaching to the end point. This could take a very short time. But, when

there is line-of-sight between two points, this means every data on the line is checked and

a full time LOS calculation occurs.

1. The Sun Slalion lYe used was a SPARCsySlelJ1 630MP Model 120 wilh 128 MbyteS memory and
IWO 40 MHz SPARC2 processom. Its perfoonance \Y8S 25 MIPS and 4 MFLOPS for our
applicaJion. Thi5 performance is almosl twice of the perfoonance of a SPARCstationl whicll
feat\1re5 20 Mhz clock speed, 12 MIPS and 2.5 MFLOPS.

14

For the first pair. the distance between start and goal points wen:: selected such that

the coordinates of the points remained inside the borders of one transputer module. The

purpose here was to allow only one transputer to do LOS calculation in our transputer

implementation and to get one trarulputer LOS calculation time. Meanwhile we used the

same points to get the Sun station LOS calculation time. 'These results2 are shown in Table

5.1 and Table 5.2. The comparison between two calculation times gave us the scale factor

between transputer and Sun station:

SCALE FACTOR .. s~:~:;;il '" 1.117

For the second pair. the distance between start and goal points were selected as

maximum (as the diagonal of the area). The purpose here was to allow as many transputers

as we could to do LOS calculation in our transputer implementation. We also used the same

points to get the Sun station LOS calculation time for a maximum distance. These results3

are shown in Table 5.3 and Table 5.4. Then. we simulated a transputer with enough

memory to hold all map data by using the SCALE FACTOR. named that simulated time as

SIM:TRTIME2 and found the SPEEDUP RATIO for the best case of our implementation:

SIMTRTlME2 = SCALE FACTORxSUNTIME2 '" 18.956

SPEEDUP RATIO = S/~:~~~:2 = 2.581

2. These timing results are for 100 consecutive LOS calculations of each painl.
3. These timing results are for 100 consecutive LOS calculations of each pain!.

"

TABLE 5.1: THE TIMING RESULTS OFTRANSPlITER VERSION FOR SHORT

DISTANCE (LIMITED TO ONE TRANSPUTER)

TI!ST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT

I 10672, 14096 11695,14683 0 5.995

2 10672, 14096 11695,14683 0 5.983

3 10672, 14096 11695,14683 0 5.974

AVERAGE TIME "" 1RTIMEl-5.984

TABLE 5.2: THE TIMING RESULTS OF NON·PARALLEL VERSION
(SUN STATION VERSION) FOR SHORT DISTANCE

TEST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT

I 10672, 14096 11695.14683 0 5.250

2 10672,14096 11695,14683 0 5.935

3 10672, 14096 11695,14683 0 4.877

AVERAGE TIME _ SUNTIMEI - 5.354

76

TABLE 5.J: THE TIMING RESULTS OF TRANSPUTER VERSION

FOR MAXIMUM DISTANCE

TEST START POINT PVDB END POINr PVDB LOS TIME (see)
NO COORDINATE COORDINATE RFSULT

1 10672. 14096 15672. 16096 0 7.337

2 10672.14096 15672, 16096 0 7.356

3 10672, 14096 15672. 16096 0 7.337

AVERAGE TIME = TRTIME2 = 7.343

TABLE 5.4: THE TIMING RESULTS OF NON·PARALLEL VERSION

(SUN STATION VERSION) FOR MAXIMUM DISTANCE

TEST START POINT PVDB END POINr PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT

10672. 14096 15672, 16096 0 17.028

10672, 14096 15672. 16096 0 17.226

10672. 14096 15672,16096 0 16.661

AVERAGE TIME - SUNTIME2 =: 16.971

77

The communication overhead slowed down the processing time of transputers. The

ratio between the expected best case gain which was ..fn and the SPEEDUP RATIO showed

us the maximum communication overhead between the transputers. We found that we had

33.3 percent of communication overhead as a maximum value for our system:

MAXIMUM COMMUNICATION OVERHEAD", l_ePEED% RATIO). 0.333

The next step was to determine the average gain and the average communication

overhead for the system. FlrSt., we had to fmd the average LOS calculation times for both

transputers and the Sun station to do that We kept the lower left comer of the map as the

start point and used a random number generator to generate 50 different goal points for

LOS calculations. We used these 50 pairs of points for our transputer system and for the

Sun station. The results" were as follows:

AVERAGE LOS CALCULATION TIME FOR TRANSPUTERS .. 6.541sec

AVERAGE LOS CALCULATION FOR SUN STATION", 8.89sec

Then. by using these two average time values and the SCALE FAcrGR. we found

the AVERAGE GAIN:

AVERAGE GAIN., 8.89)(SC~~1 FACTOR", 1.518

4. These timing results are forl00 consecutive LOS calculations for each SO points.

78

And, the comparison of EXPECTED AVERAGE GAIN which was (In)/2 and the

AVERAGE GAIN gave us the average conununication overhead between the transputers.

We found that we had about 21.5 percentofconununication overhead as an average value

for our system

AVERAGE COMMUNICATION OVERHEAD = 1-(AV~~~~/~;lN) = 0.215

Finally, we calculated the average system utility for our application:

AVERAGE SYSTEM UTILITY = AVERA~: GAIN = 0.1012

79

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis was an effort to improve Janus combat simulation model in a distributed

memory and computing environment using transputers and PEGASUS I-meter resolution

database. We have shown that line-of-sight (LOS) calculation can be done using a multi

transputer system with some modiHcations in the processor farming idea.

Due to the memory limitations placed on us by the Sun SPARe stationl that we used

in our application, we had to place 12 worker tasks on each transputer in the network. The

number of worker tasks could be less only if the Sun SPARe station could keep bigger map

data in its memory during each data loading process to the transputers. Because of the big

number of worker tasks, we had a high communication overhead which affected the

performance of our application.

Although the performance increase is less than the expected values., the timing results

have shown that further significant improvements can be provided for LOS calculation

time with faster transputers and a Sun SPARe station that has more memory.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

The further research opportunities can be classified under the following main topics:

I. Connection To Janus

In ideal conditions, the line-of-sight calculation requests should be made by Janus

system itself and the start and goal point infonnation should be provided to Sun SPARC

station. But Janus is not available in NPS Computer Science Department yet After the

I. The Sun SPARC station in our applic8lioo (see Figme4.23) is a SPARCstation IPX with 16
MBytesmemory.

80

completion of setting up the Janus in our department, the future work will be providing the

connections between our application and the Janus system and make them work together.

2. INMOS T9000 Transputers

The INMOS T9CXIO [Ref. 6:p. 351} is the latest member of the transputer family.

It is designed to provide far higher performance and greatly improved communication

facilities. !NMOS has used advanced CMOS technology to integrate a 32-bit integer

processor, a 64-bitfloating point processor, 16 Kbytes of cache memory, acommunications

processor and four high bandwidth serial communications links on a single IMS T9000

chip. The illS T9000 transputer excels in real-time embedded applications, delivering

exceptional single processor performance and scalable mUltiprocessor capability. In

addition to executing several instructions each cycle, the number of cycles required to

perfonn many arithmetic and logical operations has been reduced from previous

transputers by adding extra hardware. Because of its superior characteristics, illS T9000

should improve oW' system performance significantly.

3. ALPHA AXP Farm Programming Environment

Alpha AXP Fanns which are produced by Digital Equipment Corporation are

another choice for distributed memory parallelism. They also provide tools and libraries for

fanns. These AXP Farms use DECchip 21064 (Alpha AXP microprocessor) which is the

fastest microprocessor in the industry [Ref. 6:p. 351]. DECchip 21064 offers the highest

available performance with a 400 peak operations per millisecond, a cache bandwidth of

3.2 GB/s, controls up to 16 MB cache and a 64-bit design. Therefore we believe that the

applicability of Alpha AXP Farms to oW' problem can be a future research area.

4. Parallel Programming Support Environments

A parallel programming environment is a collection of tools for automating part

or all of the steps in writing a parallel program [Ref. 6:p. 351]. A variety of environments

and tools have been proposed, prototypes constructed, and a few commercially available

81

systems marketed to parallel programmers. Among these EXPRESS [Ref. 6:p. 351J and

The HEllOS [Ref. 6:p. 351] are available in our laboratory.

EXPRESS is a collection of routine calls that fonn a toolbox for writing

distributed-memory parallel programs. The toolbox routines are used as built-in functions

to distribute data among processors and coordinate processors during parallel program

execution. EXPRESS has been implemented on Intel, Mark m, nCUBE. and transputer­

based machines [Ref. 6:p. 351J.

The HELlOS Parallel Operating System has been designed to run on parallel

computers. Such computers contain processing units, and fast conununication between the

processors. Many such para1Iel computers are built using transputers. and Helios runs on

these machines. However, Helios also runs on parallel computers built using processors

other than transputers.

So. another future research area is to check the applicability of these parallel

programming support environments to our problem and to investigate how much

improvements they can provide for us.

82

APPENDIX A - SUN SPARC STATION SOURCE CODE

This appendix contains the source listings of the C++ code developed for the Sun

SPARe station that is used in this thesis. They are stored in files as listed below:

l.link.h

2. hsilink.h

3. los_com.h

4. los...,global.h

5. map.h

6. map_c.h

7. map_s30m.h

8. s_comm.h

9. unix30rnm.h

to. vector.h

l1.map.C

12. map_c.C

13. map_1ccom.C

14. s_comm.C

15. vector.C

16. manager.C

17. cliencmain.C

83

~
FILENAME : Iink.h
AUllIOR _.:Dr.Se-HungKWAK&CemAliDUNDAR

DAlE : September 1993

DESCRIPTION : Contains the description of link communicalion funclions which are written in C

language. .. _ ,
,. Writea "Count" bytes fnnn "Buffer- III the specified link. "Link:IdH is a valid link identifier.

'TimeoutH is a I\OO-negative integer ~g tentbsofasecond. A 'TimeoutH ofzcroisan inflllite
timeout..,
exletll"CH int WriteLink(intUnkId, char" Buffer, int Count. int Timeout):

,. Reads ''Count- bytes inlll "Buffer" &om the specified Iink.·'
extern "CH int ReadLink(int LinkJd. char'" Buffer. int Counl, int TImeout):

,. Ready the link associaIed with "Name".·'

extern ''C'' int OpenLink(char'" Name):

I"'ClO5elitheacdvelink·'LinkId",·'

extern "C"intCloseLink(intLinkId);

84

,.
FILENAME .•.•••••••. : hsilink.h

AUlHOR .: Dr. Sc-Hung KW AK & Cern Ali DUNDAR

DAlE : September 1993
DESCRIPTION : Header file which provides the necessary library functions for link

communication ,
,.@(It)Module:hsUink.h,revision 1.06/2/92·,
#irn:iude<syslioccom.ll>

#defineh 'h' ,. the h actuaJiy means nothing as used here ./

~ ·00_ .,
SIJUCI HSUiETF ,

unsignedint op:16;

unsignedint vaI:16;

unionHSUO,

structHSLSE1Fset;

#defineRESET

#define ANALYSE

#deCine SBTIIMEOUT

#derme TESTERROR

#derUle TESTREAD

#define TESTWRITE

~

(I)

(2)

OJ
(')

(~

(0)

• _lOW write instructions kJlbekemel within the

·ioctlcommandcode . . ,
#defUle SETFLAGS JOW(h. I. union HSUO)

~
• Endofbsilink.b .,

"

,. ,.,.,.,. .. ,. ,.,. ,. -
FIlENAME : los_COIn.h

AUIHOR _.: Dr. Se-Hung KW AK & Cern Ali DUNDAR

DATE ... _ : Seprembtt 1993

DESCRlYTION •• _ ••• : Header file ((II" two struclS. One of them is ((II" infonnatioo aboul map and !he

other is for infonnation about two points in !be area ,.,.,..,. ... ,. .. ,. _.,. ,. ,.,. .. ,. ,. _,
lfifndefLOS_COMJI

-Itdefme LOS_COMJI

tinclude"yeclor.h"

,. Contains the lower lefl corne!" coordinates, the size Md the grid size of map portion which is sent to

transpulmialatime.·,

sttucIMAP_INFO(

inl slarcx,stan...Y,size_x. size....)':

double grid_size;

I:

,. Conlllins two vectors which have lbe informlllioo of two poinlS between which LOS calculalion is

made.·'
structCMD_INFO(

vectorsrart.goaI;

I:

86

,.
FILENAME : los...,global.h

A1.JTHOR :Dr.Se-HungKWAK&CemAliDUNDAR

DAlE.... : Seprernber 1993

DESCRIPTION : DefiAeS three global values used in tbeprogram . .. ,
,. Defines that the sUe ofa map ponion which is sell[to transputers at a time is 256m.~56m .• ,

lldefine MAP_SIZE 256

,. Defines that the grid size showing the resolution is 1m .• ,

lldefme GRID_SIZE 1.0

,. It is assumed that the begiMing and endpoints ofa line in the area are 10m. above the terrain.·'

lldefme AGENT_HEIGfIT 10.0

87

,.
Fll.ENAME :rnap.h

AUlHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR

DAlE•..... : Seprembc:l" 1993
DESCRIPTION : Header file for the declarations oldie map class and the map class functions ,
iifndefMAP _H

idefineMAP_H

iinclude "veclOr.h"

class map I
public:

slruClmDpftPl

inlstarl...ft.,starl..,y,size_x,size..,y:

double grilUize;

inr"'data;

inlrefs;

m~lIuepO lrefs= 1;)

);

map(); ,.ConSInIClOI'S.'
map(inl slllJ'Lx,inl Btart..,y,intsize_x,int size..,y.doub1e gridJize,int* data);

map(cOIlSt mapk map);" Copy coostructof·,

map& operaIDr=(consl map& map); ,. Assignmenl C{ltl31Or.'
-map();

,. Gets the lower leficomer cooo:Iinares, the size and the grid size information of map .• ,

inl gcUlllJ'LxO lreturn p->slarCx:);

inlgetJtart..,yO {return p->start...)';):

inl gecsize_xO lreturnp->sizc_x;);

inl getJize..,yO {return p->size..,y;);

oouble get...,grUCsizeO {return p->gridJize;l;

int·get..dataQ{returnp->data:I:

vectof to_map_coord(vectof 1oc);

inlhighecthan(vector&Ioc);

inllermiIUlCight(inl& grid_x, int& grid...)');

intmap...JlOSl(inlgrid...x,intgrid..,y):

);

88

r·············· .. ················· .. ····················
FILENAME ._ : map_ell

AVTIlOR _ : Dr. Se-Hung KW AK & Cern Ali DUNDAR
DAlE _ : September 1993

DESCRIPTION : Header file tN!he SOW"Ce code which constructs the map portion to be sent to

tmnspmers at a time ,
ItifndefMAP_C_H

Ihleftne MAP _C_H

'include "'map.h"

public:

map map_c_lO_map(); r only x,y are used·,
I;

89

/*

Fn.ENAME : m8p-*_com.h

AtJrHOR" ...•........• : Dr. Se-Hung JeW AK &. Cern Ali DUNDAR
DA1E." : September 1993

DESCRIPTION: Header file for the 5OlII"ce code written for sending the map portions to - ,
#ifndefMAP_COM

#def"me MAP"COM

#include "los_COIlI.h"

'include ·'map_c.h"

#include ··!U:omm.h"

classmap_s_coml

MAP "INFO map_info:

public:

lnap_s_comOll:
void map_send{int n....1r. int n....pro. map& map, s_comm& s_comml); /* Sends map portions. ./

},

90

,. .. .
Fll...ENAME : s_comm.h

A1.1THOR.... : Dr. Se·Hung KW AK & Cem Ali DUNDAR

DATIL.......... Seplemhcr 1993

DESCRIPTION : Header file for !he source code which performs the link communication between

SUN station and the transputers ,
lIioclude"link.h"

lIinclude·'hsilink.hH

lIifndefS_Co/",fM_H

#define s_COt.n.CH

oonstintROTJfER_INIT= I;

const inl SEND = 2;

const im BCAST = 3;

const illl LlS1EN = 4;

oonstinITERMINATE:5;

classs_comrn I

intooUw_nwn:
intin_1ink_nwn;

inlooUink;
inlin.Jink;

public:

s_cmnm(intollclink_numI, int in_Iink_IIuml);

-8_commOi Closci.ink(uuUink): Clo:.eLink(in_link); I:

int rouleCinil(inl lIum_lrS. inl'" IrS, jnl'" under's, jnt" pm, int timeom):

intsend(intdst, illtnts,illl sU.e,char'" buf, inttirneout); ,. Plain send ,

int send_i(int dst. int Ht<;, im size. char'" bUf. int timeout): ,. Send integers .• ,

int hcast_d(int sire, char" buf, inl timeouti): ,. Send doubles (byte conven) ;

int li~len(im timeout): ,. Byte conversion. "*'
intterminate(inltimeout);

,. Conversion functions for little-indian(transputer) and hig-indian(SUN) problem. *;
voidconvert4(char* bufI,ch.ar* bun);

void convert_i_atray(int· bun, jilt'" buf2, int size);

void convert8(char* bufI. char* bun);

void conven_d_lIIT"dy(double" bun. double· buf2, illt size);

I;

91

HLENAME : unix_comm.h

AUTHOR.... : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE : Sep(embef 1993

DESCRIPTION : Header file foc the link: communication functions between two SUN Stations
*.** ••• u ... *.u .. u.u •• *uu •••••• u.u •• u uu * ... u* ,

#deflne SERVER_PORL"-LTMBER \053

#deflne CLIENT_PORT_NUMBER \053

r Link communicalion functions from "C library" for scnder */
extern "C~ illt opo;:R_strea/tl_s (inlporcnumber); r Opens link·,

extern "C~ illt send_buCs(cha.r* buf, int size): r Sends buffer·'

extern "CH im reccive_buCs(char* bur, int· sizeD); r Receives buffer */
extern "CH int close_stream_S (void); r Closes link */

r Link communication functions from C library"for receiver .• /

extern "C" im open_stream_c (char'" host_name. int porcnumber); r Opens link"'/

extern "C" im serKCbuCc(char* buf. im siLc); r Sends buffer·/

extern "CH intreceive_huCc(char'" but. int· sizep);

92

r Recei ves buffcr ... ,

/'" Closes link .,

~ .. .
FILENAME ... M :vectDr.h

AtrI'HOR _ :Dr.Se-HungKWAK&CernAliDUNDAR

DAlE : Seplember 1993

DESCRIPTION : Headec me fcc' Ihe description of !he veelOt' class and vecror class opernlions . .. /
#ifndef VECI'OR_H
IldeUne VECI'OR_H

clWveckr I

double x.y,Z;

public:

veelor();

veelor(double xl, double yl, double zl);

doub1egeCxO Iretumx;l:

double geUO fretum y;1;

ooublegeczO (return z;l;

friend intoperatOl'lll=(veetorvl, vectorv2);

friend vecwropenltor+(vecnrvl. vectorv2):

friend veckr openllOl'-(vector vI, veclorv2);

friend vectoropemlOl"'(double a, veelOt' vi);

double dotprod(vector vi);

double magnitude(void);

vector nonnalize(void);

kndif VECTOR_H

93

r··········· .. · .. ····· .. ·················· .. ··············
FILENAME ... : map.C

AUTHOR :Dr.Se-HunSICWAK&CemAliDUNDAR
DATE .•................... : September 1993
DESCRIPTION : 1ltis souree code defilleS the map class functioos _ _.-.. ,
#include"map.h"

map::map()

I
p" new mapJCP;

P->s\:aILx .. 0; p->stalt-y = 0; p->siu_x = 0; p->Size-y = 0;

p->srid~=O.O;

p->data=O; I!nullpointtt

I

map::map(int stalex,int start..Y.intsize_x,int size-y,oouble gricCsize,int"' dala) r Constructor·,

I

I

p'" new map_rep;

p->staICx = stalt..x: P->start...Y = slart-y:

p->size_x .. size.-x,; p->size-y = size-y;

p->gruCsize = grid_size:

p->data-daIa;

map;;map(oonsl map& map)

I
rCqlyconstrucwr·'

I

rnap.p->n:fs++;

p= map.p;

map& map::operatOr=(const map& map)

I
map.p->n:fs++;

if(--p->refs=O) {

delete[]p-->daIa;

deletep;

I
p=map.p;

rewrn·this;

r Assignment operator.,

94

map::-map{) I"Destructor-,
I

if(--(P->n:fs) =0) {

deleae[]p->data;

deletep;

}

vector map_offset«(double)p->stan_x)-p->grilCsize,

}

«double)p->swt-y)"'p->gruUize,o);

voctorloe_wrt_map .. loe - map_offset;

relmn (kx:_wrt_map);

int map::higheUl1an(voctor& loe)

int grid_x = (illt) «(Ioc.geCxO - p->Stan_x-p->grid..size)/p->grid_size);

int grid-y" (int) «(Ioc.get-yO - p->stan-y-p->grid..size)/p->grid_size);

illt height = p->daIa[gridJ-p->size_x+grid_x];

retmn «double)lem!ill_height(gruCx,gridJ) > loc.geCzO);

}

iIII map::renaill_height(int& grid_x, int& gridJ)

I
retWllmapJlOSl{grid~grid...,y);

}

int map::map..,post(illt grkUt, int grid...,y)

}

illiindex;

,. index .. sizeJ-grid_loc.x + grid_loc.y;-/

index = p->size_x-grid..y + grid_lt:

return p->dala[indelt];

"

,. _
AUTHOR _ ... _ ... : IX. Se-Hung KWAK & Cern Ali DUNDAR
DAlE ...•.. _ : September 1993

DESCRIPTION : This sowce code construclS a map portion to be send to tr:anspIlters at a time. _ .. _ ;
#include .:lostteam.h>
#include <fstteam.h>

#include <Stdio.h>
#include "PVGJ)EC.H"

Iinclude ·'PVG_DEF.lN"
lIincIude <pvdb.h>
#include "map_Coh"

1* Reads one block ofttnain data 10 abuffer and then Joads elevation data 10 data array of map portion

by using the data in the buffer.·;
map_c::map_c(int sraru:. int starCy,int size....x. int size...,y. double grxCsize)

I

J

inti:

p - new m&pJCP;

p->start....x=starUt;

p->start...,y= stan...,y;
p->size_x = size_x;

p->si:re...,y"'si:re-r;
p->gri.Lsize-&rid...si:re;
p->dala= new int[size....x·size...,y};

1* One block of 1m. resolution terrain data is read loa bufferhete. *;
geUcrr(RESOLUTIOJ·U.start....x.stan...,y.ll;
1* 6SS36 elevation dalaisioadedlOdataarray of map portion here. *;
for (i=O; i<6SS36; i++)1

p->data[i}=PVDB_UNPACiCELE(I'ERRAIl[IUi});

J

,. Converts map_c class 10 map class. *;
map map_c;:map_c_to_map()

I

J

map mapl(p->SUlrtJI;,p->start...,y .p->size_x.p->si:re...,y.p->grid_size,p->data);
retum(mapl);

96

/" .. .
FILENAME ...•••..... : rnap_s_corn.C

AlrrHOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE.... : Seprernbcr 1993

DESCRJPTION : This source code is for sending one map portion to transputers lhtuugh the link

at a lirnt' " /
#include "rnap_s_corn.h"

#inc1ude <iostream.h>

rnap_info.start_x = rnap.p->starcx:

map_info.start3 = map.p->start--y:

map_info.sizc_x = map.p->size_x:

map_info.sizc..)" = map.p·>size..)":

f' Coovert~ double,

solves liule_indian(transputer). big_Jndian(sun) problem.

sendsneader.

double x = map.p->grid_size:

double y;

s_comml.convert8{(char'")&x. (char'")&y):

rnap_illfol.grid_sizc=y;

s_comm J.st'Ild(n_lf. "Jlfo, sizeof(rnap_infol). (clw")&map_infol,50):

f'Selldsrealdata(inlt'geris4chars)·/

97

/"'
Fll..ENAME : s_comm.C

AUlHOR : Dr. Se-Hung KW AK & Cem Ali DUNDAR

DATE : Sepremb& 1993

DESCRIPTION ·lhis soun:e code is forperfonning link communication between SUN station and

transputers. It also has conversion functions for solving the little­

indian(trnnsputer) and big-indian(SUN) problem ,
#include <iostream.iD

#include"s_cornm.h"

I'" Opens link .• ,

s_comm::s_comm(im out_link_numl. int in_link_numl)

ouUinlr.:_llIun '" ouUink_numl;

in_link_num '" in_link_IIum1;

char link~sIrf2];

link_str[O]", char(ouUink_"uml);

linlr.:_str[l] '" "{),;

ouUinlr.: '" OpenLink(link_str);

if(ouUink_numl != in_link_"uml) (

link_str[O]", char(i"_link_"uml);

link_strLl] '" 'Ill';

in_link '" OpenLinkOink_str); I
else

inJink = out_link;

f" Does muter initialization for transputers. ""

int 5_comm::router_ini\(int num_tr:l, int" tr:l. int" unders. illl· prs, int timeout)

intvai;

convert4«char")&code,(char"')&val);

if (WrileLink(ouUink, (char*)&vaI. sizeof(intl. timeout) < 0)

return-I;

conven4{(char*)&nuffi_tr:l, (char*)&vai);

if (VIntcLinl::(ouUink, (char'")&vaJ, sizwf(im), timeout) < 0)

return-1;

int· val~;

vaJs", new int[num_tTSJ:

if (WriteLink(ouUink, (char'")vaJs, sizeof(int)*num_tTS, timeout) < 0)

relUm-1;

convcrctarrdy(undcrs, vals, num_trs);

if (VIriteLink(ouUink,(ch~)vals, sizeof(int)*nU/Tl_tTS, timeout) < 0)

return·l;

convert)_arrdY(prs, val<;, nurn_trs):

if (WrileLinl::(ouUink, (char*)vaL<;. sizeof(int)*num_tTS, timeout) < 0)

return-\:

return 1:

r Plain sending, Nuconvef'Sion. *1
in! s3omm::send(inl dlit, int nlS, int size, ch~ huf, il\1 timeout)

in! code'" SEND;

intval;

convert4(char'")&c(xIe,(ch~)&val};

if (VIriteLink(ouUink, (ch~)&val, sizeof(int). timeout) < OJ

return 0;

convert4«ehar")&dsl,ichar*)&val):

if (WriteLink(uuUink. (char*)&val. sizcof(int), timeout) < 0)

retumO;

cunvert4(char*)&nt~. (char*)&val):

if (VIriteLink(ouUink, (char'")&val. ,iLeof(int), limeout) < 0)

rctlUTlO:

convcrt4«(char*)&siz.e,(char*)&val);

if(VIrileLink(out.link,(char'")&I'al,sizoof(iot),limeout)<O)

rcturnO;

I/Noconversion, Send bufdirectly

if (WritcLink(ouUink, huf. size. timcout) < ()

return 0;

return 1:

/" Sendsintegcrs.-/

im s_comm::send_i(im dsl, im ms. int size, char"' buf, im timeout)

int code = SEND;

inlval;

convcrt4«(char'")&code, (char"')&val);

if (WriteLink(ouUink, (char"')&V".tJ, sizeof(int), timeout) < 0)

rerum 0;

convert4«char"')&dst,(char"')&val);

ir (WriLeLink(ouUink, (char"')&val, sizeof(int), timeoot) < 0)

rerum 0;

convert4(char"')&ms, (char"')&val);

if (WriteLink(ouUink, (char'")&vaJ, sizrof(inl), timeout) < 0)

rerum 0;
colwert4«char'")&size.(char"')&val);

if (WriteLink(ouUink, (char"')&val, sizrof(int), timeout) < 0)

rerum 0;

char'"vals;

vals=newchar!sizel;

converU_aTTay«int-)buf,(int"")vals.site/sizrof(int»;

if (WriteLink(ouUink, val~, size, timeout) < 0) {

deletefJ vals;

rerumO;j

else {

deletc[]vals;

returnl;):

,. Sends doubles. -/

int s_comm::bcascd(inl size, char'" bur, inl timeout)

int codc = BeAST;

im val;

convert4«char"')&code,(char"')&val);

if (WriteLink(ouUink, (char'")&val. sizeof(int). timeout) < 0)

retumO;

convert4«char'")&size, (char'")&val);

if (WrileLink(ouUink, (char*)&val, sizrof(intj, timeout) < 0)

rctumO;

char'"vals;

vals=ncwchar[sizc];

convcrt_d_array{(doublc-)buf. (doublc")vals. size/sizcof(double»;

100

if (WrireLink(ouUink, vaIs, size, timeout) < 0)

rerum 0;

return!;

~ Reads the value coming from lnulsputen. */
int s_comm;;!isren{int timeout)

illt code = LISTEN;

intval,reswt;

convert4«char"')&code, (char"')&val);

if (WrlteLink(ouUink, (char"')&val, sizoof(int), timeout) < 0)

return 0:

if (ReadLiok(in_linl, (char"')&val, sizeof{int), timeout) < 0)

rerum 0:
conven4{{char'")&vlII,(char"')&resuJt);

return result;

int s_cnmm;:terminale(int timeout)

im code'" TERMINATE;

imval;

cnnven4«char")&code, (char"')&vaI);

if (WriteLink(ouUink, (char"')&.vaI, sizeof(int), timeout) < 0)

retumO;

returnl;

~ CONVERSION FUNCTIONS FOR LlTTLE·INDlAN(TRANSPUTER) AND BIG-INDIAN{SUN)

PROBLEM STARTS HERE. "/

void s_comm;;conven4(char'" buf], char"' buf2)

buf2[3] ",bufl[OJ;

buf2{21=buflLl];

buf2[1J=bllfl[2];

bllf2[O]", bufl[3];

I

101

void s30mm::tonveJU_array(inr bufl. inl'" buf2. inlsize)

I
for {inli=&,i<size;i++)

conven4{(char"')(&{buf1[ij),{char"'){&(buf2[iJ)));

void s_comm::convert8(char'" bun.char'" buf2)

I
buf2(71=buf1[O]:

buf2[61 '" bun [1]:

buf2[S1=bufl[2]:

bof2[41 .. buf1[31;

buf2[3]-buf1[4];

bufl[2] • bufl[S);

bul'2[l]-bufI[6);

bufl[Oj .. buf1[7];

I
void S3orrun::convert_d_army(doubJe'" bufl.double~ buf2. int size)

I

I

for (inli=O;i<size;i++)\

conven8({char"')(&(bun[i])).(char"'){&{buI'2[i])));

I

102

,. "' "'''' '''''' '''''''''''' '''''''''''' '''''' _ "''''
FD..ENAME :vector.C

AlJIlIOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE : Septembec 1993

DESCRIPTION : This sourt:e code defines lbe veclOC class operations . .. _ "' .. "''''''' /
#inc1ude"veclor.h"

lIinclude <mllb.b>

VCCIOr::VCCu.o {x:O.O; ~.O; z-O.O;);

vccror::vcctor(double xl, double yl, doublezl) {x=xI; y=yl; =1;);

intoperaror-{veclOCvl.vectorv2)

retum(v1.x==v2.x) &.& (vl.y=--v2.y) && (v1.z=v2.z»;

I

veclOr operator+(veclor vI, veclor v2)

vectocv(v1.x+v2.x, vl.y+v2y, v1.z+v2.z);

return v;

vector operator-(vector vI, vectorv2)

I
veclOC v(vl.x-v2.x. vl.y-v2.y. vl.z-v2.z);

retumv;

vector operator'"(double a, veclOC vI)

I
vector v(a.v1.x. a.v1.y. a·vl.z);

retumv;

double vector::dotprod(vector v2) ,. Dot pnxlllCt·'

I
retum(lhis->x·v2.x + !his->y.v2.y + !his->z"'v2.z);

I

103

doublevC(:IOr::magnirude(void)

[

retum(sqrt«('I'trns).dotprod(·this»);

[

veclOrvcclor::nonnalize(void)

[

[

veclOrresu1t;

double mag = (·thisj.magnilude{):

if(mag< IE·lOO) {

resultx = 0.0:

resulty = 0.0:

resultz=O.O:)

else {

result = (I.O/tnag)· (·this);

[

retum(resuil):

r Vector llonnaliz.a1i()n */

104

/*

FILENAJ.m : manager.C

AUTIlOR : Dr. Sc-Hung KWAK & Cern Ali DUNDAR

DATE : September 1993

DESCRIPTION : This is the: main program. The numb« of transpUlers, workers and task

disuibution are defined here. The user is asked 10 enter the lower left comer

coontinates of the SI2Om.x2304m. map area fU'SL TherI after loading of the:

whole: map 10 \JwIsputer5, the infonnatioo. about the two points in the area
between which LOS calculation will be made is expected 10 be entered and sent

from another server via the communication link established between them. This

information then is sent 10 the transputers and the resuk is expected from them.

When the result is received, it is sen! 10 the: station from which the: poiru

infonnalioo comes. This procedure can be repeated as many as the user want5 . .. ,
,. nus VERSION OF MANAGER.CIS FOR lS1RANSrUlERS, THERE ARE ISO WORKERS .• ,

#include<iostream.h>

#include: ''uoix_ccmmX

#include <fstream.h>
#include '1os_00m.h~

#include ''map_uxlm.hM

#include"los..J!loba1.h"

#include''map_c.h"

#defineNUM_OF_WORKERS ISO rEach transputer has 12workers.·'

intorLX.oru.OI'(ICx,orgi...,Y:
int X_COURter, y_COUOter, tr_x. tr...,Y:

floatinfo[6]:

intsize;

if&treamsource:;

intsum;

float los_result:

vector age:nt(O.o,AGENT_HEIGHT);

double a,b,c.x.y.z;

intaddr'" 0;

10'

inlmain(void)

I
5_romm 5_00mmI{O,o); 1/ OUlput liJlk and input link

1* Totalnumberofrransputers.·'
constinltotal...JllS'" 15;
1* TotalnumbecofWOJters.·,

conSI inl totaI_n""p= 180;
1* Namesoftransputers.·'
staticintvs[lotal...JlfSl _I
0,1,2,11,21,111,211,1111,2111,11111,21111,111111,211111,1111111,2111111);

1* The number of children for each tmnspUter for the CWTefLllOpOlogy .• ,

staticintunden:[IOlalJllSl_{2,I,I,I,I.1,I,I,l,I,I,1,I,o,0I;

1* The nurnbel' ofwOlkers for each tlan8p\ltcr •• '

sialic int prs[totaJ..JII'Sl .. 112,12.12,12,12,12,12,12,12,12,12,12,12,12,121;

,. Thedislribution ofwOlkersto innsputen . • ,

static int n_trftotal_nJlll '" I
0.0,0,0,0.0.0.0,0.0,0.0,

1.1.1.1,1.1,1.1.1,1,1,1,

2,2.2,2,2,2,2,2,2.2,2,2,

11.11,11,;;,11,11,11,11,11,11,11,11,

21,21,21,21,21,21,21,21,21,21,21,21,

111,111,111,111,111,111,111,111,111,111,111,111,

211,211,211,211.211,211,211,211,211,211,211,211,

1111.1111.1111,1111.1111.1111.1111.1111.1111.1111.1111,1111.

2111,2111.2111,2111,2111,2111,2111,2111,2111,2111.2111,2111,

1l111,ll11Ullll.llll1,1l111,11111.11111.111II,IlIII.111I1.l111Ullll,

21111,21111,21111,21111,21111,21111,21111,21111,21111,21111,21111.21111.

111111,111111.111111,111111,111111,111111,111111,11111I,

111111,111111,111111,111111.

211111.211111,211111,211111,211111,211111,211111,211111.

211111.211111,211111,211111.

1111111.1111111,1111111,1111111,1111111,1111111,1111111,1111111,

111l111,11IlIll,1l1l1l1,1ll111l,

2111111,2111IU,21111l1,21111II,211l111,2111111,2111111,211l111,

2111111,211111l,211l1l1,211111l1:

106

1* Names ofworken; in each transpUter.·'

SIalic int ru-itotal.~n...Jll'l = I
O,l,2,3.4,5.6,1,8.9,1O,1l.

0.1.2.3.4,5,6.1,8,9,10.11,

0,1,2.3,4,5,6,7.8.9,10.11,

0,1.2.3,4,5.6.7,8,9.10.11.

0,1,2,3.4,5,6.7,8,9.10.11,

0,1.2.3.4,5.6,7,8,9,10,11,

0,1,2,3.4,5,6,7,8,9,10,11,

0,1,2,3,4,5,6,7,8,9,10,11,

0,1,2,3,4,5,6,7,8,9,10,11,

0,1,2,3,4,5,6,1,8,9,10,11,

0,1,2,3,4.5,6,7,8,9,10,11,

0,1,2,3,4.5,6,1,8,9,10,11,

0.1,2,3,4.5.6,1,8,9,10,11,

0,1,2.3,4,5,6,7,8.9,10,11.

0,1,2,3,4.5.6,7,8,9,1O,1l);

u;.omml,routec init(totai...,prs,lrS,unders,prs,I00):

1* Usei' enlel'S the IowerleftcomerCOOl'dinatell of the whole map here .• ,

cout «"ENTER X COORDINATE FOR ORIGIN:" «"Ji';

cin>>or&,..x;
tout «''ENTER Y COORDINAlE FOR ORIGIN: .. «"Ji';

cin>>oI'8-Y<

for (tr~; tr~l[<5; tr~x++){

for(trs-=O;tr....,y<3; tr....YH){

for (l[~counteI>=O; l[~counlerd; :U:ounter++){

for (y~COUllteI>=O; y~countu<3; y~countef++){

0l81~l[=oJtL.X.+(trJ·4·256)+J.~counIer'"2S6;

0l8I---r-or&-Y+(tr...s·3·256)+y_counler'"256;

mapCJDap;

1* Sends map·'

c~map = mapLmap~C~b~mapO;

107

1* Conversion ofmap_c class: to map clasIl before sending is dDne-,
if (addr< tolal...n...Jx")I

mapJ_com.map_send(n_ttfaddr], n..Jll'[addr], c_map, s_COOIml);

I
addr++; 1* Detemtines!he worker address for map portion to be sent. -,

I

cout«"12b1ocks ofelevasiondatasentlottanspute£"

<<addr'12<<"fl';

I
I
cout<<"Ea&:h 15 tr8lL<iputtt is loaded with 12 blocb of elevation data "«"fl';

CMDJNFOcmdjnfo;

cout<<"The server is ready to receive the stan and goal point information!"

<<'~";

1* Tbe communication link is cslablished between two Sun stations here and the

information of two points in the area for LOS calculation is received. -,

1* Opens socket on seI:Vl'II"-'
if (opeILstreamJ(SBRVERJ'ORT.-NUMBER) < 0)

rout «"Error open'ln":

for (;;) {

if (receive_bufJ«cbar"')info,&size) < 0) cout« "Error In receiving 'In":

-oouhle(info[O]);

b=doubk(lnfo[l]):

c-double(info[2]);

x-oouble(info(3]);

y=double(lnfo(4]);

Z=double(mfo[5]);

veclOl" swt(a,b,c);

stan = staJt + agent;

veclOl"goal(x,y,1':);

goal = goaJ + agent;

108

cmd_info.sta/t=slllrt;

cmd_info.goal .. goal;

s_comml.bcast....d(sir.eoC(cmd_info).(char*)&cmd_info.SO);

sum .. S_CQIIm1.lislcn(IOO);

~ The WS resull will be ''0'' if LOS exist-!, or will be "I" if LOS doesn'l exist and it will be sent
to lhe server wl!ich represents Janus. '"/

if(suml=O)

los..resull=fioaI(sumtsum);

"" losJellllltafloat(sum);

cout «"Sum is" «dec « sum« ' «flush;
cout« "LOS Result is "« dec« IOIUesult« ''fl'« flush;

send....buCs«cbar'*)&Io:Uesull,sizeof(fIoat»;

s....comml.temlinale(SO):

109

,. ... ~
FILENAME :clienunain.C

AUTHOR :Dr.Se-HungKWAK&CemAiiDUNDAR

DAlE.... : October 1993

DESCRIPTION. ; 1ltis program runs in a Senter otherthan !he one in which !be main program lUllS.

'The user is asked 10 enler the infonnation about the two poinrs in the area
belweell which LOS calculation will be made.This infonnatioll is sent 10 the

main server via the commwticalion link mablished between them. Ideally tbe

sender is considered 10 be Janus.After sending !he poilll infonnation, the resull

is expecled from !he main 5efVer. When tberesuit is received, it is displayed on
!he screen,T1iis procedure can be repealed as many as tile user wanrs .

.. u ,

#include <iostream.h>

#include ''unil''-OOII1m.h''

void main(int argc, ella.. "argv[2])

I
Iloata,b,e,x,y,z;

lloatbuq6];

intsize;

if (open_stream_c(argv[I],CLIENT]ORT_NVMBBR) < 0)

cout«''Erroropen'ln";

for (;;){

cont« uEnter the x-coordinate of startpoint ;"«''n-;

cin»a;

buflOj=a;

coot« ''Enter the y-cooldinate ofstartpoillt :"«''n'';
cin»b;

bllll1l=b;

cout« ''Entertbe be~ht ofstart point ;"<<''Yl'';

cin»e;

buf[2]zc;

COUl« ''Enter the x-ooordinate of goal point ;"«"Yl";

110

burp]=x'

cout« "Enter tlte y·coordinate of goal point ;"«''\n'";

CHI »y:

buf[41=y:

cout« "Enterth.e h.eigh.t of stan point : «"'In":

cin>>z;

bUf[5]=l;

send_buCc«char *)buf.~i~eof(f1oat)*6);

cout« 'Two point.<; senttu servcNi~:

receive_buCc«ch.ar -)buf.&sizel;

sum = (float ")buf;

COUI «"Rcsultis;"« "sum«"~";

cout«" tfyou wantto continue, type 'y'~";

charch.:

em »,'h;

,f(ch='I\')break;

APPENDIX B • HOST COMPUTER (PC) SOURCE CODE

This appendix contains the source listings of the C++ code developed for the host

computer which is a PC that is used in this thesis. They are stored in mes as listed below:

l.line.h

2.los_comh

3. map.h

4. map3TX.h

5. plane.h

6. rouCcmd.h

7. router.h

8.router2.h

9. router3.h

10. s_los.h

11. tr_comm.h

12. vector.h

13. line.cpp

14. map.cpp

15. map_crx.cpp

16. plane.cpp

17. router.cpp

18. routert.cpp

]9. router2.cpp

20. router3.cpp

2L s_los.cpp

22. tr_comm.cpp

23. tr_convnLcpp

24. vector.cpp

1I2

25. worker.cpp

26. worker.Ink

27. btest180.cfg

113

,.
FlLBNAME _ ... : line.b

A1JIHOR : Dr. Se-Hung KW AX & Cern Ali DUNDAR

DA1C : Seplember 1993

DESCRIPTION _ ... : Header file 1(1" description of line equation class and its functions .
... ,

#include "vecux.h"

class line {

veclorSlart:
veclOtdireclion:

public:

lin«) 0;
line(vectorptl, vectordir);

vectorgctJl,aI1() \retumstart;):

vector geUlirectionO {mum direction;l:

114

I"' u .. u u ... u •••

FILENAME : laLcom.h

AUTHOR : Dr. Se·Hung KW AK & Cem Ali DUNDAR

DATE.... : Sepiember 1993

DESCRIPTION : Header me ror two strucls. One of them is for information about map and the

other is ror information about two points in the area.
.. u u ;

#ifndefLOS_COM_H

#defme LOS_COM_H

#include ··vector.lI~

,. Contains the lower left comer coordinates. the Si1.e and the grid size of map portion wllicll is sem to

transpUlel"Satatime.";

struct MAP _INFO{

I'" Contains two vectors wllich have the infmnation of two points between which LOS calculation is

made."j

structCMD_INFOI

vectorsl3l1,goal;

"

III

~
FILENAME•...... : map.h

AunJOR :Dr.Se-HunJlKWAK&CemAliDUNDAR

DATE : September 1993

DESCRIPnON : Head« file fO" thedeclaralions of the map class and Ihe map class functions ,
#ifndefMAPJI

ItdefmeMAP_H

#include "vectO".h"

class map {

public:

SlruClmDluep{

int stan_x. start...,y. siuJ;. sizes,
doublegrnCsize;

int'" data:

inlJCfs;

mllluep{) {JCfs=l:)

),

map-rep.p:

""1'0, ~Qmstructors-'

map(inl starlJ;jnt stan...,y.int size_x;ru size...,y,double grid_size,int'" data);

map(coost map& map):/" Copyconstructor-I
map& opemlor={consl map&: map}; /" Assignment opemIOI""l
--map();

/" Gets the lower left comer coordinaleS. the size and the grid size information of map. -I
inlgecstan_xO /retump->startJ:;};

inl geLStan-yO / JCtum p->stan...,y: J;
inlgetJizeJ:O {JCtum p->size_x:):

inlset_size...,yO /retump->size...,y;I:

double gel...,grnCsize() {rerum p->grkCsize;);

in!'" gecdala() iretump->daIa:I:

vector to_map_coord(vector loe);

inl higheOhan(vecto£& Ioc);

int terrai.n_ooighl(inl& grub. int& grid...,y):

inl map.J)OSt(intsruCx, inl grid...,y):

),

116

r u ... u

FILENAME : map_c£x.h

AUTHOR ..•••••...•.••. : Dr. Se-HungKWAK & Cem AliDUNDAR

DATE•.. : September 1993

DESCRIPTION : Header file for Ihe source code which checks whetherl..OS passes through a map

contained in a transputer ,
#ifndefMAP_CRX_H

#defme MAP _CIDCR

#include·plane.h"

#include"maplt~

c1assmap_crx I
double map_x_min, map-y_min, map_x_max, map_:cmax;

publlc:

map_enOII:

map_cn(mapmapl);

void seC value(map mapl):

intinside..Jl{vectorpt);

int map3rossing(vector pl. vecllX p2. vector& start. vector& end):

int map_intcrsect(vectocpl. veclorp2. vectoc& start. vectCl"& end);

#endif MAP _CRX_H

,. .. .
FILENAME .•..•....... : plane.h

AUTHOR : Dr. Se-Hung JeW AK & Cern Ali DUNDAR
DAlE : September 1993

DESCRIPTION : Header me for description of plane class and its fUJlCtions •
................................... u ... 1

#irndef PLANE_H

#defme PLANE_H

#include"vector.hH

#include "line.h"

c1assplane I
vector uniUlOrmai; rullit nonnal vector·'

double distance; r -distance from origin";

public:

planeO II;
plane(veclOrnonnai,doubiedist) {

unit_nonna! EO normal.nonnalize();

distance = disl;

1* If line is paral1e11O a plane. then lelOO is relumed .,

1* ffline is parallel 10 aplane IIJld on the plane, this routine ab;o retum lelOO.'"

,. If start of a Line lOuches a plane without being parallel 10 the plane. then it will return zero distance·/

double plane_distance(veclOr velocity, veclOr position);

in! plane_interscction(line line, vector& Pi, double& diSlallCe);

in! plane_line_cross(line line!, vector& p1, double& distance);

#endif

118

,.
FILENAME : rouCcmd.h

Al.TIHOR •••............ : Dr. Se-HunS KWAK & Cern Ali DUNDAR

DATE._ : September 1993

DESCRIPTION .. _.: Hellder me which contains lhe mutins information 101" use of all routing source

"""" ... ,
#ifndefROUT_CMDJ{

ildefmeROUT_CMD_H

,. NetwOlt definition (actually tree)

roulelO --workers

routerlrourer2

routerll routerl2 router21 router22router23

one node can have up 10 three descendant nodes.

one node can have many workmi. .,
~

In number for routerl2 is 1001

IDnumberlorrouted23is 111001 .,
~

Task number

startfrn:nO!!I! (cf.JOI/terS.O.I,2, 11.12.13,21,22 ..)

For example. fIrSt task connected router 12 is taskl2D and

NTS field in send_map is O . . ,
~
Port Numbers

0: upper
1,2,3: lower (may none connected)

4 .. : tasks .,

119

,. initmessage fonnar(emd=Oor I)·,

,.0 emd ICoCtasbICoClowcoouterdcstinationeurrenUcve!·'
,. 1 3 4 4 16 4 bits.'
,. 0 CMD NTS LOW DST aJ..../

,. scrnUnap message format (cmd-l)·'
,. 0 emd tasldt 111 destination 717'",
,.1 2 4 4 16 4 bits'"'
,.0 CMD NTS 777 DST 171'"'

,. map-size'"'
,. 32 .,

,. mapdata·,
,. variablelcngdl '"I

,. bcasueq message format (cmd=3) '"I
,.0 emd size 171·,
,.1 3 8 2Ohits'", ,.0 CMD BCS 111 .,

,. BCS size mcssagcfoUows '"I

,. tenninate message fonnlt (emd=4) '"'

,.0 emd 111m '"I
,.1 3 28bits'"'
,.0 CMD 111 .,

,. emdO:init(sllUt)
I:tcnninalcinit

2:scndmap
3: beast reqcSl (los request, aulOmalically replied by workers)

4: rerminlllC

"'
IfdefineSTART_INITO

#defme TERMINATE_INIT 1

#defmc SEND~ 2

Ildefl/lC BCAST_REQ 3

#define TERMINATE 4

#defineROUTE_CMD_MASK OJ.7OOIXXXJO
#define ROUTE_NTS_MASK OxOFOOOOOO

IkIefmeROlITE_LOW_MASK OJ.O!FOOOOO

120

*define ROUlE_DST_MASK OxOOOFFFRJ

*defme ROUlE_CLL_MASK OxOOOOOOOF

*defUle ROUlE_BCS_MASK OxOFFOOOOJ

.Jdefme ROUlE_CMD _SHIFf Oxl0000000

*deftne ROUlE_Nl'S_SHIFT QxOl!X.XXXlO

IkJefme ROtITEJ.QW_SHIFTOxOO1000X!

ldeftne ROUlEJ>ST_SHIFT OxOOOOOOlO

Itdefme ROtITE_CLL_SHIFT 0x00000001

*deftne ROUlEJJCS --SHIPT OXOO 100000

~ Use divides and multiplies insteadofshifu for speed .,

*defme ROtITE_UNPACK....CMD(n) «n & ROtITE_CMDJiASK) J ROtITE_CMD_SHIFT)

Itdeftne ROtITE_UNPACK....NTS(n) «n & ROtITE~S_MASK)jROtITE..NTS_SHlFT)

lde(l/lC ROtITE_UNPACK_LOW(n) «n & ROtITE_LOW_MASK), ROtITE_LOW _SHIfT)

.Jdefme ROlTTE_UNPACK_DST(n) «n & ROUTE_DST_MASK)j ROUTE_DST_SHIFI)

IMeftne ROtITE_VNPACK_CLL(n) «n & RO~OL_MASK) /ROUTE_OL3HIFT)

Itdeftne ROUTE_UNPACK....BCS(n) «n & ROUTE_BCS_MASK)j ROUTE_BCS_SHIFT)

Itdeftne ROUfE_PACK_CMD(p,n) p=(p & (-ROlTTE_CMD_MASK» I (n·ROUTE_CMD_SHIfT)

Itdeftne ROUTE_PACK_NTS(p,n) p=(p & (-ROUTE_NTS_MASK» I (n"'ROtrIE..NTS_SHIFT)

*deftne ROurnYACKJ,OW(P,n) p:(p & (-ROlITE_LOW~SK» I (n·ROlTTEJ.OW_SHIFT)

*derIDe ROUTE_PACK_DST(p,n) p:(p & (-ROUTEJ>ST_MASK» I (n"'ROUTE_DST_SHlFl)

Itdefme ROlITEYACK_CLL(p,n) p=(p & (-ROUTE_CLL-.MASK» I (n"'ROUTE_OL3HIFI')

-ltdel'tne ROUI'E_PACK_BCS(p,n) p=(p & (-ROUI'E_BCS_MASK» I (n"'ROlITEJlCS3H1FT)

121

FlLENAME _ ... :router.h

A1JfHOR : IX. Se-Hung KWAK & Cern Ali DUNDAR

DATE : September 1993
DESCRIPTION '" ,.: Header me for the source code which perfonns the routing for the currel\t

topology of tnul5puternetwod" _ _ _ ... __ ... ,
flifDdefRO~H

#defme ROUTBR_H

llinclude <Chan.1\>

#include ''rouCcmd,h"

I"
PonNumbers

0: upper
1.2,3: lower (rnay none connected)

4 .. : tasks
oJ
#defme UPPERJ'ORTO

#defme FIRST_LOWERYORT_NUMBERI

#defme PIRST_TASILPORTJruMBER 4

class router {

introuteI"_id;

intlevel;

int hIllUeaCnOOe....p;

int IasUowet..JlOl1_number;
iru lasuask..JlOl1_Dumber;

CHAN·"in...pons;

intins;

CHAN··0I1t...JlOl1S;

intouts;

intmessage;

chill" route,-buf[ROUTBILBUF _SIZE];

public:

router(CHAN ·in..]xntsl],int ins, CHAN ·out,..ponsD,intouts);

voidinit(void);

iot cm~type(void);

122

void send_map(void);

void bcasueq(void);

voidtemlioale(void):

void answer(void);

void tranS_map(int pan_oumber,int mapJi;re);

#endifROUTER_H

123

,.
FlLBNAJI.fE : router2.b

AU1ll0R :Dr.Se-HupSKWAK&CemAJiDUNDAR
DATE........ : September 1993

DESCRIPTION .••... : Header file for the 5OUrt:e code which pertUnns routins between IfIUllIputers • ... ,
fifndefROUTER2J1
ftdefioe ROlJIER2_H

lHnclude <chan.1I>

#ioclude''rouU:md.b''

dassrouter2\
CHAN· .. jn....ports;

iotill8;

CHAN out.porl8:

iDtouts;

public:

IOutei2011:
IOI1Ier2(CHAN .. in....P0Jf8{].int inII, CHAN ·out...J)Ons[],iDt OllIS):

"

void routecioil(iDt dis, in! low, in! ats);

voidroutet~dooe(void);

voidaend(intdst,in!nls,intair.e,cbar"'buf);

void bcMt(iDt size, char'" buf);

lotlistell(void);

voidteunlnate(void);

124

,. .. .
FJLENAME ••• _ •••••. : router3.h

AlIIHOR : Dr. Se-Hung lCW AK & Cern Ali DUNDAR

DAlE : Seprember 1993

DESCRIPTION : Header me for the source code which performs routing in a ll'anspurer . .. ,
lIifndefROUTER3_H

#defme ROUTER3J1

#indude<Chan.h>

.include ''rouccmd.h''

#defme SEND SEND_MAP

idefme BeAST BCAST~

rTERMINAlE comes from "mIICcmd,hM
",

classrouter3[

CHAN in-POrts;

intins;

CHAN"·OUI..JlOl1S;

intouts;
in! message;

public::

muter3(CHAN "ill.JKll'lSlEl.inl insl, CHAN "out...,portSIElJntoutsl):

inl cmd_type(int& size);" retum type as wel1 as sUeor data·,
voidreceiv«inlsize.ch~buf);

void lIRSwer{int value);

void lerminate(void);

),

125

,.
FILENAME ...•........ : s_los.h

AUIHOR........ ..: Dr. Se-Hung KWAK & Cern Ali DUNDAR

DAlE : Septembec 1993

DESCRIPTION : Header file for the source eWe which perfrrms LOS calculalions belween two

points . .. · .. · ·· .. · .. · ····· .. ~~·····I
IifndefS_LOS_H

#derme SJ,OS_H

#include "vecttr.b"

#include ''map.h"

,. Perfonns LOS calculations. "'I

intdoJJos{vectof start, vector goal, map& mapl);

I:

126

,.
FD...ENAME H ••••• : tr_comm.h

AlTfHOR _ : Dr. Sc-Hung KWAK & Cem Ali DUNDAR

DATE....• : Seplembc:£ 1993
DESCRIPTION : Header file ror the source code which perfonns the communication between

SUN station and transputers • .. ,
#ifnderTR_COMlvCH
*defme TR_COW.CH

#include <:chan.h>

finclOOc''rourer2.h"

const int ROUTER .. JNTCS = I:

const int SEND_S = 2;

constint BCAST_S= 3;

const int LISTEN_S = 4:
const int TERMINATE_S = 5;

C1asstr_CODUn I

muteJ'2router2a;

CHAN··in..JlOltS:

intins;

intou"';

public:

tccomm(CHAN ·in...JlOftS[], int ins, CHAN ·OUI-POJ1S[], int outs):

void muterjnit(void):

voidsend(void);

voklbcast(void);

voidlislen(void):

voidtenninale(void);

127

,.
FILENAME ..•........ :vector.h

AUTHOR•.•. : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE _ : September 1993

DESCRIPTION : Header file fir the description of the vector class and vector class operations /
#ifndefVECTOR_H

#deflJ\e VEeroR_H

class vector I

double x,y,z;

public:

""""'l:
vector(double xl, double yl, double d):

double geLxO lretum x:}:

douhlegeLy() \returny:);

doublegeLz()lrellltllz:};

friend int operatot=(vectorvl, vectorv2);

friendvectoroperaror+(vectorvl,vecllrv2);

friend vectoropenuor-(vectorvl, vectorv2);

friendvectoroperawr'"(double a, vectorvl):

doubiedotprod{vectorvl);

double magnitude(void);

vectornonnalize(void);

}:

#endifvector_H

12&

,. .. .
FILENAME." ! line.cpp

AUTHOR : Dr. Se-Hung KW AK & Cern Ali DUNDAR

DATE : September 1993
DESCRIPTION : This source code is for a line equal.ion . .. ,
llinclude'1ine.h"

line:;iioo(vectorptl,vectordir)

I start = pt1;direction =dir; ,

129

,.
FILENAME_ : map.cpp

AUlHOR• : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DAlE .•.............. _ : SCplember 1993

DESCRIPTION : TIlis SOIB'Ce code defines the map class functions • ... ,

map::map()

I
p .. new map_rep;

,.ConslruclOl·'

p->start....x = 0; p->start..s = 0; p->sizc_x = 0: p->size..s = 0:

p->gridjize = 0.0;
p->data .. O;/1nuUpointer

I

map::map(int start_x,int start..s,int size_x,int size..s,double grid_size,int"' data) r Constructor·,

I

I

p->Start_x = start_x; p.>Slart..s = start.s:
p->size_x = size_x; p->size..s" size..}';
p->grid_size_grid.,size;
p->data = data;

map::map(consl map& map)

I
,. Copy COnstruclOf·'

map.p->refs++;

p=map.p:

I

map& map::operalOr=(c01ISI map& map)

I
map.p->refs++;

if(--p->n;fs==0) I

deleteD p->data;

deletep:

\
p_rnap.p;
retum·thls;

130

map::-map()

I

I

ifHp->refs)-O){

deleteOp->data:

deletep;

I

vectormap::toJllap_coord{vectorloc)

I
vector map_offset{{(double)p->stIlICX)·p->grid_size,

«double)p->SIaJLYf'p->grid_size,O);

I

vector)OC_WfLmap .. loc- map_offset;

retum.{loc_wrtJllap);

int map::higheUhan(vectoc& kJc)

I
int grid_x = (in!) {(loc_geuO - p->StaICx·p->gricLsize)fp->grid_size);

int grid-y" (int) «1oc_get..YO - p->stan~p->gri(Uize)fp->grid_size);

rerum(p->data[grid-y·p->size_x+grkLx} > ioc.geLz();

I

retwn map.J)OSl{grktx,grid..)');

I
int map::map.,.po,,{int grid_x, inl grid..)')

I

I

intindex;

index. p->size_x.grid..)' + grid_x;

rerump->data{index};

131

,.
FILENA1om : map_ax.cpp

AUlHOR .: Dr. Se-HllIlg KWAK & Cern Ali DUNDAR

DATE..... : September 1993
DESCRIPTION : This IiOUlCe file checks whether LOS passes through a map contained in a

uansputerornot ... ,

map_ClX::maILax(map mapl)

I

I

map_x_min = double(mapl.geU\lIfLxO)· mapl.gecgrid_size();

map-y_min = double(mapl.seUtaJLY(»· mapl.get_gritCsizeO;

map_x_max = map_x_min + double(mapl.get ... size_xQ)· mapl.get.J!rid....size();

map-YJJlax., map-y_min + doubJe(mapl.getJ!ze-yO)· mapl.geLgrid....size():

v«d map_tn::secvalue(map mapl)

I
tnap_x_min = doubJe(mapl.set.Jlmn.-xO)· mapl.gecgridJizeO;

map"'y_min = double{mapl.seUtart..YO)· mapl.get...grid....size();

map_x....max = map_xJJlin + double(mapl.geLsize.-xQ)· mapl.get.J!rULsizeQ;

map ... Lmax = map"'y_min + doubJe(mapl.get ... size....YO)· mapl.get.J!rllLsize();

I

inl map_crx::inside...p(vector pi)

I
,. insideJl includes boundary 100.·'

double delta = 0.00005;

if«(pt.get_xQ > map_x_min-delta) && (PLget_xQ < map.-x_max+delta) &&

(pLgel"'y() > map-Y....min-delta) && (pLgel""yo < map-y_max+delta»

retum(1);

,""
"",",,0),

132

int map_crx::map_crossing(vector pi, vectorp2,

vectlX'& stan, vector& end)

vecklr pII,px2;

if «inside...,p(pI»&&(inside..Jl{p2») [

start=pl;

end=p2;

return!:}

,"'I
if{inside..Jl{pl)!

m8lUntersecl(pl.p2,JIlI,pI2);

star1:=pl;

end "'pxl;
return I;}

eiseif{inside...,p(p2»{

start = p2;

end. JIll;

return I;)

else {

if (map_intersecl(pI,p2,PII,p12)) ,

srart=pd;

end .. px2;

return I;}

,'"
retwnO;

I
1
1

in! map_crx::map_intersect(vectorpl, vectorpl, vector& JIll, vector& p12)

1
r Thisroutineretumstwo int«section ptS: pill, px2·,
r Utbeyareidentical,thenpd., px2-/

r U3Dpts,pi &p2,are given, tbenpll and px2 are 3D pto; -,

vectorpt,pts[2]:

doubledisl;

133

vector lU10nnal(I,O,0), y_nmnal(O,I,O);

plane plane_x1(x_nonnal, -1.~map_x_min);

plane p!ane_x2(XJlCmnal, -1.O*map->...max):

plane pIane...yl(y _nonnal, -I.O*map...y_min);

plane pIane...y2(y....ncnnal, -l_O*map...y_max);

vectoroolta=p2-pl;

linelinel(pl,p2-pl);

intnum=O;

~Therearetwodistinctpts·1

if(pIane..JCl.pJane_line_cross(1inel,~,dist»

if(jnside..Jl{pt»I

ptS{nwnl=pt;

num++; I
if (plane...x2,pJane_iine_CJOss(llnel,pt,diSl»

if({inside--P<Pt) && num && J(pll;[num-IJ-pt» H inIlide...,p(pt» I
pts[numj_pl:

num++; I
if(pIane...y1.plane_line_cross(linel,pt,dist» I

if «inside..Jl{pt) && num && J(pts[num-IJ.-pI» II inside.,.p(pt» I

pcs[numl=pt;

nwn++: I

if(pIaneJ2.pJane_line_cross(linel,pt,dist»

if ((inside.,.p(pt) && num && !(pts[nwn-l]=pt» I insideJl{p1)) I

pts[num] .. pI:

num++: I

if(num=-oO)

Je(umO;
elseif(num=l){

pxl .. pts(O];

px2= ptS(O];

return I;}

"'" px1=pts[O]:

)

px2'"'pts[I];
reruml;)

134

r··············· ... ···························· ·······•..............
FD...ENAME : plane.cpp

AlITHOR .. _.... : Dr. Se.Hung ICWAK. &: Cern Ali DUNDAR

DAlE ... _ : September 1993

DESCRIPTION : This source code is for plane equations and functions . .. ,
#include''p1aneX

#include''vector.h''

#include <Jllalh.h>

double plane::plane_distance (vecrorvelocity. veclOrposilion)

r plane (X-Q)N=O.line X=P+tA.

t = (Q.-P)N/(AN). if A is nonnalized!hen I is sillned distance.

If I is infinitive, lhen plane4istance returns NVI.L.

olherwise. pJane.distance Mums distance . • ,

vecIOrA=ve1ocity.lkIIllaIize():

vecrorN=unR_nOO1lal;

double dis,.·I.O· wstance;

vec«rQ=dis·N;

veclOrQ.P=Q·position;

double AN = A.docprod(N);

double numerator = Q.P.dotprod(N);

if (fabs(AN) < IE-lOO)

retum(IEIOO);

return(numerator/AN);

}

inl plane:;plane_inletSeClion(line Iinel, vl:ClOr&: pl, double&: dislance)

I
veclOrvelocity-Jine1.Ilet..directionO.lkIIllalize();

dislallCe={-this).plane_diSlallCe{velocily.linel.seutartQ);

if(distance<IEJOO) I

pt= Unel.seutartQ + distance· velocily:

retwnl;1

O~

retumO;

'"

int p~;:plane_IinIU:loss(line line1, 'iCCtork pt, doublek distance)

I

distance = (.. this).plane_distaoce(velocity, Iine1.seCstart();

if «diSlallCe > .. 0) &k (disrance < linel.seulirectionQ.masnirudeO» I
pt .. line1.seU>II1l1()+distance"ve1ocity;
return 1;)

retumO;

136

,.
FILENAME _ : rouler.cpp

AumDR : Dr. Se·Hung KW AK & Cern Ali DUNDAR

DA1E : Seprember 1993
DESCRIPTION : This is the main routing sourcecode. It IuuwDes routing for thecurrenl topology

of uansputer network . .. ,
#include "routerX

#include<.al1.1t>

#include <chan.1t>

rouler::router(CHAN "in..Jxlrtd[].int insl. CHAN "out,..portSl[J,int outs!)

in..Jl(Jrts=in...,portsl;

ins=insl;

out...,ports= out.,.portsl;

ours = oursl;

inl nexullklress(int destination, int currenUevel)

I
rerum«dc$tinalion» (currenUevel .. 2» & 0x000lXl003);

I

voidrouter::inil(void)

I
,. message fonnat'"

,. 0 cmd #_oUasks *_oOowerJOllIeI' destination cum:nUeve1",
,. 1344164bits .. ,

,. 0 CMD NTS LOW DST CLL",

,.cmd l:inil(start)

2:tennlnateinit

"

for (::)I
inlmessage:

ch.an.Jn_ word(&message.in....ports[O]):

,.Checks whether 1o tenninaleinitroutine.

This is detecled by the first node .• ,

137

if (ROUTE_VNPACK_CMD(message) = TERMINA lE_INI11 I

I

for (int i=FIRST_LOWER_PORT_NUMBER; i<cJasUowerJlOrenumber: i++)

chan_out_word(message.ou!JIOrts[i]):

I

"re.'"
I r If them is no lower routers. then it automatically does 1lO!

send anything. */

in! destination _ ROlITE_lJNPACK_DST(message);

int cwrenUevel '" ROUTE_UNPACK_Cl.L(message);

intnexechan = nextJ,ddress(destination,cIllTC!lUevel);

if (!nexLchan) I rThisisthedestination.*/

router_id_ destination; r Destination is ID.-/

level '" cwrenelevel;

r 0, L num_oCJowerJoukrs. task-POrts -/

int num_oUash _ ROUlE_UNPACK_NTS(message):

if (num_oClowCl_IOulers 1.0)

has_leaCnodeJl .. l ;

ha.UeaCnodeJl" 0;

I
el<;e{

rnelSAAge++; r IncremenrscUJTent_leveICQunter.-/

ctlan_oue word(message. outJlOrts[nexechan]);

I

in! roukr.:cmd_lype(void)

I

cluut_in_word(&message.inJlOl1S[O]l;

mtum(ROUiE_UNPACK_CMD(message»:

chan_ooeword(message.oulJlOr1S\porenumber]); r Sellds header first. -/

inl num_ofJlaCkets '" map_siz.e/ROlITER_BUF_SIZE + I;

J38

)

in! IastJl8CkeCsize = mapJize % ROUTER.....BUF _SIZE;

chan_oucword(malulze,out...ports(p(xcnumber]); !* Sends map size. *'
while(nUlTLof~)1

1

if (1ast...,packeLSize > O) f
cluuUn_message(1aslJltlClreLSIze,rourer_buf,in..JlO11S(O)};

ChalUJul_message(lasl.J)llCkeuize,router_buf,OUI..JI011S(pIXCnumber1};)

else I!* nothing to transfer */J

''''I
charUlunessage(ROUIER_BUF _SlZE,router_buf,in...,porls(O]);

ctwUJllunessage(ROUTEUVF _SlZE,rouleCbuf,ouLpons(pOfcnumberl);

1
num3 1f..,packe1s--;

void lOUler.:send..map(void)

1
inlmapJire;

chan_in_word(&m~Udz.e,in...,porlsro]};

intdestination .. ROtrrE_UNPACK_PST(message);

!* Two cases; This node's task or pass down */
intnu.cchan_nellcaddress(deslinalion,levei);

if (!neu_chan) I !* This is the destination. */

!*Getstasknwnbtt.·'

,I~

trans_map(nelcchan,m~Lsiz.e);

)

voidrouler::bcasLreq(void)

1
inl size .. ROUIE_UNPACICBCS(messase);

charUllJllessage(size,routecbuf,in..JlOrl5[Ol):

)

chan_ouCword(message,OUl.pOrIs(i]); !* Sends down·'
chan_out_message(size,roulecbuf,O\lLPOrtSU]};

139

fOT{i=FlRST_TASK_PORTjlUMBER; 1<=lasUask..JlOl'Lnumber; i++) {

chan_out_word(mes~,oulJlOlfS[i]); ,. Sends down. +,
CbaJUXIUnessage(Size,roulet_buf,out.,..pons[i]);

I
I

void router:;answer(void)

int sum = 0; ,. Should be zero, now just testill8 mode, +,

intchan;

for (Int i=FlRST_TASK_PORT_NUMBER; i<=lasl.,.task..j)OTcnumber.i++) I

chan .. all..wail_vec(ins, in..jKlltS);

ch8lUn_word(&task..$IIJJI,in.,..pons[chaJJ]);

sum = sum + taIIk_sum;

for (i=FIRSTJ.OWER....PORTjlUMBER: i<=lasUower...,portJlumber, i++) {

chan = aIUvaiu'ec{ins, in.,..pons);

chan_Hurrord(8clower..sum,in..jKlltS[chan]);

sum _ swn + loweCsum;

chan_ouLword{sum.ouIJlOrts[O]);

I

void router::tmninate(void)

I
fOT (int io>FIRSTJ.O~PORT...NUMBER; i<=lasUower..JlOl'Lnumber; i++)

for (i-FIRST_TASKJ'ORT-fiUMBER; i<=lasuasJwx!rt.-number; i++)

ch8ll_oul.,.woo:l(message.out..J'lOl1Sli));

141l

r····················· ... ················· .. ·············
FU.E.NAME.n ~.: l'OUtmt.epp

AUTHOR _ .. : Dr. Se-Hung KW AK & Cem Ali DUNDAR

DATE...... : September 1993
DESCRIPTION : This smn::e oode perfonns routing fer transputen> . .. ,
Itinclude<clian.h>

Itinclude"rou!er.h"

void main(int arge. ehar "argv[], char ·envp[],

CHAN "in...pons[J, int ins, CHAN ·oul..,ports[], int Outs)

intexiUlag=O;
roulel'roulel'l(in..,ports,ins,OUI..JIOI1S.outs);

routerl.initQ;

while (lexiUlag)

I

swilCb(roulel'l.cmiUype{))!

case SEND_MAP:

roulerl.setI(Cmap(): -C/ISIl BCAST~REQ:

roulel'l.bcasueq();

roulel'l.answer();

"""';
case TERMINATE:

routerl.tenninste{);

exiUlag_l;

break;

default:

rerror·'
"""';

r···
FILENAME ; routerZ.cpp

AUTHOR : Dr. Se--Hung KW AK & Cern Al i DUNDAR

DATE.... : September 1993

DESCRIPTION : TIlls 80= code perfonns muting between transputers .
.. ·· .. ·····················1
finclude·"router2.h"

lIinclude <iostream.h>

consl int OlIT]ORT_NUM =2;

const im IN_PORT...NUM= 2;

routerZ::router2(CHAN ·inJlOItSI[1,int insl , CHAN "ouIJlonsl[l.int oulS1)

I
in..JlOl1S><in.,ponsl:
ins _ insl;

out-PQrtS= out.,portSl;

outs = outs!;

r Destination address does not contain zero .• ,
inldst=O;

intdigit = destination % 10;

destination = destination 1 10:

while (digil) !
dst .. (dst« 2) I digit;

digit '" de.~timllion % 10;

dcstinalion = destinalion/IO;

retumdst:

void router2::routecinit{int destination. int low, int nlS)

intmessage=O:
;"'\ \:.\\ .. 0-, !*Cum:ntlevelnumber·/

ROlJI"E_P ACK_ CMD(message,ST ART _INIT);

ROlJI"E_PAC~mS(message.nts);

ROlJI"E]ACK_LOW(mcssage,low);

142

cllan_ouLwoo1(message,ouLpMS[OlJCPORT_NUM);

I

void router2;;rouleOniLdone(void)

I
inl message =0;

ROUTE_PACK_CMD(message,TERM1NATE_IN1T};

ROUTEJ'ACJU.OW(message,2);

cllan_ouLword(messaae,oul...POtlS[OUT_PORT_NUM]);

I

voidrouter2::tenninate(void)

I
int message = 0;

ROUTE_PACK_CMD(rne5S¥,1ERMINATE);

cl\arLouLword(lI1eIl8IlI!e.out.,.pons[OUT_PORTJmM!);

I

void rourer2::send(int destinaJ:ion, int nb. in! size. c~ but)

I
inlmessage=O;

ROUTE_PACK_CMD(messase. SEND_MAP);

ROUTEYACK.fiTS(mes:sage. nlS);

R~PACILDST(message, COI\veJuo_dst(destination»;

rSends"header"·'
chan_ouLword(message,ouLports[OUT_PORT_NUMJ);

rSends"size"·'
cna,u)uLword(size,oul..JlOl'lSlOUT_PORT_NUM]);

c~bp=buf;

int nwn_of.,.packelS,. size I ROUTER-BUF _SIZE + 1;

intlast...,packeUrize= size % ROlJlER_BUF _SIZE;

while (nwn_of....packets.>O) I
if (nwn_of...J!8dets=l)

if(IasI.,.packeLsize>O) I
cJuuu)uUnessage(1ast...,packeLsize,bp,outporlS[OUT_PORT_NUM]);)

else I rNothinglOsend",)

143

I
I

bp += ROUI'ER.BUF _SIZE;

I
nuffi_of....pactets-·;

void route.r2::bcast(int si7.e,char't but)

I
in! message=O;
RotITE..PACK_CMD(message,BCASTJ{EQ);

ROlITE_PACK..BCS(messagesize);

chan_out. ·.·"fd(message,our....pons[OtrCPORT..NUMJ);

chan_oul sase(size,buf,out..JlOrtS{01.IT....PORTJmMJ);

inlrouter2::1isten(void)

I
intmessage:
chan..in_word(&message, ifl.....ports[lN_PORT_NUM);

return message;

144

r************************************** ** *** .. *****·*** * .. * .. * .. **** .. * .. ***** .. **
FILENAlofE H •••• : roulel'3.cpp

AtrrHOR ..••••........ : Dr. Se-Huna KW AX & Cern Ali DUNDAR
DATE : September 1993

DESCRIPTION : This source code performs routi!lg r ",otters .
• *****.*******.*******************.************** •• **** *.****** •• *.**.** •• * ... **,
#inc1ude·'routeJ1.h"

roulecl::rourer3(CHAN *in..JlOlUIO,int insl, CHAN ·out..JlOllSl[],in1 oulSl)

(

in~in....J)OrtSl;

ins = insl:

oul.\;= OUl.\;l:

int roUler)::amUype(int& size)

(

chanjn_word(&message.in....pons[O]):

inl and = ROlITE_UNPACK.....CMD(message):
if(cmd_SEND)

chan_ifLwOJd(&sizeJn...J)Olts[O]):

size = ROUTE_UNPAClCBCS(message);
relUrn{cmd):

voidroulel'3::receive{intsize.cllar*buO

char*bp = buf;

inl num_of....Pac:kets = size' ROUTER_BUF _SIZE + I;
inllastJ)3CkeL5ize = size % ROUTER_BUF _SIZE;

while(num_or~) (
if(ouJILof-PftCkets=l)

if(lasLpackeUize>O) I

else {rNothiogtosend·/}

145

1
}

bp +- ROlJ1ER_BUF _SIZE;
}

nUDLoLpackets--;

void router3::answer(int value)

chan_ouC word(value,out...pons[OJ):

1

voidrouIer3::tenninate(void}tl

146

/* .. .

FILENAME

AUTHOR_ .: Dr. Se-HuoS KW AK & Cern Ali DUNDAR
DAlE : September 1993

DESCRIPTION : This source code perfonns LOS calculations between two points in the map area.

Returns 0 if LOS exists. returns 1 otherwise ,
#include<matll.h:>

#irK:lude"s_los.h"

#irK:lude"map.lI~

int sJos::dcuUos(vector start, vetto£ goal, map& mapl)

I

I

iOlsleps,i;
vector del = goal.swt;

inl deexi. delJi;
de1JOi = (iol) (fabs(del.geu:O)l map1.geLgrid._size();

del,.yi '" (inl) (fabs(del.geI..,yO)l mapl.geIJridJize();

steps'" (deU:i > det..,yi)? delfl: del..yi:

/* Saeps+ I is necessary, because without adding 1, the last goal point is not tested ... ,

vecTOr della...step = (I.O/Steps)"del;

vecrorcllect_Ioc-=swt;

for (i=O;i<slepS;i++)(

if (mapl.histler_than(chect_Ioc»

return I;

check.Joe = chect_1oc + delt.a.....step;

I
retornO;

147

,.
FU..ENAl.fi! ...•......... : tr_cornm.cpp

AlJIHOR-. M : Dr. Se-HunS KW AK & Cern Ali DUNDAR
DATE ... _ : September 1993

DESCRIPTION ••••••• : This source code handles the commooicaDon between rransputers /
'include "tccomm.h"

Ifulclude <chan.1I>

Ifulclude <iostream.h>

Ifulclude'1os30m.h"

con~t int IN_PORT_NUM=4;

const int OUT_PORT..NUM=4;

tccomm::tr_comm(CHAN "in-POrtsI[]. int inst, CHAN ·out.JlOrfSIO. int oul.'ll)

I
router2a .. router2(in..JlOr1Sl.insl,out.JlOlUl,oul.'l1);

in...JlOftS-ifl....ponsl;

ins=insl;

out....JKllU;;out..JXllfSl;

outs_oul.'ll;

int tr_comm::cmd.Jype()

I

I

intcmd;

chan_in..word(&cmd,in..JXllfS[Il'CPORT_NUMJ);
return(cmd);

void tr_comm::routecinit(void)

int num_lB:

int·Ir1i.·unders..'"pJs:

chlUl_in..word(&num_llll,in....pons[IN_PORT..NUMJ);

Illl = new intlnum_Illl];
1II\den;; new int[lWm_Illl]:

prs;; new int[num_trs];

'48

chan_inJness88e(size,(char"')trs,in...,portS(Il'·U'ORTjlUM});

ch8lUn_ffiessage(size,(char*)unders,in...,portS(Il'·CPORT_NUM]);

chan_in_ffie:ssa&e(size,(ch&r'*}prs,in...ports[IN_PORT_NUMl);

for (inti=O;i<mDn_trs;i+t)

router2a.mutednit(trs[i],unders[i].)n[i]):

!* Tcnninates initialization, .,

router2a.router_iniUlone();

void tccOfDm::send(void)

Intdst;

chanJn_word{&dst.in.,.poru[IN_PORT_NUMl);

mInts;

chan_in_word(&m:s,in-.JXXlS[IN_PORT_NUMl);

mtsize;

char"'buf;

chan.....ilLword{&size,in...jlOrts(IN_PORTJWMll;

buf = new char[size];

chan_in_messase(size.buf,in..JlC'1S[IN_PORT_NUMJ);

router2a.send(dst,nts. size. buf);

I

intsize;

charUlLword(&size,in...,portS[IN_PORTjlUM});

dw·buf;
buf=newchar[size];

149

roulel2a.bcast(size. buf):
)

void tccomm::listen(void)
(

intvalue=router2a.listenO;
Ch!IILDULword(value,DUl..JlOltS[OUTJ'QRT....NUM]);

)

voidtr_comm::tenninate(void)
(

rouler2a.tenninate();

)

ISO

r
FILENAME _ : tccommLcpp

AUTHOR : Dr. So-Hung KW AK & Cern Ali DUNDAR

DA'fE : September 1993

DESCRIPTION : This soun.:e code harKIles the communication between SUN and bansputers • .. /
#include ··tccomm.II"

#include<iostream.1I:>

void main(mt .&tgc. char ·argv[]. char ·ellVp[],

CHAN ·ill..j)OltS[]. inl ins. CHAN ·out..JlOl1S[], inl outs)

I

inl exiUlag ",0;

whlle(!exicflag)

switch (u_comml.cmcUype()) I

case ROUTER_INIT_S:
u_comml.routeOnil(); ,
u_comml.riend(); ,

caseBCAST_S:
tr_comml.bcaslQ; ,

caseUSTEN_S:
u_comml.Uslen(); ,

case 1ERMINA1E.3:
u_comml.terminate();

exiCflag=l; In,,,,,

"""'" I

/* .. .

FILENAIdB : vector.cpp

AUTIlOR ~ •••...... : Dr. Se-Huug KWAK & Cem Ali DUNDAR

DATE : September 1993

DESCRIPTION ••••• : This source code defines me VCCIlJr class operatiuns.
.......................... _ _ ... * .. *** ••• * ,

#include ''vecw-.h''

#include <math.h>

vector::vector() Ix=O.O: y=O.O; Z=(1O;1;

veclOl::voclO((double x1,double yI,doublez1) (x-x1; y .. yl; z,.zI;I;

int opemtor=(vector vI, vector v2)

I
retum(vl.x--v2.x) && (v1.ys-v2.y) && (v1.=v2.z»;

I

voctoroperator+(vectorvl,vectorv2)

I
vector v{v1.x+v2.x, vl.y+Y2.y, vLz+v2.z);

retw:nv;

vector operator·(vector vi, vectorv2)

I
vector v(vl.x-v2.x. v1.y-v2.y, v1.z-v2.z);

retw:nv;

voctoroperator"'(doublea, vcctorvl)

I
veclOl' v(a·vl,x, a·vl.y, a.vl,z);

retumv;

double vector::dotprod(veclOI' v2) /* Dot product *1

I
retum(lhis->x·v2,x + this->y"v2.y + this->z"vZ.z);

I

double veaor::magnitude(void)

(

rewm{8I.J1«"'tlUs).dolpmd(*t/ri!i»);

I

voclOrvectcr.:nonna1ize(void)

(

{

vectorresu1t;

double mas" ("'this).magnitude();

iC(mag<lE-lOO){

resu1lX=O.o;

re5uit.y_O.O;

resullZ_O.O;} ... {
result = (UI/mas) "'(*t/ri!i);

I
retum(resu1t);

/"'Veelornormalization ""

'"

r'

FILENAME : worker.cpp

AI.JTIIOR : Dr. Se-Hung KW AX & Cern Ali OUNDAR

DATE : September 1993

DESCRIPTION : This source code handles the communication between routers and workers,

p&ses all information ro workers and gets the result which they found ,
lIinclude''router3.h''

lIinclude"los_com.h"

lIinclude"s_los.h'·

lIinclude"map_CTX.h"

im num_cnt(int num. int* bur. int buCsize)

intcnl"O;

for (int 1=0; i<buCsizc; i++)

if (bufliJ=num) cm++;

void main(im argc, char "argvD, char ·envpn,
CHAN ·in..JlOrts[], im ins, CHAN ·out...JXll1sIJ, inl out.~)

r'threeca.o;c:s;gcLmap

getJcq & relurn answer

tel1Jlinate

'/

intsizc" O:

int·bur;

intbuCsize;

CMD_INFO cmd_info;

MAP_INFO map_info;

veclortesl_S, test...g;

mtc_result;

routed routeda(ln..JlOlU.ins,oulJ>Or1S.0ulS);

map_cn map_crxer,

s_1os10s1;

154

J

while (!exiUlag)

switch (routecla.cmd_type(size»{

case SEND:

routel'3a.receive(size,(char"')&mapjofo);

roulet3a.cmd_type(size);
buCsize=size/4;

bur .. new int[buCsizej;

router3a.receive(size,(chaJ+)buf);

map_info.size_x, map_info.size-y.

Inap_info.gridJize, buf);
bre&<,

case BCAST:

,.,
c-ftSult=O;

routez"3a.!IJ\swer(c-ftSult); -,
case TERMINATE:

router3a.temUnaleO;
exiCfla8=l;

bre&<,

default: ,.Error"',
bnlak;

J

15'

,. _ ••••• _ ... _ _ ... M

FIl£NAJ,fE ,.: worker.1nk

AUTHOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE : Seplember 1993
DESCRIPTION : Does the necessary links for workers _,
worker.bin

router3.bin

map.bin
map_ctx.bin

s_los.bin
plane.bin
line.bin

vector.bin

IS'

I FlLENAME _._ ... : btestlSO.cfa
! AU1lIOR... . .. :Dr.Se-HWI8KWAX.&CemAliDUNDAR
! DATE _ : September 1993
! DESCRIPTION._ ... : This conflJlurntion me are £or 15 transpUIelS, one Sun SPARe Station and one

~!!~.~: ==~:: .. =:!~}: .. :~~!::::~ .. ~=~
,roo,,'''"''"
processorsuntYJlC"'PC

"""~""" processor pI
processorp2
processorpll
_1'21
procesSOl"plll
proccssorp211
processorpllll
processorp2111
proccssorplllll
processorp2111l
processor pllll1 1
processorpZllll1
processor pllli 111
processorp2111111

wire? _0]
wire? mol[l]
wire? mol[2]
wi<e? root[3]
wire? pU2l
wire? pZ[1]
_? pl1[2]
wire? p21[1]
_? pl1l[2]
wire? pZll[l]
wire? pI1ll[2]
wire? pZlIl[l]
wire? p1l1lU2]
wire? p21111[I]
wire? p1l1111[2l
wire? p21111l[lJ

hosl[O]
p1[1]
p2[2]
=10]
pll[l]
pU[2]
plll[l]
pZll[2J
pllll[l)
p21l1[2]
pllll1{l]
p21111[2]
pll1l11[l]
p2UII1[2]
plllllll[l]
p2I111ll[2]

! Task connected 10 fllter cannot use 0 channel of task therefore. master has to have.5 iru; & outs
! Also a channel 10 filter has lobe lowest number.

taskafserver
task filter
taskmaster

ins-louts-l
ins=2 ours-Z data=l.5k
ins=.5 outs=5 data=lSl: fi1e="tt_commt.b4~

157

.... ~"'"
taskroulefi
Wk~..a

taskrouterll
taskroutet.21
IaSkrouterlll
task router21 1
taskrouu.·.flill
task rouler211 I
taskrouterllill
task router211 11
taskrouterl11111
taskrouter211111
taskrouterllll111
taskroutel'2111111

taskwcderOJ
taskwOJkerOl
taskwocker02
taskworket03
taskwcwker(14
taskworker05
taslw«ter06

""'­taskworter()8 ""',."
taskwcdcrOlOO
tasiwcx1rerOlOl

taskworkerlO
taskworkerll
taskworkerl2
t.askwOOter13
taskworker14
taskworkerl5
taskwurkerl6
taskwmer17
taskworl::er18
taskworkerl9
IaSkwockerl100
task workerllOi

taskwotker20
taskwocker21
taskworket22
taskwcl"lr::er23
Wk

""'w«k<tlS
.... worlre<26
taskworker27

ins=10 oulS=20 da1a=<2k fiJe-"roulel.b4- urgent
w=20 OUI5=20 dalP2l: ftlc="roulCI'.b4" urgent
ins=20 OU1.:; .. 20 data=2kfl1e="routel.b4" UQleDl
ins=20 ouI5",20 d.lla=2k fi]e="roulel'.b4" urgent
iru;=20 ou\.';=20 data=2k file="router.b4" IIfBC'II
ins",20 oUIS",20 data=2k fiJe="routel.b4" ursent
ins=20 outs=20 data=2k fiJe;"router.b4" urgent
ins=20 outs=20 data=2k 1iie="roUler.b4" urgent
ins=20 outs=20 dara:2k file="router.b4" urgent
ins-W oulS=20 data=2k fiie="router.b4" urgent
ins0020 oulS .. 20data=2k fiie="router.b4" mgent
ins=20 OQts=20 data=o2k nle="router,b4" urgent
ins=20 outs=20dala-2k fileoo"rouler,b4" urgent
ins=20 ouls;;;20daIa=2k file="router.b4" urgem
ins=20 oul8=20 dala=2k f))e.."router.b4" urgent

ins=l outs=l data=2751:: nte-="wortef.b4"
ins:1 outs=1 data><275I::file="worker.b4"
ins=l 0lIts=1 data;2751:: file="worker,b4"
ins:l outs=l data .. 275kfiJe="wmer.b4"
ins:l ou15=1 data--27Skrue-"worker.b4"
ins .. 1 outs=1 data"275kfile="worker.b4"
ins:l OlIts=l data;275kfile="'NU'b.:£.b4"
i""",,1 outs=! daUF2751::fUe=="worker.b4"
illS=! outs=l data=27Skflle-"wOJter.b4"
ins:l outs=! data=27Skflle-"worker.b4"
illS",1 outs=! data",27Skfile="worker.b4"
illS"'! outs=l data=27Skflle="~.b4"

ins",l outs=! data--27Skfile="WOI"ker.b4"
illS"'! outs=! daIa--275k file="worker.b4"
iJ\..,..! outs=! data=275kfi~"WOJter.b4"
ilL~ .. l OUl..,..! daJa;;27Sk nte="workcr.b4"
il\S'=l outs=l data=275I::flIe="worker.b4"
ins-I oulSzl data-275k file="wori:er.b4"
ins=l oulSzl data=275kfiJeo--"worker.b4"
ins=! outs=1 data=275kfile="worker.b4"
ins=l oulSzl data=275k fal="worl::er.b4"
im=1 outs=l data-275k file="wori:er.b4"
ins:! outs=1 data-275k file="worker.b4"
ins=louts=l data=275kfiJe,."worket.b4"

ins=1 outs=l data=275k 1iJe;"worloor.b4"
ins",l outs=1 data=275k file="worker.b4"
ins=l outs=l data=275kfile="worker.b4"
ins=l outs=1 data=275k fiI="woner.b4"
in&=1 outs=l da\a;=27Skfl1e;"worker'.b4"
illS",l outs=l dala",27Stfile-"workef'.b4"
ilL~=! oUl~l dataoo275kfiJe="1II'Ofker.b4"
illS"'! outs=! data=275kfiJe="worter.b4"

158

""'­,""w"""",,
taskw0rker2100
tasltw0rier2101
taskwon:erl10
taslcworkerlll
taskworkerlll
Iaskworkerll3
taslcworker114
taskworkerllS
taskwmer116
taskwakerll1
taskWOJker1l8
task workerl19
task workerlliOO
IaSkworkeclllOl

taskworkerillO
taskwakerllll
tasl;.:wcrker1l12
taskwcrkerlll3
taskworkerll14
taskworlrerlllS
taskworkerll16
task wcd;erIl17
taskWU'kecIIIS
taskworkerll19
task wakecll 1 100
task wmkerlll 101

task wtrterllllO
task wttkerllli 1
task workerll112
task workerll1l3
taskwortrerlll14
taskworkerl1llS
taskworkerll116
taskwakerll117
taskwater1111S
taskwl.Yker11119
!aSkworkerUll100
tasi;.:w(W'kerlllllOl

taskWU'ker1l11l0
taskworkel"111111
task wlIkerlll112
taskWOJtcc1ll113
task worked 11114
taslcworkerlllllS
tasJcworkerlll1l6
taskworkerllll17

ins=l outs=l ~7S.t file=~worm.b4~
u..t outs-I dala=275k file=-worker.b4"
inP=1 outs=l dala=27Skrue-"wid:er.b4"
im=l out5=l dala=27Sk fiIe-"worker.b4"
ins-I outs=1 dala=27Skfile="w<ner.b4"
ins=1 outs=1 dala=27Sk fiIe-"workcl.b4"
inswl outs=l dala=275kfiie="wolker.b4"
illS=i (JUts=1 dala=27S1dile-"woJter.b4"
ins=l outs=l cI!lIP27Sk filca"womc.b4"
ins-I outs=l dala=27Sk file="worker.b4"
ins=1 outs=1 dalac275k file-"woJter.b4"
ins",l outs-I dataoo27Sk fiIe-"wOJtet.b4"
ins=i outs=1 dala=27Sk flle="worter.b4"
i_I outs=1 dala-275k flle="wOJtec.b4"
ins=l outs=1 daIa=27Sldiie="wOlker.b4"
ins=1 outs=1 data=27Sk fileo="worker.b4"

ins .. ! outs=1 data=27Sk fl1e="wmter.b4"
ins=1 outs=l dala=27Sk fiJe="worker.b4"
ins=l outs-I data=27Sk flle="WOJt,:a.b4"
ins-I outs-I dara.275k fl1c>o"worker.b4"
ins=I outs-l dala=27Sk:fi.Ie.."WlXka.b4"
ins:EI outs-I data0t275k fiJe="worlrer.b4"
im=I outs-I data0t275k file="wod:a.b4"
ins=1 outs=l data .. 275k fi)c.o"worke£.b4"
ins=l outs-I data0t275k fiJe="worka.b4"
ins=1 outs=1 data-275kfl1e-"worker.b4"
ins-I ours=l data=275kfiie="worker.b4"
ins-I outs-I da1a=27Sk fiie="worka.b4"

insel outs-I data0t275kfi1e="worker.b4"
ins-I outs-I dala=27SkflJe="worta.b4"
ins=1 outs=I dala=275kfjJe-"worta.b4"
ins>oI outs=l data-275k fiie="worker.b4"
ins-=I OUlS=I daJa=27Skf1Je="worker.b4"
ins=1 outs=I data=275.k rue-"workeI".b4"
ins-I outs=l data:275k fite-"worker.b4"
ins-=I outs-I data=27Sk file="worker.b4"
ins=I outs-I dala=275k rue-"workcc.b4"
ins=1 outs=I data=275k filez"woder.b4"
ins:=l outs-l daiaa27Sk:fileoo"workec.b4"
i_louts-I data=275k:file="worker.b4"

i..,.,1 outs-I dala=275k file="worter.b4"
ifts;I outs=1 data=275k fite-"wOJter.b4"
ins=1 outsal dala=275kfUe="worter.b4"
im=l outs-I dala=275k: fiJe="worter.b4"
insel 0\IIsI01 data=275kfde="wOJter.b4"
ins:=l outs=l data=275kfde="worker.b4"
ins=1 outs=l data0t27Sk: flle="WOJta.b4"
ins=1 ouPl data-21Skfl1e-"WoRer.b4"

'"

LlSkworkerlll118
LlSkworkerll1119
LlSkworkerllll1100
LlSkworkerll111101

Wkwcd:erllllllO
task wtXkerlI1 I III
taskwoderllll1l2
taskwcrl:erlllU13
task woderll II 114
taskwttkerll11115
taskwCl"kerlll1l16
taskwttkerlllll17
LlSkwttkerlllUIS
taskwoderllll1l9
task woderll11l1100
tad:wockerlltllllOi

task worterllll1 IlO
taskworterlllIll11
taskwoderl1ll!1l2
taskwoderllll1113
task workerll lJ 11 14
task wod:edlll II IS
taskworkerll111116
taskwockerl1111117
task wockerll I 11118
taskwockerlll1l119
taskwockerl11UIllOO
Iask worker1 111111101

taskw0rter2lO
taskw0rter211
taskwcder212
taskworter213
taskw0rter214
taskworter2I5
laskwockcr216
taslworker217
taskworker21H
taskworkcr219
ta.>kworker21100
ta'Okworier21101

taskwOI"ker211O
taskw0rter211t
taskw0rker2112
taskwoder2113

i~l ouL~l dala=27Skfile=.'WOJ'ker.b4"
in'!:l oul&=l data=27Skfile="wcrl:er.b4'
ins:! oul&=l dala=27Skfile:"W(ri:eI".b4"
U1S=loul&=ldata:27Skfile.o"wcrl:eI".b4'

ins=louts=l dara=27Skfile="worker.b4"
ins=louts=Idata---27Skfile="worker.h4"
ins-I oulS=l dara=27Sk flie="worter.b4"
ins=l oulS=l daIa=275k file="worker.b4"
ins=Iouts=Idata:o<27Skfile="wOIka".b4"
im=1 outs=l data=27Skfile="worker.b4"
ins=! outs=l da!a=27Skfile="wOt"m.b4"
illS=l oul&=l data=27SkfiIe-"worlter.b4"
i~louts=ldata=27Skfile="worker.b4"

i~l OUIS=I data=27Skf~"w<ri:er.b4"

illS=1 outs=1 data=27SkftIe-"workel".b4"
ins=l outs=l data=27Skflle="worlter.b4"

im=louts=Idata-27Skflle="worker.b4"
im=1 outs=l data=27Sk file="wori::er.b4"
ms.loulS=ldaJa:027Skfile="won.er.h4"
ins=l 0UIS=1 dala=275k fiJe<."worker.b4"
ins=10uts=Idala=27Skfile="worker.b4"
ins-louts=ldala"27Skfile="worker.b4"
illPl oursal dala=275k flle="worker.b4"
ins=l outs=! data--27Skfilea"worlccI".b4"
ins=louts=ldata=27Skfi)e.."worter.b4"
in'!:l outs=1 data=27Skfile="worker.b4"
ins=l outs=1 Uata=275kftleoo"worker.b4'
illS=! outs=1 data.=27Sk fi)e.."WOI'kel.b4"

ins=louts=1 daIa=275kfiJe.."worker.b4"
ins=Iouts=Idata=27Skfiie="worker.b4"
ins-I outs=l dala=27Skfile="workel".b4"
ins=1 outszl da!a=275k fiie="workel".b4"
ins=louts=1d;ua .. 27S.kfile="workec.b4"
ins=louts=Idata=275.kftle="workec.b4"
illS=! OUL.,..l data=27Skfile="worke£.b4"
ins=1 outs=l data=27Skflle="worker.b4"
IllS=louts=ldata:27Skfite-"worker.b4"
illS=l outs=1 data=27SkfiJe<."wortrer.b4"
ins:louts=ldata--27Skfile="WOJker.b4"
ins=i outs=1 data:27Skfi1ea"worker.b4"

ins=IOUlS=ldaIa=27Skfile="woner.b4"
ins=louts=ldata=275kfile="wor.ker.b4"
i!L'loo<loots=l daIa=27Skfile="work.er.b4"
ins-loulPldala=275kflle="worket.b4"

100

taskw00rer2114
taskwater211S
taskw0rter2116
taskwcft:er2117
taskw0drer2118
task'NOlker2119
taskwoder2l1l00
taskwCl'ker21ll01

taskwotter21110
raskw0rker21111
taskwcwker21112
taskw0rker21113
taskw!rler21114
task wcwker211lS
taskwcwker2Il16
taskwcwker21117
taskw0rker21118
taskwcwker21l19
task worker2111100
taskw00rer2I11101

taskworker211110
taskw0«er2llllI
taskw<rker211112
taskw0rker2Illl3
task worker211114
taskw0rter21111S
taskw00rer21Il16
taskwcwter21l117
taskw0rter2111l8
task worter211119
taskwcrker21111100
raskwmker21l1l101

raskw0rker2111110
taskwcwker2111111
taskwcwter2111112
taskw0rker2111113
taskw0rter2111114
taskw0rker2I1111S
task wodrer2111ll6
taskwnrker2111l17
task woder21111 18
task water2111l19
raskworter2l1Ull00
taskworket2111l1101

taskw0rker2IlIl110
task wcner211lllll
taskwIXter21l11112

ins=l outs=l data=27Sk fiicso"worter.b4"
ins>ol outs-I daIa~7Sk fiie="'tIt'Ortet.b4"
ins>ol outs=1 data=21Sk flle="wui=.b4"
ins=l outP:l data=27Sk faJe-"worter.b4"
i_I 00ts=1 data=275k fiie="woder.b4"
i_I 00ts=1 data=27Sk flle="workef.b4"
ins-I outs=1 data-27Sk flk:="worker.b4"
ins=l outs=1 data=27Sk f'iJe-"wcwll:c:£.b4"

ins=l outs=1 data=27Sk flle="worker.!:I4"
ilLS=1 outs=1 data-27Sk fiJe-"worker.b4"
ins=l outs=l data=27Sk fde="worker.b4"
ins=! outs=1 data=27Sk fde="worker.b4"
illS=l outs=l data-27Sk fiIe="worker.b4"
ins=l ours-I data=27Skfiie="wOJker.b4"
ins=1outs-1dataa27Skftle:"worker.b4"
i_I outs=1 data=27Sk flle="worker.b4"
ins .. l OUlS=! da!a=27Sk fiie="w<rkc:r.b4"
ins=I outP1 data-27Sk fiie&"WOJter.b4"
ins-l outs=1 data=27Sk fiie="worker.b4"
ins=l oulS=1 data=27Skfiie="WOJker.b4"

ins=l outs=1 data-27Skfiie&"workc:r.b4"
~1 outs=l daIaoo27Sk 1iie="WOJker.b4"
im=1 outs=l data=27Sk 1iie="WOJter.b4"
insal outs=1 data-21Sk fite-"wOJker.b4"
ins=1 oulS=l dala=27Sk file="WOJker.b4"
ins=10uts=1data=27Skfile="worker.b4"
ins=1 outs=1 dala=21Skflle-"wOJker.b4"
inp.l outs=1 data=27Sk fiie>="worker.b4"
im=1 outs=l data-21Sk fiie="WOJker.b4"
ins=l ours=I daIlP21Sk 1ile="woIkel.b4"
ins=l ODlS=l dala=27Sk fiie="worker.b4"
ins=louts=Idata-27Skfile-"WOlker.b4"

ins=louts=ldata=27Skfi1e:"worlter.b4"
ins=1 OU1PI data-27Sk 1iie="worker.b4"
ins=l 0uU=1 data=27Skfiie="wOJker.b4"
ins:loutll=lda1a=27Sklile="worker.b4"
ins=1 ours-I data-27Sk 1iie="worlter.b4"
ins=l outs=l data=27Skfile="worker.b4"
ins=1 ours-I data=27Sk ftle="worIrer.b4"
ins=1 outs=l dala=27Skftle="worker.b4"
ins=l outs=l data-27Sk 1iie-"wOJker.b4"
ins=l outs=l data=27Skftle="worker.b4"
inpl oug.1 data<o27Sk ftJee"workec.b4"
ins .. louts=l dala-t27SkfiJe="worker.b4"

ins=1 outs=l data-27Sk fale="worker.b4"
ilL'!_j outs=1 data=27Sk fIle="worker.b4"
ins=l oulS=1 data=27Sk file="worker.b4"

161

taskw0rker211l1113
taskwcrl:er21111114
task worter21111115
taslW<rl:er211l1116
task worter211!l117
taskwttker211!1!18
task worter21l 11 119
taskworter2IIl!!llOO
taskwmer2111111101

ins=1 outs=1 data-z75kf!le-"worteJ.b4"
ins",l out>;:! dala .. 27Skf!lc-"WOIter.b4"
ins=1 out 1 data<=275k flle-"worlrer.b4"
ins=1 oulS=! data==27Sk file=="worter.b4"
ins=l outs=! daLa>-275kfilc="WOfter.b4"
ins=! outs=1 data-275kfOO-"worlter.b4"
ins",l outs=1 data-275kfile="worker.b4"
insool outs-I data=275k file="worker.b4"
ins=1 outs=l data=275k flle-::"worker.b4"

!Port Ilumbers 0 .. 3 for routers.
!Portllumbers4 .. fortasks(workers).

placeafserver host
placefiltec
place master

pIaceroutefO
placeworkerQO
placeworlterOl
pJaceworkerll2
pJacew0Jkerl)3
pJaceworlreJ04 root
pJace'WOfkc:105 root ----~""" placeWOftelO& -­place workelOlOO
placeworkeJOlOl

placerouterl pI
placeworkerlO pi
place workerll pI
placeworkal2 pi
placeworker13 pi
place worker!4 pi
pIaceworlceT!5 pI
placeworkerl6 pi
placeworkerl7 pi
placeworkerl8 pi
pIaceworker19 pi
place workerllOO pi
place workerl 101 pi

pJacerouterll p11
pJacewmtecllO p11
place workerll I pi!
placeworkerll2 p11

162

placcworl::erl13 ,II
p1aceworkerl!4 ,II
place workerl!~ ,II
place worl::er116 ,II
placeworkcrl17 ,II
place worker118 ,II
placeworker119 ,II
p1aceworkerlllOO ,II
pJaceworkerlllOl ,II

pJacerouterll1 pill
pJaceworketlll0 p111
pJaceworlretllll pill
place workerl! 12 pill
place workerll 13 pIll
place workedl 14 plll
p1ace work«l 115 pll!
placeworkerll16 pill
p1aceworkerll17 plll
pJaceworkerll18 pHI
placeworkerll19 pHI
placeworkerlll\OJ pHI
place workerllllO! pHI

p1aceruorerllll pHil
placeworkerl!ll0 pUll
placeworkerllill pllll
placeworker1!112 pllll
pJaceworkerl!l13 pllll
placcworkcrll1l4 pllll
placeworkerlll!5 pUll
place workerlll16 pllll
placeworl:er11117 plill
place worked Ill8 plllI
place workec11119 p1l1!
placeworkedllllOO pllll
place workerllUlO! pUll

placeroLiterlllll plllll
placeworkerlllllO plllI!
p1aceworkerlllll1 pllill
place workerlll1l2 pllll1
place workerllll 13 pI 1111
placeworkerll!!14 pllll!
placeworkerllll15 pllill
placeworker!!1!16 plllll
p1aceworkerllll17 plllll
place workerl!1118 plllll
placcworkerlll1l9 plll1l

163

place worked I I 11100 plllll
placeworterllllllOI plllll

place roUierl III I 1 pllllil
placeworkerllllllO plllill
placeworkerllllill pllllli
placeworkerlllll12 pUllll
pLaceworkerl1l11l3 pllllll
place workerll11114 p111111
placeworkerllll1l5 pllllli
place workerl II 1116 pllllll
placewor.kerlllll17 plllill
placeworkerll11118 pllllJl
place workerllll 119 pllllll
place workerl 11 III 100 p111111
place workerll 1111101 plll111

placerourer11Jllll pill 1Il 1
placeworkerll111110 pll111l1
pLaceworkerllllll1l p1l111l1
placeworkerllll1l12 p1l11111
place wOlted 1 11 1113 pllll111
place WOJkeI'Uli1lI4 plllllll
p1aceworkerlllIIIL'5 plllllil
place worker11111116 plllllll
place worke£l1I11117 plllll11
p1acewOJker11l11l18 plll1l\1
place workcrll 111119 pll l\\1 I
pJaceworterll11111100 pll 1 1111
place wmkerllllllllOI plllllil

placerouter2 ,2 --"'" ,2
placeworker21 ,2
pl&;eworker22 ,2
placeworker23 ,2
placeworker24 ,2
pl&;eworke12S ,2
place wutter26 ,2
placeworker27 ,2
placeworke12S ,2
placeworker29 ,2
place worker2100 ,2
p1aceworker2101 ,2

pLacerouter21 ,21
p1aceWOIkeaIO ,21
place workef2ll ,21
placewortea12 ,21
placew0rUr213 ,21

164

place worker214 ,21
plareworker215 021
place woner2lfi 021
placeworker217 021
placeworker2111 021
placeworker219 021
place workerlllOO 021
placewolker21101 021

placeroulerll! p211
placeworker2110 p2l1
placeworker2Ul p21l
placeworker2112 p211
pJaceworker2113 p21l
placeworker2114 p2U
placew0rker2115 p211
place w0rker21 16 p21l
placew0rirer2117 p211
placew0rker2118 p211
place worker21 19 p211
placewod.:er211100 p211
placewonerllllOl 0211

placeroulCrllll p2111
placeworter2tllO p2111
placeworkerlllli p2111
placeworker21112 p2111
placeworteT21113 pllll
placeworker21114 p2111
place worter211 IS p2111
place workerll 116 pll1l
placeworkerll117 pllll
placeworkcr21118 p2111
place worker21119 pll1I
place worker2l1l100 pUll
placeworker2111l01 p2ll1

placeroutel'2ll1l plll11
placeworker211110 p21l11
placew0rter21111l p2ll11
place w0rker211 112 p2111l
placew0rker211113 p211ll
placew0rker211114 p21l1l
place worker2111 15 p21111
pIaceworker211116 p21111
place worker211 117 p2111l
placeworker2IIIIS p21111
p!aceworkerl11119 pll1ll
p!ace worker211 I 1100 plllll
placeworker21111101 p21111

165

p1acerouler211111 p211111
placeworker2l1lllO p2111 11
placeworker2111111 p211111
placeworker2111112 p211111
place worker2l1 1113 p21l111
pL1Ceworker2111114 p2Jll11
placeworker21I1115 p211111
placew0rker2111116 p211111
placeworker2111111 p21l111
placeworker2111118 p211111
placeworker2111119 p211111
placew0rker21111l100 p2Illl1
piacew0rker211111101 p21111l

placerourer2111111 p2111111
placeworker211111l0 p211111!
p1aeeworker21111111 p2111111
p1aceworker21111112 p2111111
placewnrker21111113 p2111111
plact:worker21111114 p2111111
place worker2111 1115 p21l1l11
placeworker2Il11116 p2111111
placeworker21111117 p2111111
place worker2111 II 18 p2111111
piaceworker21111119 p2111111
placeworker2111111100 p2111111
piaceworker2111111101 p21l1l11

coonect?afserver{Oj fIlter[Oj
connect?mter[Q] afserver[O]

connect?mter[Ij masler[lJ
COllllccl'!masler[1] fIller[!]

connect ? master[2] roulertJ{O]
connect?routerlJ[O] master{2]

connect?routerO[1l routerl[O]
coone<::l?router1[Oj roulert:)[l]

connect?routeIO[2] rourer2[O]
connect?router2{Ol rourerOI21

coonect'irouretO{4] workerOO[O]
connect?wori<erOO[O] routerO[4]

connect?route.o[5] workerQl[O]
connect1workerQllUl routeIO[5j

166

conncet?routeiO[6j _[0]
cooncet? workerl)2101 routlllO{6j

conncet?routeiO[7] w0rker03[O]
coonect? workei03[O] ",""",[7]

connect ?roulerl)[8j WIYker04[O]
cOIlnccl?worker04[Oj routeiO[8]

connccl?romertJ{9] worXcr05[O]
connect? worker05[OJ routertJ[9]

connccl?routertJ[lO] worker06[O]
connecl?worker06[Oj roulerO[lO]

conncct1roulenl[lJ] workeIV7[O)
connect?workerl)7[Oj routerO[JI]

connect ? routerlJ[llj worlr.erlJ8[O]
connect?workertJ8[O] routeiO[llj

cOIIncel?routeiO[i31 _[0]
connect? workerlJ9[O] routertJ(13j

cooncel ?routerlJ[141 worieIOlOO[O]
connecl'1 workerlJJOO[O) routeJO[14j

conncet?rnuterlJ[15j worki:dHOl[O]
cooncel? workeiOlOl[O) routerll[15]

connect? routerl[l] routerll[Oj
conncel?rolllerll[O] routerl[l1

cunnecl1router1[4] workeriO[O]
connect? workerlO[Oj muterl[4]

coonect1roulerl[5] workerl1[O]
coonecI1workerll[O] routerl[5]

connect?routerl[6] worlr.erll[O]
coonect1worker12[O] router1[6]

~onnect '1 routerl[7) worterI3[O]
connecl?worlr.erl3[O] routerl[7j

coonec! '! routerl[K[workerI4[O]
ctmnect ~ workcri4[Oj routerl[8j

167

connect ? routerl[9] won.edS[O]
connect? workerlS[O] routerl[9]

connecl1 routcrlflO] worir:er16[O]
coonect 1 workerI6[O] routerl[lO]

connect1routerl[ll] worterl7[O]
coonect?worter17[0] routerl[IlJ

COJ\nect?routerl[121 worker18[OI
COJ\necl?workerI8[O] routerj[12j

Connecl?roult:rl[13J WOfkerI9[O]
connect? workcr19[Ol routerl[13l

connect? routerl[14j WOfkerllOO[Ol
coonect?workerll00[O] routerl[14]

cOllnect?router1[ISJ workerI101[0]
OOflnect?wort.erIlO1[O] routerl[lS]

connect?routerll[1] routerll1[O]
connecl?routerlll[O] routerllfl]

coonect ?routerll[4] workefllO[O]
connect? worked 10[0] rol.ltetll[4]

connect ? routerl1[5] workerlll[O]
coonect?worirerll1[Ol roulerl1[5]

connect?routerll[6] worker1l2[O]
connect? worker 112[0] roulerl1[6]

connect? roulerll[7J worker1l3[O]
connect? worker113!OJ routetll[7J

connect?routerll[81 wmker114[OJ
connect? wodrerl14[OJ routerl1 [lll

conncct?routerll[9] workerl15[O]
connect?workerI1510] routerll[9]

connecl?routerll[lO] workerlI6[O]
connect? workerl16(O] routerll[lO]

connect 1 routerll[l 1] WOfkerl17[O]
connect? workerll7l0] roulerll]ll]

168

connect? routerll[12J worker1l8[0]
connect '! work.erllg[O] rou1er11[12]

connect'! routerll[!3J workerIl9[O]
connect? workerl19[O] routedl[13]

connect ? routerll[141 wmkerl 1 100[0]
connect? worker1 1 100[0) roulerl1[l4]

Conne(:t ?roulerll[l5] workerII101[0]
connect? WQl\rerll10 l[O) routerl1[15]

connect ?routeril If1] routerllll[O]
connect? routerl 11 1[0] nmterlll[l]

connecl?rourerlll[4] wod::erl 1 10[0]
connect? workerlllO[O] routerlll[4)

connect ? routerl11[5) workerll I 1[0]
connect? wod::erl 11 1 [DJ roulerll1[S]

connect? fOurerll1L6] workerlll2(0)
connect? workerl112[0) rouIerI11[6]

connect? fOuterlI1[7] worlrerll13[O]
connect? workerl1 tJ[O] roulerl1 l[7]

connect? routerlll[8] worlrer11l4[O]
connect '! workerll14[0] roulerl1l[8]

connect? routerlH[9) worker1115[O)
connect? worker1115[O) routerlll[9)

COf\necl?routerli1[IO) workerl 1 16[0)
cOlinecl?worIrer1116[0] routerlll[iOJ

connect?routerll1[11] wod::er1 1 17[0]
connect?wod;erlll7fOj routerlll[lI)

connect? rOlllerlll[l2) workerll18[O)
connect? worker1 I 18[0] routerlll[12]

connecl?roulerlll[13] workerl1l9[0]
connect?workerII19[O] muterlll[13]

connect?routerl1l[14\ workerl1lIOO[OJ
connect? workerllll00[O] rmnerI11[14]

connect ? wuterl 1 l!15] workerl11101[0]
connect? workerl I 1101[0] routerlll[15)

169

connect? roUlerllll[l] routerllllllO]
cOIInect?router1111l[Oj rou1er1l1Jfl]

COIInect?routerllll[4) worker111 10[0]
COIInect? workel"111 10[0] rou1erll1 1[4]

coonect? routerl II 1[5] workerl1111[Ol
COIlllect? workerllll1[Oj routerllll[5]

coonect? routerlll 1 [6] wmKeril 1 12[01
connect'lworkeriI112[O] router1111[6]

cOIInect?router1111l7] workerl111J[O]
coonect? workerl 11J3{O] router1111[7]

coonect? routerllll[8] workerlll14[Ol
coonect'1 workerll1l4[Oj routerllll[8]

connect'1routerll1l[9] worlrer1J115[O]
connect? wortcc11115[Oj router1111l9]

coonect? router11 11[10] wmkerl1116[0]
connect?workerl111fi[O] router11ll[lG)

coonect?routerlll1[11] workerlll17[O]
connect? workefIII17[O] routerl 1 llfl 11

coonect'l router11J 1[12] worker11 1 18[0]
connect? worker111 18[0] IOU1erllll[12]

connect'l router1 111[13] worker11119[0]
connect'1workerlIIJ9[0] router1l11[13]

connect?routerll11[14] workerlllllOO[O]
COOllec! '1 worked 111100[0] routerllll[l4]

connect?router111l[15] wOlierl 111 101[0]
connect? workcr111110J (0) routerl111[15j

coonec!'? router11111[1] routerllll1 l[O]
coonect'? routerllillllO] routerlllli[1]

cOllnecl?rou!erllll1[4] wmterlllIlO[O]
connect'?workerI11110lO] routerll11 1L4)

connect? router1111 1[5] worterl11111[01
cOIInect'?workerilll11[0] router11111[51

170

connect? routerl II 1 1[6] woctull1112[O]
connect?worker111112[0] 1'OIlIeI'11111[6]

connect ? routerll1 1 1[7] wm:erl11113[0]
connect'?workerl11113[0] muIm'11111[7]

connect? routerlllll[8] workerllI114[0]
connect? workerl11114[0] roUlerlllll[8]

connect?routerI1111[9] workerllltlS[O]
connect?woricerlI1115[O] routerlll11[9]

coonect?routerlllll[lO] worker111116[O]
connect? woricerll1116[O] routerlllll[lOj

connect ? routerlll1l{ll] workerlllll7[O]
connect ? workerl11117[0] routerllI11[11]

connect?routerl1111[12] workerllll18[O]
connect?workerI11118[O] routerl1111[12]

cOtlnect?routerllI11[13] worker1l1119[O)
connect? workerll1119[O] routerlll11[13j

L'OIlnoct?mutcrlll11l14] workerllI11100[0]
COIlnoxt? woricerll111100[O] roLlterIl111{14]

connect?routerl1111[lSJ worker111111Ql[O)
connect ?workerllllJ101[O] router1l111[15]

connect ?routcrl11111{1] router1111111[O]
connect ?routerl11111l[0] roUlerI1111l[1]

connect 1 routerl111 1 l[4] workerllli 110[0]
connect? wm:er1111 1 10[0] routerlll111[4]

connect ? routerll1111[5j workerlllllll[O]
connect?workerl111111[0] routerl11111[5]

connect 7 routerl1111 1 [61 workerl111112[O]
connect ? workerII11112[0] routerl1l111[6]

connect?routerll1111[7] workerllll1l3[Oj
connect ? wor:\!.:er111 1 113[0] routerllll11[7]

connect? routerllll11[8] wolkerl111114[01
COIlnect: worker 1 111 1 14[0] routerl11111[8]

171

connecl 1 rourerllllll(91 workerl11ll1S(O]
connect?worterII11115{0] routerll1111[91

connecl'!roulerlllll11101 WOfterll11116[O)
connect? workerlI1l116[O] routerllll1l[101

connect?routerl11111[ll] WQtker111111710J
connect?worlcer1111117[O] roulerllllll[ll]

connect? routerll111l[12] workerIIIII18[O]
connect?workerl111118{O] routerI1111l(12]

connect ? router111 111113] wodrerI111119[O]
connect 7 workerll11119[O] routerllllllli3]

connect? fOIllerl11111[14] workerl11111100{O]
connect? workerlll111100[O] routerll1111[14]

connecl?roUlerllllll[15] workerlll111lO1[O]
coonect?workerlll111IOI[0] rourerl1l111[IS]

connect?routerl111111[4] worker1l1111101O]
connect? worker1111111010] routerl111111[4]

cOlUlect?rourerll11111(5] workerl1111111[O]
connect? workerl1111111[0] routerll11111{5]

connect? routerl1 11 111[61 workerll111112[O]
(;onnect'!WOJterl1111112[0] roulerll11111[6]

connect 1 routerl111!11[7] wormll111!i310]
(;onnect? workerll 111113[0] router!!!1!11!7]

connect?rourerlllltll[8] workerllll11 14[0]
connect '1 workerI111!114(0l routerltl11!1[8J

COIlnect?router11!tlll{9) workerI1111l1S[O]
connect? workerl 1111 1 IS[O] routerllll11119]

conncct?routerlllllli[IU] wmkerllllil!6[O]
connect? WOIkerl II1I I \6{OJ router\111111[IOJ

coonect? routerl 1111 1I[1l1 workerl 1111 i17[0]
connect?workerll111117{O] routerll 11111 [11]

coonect?roureclIIII1l[12] workerI1l11118[O]
connect'!workerlllll118[O] routerl111111112J

connect? router11l111J1 13j worierll11!119[O)
connect? worker111111 19[0] rooterlll1111!13J

172

connect? rourerlllll11[14] wodcdll1 III 100[0]
connect? workerllll111100[O] mutcrIllll11[14]

cOllnect'!rourerllllIlI[IS] workerlllllll101[O]
cOrlnect?workerlll1l11101[O] rourerllI11Il[lS]

connect?routet2[I] routerll[O]
Conllect?router2l[O] router2[l]
connect ? router2[4] worker20[O]
connect? worker20[O] router2[4]

coonecl?rouler2[S] worker21[O]
connecl?w0rker2t[O] router2[5]

connect? router2[6] worker22[O]
connect? worker22[O] router2[6]

connecl?router2[7] worker23[O]
connect? worker23[O] router2[7]

connect? rouk-r2[8] '"""""[OJ
connC:CI'iworkcr24[O] routcr2[8]

COIlnc:ct':routcr2[9J worker2S[O]
connect? worker25[O] routcr2[9]

I:onnect ?rourer2[IO] worker26[0]
cOllnc:ct?workcr26[O] router2[to]

connect 'i roUler2[II] w0rkeJ27[0]
connect? workcr27[O] outer2[ll]

connecl?router1[12] worker28[O]
coonect? worker28[O] router2[12]

connect ? router2[131 worker29[O]
connect? worker29[O] router2[13]

connect ? router2[14] w0rker2100[O]
connect? worker2I00[O] router2[14J

connect ? routel2[15] worker2101[OJ
connect? worker2101[O] router2[15]

connect'router21[1] router211[O]
connecl?roUler211[O] rouI:Cl11[1]

173

coonoct?rQulet2l[4] wmu210[0]
coonoct?workef'2IO[O] routet21 [4]

coonoct?rQutef'2I[5] worku2I1 [O]
connoct?w0rker211[0] rouler'2l[5]

connoct?router21[6] wort.cr212(0]
connoct?workef'212[0] routet21[6]

connoct?rQutet.21 [7] WQrkCl'2I3[O]
connoct?worker213[O] routet.21[7]

oonnoct?router21[8] woder214[0]
connOCI?worku214[0] routet21[8]

conneel?rQuter'21[9] worker215[0]
oonneet?worker215[0] router'21[9]

cooneet ? router'2l[IO] worker2 16{O]
conneel?w0rker216[O] routet.21[1O]

conneel?rQuter21[ll] worker217[01
conneet1worker217(0] rQutet2l[lI)

connocl?router2I [12] worker218[0]
connect?w0rker218[0] routet21[12]

connoct 1 router'21(13) worter219[0]
connocI1worker219[O] routet2I[I3]

connecl?router21 [14] worker2II00(O]
connecl 1 wort&2l100[O] routet2 I[14]

conneel1 routet2I[15] worker'21101 [O]
connecI1workcr21101[01 routet2l[15)

connoct?router'2ll[1] router'211 1[0]
connecl ? rouler'2III [O] router'211[1]

conroect?router'211[4] workCl'2110[0]
connoct? worker211O[O) router'211 [4]

conroect1rooter'211[5] worker2l1l[O]
conroect?worker2111 [0) routet2Il[5]

CQnnoct1r<)UteI'2I1[6] workJ:(2112[0]
conncct?workcr2112[O] router'211[6)

connoct?routcr2 11[7] worker'2I13[O]
connecl ? w0rker21 13[0] routet211(71

connect?router211(8] worker2114[O]
connect?workel2I14(O] roulef211[8]

connect ? routeJ'2U[91 worket'lll5[O]
connect? worket2115[O] router211(9)

connect?router2II{IO] worker2I16[O]
connect? worlrer2I16{O] roulef2ll[lO]

connect ?routeall[lI] worket2II7{O)
connect?worket2117[O] router2II[11]

connect?r0uter21l[12] worku2118[O]
connect? worker2I18{O] routel2II{12]

connect?routel2II[131 workel2119[O]
connect?w0rter2119[O] routa2ll[13]

connect? routel2I1[14) ~llIOO[O]

connect1w0rker211100{0] routeall[14]

connect?router2I1[15] workel211101[0]
connect? worker211101[O] routel211[15]

cOllnect?routet2l1l[l1 rouler21111[O]
coonect?router21111[O] routel2I1W]

connect?r0uteJ'2111[4] worker21110[O]
connect?w0rteJ2I110[O] router21l1[4]

coonect?router2111{5] \¥Qfker2IIII[O]
connect? worlret21 11 l[O] roulCf2111[5]

connect ? router2II1[6] worteaI112[O]
connect? worket21112[O] rouler2111[6]

coonect?rouler2Hl[7] worker211l3[O]
connect? w0rker21113[O] router2l1l[7]

connect ? router211I[S] workeJ21i14[O]
coonect? w0der21114[O] router2111[S]

connect?rouIel2l1l[9] worker21115[O]
connect?worket21115[O] rou1Cf2111[9]

cOIlnect?rooter2111[101 w0rkeJ'211l6[O]
connect? worker21116[O] router2111[1O]

m

connecl?roulel2111[ll] w0lker21117[O]
connecl? worker21117[O] muter2111[11]

connecl?routel2lll{121 worker21118[O]
connecl?work:el21118[O] rourer2111[12]
cunnect?routet2111[131 worker21119[O]
connecl?worker21119[O] rollter2111[13]

coo.nect?rouler2111[14] worIr:er2111100[O]
connecI1work:er2111100[0] rourer2111[14]

coonect?router2111[15] w0rker21 11 101[0]
coonect1worlcer211l101[0] router2I11[lS]

connect'! router21 II l[11 rollter211111[O]
connect?romer21111I[OJ romer21t11[1]

cOilllecl'!routcr2111l[4] woo.er21 11 10[01
coonect?worker211110[0] rollrer211l1[4]

coonect?rolller21111[S] w0cker2l11ll[O]
coonect?worker211111[0] router21111[5)

connect?router2111t[6] w0rker211112[O)
connect?worker211112[O) router21111[6)

connect'iroutcr21111[7] worker2111!3[O]
connect?worker211113[O] router21111[7]

connect?router21111[8] worter21t114[OJ
coonect'!w0rket211114[0] router2111l[8]

connect?router2Il11[9] wOJ"ker211115LOj
connect?worker21111S[O] router21111[9]

coonect?router2I1Jl[lO] worlrer21ll16[O]
coonect?worker211116[0] IOOrerll111[IO]

connect?routerllllt[11] w0rter211117[O]
connect'!worIcel211117[O] router21111[1lI

connect'!router211lI[12j worker211J18[O]
connect?worker211118[O) routerlLll1[121

cOIlnect?router21111[13j worKer211119[O]
connect? worker'l1l119[O] rourer21111l13]

cOfIlIe(!t?router21111[14] WOI"ker21111100[O]
connecl?w0rker21111100[O] routerllll1[14j

176

coonect: router21111[15] worter2l1lll01[0l
cnrmect: workcr21111101[O] ruuter21111[ISJ

connect? router211111[ll router2111111[0]
coonect: routeT2111 111[0] router211111[1]

connect ? rouledl1111[4] workedl1111O[0]
connect? wOI"kedlllll0[0] routeT2Il111[4]

coonect ? router21 III I[5] worked 1 1111 1[0]
cOIlnect1wOi'kedllll1\[0] routeT21111l[5]

connect ? routedl111H6J workedIIII12[0]
connect? workedlIl112[0] router211111[6]

connect1router211111[7] workedlllll3[O]
coonecl 1 w0rker21 III 13[0] router21111l[7J

connect ?routedll111[8] WOfkedl II I 14[0]
cOJllIecl?workt:r2111114[0l router21 1 III [8]

connect? router211111[9] worlrer2I1111S[0]
connect? worhT2111115(0] router21I 1Il(9J

connect ? muter211111[1O] worteaI1l1l6[0]
coonect? worker211tI16[0] router2lllll(IO]

connect? routeT21111 1[11] worker211ll17[O]
coonect? worker2111117[01 router211111[1l]

coonect ? ruuter211 I I 1112] w0rket21 11 11810]
connect'.' worker2111118[OJ router211111[12]

cOllnect?routeT2IIll\[l3] worker211111910]
connect? worker21111 19[0] router21111l[l3]

connecl?router211111[14] worker211111100[0]
connect? workedIl1 I 1100[OJ routeT211111[14]

coonect?router2IIIII[15) worker211Il1101[0]
COllncct?wOl"Jrer211111101[O] routeT2111l1[15]

coonect?routedll111l[4) worker21 1111 10[0]
connecl?w0rker21111110[01 router2l1 1I 11[4)

coonect? router211111I[S] worker21 11 III 1.10]
connect ? worter2111111l10j router2llI lll[S]

I77

conoect?routet.Z1l111l[61 WOlb:a11l1ll2[0]
connect?w0rter2Il11112[Ol router2ll1111[6]

connect ? router211 1111[7) worker21111113[0]
connect? worker21111113[O] routet2111l11[7]

cOIUIect?r0uter21111l1[8) worker21111114[01
cooncet? worker2111l114[O] rouIl9'21111l1[S)

connect ? routet.Z1l1111(9) w0rker2111I11S[Ol
connect ?w0rker2ll111IS[O] router21111l1[9]

connect?r0uter2I11I1l[iO] wwter211ll1I6(O]
connecl?w0rket.21111116[0] router2111111[10]

connect ? fOUIef2111 1 1l[1I] WOfter2l111117[0]
connect? worket21111117[O] roull9'21 1 III l[11]

connect?routet.Z111111[l2] workel'211l111S[O]
connect ? w0rker'2111 11 lS[O] router2I1111l[t2]

connect?routet.Ztll111{13] wori:ef211tl1I9[Oj
connect 1 workec2l1 111 19[0] 1OIIter2111111[13]

connecl?router2IIl111[14] wortet211 1111 100[0]
connect? worker21 1111 1100[0] routel2.1111ll{14j

connecl?router21l1111{IS] w0rket2111l1l101[0]
connect? worIrer21Ill1l101[O] router211111l[IS]

bindinputmaster{4j
bind oulputmaster{4]

value=&800000IC !Link3
valuc=&8()()(l(l()(K;

178

APPENDIX C - SOURCE CODE FOR READING TERRAIN DATA

This appendix contains the source listings of the C code developed for reading a block

of terrain data from PEGASUS database into a specified buffer location which is stored in

SUN memory. The source code is stored in files as listed below:

l.PYG_DEC.H

2. PYG_DECIN

3. PVG_DEF.IN

4.geuerr.c

179

.ifndef PVG_INCLUDED

lldeflne PVG_INCLUDED

r·· .. •••• .. • .. ••• .. • ••••••••• .. ••• .. ••• .. •• .. ••••••••• .. • ••
FILENAME: PVG_DEC.H

PURPOSE: GLOBAL PARAMElER DECLARATION FILE FOR PVG ALGORITHMS

DESCRlYI10N: The PVG_DEC.H include file includes all global variables

required for sharing data between map software components of

PVG software.

Parameter!; are divided illlO major categories using asteric lines.

AU global variables shall be ALL CAPITAL letters.

USE EXAMPLE:

•••• ••• .. ••• .. ••••••• .. ••• CODE STAR,...· .. ••• •••••• •••••••• .. ·······/
Itinclude "PVG_DEF.IN"

r .. • ••• .. • .. • COLOR PARAJ.ffiTER.S DECLARATIONS .. • • ·/

r .. •• .. •• •• ····TERRAIN DATA BASE DECLARATIONS .. •• .. • .. •• /

r Sun main memory temUn storage buffers""/

u_int TERRAINl[MAX_BLOCKlj[BLOCKI_SIZEl:J*one meter

terrninbuffet*/

r Terrnin data bit assignments valid f(T all re olution~:

321

10987654321098765432109876543210

IELE I SPARE I NOR lSI VEG IGSV I

where:

ELE ", elevation from sea level to lOp of vegewion in meters

SPARE .. n(l(used

NOR = 4 bit surface normal

GSV .. gray shade value

'/

180

int TERRAINMAP[MAX~TJJLOCKJ[MAX_NORlH_BLOCK];/'" terrain map
contains poiruers to telIllin data blocks·,

int HA VEMAPlMAX..EAST_BLOC'KJll.[A}CNORlH_BLOCK];/'" Temdn resolution

map tells what resolution blocks are in memory.,

,. range resolution parnmeters·'
int SRMIN[RES_RANGE_NUM];/"'minimum resolution in meters·'
int SRMAX[RES_RANGE_NUM]:rmaximum resohnion in mel.elS'"
int SRSlEP{RES-RANGEflUMJ;t" step size in meters·,

r HSPVG terrain data management·'
int IFOVGRIDlMAX_EAST_BLOC'IC](MAX_NORlH_BLOC'K];/'" Terrain grid

to image map. Specifies tlie image location of

ground points.

EX: IFOVGRID{EJ[N]= image i coordinate

in upper word

z imagej (row) coordinate

in lower word
=-1 iCterrainpointisnot

in the IFOV imag~'

r HSPVG terrain data communicalion variables·'
u_short TER_PROC'_HAS[MAX_EASTJJLOC'KJ[MAX_NORlH_BLOCK]

{RAYYROC'JdAJ(l[RBS_RANGE_NUM);/",Mapoftemtin
data in tlie HSPVG my ttace processcn.

Dimensions are:
-easting quarter kilometer block numbers
-northing quarter kilometer block numbers
_rayproce5S(II'number

-resolution ranges

for each resolution range a 16 bit value is stored

wilh the following meaning
bit 15 Bi~ot4 description

o Ono data no need

1 Ono data but needs it

Oblock#has data no need

I block# hasdataand needs it

'/

181

u_short 'ffiR_PROC_SENDJRA Y _PROC_MAX+ 1][MA'CBLOCK64][4];

,. Terrain proct&or send list Dimen!lions are

-HSPVG processor numba were data is 10 oomefrom

().: SUN processor

-Iistentry index sized to allow a full

of every quarter kilometer

[][][O]-destination processor number

if-I means delete this terrain data

[}ml]-ea~ting block number of data to be sent

[1[l]2]-nonhing block. numherof data to be sen!

nO]3]-resolutionofdatalObesent·'

u_short SENO[RAY_PROC_MAX+I];I" list entry pointcrfor

TERYROC_SEND conlairls the number of blocks

each processor nds to send.

,.· .. •••••• .. ••••• .. ·TARGET DATA BASE DECLARATIONS ... ••• ... •• ... ••• .. • ·/
in! TARGETLlST[MAX_TARGETSHIO];I" target infonnation list

[O]ctaTget type ID

]l]=casting position of target in meters

[2]"' llOIthing position of target in meten;

[3J=altirude position of target in meters

[4]= target heading in millirads clockwise from noohing

[S]= target pitch in millirndl positive up
[6]-- target foll in mlUirads clockwise positive

[1]=speedinmilIimeters/sec

[81 _ status

[9]", spare configuration parameta"'/

sll'Uct HA VEUSTEL (

unsigned char "TAR_PTR;!" pointer 10 target data in memory·'

int RES; r resolution index of target data·'

I HA YEUST[MAJCTARGETS1: 1* list of data in SUN memory */

!"SUN resident target file buffers_ These buffers are sized to t\Old

enlire wget file for a binary write'"

unsigncdcharTARBVFI [MAX..TARllrrARCSIZE];

~ I'sresoluuon SUN resident target buffe£ *'
unsigned char T ARBUF2(MAX_T AR2]rr AR2_SIZE];

~ 2'ndresoluUonSUNresidcnltargelbuffer*'

unsigned cl1ar T ARBUFJIMAX. ... T AR3]rr AR3_SIZE];

,. 3'd resolution SUN residenllal'gel buffer *'

unsignedcI1arTARBUF4[~TAR4]rrAR4_SIZE];

~ 4'tb resoJudon SUN resident target buffer- */

int TAR-SEND J.IST(MA)CT ARGETS1[41;!" Iisl of data In be sent 10 the
wgetprocessor

100"<sourteofdatapnx:essorID

111..oostinationofdataprocessorID
(2j=.sourte data slDrt address of data packet (UNUSED)

[3j=numberofdataelemenlSlOsaId*,

~replaces[2]orabove·'

inl TAR.JIAVE_L1S11MAJCTARGETS][2O]:/"' information block buffer

used 10 COIlccI and store information about what data

the target processor has.
[O]_targettypeID

>OtargeltypeID

<0 player not needed or noI in flCld of view

(l]==easling posilion of Wget in meters

(21=northing position of targel in meters

(3}saltirude position oftargcl in meters

141= target heading in miUiradiansclockwise from northing
(5]= target pilCh in milliradians positive up

[6j .. targetroll in milliradians clockwise positive

[7]= speed in meters/sec
(8]=swus

(9]= $p3Il: configuration parameler"'/

~(I01»data lransftt instruction parameter

=0 no change

=1 delete old view data
=2 delete old view data and add new data

(111=viewresolution
(12]=resolution linear anay dimension

(131=viewheadingmilliradians

(141=view pilCh milliradians

[I5]_viewroUmilliradians

183

[16]= image center in oolwnn pixels, i
[17]= image centeJ in row pixels, j

[18]. image scale in pixels permillimeter
[l9)=:;pare view panuneter+/

intNUM3AR-TIUAL;!*nllll1beroftargetsinlrial·/

!*·················"CA}dERAANDFUGHTDEa.ARAllONS····················,

intFLIGIIT_CHAR[lOJ:I* Missile flight characlerisrics
[OJ= flight speedin meters per second
[lpturn rate in degrees pel'second

[21=launchaccelerationin~

[3] 10 [9J =W1defined·,

int IFOVNOW[lOl:l* instantaneous field ofview veclOr
[O):easting position of camera in merers

[11=lIMhing position ofcamera in meters

[2j_altitude position of camera re1a11.ve to sea kvel

[31=tx.esi.ght direclion beading clotkwise from

northing axis(milliradians)

[41=boreIIight direction pitch positive up from

Ix.rizontalplane(millimdians)

[5]=field of view roU about boresight veclO£
clockwise positive looking out(millinlds)

[6] .. zoom IilclOfin millimdians

m=curser locaIioo, x pixels in upper word
ypixel8inlowerword

[8]=aulo pilot control status,

o.pre_h
I-1mmch under auto pilotconttol

2=fIight under auto piIoI: conttol

3-fIight no autopilot

4=flighl1ockontarset

S=crashnosignal

[9j"'sparr?-/

'84

Int IFOV]REDICT[PREDICT_lNf_MAX]l8];fI' IFOV predict matrix

(O]=easting poosition of missile in meters

[I]=nonbing poosition ofmissile in meten;

[2]=allitude position of missile in meterli

(3]= easting velocity dinlc::lion cosine
[4]= nOJthing velociIy dinlc::tion cosine

[5]= vettical velocity din:ction cosine

[6]=speediorne(ers/sec

[7J-autopilotcontrolstatus

();prelauncb

l=lBllllch under auto pilot conb'Ol

2=fligbtunderautopilotcontrol.

3=fli.gbt no autopilot

4=fligbt lock on target

S-cmsh no signal·'

intPREDIcr_INT[PREDlcr_INT~]:r Predict interval

anay in seconds.·'
lnt WAYP01NI'S[WAYPOINT~][3]:r point coordinate vearn-'

intLOCKJ'OS_IMAGE[3]; r target lock position and status in

image coordinate5 returned to PVG from flyout model

[0] = pixel row count

[1] = pixel coJumn COUIll

[2] = lock SfalUS <0 nm locked. >0 locked·,

int LOCK_POS_UTM(4]; r target or terrain position and status

of locked on pixel location sent 10 flyoutmodel

from PVG in UTM coordinates

[0]= easUng inmetm;

[i]=oorthinginmetets

[2] .. allirudeinmeten;fromsealevei

[3] = miss distance from cl0se5t target if:rero lock

on identifx:d target otherwise it is iocked on

aten:ainfeature·,

185

,....········ ... ••• OU'll'UT IMAGE PARAMErERS DEQ.ARATIONS • ,

int OUTPU'CIMAGE[pvG_HEJOHT][PVO_ WIDTH];J'" outpUt image buffer

bitsOto1red

bits8to 15 green

bits 16 to 23 blue

bits 24 to 31 alpha·'

,...1lIIS ~ NOTWORK!! YOU PLOT A COLOR INDEX, NOT AN ROB VALUE,'"

short RA Y_SEG[RAY_PROC_MAX](4];/'" ray trace calculation ima~

window definitions the first dimension is the
proces:sornumber,thefourpararnetersreprese!lt

0= lower left row

1= lower left column

2= uppe£rightrow

3 .. upper right column'"

\Uhort TAILOUllPYG_HEIGHT][pvG_WIDTH][2];

,... TllQlet PVG output array

[01= gray shade
[l]= slant raJlge'"

int~OUT[pvG_HElGHT][pvO_WIDTH][2];

,... Terrain PVG ray trnce oulpUt array

[O]=tenaindalabaseelernent

[I]=slantraJlge·'

Il.-charRLUT{RLUT_BYTES];/'" Rendering lookup tableconverts terrain

dala base and environmental parameters to gray shade"'"

,...· • .. •• .. ········ADMINISTRATIVE SOFIWARE DECLARATIONS· .. • • .. • ,

,... .. • .. •••• .. • ••• :MBMORY MANAGEMENT DECLARATIONS···· .. ··············,

,...·· ... ••••• .. ••••••• .. ·TAAC BOARD PARAMETERS DECLARATIONS • .. •••••• ··,

".··· • .. •• _·· .. HSPVG HARDWARE PARAJIdE1ERS DECLARATIONS ••• .. • .. ·,

186

l#ifndef PVG_INCLUDED

Ndefme PVG_INCLUDED

~
FILENAME: PVGJ'EC.IN

PURPOSE: GLOBAL PARAMEIER DECLARATIONFlLF. FORPVG ALGORITHMS

DESCRlPTION: ThePVG_DEC.IN include file includes all global variables

required for sharing data between major softwate components of

PVGsoftware.

Pammerers are divided into major categories using asteric lines.

All global variables shall be AlL CAPITAL letters.

USE EXAMPLE:

••••••••••••• ... •••• ... ·····."CODE START*············ ... ••••••••• •••• •• ••• j
,. COWR PARAMETERS DECLARATIONS·······················,

~ ••••••••••••••••• *TERRAIN DATA BASE DECLARATIONS············ ... ······j
~ Sun main memOl)' temtin storage buffers"'j

extern u_int TERRAINl [MAX_BLOCKll[BLOCKl_SIZE1;/"'one meter
teuainbuff~j

~ Terrain data bit assignments valid for all resolutions:

321
10987654 3 21 098 7 6 54321 09 8 7 6 54321 0

fELE f SPARE f NOR ISf VEG f GSV I

where:

ELE = elevation from sea !evellO lOp of vegetation in merers
SPARE =nOl used

NOR .. 4 bit surface normal

S=sunshadebit

GSV= gray shade value 0,

187

~tem int TERRAINMAP[MAX_EAST_BLOCK][MAXflOR~LOCK];I'" terrain map

contains pointers to terrain data blocks'"'
~tem lilt HAVEMAPIMJ\X....EAST_BLOCK]IMA}LNORTILBLOCK];I'" Temtin resolution

map tells whal resolution blocks are in memOl}"'"

r range resolution parameters'"'
~tem int SRMIN[RES_RANGE_NUM1;1'"minimum resolution in meters '"I
~tem int SRMAXiRES_RANGE_NUM];l'"maximum resolution in meten'"'
~tem int SRS1EP[RES_RANOEflUMl;!" step size in meters'"'

r HSPVG tenain daIa management '"I

extern intlFOVORIDlMAX.-EASTJn.OCK]IMAX_NORTILBLOCK]:I'" Temlin grid

to image map. Specifies Ihe image location of

ground points.

EX; IFOVORID[E][N]= image i coordinate

in upper word

=imagej(row)coordinate

in lower word

=-1 iftenainpoinl is not

in the !FOV image'"'

r HSPVG terrnin data conununication variables'"'
extern u_short lER_PROCJiAS[MAX.-EAST...BLOCK]IMAJCNORTILBLOCKj
[RAY_PROC_MAX]IRES_RANGE_NUM];/"'Mapofterrain

data in the HSPVG ray trace pmcess<n.

Dimensions are:

-easbns quartet' Idlometer block numbers
-northing quarter kilometer block numbers
-ray processor number
-resolution ranges

foreacb resolutiou range a 16 bil vaJue is slOl'ed
with the following meaning

bit 15 BilSOto14 description

OOuodatanoneed

I Onodatabul needs it

Oblock#hasdalaooneed

1 blockt bas data and needs it

188

./

extern u_shon 1ERJ'ROC..5END[RA YJ'ROC_MAX+l][MAX_BLOCK.64][4]:

~ Temrin process ... send list Dimensions are
-HSPVG process ... number were data is 10 come from

0.. SUN processor
-list enuy index sized to allow a fuI]

of~veryquarterkilomeler

D[nO]-de3tinalion proc:essor numbel"
if-lmeansdeletetbisteaaindata

[][][lJ-easting block number of daIa to be sent

[][][2J-nonhiog block number of daIa to be sent
[][][31-resolution of data to be sent"J

each proces.sor needs 10 send.

". u········ ·TARGET DATA BASE DECLARATIONS ••••••••••• .. • ·.,
extern int TARGETLIST[MAX_TARGETSj(lO];/* target information list

[OPtarget type ID

[U=easling position of target in mCW'S
[21=northing position of target in meters

[3j=aJ.titude position of target in meters

[41= target heading in millirads clockwise from northing
[5]= target pitch in millirads positive up

[6]= target roll in miUirads clockwise positive

[7]_spee(iinmillimelers/sec:

[81=stalUs
(9]= spare configunllion pammctcr"'1

extern struct HA VELISTEL I

unsigned char *TAILPTR; r pointer to target data in memory-'
int RES; r resolution index of target dala *'
J HAVELIST[MAX_TARGBTS1:r liSl ofdata in SUN memory-/

f"SUN resident larget file buffers. 1bese buffers are sized 10 hold

entiretargel file fOl"a binary wrire*,
extern unsigned char TARBUFl[MAX_TARl]£TARCSIZE):

189

~ l's resolution SUN resident target buffet·,

extern unsignedcbarTARBUF2lMAX_TARllrrARl_SIZE];

~ 2'00 resolution SUN resident target buffer·'
extern unsigned char T ARBUF3(MA'CT AR31rr AR3_SIZE];

~ 3'd rellOlution SUN resident target buffer·'
extern unsigned char TARBUF4lMAX_TAR4]rrAR4_SIZE];

~ 4'th resolution SUN residentlarget buffer·'

extern int TAR,JEND..LIST[MA.JCTARGETS](4]:r' list of data to be sent to the

tarsetprocessoc
[O]=SOW'CeofdataprocessorID

[I]=desrinationofdalaprocessorID

[21=so~ data sWl address ofdata packet (UNUSED)

extern unsigned char '"TAR_SEND_UST_PI'R[MAX_TARGETSJ:

~replacea[2]ofabove·'

used to collect aM store infonnadon about what data

1hetaQletprocessochas.
[O]=target type tD

>OtargeltypelD

<:0 player not needed or not in field of view

[l]=easting(lQSitionoftargetinmeters

[2]=morthing position of target in mam
[3]=ahitude position of target in meters

[4] .. target heading in milliradians clockwise from northing

[5] .. target pitch in milliradians positive up

{6]= targ« roll in milliradians clockwise posidve

m=speedinmeters/sec

[8]=Slatus

[91=spareconfiguratioo~1

~[lOl=datatransferinstructionpanuneler

=0 no change

.. I delete old view data

.. 2 delete old view data and add new data

(lU=viewresolution
ll2'jzresolution linear array dimension

(l3J=viewheadingmilliradians

[l4J"'Yiewpitch miUiradians
(IS]_YiewroUmilliradians

190

[16J= image ceruer in collllllJl pixels. i

[l7]= image ceruain row pixe1s.j
[18]= image scale in pixels per millimeter
[19]= &pare view parameter"'/

j*· ·······.····CAMERA AND FI.JGHT DECLARATIONS· ••••• ••••••••••• ,

extern int FI.JGHT_CHAR[IO];r Missile tught characteristics
[0]= flight speed in meters per second

(IJ=tum rate in degrees per secood

{2]=launch acceleration in meterstsec/.sec
[3JIO[9]~undefined·/

extern int IFQVNOW[10];r instantaneoos field ofvlew veclOr

[O]=casting position of camera in meters

[lJ=nmthing position of camemin meters

[2]=a1titude position of camera rela1ive to sea Icvel

[3]=bores.ightdirectionheadingclockwisefrom

nMhing axis(miUiradiar18)

[41=bcresight direction pitch positive up from

hocizontalplane(milliradians)

[Sl=faeid of view ron about boresight vector
clockwise palitive looking out{millirads)

16J=zoom factor in milliradiaru;

[7]=curserlocation. x pixels in upper word

y pixels in lower word
[8]=auto pilot contml SWUs.
O=prelaunch

1",launchunderautopilotcootrol

2--flightunderautopilotcootrol.

3--flighl no autopilot

4=flight lock on targel
S=CTal;hnosigtud

[9)=spare·/

19!

extern int IFOV J>REDICT[PREDICJ' _INT_MAX)£8]:r IFOV pOOict matrix

[O)=easting position of missile in metefs

[1]_northingpositionofmissileinmeteJS

[2)=altilUde position ofmissile in meIerll

[3)= easting velocity direction cosine
[4)= northing velocity direction cosine

[5)= venica1 velocity direction cosine
[6]_speedinmeIeJS/sec

[7]= autopilol control SIatuS

().prelaunch

l=launchundcraulOpiiotcontm1

2=f\ighl under auto pilol control

3=flight no autopilot

~ght1oclcontarget

5=crash.nosignal·,

extern inl PREDlcr_INTWREDlC'UN'T_MAXJ:l"' Predict intetval

array in seconds.·,

exlcminIWAYPOIN'TS[WAYPOlNT_MAXJ[3]:l"'poinlcoordinatevoclOrS·'

exl .. ", intLOCK_POS_IMAGE[3);~targetIockposition and stIlIUS in

im_;~o ooordinateIlretumedtoPVG from f1youtmodel

[0' ,lixelrowcount

[l) = pixel column counl

[2] = lock status <0 not 1ocked,>O loc:ked.,

extem inILOCKJ'OS_UTM[41;~ largel or IemIin position and atalUs

of locked on pixel IocaIion sent to f1~1 model

from PVG in lJI'M coordinates
[OJa easting in meters
[l] = northing in metea

[2] = altitude in meters from sea level

(3) .. miss distance from closest target if zero lock

on identifJed target otherwise it is locked on

aterrainfeature*/

192

". .. OUTPUT IMAGE PARAMETERS DECLARATIONS ,

~Iem inl OUfPUT_IMAGE(PVG_HEIGH11[PVG_W:IDTaJ:I'" outpul imllse buffer

bits 0 to7 red
bits 8 to 15 green

bilS 161023 blue

bilS24 1031 alpha""

".lHiS WIll. Nor WORK!! YOU PLOT A COLOR INDEX. NOT AN RGB VALUE. ... ,

~Iem shoct RAY_SEG[RAY .YROC~][4]:I" ray trace calculation image

window definitions !he flIn dimension ill the

processor number, !he foorparnmeten represenl

fJ;o Iowerleftrow

1= lowew-left column

2= upper riShl row
3= upper righl column""

~Iem uJ/JOrl TAR.JIDf[PVG_HEIGIfl'][PVG_WIDTIIJ[2j:

". TlU"get PVO outpul array

[OJ_gray shade

[l]=slantrange""

~tern lot 1E~OUT[pvG_HEIGHT](PVG_WIDTH][2j;

". Terrain PVGray IlaCe outpRl array

[0]= terrain daIa base element

[l]=slantrange""

~tern u_charRLUT[RLUT_BYTESJ;!" Rendering lookup table converts !emUn

data base and environmenUII. par;unefer5 to gray sllade"

r .. ADMlNISTRATIVE SOFIWARE DECLARATIONS ... •• ,

r • ... •••• MEMORY MANAGEMENT DECLARATIONS"'''''''·''''''''''''''''''''''''''''''.'''''''

r ... • ... • ... • ... •• ... • TAAC BOARD PARAMETERS DECLARATIONS •• •• ... ,

193

fifndef PVG_DEF _INCLUDED

Itdef"me PVG_DEF _INCLUDED

r····················· ... ·······························
FILENAME: PVG_DEF.LARGE

PURPOSE: GLOBAl.. PARAMETER DEFINITlON FIlE FOR PVG ALGORITHMS

DESCRIPTION; The PVG_DEF.lN include file includes alL global constants

n>.quired foc def"ming global constants used by PVG software
components.

Parameters are divided into major categories using asteric

lines.

All globalcolIStants sllaJ.l be AlLCAPITAl..leners.

USE EXAMPLE:

Itinclude "PVG_DEF.lN"

in your directory link to /home/fogmJinc\ude,IPVG_DEF.IN

• .. •• .. •••• .. • .. •••• .. ••• CODE STARp·· .. •• • .. •• .. • .. •••• .. • .. ···,
Itinclude <FOOM/stdef.h> rstandard definitions·,

I"ltinclude""stdef.h"',

finclude<sy5/types.1I>

r· .. • .. • • COLOR PARAMETERS DECLARATIONS .. • • • .. •• .. ,

r········· .. ••• .. • .. ·TERRAIN DATA BASE DECLARATIONS·· • .. • .. •• .. • ,

r Sun mam memory temlin storage buffers·'

r terrain data hlocksal1 cover a 1.'i6meten2Sfi meter area'"

Itdef"me MAX_BLOCK I 4 r It one meter terrain BLOCK1_SIZE·4byte blocks·,

Itdef"me BLOCKI_SIZE6SS36r If elements in I meter block .,

Itdefme MAX_BLOCK4 1024 r It 4 meter terrain BLOCK4_SIZE·4hyte hlocu·1

Itdefme BLOCK4_SIZE 4096 r It elements in 4 meter block .,

*defme BLOCK16_SIZE 256r" elements in 16 meter block·,

Ifdefme MAX_BLOCK64 14336 r i 64 meter Ierrain BLOCK64_SIZE·4byle blocks·,
#derme BLOCK64_SIZE 16 r. elements in 64 meier block·,

.define MAX_BLOCK256 14336r" 256 melerterrain 4byteblocks·,

*defIDe MAX_EAST_BLOCK 128 r i 256 meterblocks in east dUection·'

Ifdefme MAX-.NORTILBLOCK 112r. 256 meter blocks in north direction·,

.define MIN_EAST_UTM 43328r lower lefl hand comer of data base UTM east·,
#ldefine MIN-.NORTH_UTM 63904 r lower left hand comer of data base UTM north·,

r Range reso1ution parameters·'

#Idefine RESOLUTION_l 0

idefine RESOLUTION3 1

*deftne RESOLUTION_16 2

*defme RESOLUTION_64 3

r····.· .. ·· ····.,.ARGET DATA BASE DECLARATIONS"·.· •• ··"""'·········'
"SUNtargetdatabuffers·,

#define MAX....TARGETS 25~ Mullnum number oflargets in PVG·,
#define MAJCTAR-TYPE 32/"'Maximum number of diffe.-enl tar@ets·'

#defmeMAX_TARI81'" Maximum number of target types in l'st

resoJutionleve]·'

idefine MAX3AR2 sr Maximum number oflarget types in 2'00

resolutiun leve1·,

idefIne MAJCT AR3 8t'" Maximum number of larget types in 3'd

resolution level·,

idefme MAX..... T AR4 Sf" Maximum number or larget types in 4 'th
resolution level·,

#defIDe TARCSrlE 10690S6/"' Buffer size in bytes for 64pictures of l'st

resolution level·,

idefme TAR2_SIZE 282.62.4r Buffee size in bytes for64 pictures of2'nd

resolution level·,

#defme TAR3_SIZE 8601~ Buffer me in bytes rorM picturesof3'd

19S

resolulionlevel·,

*define TAR4_SIZE 36864,. Buffer size in bytes forM picturesof4'!h

resolution level·,

,..···.···· ····CAMERA AND FLIGHT DEQ..ARATIONS····· .. ·············,

ldefme PREDICT_noITJfAX 4,. Number ofIFOV predict intervals·,

4tdefme WAYPOnoIT_MAX 20,. Maximum' way pointcoordinate vecl(TSN

,.················-OUTPlJl' IMAGE PARAMETERS DECLARATIONS········· .. ···,

IkIef'tne PVG_HEIGHT 256,. output image * pixel rows·'

4tdefme PVG_ WIDTIl256 I" output image ipixel columns·'

*deflllC PVG.YIX....SIZE 65536,. O\IIpUt image size in pilels·'

#deflne RLtrrJ,Y1BS 20971521" # bytes in tile RL~'
IkIef'me RLtrr_BIT3IZE 21,. # bils in RLtrr inpuladdess'",

IkIef'UIC VIEW JNDIDCSIZE 3,., bilS in view vectcI' of the RLUT input address·'

#defmeNORM_INDEJCSlZE 4,._ bits in surface nmnal of tile RLUT input address·,
#define ATILUT_BY"IES 2097152,.# bytes in attemwion table ATIL~I

*define ATILtrrJ,IT3lZE 21'" bilS in ATILUT inputaddress'"/

#defme T~ VIS~K 255 "iftarget gray shade is 255 let background throUAh .,

,.···_···· .. ········ADMINISTRATIVE SOfTWARE DECLARATIONS········· ... ··,

ldefme D2R0.Q174532,. degrees 10 fWIians .,

#define DZMR 17.4532,. degrees IOmilliradians·,
#deflne R2D 57.295877 ,. mdians 10 degrees .,

#deflne MR2D 0.057295827 ,. milliradians 10 desrees .,

,.···················MEMORY MANAGEMENT DECLARATIONS •••••• ••••• ••• -···,
jdefine MA}CSEND 14336,. maximum number of messqes in

lER_PROC_SEND·,

,.····················TAAC BOARD PARAMETERS DECLARATIONS······ •• • •• ···,

196

I"' •• .. HSPVG HARDWARE PARAMElERS DECLARATIONS ,

fdefme RAY_PROC'_MAX II"' maximum II ray trace processors'"
fdefme TAR-PROC'....MAX II"' muimum II target proces:scn'"

#endif

197

I'
.. (C) Copyl'ightNascenI SysIemS DevclopmentInc. 1991

.. Developed under conttact DABT62-9O-C·OOJ6. SubconttaCl CSC/ATD-WR·F()..()101 .,
~ ... -.................... -
FILENAME: geUerr

AtmiOR: J.R. Akin, August 1989

PURPOSE: Read a block oi wrain data infO a specified buffer location

which is stored in SUN main memmy. The block needed bas a

lower-1eftoomeratDBCOOl'dinaIes x, y.

DESCRIPTION:

Opening and closing files eats up II lot of dme.ldI::ally. dUs funcIion
!lhould ~n up every fUe at SIart-up bul itcan', because the number of

fiJes thai can be opened at one time is 60 and tile nlmber of PVDB fdes

is 83. Since other functions will open up wlJo..knows·how-many files, I've

set the open file limit 10 MAX..J1ILEJIANDLES, an arbilJ'aJy value. Files

are opened and usage swisties maintained until the file handle list is

exhau~ted, at whlcb point the least often used me is closed, and a new
file is opened to take its place.

Instead of using time-wasting siring comparisons for file opens. a list

of hash values for file names is maintained. The hash value for a file
is compured as:

11Iis way, time can be saved by not using nested ''if'" statements 10

determinediskpardtionnombers.

l'rocessingSteps:

make sure Ihe 1l.YCOOIilinares are in bounds

~ upon tberesolution code

198

compUIe the block hmglh

set the dala block poinwrro thestaning address of the

appropriale (Jlobal) 1':ERRAIN buffef

COOlpute tbetlle number

compute tbe block number

I

cornpule tbe hash value based upon the tile and block number

if the file wilh Ihis hash vaIue is already open

get the fliehandle focit

increment the number of times this file handle has been used

...
find least used file handle

if there isaln:ady an open file associaIed witb it

closetheflie

open a new file foc tbis file handle index

set number of times file handle has been used to 1

compute me offset for block number

seektotbatfiJeoffset

cotnpule the number of bytes that need to be read

mu1lhe block into tbe anay referenced by bufindcx

retllITl number of elements successfully read

199

RElURN VARIABLE: Rerums number of elements sutCcssfuUy loaded. else ERROR.

REQUIRED INCLUDE FILES:

LmRARIES REQUIRED:

INPUT/OUTPUT FILES: use namedescripdon

EXTERNAL PARAMETERS: use name include description

Sun main memory terrain SUIJ1I8e buffers (declared in PVG_DEeIN) updaled

by ge'-.ten() and called by tstwter.c. MAJCBLOCK sizes are declared in

PVG_DEFJN.

10TERRAlNl [MAX_BLOCKI] [BLOCKLSIZE]

10 TERRAlN4 [MAX_BLOCK4] [BLOCK4_SIZE]

10 TERRAlNI6 [MAJL8LOCK16] [BLOCXJ6_SIZE]

10 TERRAlN64 [MAXJILOCK64] [BLOCK64~IZE]

FUNcnONS/SUBROUTINES CAlLED: None.

USAGE EXAMPLE:

geuercStal = geUerr(RESOLUTION_I. x, y. bufinde:Jr;):

This caU reads a quarter JdIomerer (block) of I-meter daIa at location
index x.y and puts it into TElUU.INn[bufutdexj.

200

............................... •• .. ••••• "'CODESTAR,... • •••• ... • ,

finclude "PVG_DEF.IN"

lIinclude "PVG_DECJN"

#incJude<stdio.1I>

finclude <fend.II>'" COl" binary 1/0'"

#define MAX_PVDB...FILES 83

#define MAJ'-FILE..NAME_LEN 32

#define MAX_PVDB-EAST 3T167
#define MAJ'-PVDB_NORlH 28671

#defme UNUSED -I

int geuerT(muode. x. y, bufindex)

in! res_code; I'" Reoolution; 1,4, 16, or 64",
lnI x,y:I'" lelIain map coontinate indices'"

inl bufmdex;'" buffer index oCblock to be read",

,..
eXlem unsigned intTERRAINI [MAX_BLOCK I] [BLOCK ,-SIZE]:

exlern unsigned in! TERRAIN4 [MAX_BLOCK4] [BLOCK4_SIZE];

extern unsigned in!lERRAIN16 [MAX_BLOCK16] {BLOCK16_SIZE];

extern unsigned int lERRAIN64 IMAXJLOCK64] {BLOCK64_SIZEJ; ... ,
r Actual file names, only used Cor openO·'

static char file_name [MAJ'-PVDB_FILESj [MAX_Fll.E_NAMILLENl =

(

"lpvdb_dalII/pvdb.64ft , "Jpvdb_dal8/pvdb.16",

"lpvdb_data/pvdb.4.00", "/pvdb_data/pvdb.4.01", "lpvdb_datalpvdb.4.02".

"/pvdb_data/pvdb.4.03", "/pvdb_data/pvdb.4.04ft , "/pvdb_dala/pvdb.4.0S",

"/pvdb_data/pvdb.4.06", "/pvdb_dala/pvdb.4.1O". "'pvdb_datalpvdb.4.11".

201

"/pvdb_dalaJpvdb.4.lr, "/pvdb_datalpvdbA.J3". "/pvdb_datalpvdb.4.W,

"/pvdb_datalpvdb.4.1r, "/pvdb_dataJpvdb.4.16", "/pvdb_data/pvdb.4.20",

"/pvdb_datalpvdb.4.2 1", "/pvdb_data/pvdb.4.2r, "/pvdb_datalpvdbA.23".

"/pvdb_dala/pvdb.4.2A", "/pvdb_datalpvdb.4.25". "/pvdb_data/pvdbA.26".

"/pvdb_dalaJpvdb.4 .30", "/pvdb_dala/pvdb.4.3 1", "/pvdb_data/pvdb.4.3r,

"/pvdb_datalpvdb.4.33", "/pvdb_dala/pvdb.4.34", "/pvdb_data/pvdb.4.3S",

"/pvdb_dala/pvdb.4J6", "/pvdb_dala/pvdbA.4{l", "/pvdb_data/pvdb.4.4I",

"/pvdb_dala/pvdbAA2", "Jpvdb_datalpvdbA.43", "lpvdb_data/pvdb.4.44",

"/pvdb_dala/pvdb.4.4S". "/pvdb_data/pvdbA.46". "/pvdb_dal.aIpvdb.4.S0",

"/pvdb_datalpvdb.4.SI", "Jpvdb_data/pvdbA.S2", "/pvdb_datalpvdb.4.S3",

"/pvdb_datalpvdbA.S4", "/pvdb_datalpvdbA.SS". "/pvdb_datalpvdb.4.S6",

"/pvdb_datalpvdb.4.60", "/pvdb_dalaIpvdbA.6J", "/pvdb_data/pvdb A.62",

"/pvdb_data/pvdb.4 .63", "/pvdb_data/pvdb.4.64", "/pvdb_data/pvdb.4.65".

"/pvdb_datalpvdb.4.66", "/pvdb_dalaIpvdb.4.70", "/pvdb_data/pvdbA.71",

"/pvdb_dala/pvdb.4.72", "/pvdb_datalpvdbA.73", "/pvdb_data/pvdbA.74".

"/pvdb_dala/pvdb.4.7 5". "/pvdb_dala/pvdbA. 76" ,

"/pvdb_data/pvdb.I.13". "/pvdb_data/pvdb.l.14", "/pvdb_data/pvdb. I.1S".

"/pvdb_dataJpvdb.I.22", "/pvdb_dataJpvdb.l.23", "/pvdb_da1a/pvdb.I.2A",

"/pvdb_datalpvdb.1.25". "/pvdb_data/pvdb.I.31", "/pvdb_datalpvdb.l.3r,

"/pvdb_datalpvdb.I.33", "/pvdb_data/pvdb.l.34", "/pv<lb_datalpvdb.IJS",

"/pvdb_datalpvdb.I.4I", "/pvdb_datalpvdb.1.4r, "/pvdb_data/pvdb.I.43".

"/pvdb_data/pvdb.l .44", "/pvdb_data/pvdb.I.4S", "/pvdb_data/pvdb.I.51",

"/pvdb_datalpvdb. I .S2". "/pvdb_data/pvdb.I.53", "/pvdb_dal.a/pvdb. I.S4",

"Jpvdb_datalpvdb.1.61 ", "/pvdb_datalpvdb.I.62", "/pvdb_datalpvdb. I .63".

"/pvdb_data/pvdb.I.64"

"
r Hash valuCli for me names "l

static inl me_naffie_hash_value IMAXYVOB_FlLES] _

[

(RESOLUTION_64<<8)IO:J.OO,

(RESOLlTIlON_ 16«8)Kb:OO,

r4·me~rmes·/

(RESOL\.mON_ 4<~)KlxOO, (RESOLUTION _ 4«8)IOxO I, (RESOLtmON _ 4« 8}jOX02,

(RESOLlmON_ 4«8)Klx03, (RESOLUTION _ 4<<8)IOx04. (RESOLLmON_ 4« 8}1OxOS,

(RESOLUTION_4« 8}Klx06,

202

(RESOLlITION_4<<8)kJxIO, (RESOLlITJON_ 4«8)Kb:ll, (RESOLlITJON_ 4«8)1Ox12,

(RESOLlITION_ 4«8)k>xI3, (RESOLlITJON_ 4«8)1Qx14, (RESOLlITION_ 4<<lI)IOx1 S,
(RESOLlITION_4<<8)Kb.I6,

(RESOLUTION_ 4<<8)1Ox20, (RESOLlITION_ 4<<8)lOl21, (RESOLlITJON_ 4«8)1Ox22,

(RESOLlITJON3<<l!)Kb.23, (RESOLUTION_ 4<<8)1Ox24, (RESOLlITJON_ 4«8)1Ox2S,

(RESQLlmON_4«8)1Ox26,

(RESOLlTTION_ 4<<8)IOx3O, (RESOLlITJON_ 4<<8)kJx31, (RESOLtmON_ 4«8)1Ox32,

(RESOLlITION_ 4«8)1Ox33, (RESOLlITJON_ 4<<8)Kb.34, (RESOLlTTION_ 4«8)IOx3S,

(RESOLUTION_ 4«8)Kb.36,

(RESOLlITJON _ 4«8)Kb.40, (RESOLlITJON_ 4<<8)1Ox41, (RESOLUTION _ 4«8)1Ox42,

(RESOLtmON_ 4«8)Kb.43, (RESOLlITJON_ 4<<8)1!k44, (RESOLlITJON_ 4«8)1Ox.4S,

(RESOLUTION_4<<8)IOx46,

(RESOLUTION_ 4«8)kJxSO, (RESOLlITJON_ 4<<8)IOxS I, (RESOLUTION3<<8)1OxS2,

(RESOLUTION_ 4<<8)Kb.S3, (RESOLlITJON_ 4<<8)IOxS4, (RESOLlITJON3«8)DxSS,

(RESOUITION_ 4«8)Kb.S6,

(RESQLtmON_ 4<<tI)IOx60, (RESOLUTION_ 4<<8)kh6I, (RESOLlITJON_ 4«8)1Ox62,

(RESOLlTTION_ 4«8)kJx63, (RESOLlITJON_ 4<<8)1Ox64, (RESOUITION_ 4«8)1Ox6S,

(RESOLlITION_ 4«8)Kb.66,

(RESOLUTION _ 4«8)Kb.70, (RESOLlITJON_ 4<<8)1Ox7I, (RESOLlITJON_ 4«8)J1h72.

(RESOLlITION_ 4«8)Kb.73, (RESOLUTION_ 4<<8)1Ox74, (RESOLlmON_ 4<<8)OOS,

(RESOLlITJON_ 4<<8)1Ox76,

rl-meterfiles""

(RESOLlITION_I<<8)kJxI3, (RESOLUTION_1 «8)1Ox14, (RESOLlmON_I <<8)1OxIS,

(RESOLlITJON_I<<8)IOx22, (RESOLlJTION_I«8)1Ox23, (RESOLtITION_1 «8)IOx24,

(RESOLlITION_I«8)IOx25,

(RESOLlITION_1 «8)1Ox3I, (RESOLtITION_I<<8)I0x3Z, (RESOLlJTION_l «8)14h33,

(RESOLlITION_I «8)1Ox34, (RESOLtITION_1 «8)IOx3S,

(RESOU.ITION_I<<8)kJx41, (RESOLlJTION_I<<tI)1Ox42. (RESOLlITION_1«8)1Ox43,

(RESOLUTION_I«8)Klx44, (RESOLlJTION_I«8)10x4S,

203

(RESOUTIlON_l <<8)lli51, (RESOLlTIlON_l «8)10152, (RESOLlTIlON _I «8)1Ox53,

(RESOLlTIlON_l«8)lli54,

(RESOLlTIlON_l «8)1Ox61, (RESOLlITION_ l <<8)10162, (RESOLlTIlON_ l «8)10x63,

(RESOLlTIlON_l«8)1Ox64

"
/" flle_opened[n] tells whether a file ha~ heenopcned. Stalic swrage·/

,. without initilization gamunlees that elements will be set 10 0 (NO)-I

stalic int flle_opellCd [MAX_PVDB_Fll.ESJ =

I
UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED. UNUSED, UNUSED. UNUSED

"
I- Lisl of file handles used fOl'TJO -/

stalic int fh. [MAX_FILE_HANDLES] =

I
UNUSED, UNUSED, UNUSED, UNUSED. UNUSED, UNUSED, UNUSED. UNUSED.

UNUSED. UNUSED, UNUSED, UNUSED. UNUSED. UNUSED, UNUSED. UNUSED.
UNUSED, UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED

"

204

I"' List of hash value indices for opened flle5 *'
static int fh_hash_vall.:l_index [MAXYR.EJlANDLESj =

1
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED, UNUSED.

UNUSED. UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED

J;

SlaIk: iot file_usage lMAXYIT..E_HANDLES] =

1
UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED. UNUSED. UNUSED. UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED. UNUSED. UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED

I;

static int fh_indcx.Jo_usc '" 0; 1* file handle index to use *'

inthash.....value;

iothash_index;l"'hashindex*'

intusage;

intn;

int block_length;

unsigned int *bp; r block pointer*'

unsigned int file_offset;

unsigned lot byteuo..read, byles_read:

int elements_read;

"'5

/* BEGINEXECl.TI10N ,

if(x < 0 II x > MAXJVDB_EAST)

I
fprinlf(stdout, "geuer: X comlinate (%d) OOB'lt", x);

retum(ERROR);

I

if(Y < 0 g y > MAX_PVDB_NORTH)

I
fprinlf(stdout, "geuer: Y c<xriinate (%d) OCIB'II~, y);

return(ERROR);

I

if((x % 2S6) r_ 0)

I
fprintf(stdout, "geuer: X (%.1) not an even muhiple of2StM~. x);

return(ERROR);

I

if«y%2S6)r .. O)

I
tprintf(stdout, "seuer: Y (%d) OOlaneven multipleoC2S6\n", y);

return(ERROR);

I

switch(res_code)

I
case RESOLUTION_I:

block_lenglh "" BLOCKCSIZE;
bp .. &1ERRAINl[bufindex][O];

"""":
default:
fprintf(SIdout, "geuer: Invalidressode (%d.)VI", res_code);
return(ERROR):,. invalid resolution·,

I

,. Tile and block nwnbers are the same regardless of resolution -,
tile_nwn _ «0->8) &. 0xF0) r (y»12);

bloclulum = «0->4) &. 0xF0) I «y»8) &. 0xF):

206

1* ... but Ihe hash values BmI'L The 16- and 64-metel"databasesARE +,
1* broken into tile nwnbelS but they aren'tstored in multiple files. +,
if(res_code < RESOLUTION_16)

hash_value .. (res_code « 8) I tiIe_nwn;
,Ire

hash_value .. (res_code« 8);

1* Find the index 10 the file name's hash value·'

for(hash_index=O; bash_index < MAJCPVDB_FILES; hash_index++) ,
if(hash_value = fIleJwne_hash_value[hash_index])

breok,

)

if(hash_index == MAXJ'VDB.YILES) 1* no match was found·, ,
fprinlf(stdoul. "No daIa available at %d, %d, fot resolution %d'n~,

It,y, res_code);

rewm(ERROR): ,
if(flIe_opened[hash_indexJI .. UNUSED) 1* file is already open +, ,
1* Get the prqICl" file handle and increment the nwnberoftimes used +,
fh_indelt_lO_use = file_opened[hash_ind&l:
file_usage{Ib_~_IO_usel++; ,
else/* lhisfile needs 10 be opened +, ,
/* Open a new file, Fmd the least used file handle; +,
/* if it is used(open), close it firsL +,

tb_indelI:...to_usc .. O;

min_usqe .. file_usage{lb_indelt_lO_useJ:

for(n-O; n < MAX_FILE_HANDLES: n++) ,
u5a8C>0: file_USIII!e[nJ:

207

if(usage < min_usage)

I
mirLusage'" usage;

fb..index.Jo_use = n;

I
I

if(fb[fb_indeIUO_use] ! .. UNUSED),. close it fltSl.-,

I
close(fb[fbJndelt..IO_IlSC]);

fb[fb..inoox_lo_usc] = UNUSED;
file_opened[fbjlash_value_index[fhJndex_lO_use]] .. UNUSED;

I

,. Open the new fIIe-,

if(fb[fbJndex_to_usel_ ERROR)

I
fprintf(stdout. "geCter: Can', open file'fJ");

retwTI(ERROR);

I

""" I
file_opened[hash_iodex] '" flUndex_to_use:

file_u5a8e[fb_index_lO_usel_l;

fb_hash..valuc_index[flUndcx_lO_uscl" hash_index;

I

,. Compule file offser for this b!ock..num, based upon the resolution·,
,.andseeklOlhatlocadon .• ,

switch(res_oode)

I
case RESOLUTION_I:

case RESOLUTlON_ 4:

file_offsel = block_num - block.Jengtb - sizeof(int);

""""
208

,. For 16- and M-metcr reso1utionscompule the lile sequent:e number.,

~ number (li1e_l·7+Tile-y), mulliply il by llie numberof elements in·,

,. a Iile. add the block offseI and mullip1y by the number ofbyles "I
,. inaoinl,·'

case RESOLUI10N_16:

Ca<Je RESOLUTION_64:

file_offset '" «(IiIe_Dwn>>4)·7+(IiIe_num&0xF»

• (256"block_lenglh) + (bloc~num"block.....Ienglh})
·sizeof(inl);

breaJc:

}

if(lseek(fh[fb_Jnde~Uo_usel, filiLOffset, 0) = ERROR)

I
fprinlC(stdoul,''Can'lseekonfilWlM);

relW1l(ERROR);

}

if(byleS..readl--byleuo_read)

I
!prinlf(stdoul, "Bad read, X:%d Y:%d res.:%d"IlM

, x, y, res_code):

fprinlC(stdout, "%d byleS read insread of %d'n",

byleS..read,byIeUo..re/ld):

retum(ERROR);

}

eJemenISJC8d '" byres..readl sizeof(int);

,.
fprintf(sldout, "X:%d, Y:%~d, reu:ode:%d bufindex:%d address:%08X'v1",

x, y,lCS_cOOe, buflndex, bp);

... ,
209

retum{ elements_read):

#undefMAXYIlE_HANDLES

#undefMAX_PVDB_FILES

#undefMAX_FILE_NAMEJ,EN
#undef MAX_PVDB_EAST

#undefMAX_PVDB_NOR11I

#undefUNUSED

210

LIST OF REFERENCES

[Ref. IJ Titan Tactical Applications, JANUS (A) 2.1 Software Design Manual. 1992.

[Ref. 2] INMOS Limited, The Transputer Family 1987, p. 4, April 1987.

[Ref. 3] INMOS Limited, Transputer Handbook, p. 1, October 1989.

[Ref. 4] Shiva, S.O., Computer Design & Architecture, 2nd ed., Harper Collins

Publishers Inc., 1991.

[Ref. 5] !NMOS Limited. An Introduction To Transputers, Draft 2.0, pp. 5-6, January

1988.

[Ref. 6] Lewis. T.G .• EI-Rewini, H., lnJrotiuction To Parallel Computing, Prentice-Hall

Inc., 1992.

[Ref. 7] !NMOS Limited, The Transputer Databook, 2nd ed., 1989.

{Ref. 8] Hoare, C.A.R., "Communicating Sequential Processes", "Communications of

the ACM", v. 21, n. 8, pp. 666-667, August 1978.

[Ref. 9] INMOS Limited, T9000 Transputer Products Overview Manual, 1991.

[Ref. 10] INMOS Limited, OCCAM 2 Reference Manual, Prentice-Hall Inc., 1988.

[Ref. 11] Alsys Inc., Alsys Ada Compilation System User ManUlJI, 1989.

{Ref. 12J 3L Ltd., Parallel C User Guide, 1988.

[Ref. 131 3L Ltd., Parallel C++ User Guide, 1991.

[Ref. 14] NASCENT Systems Development Inc., The Pegasus Documentation Package

Book-I, December 1992.

[Ref. 15] Inmos Ltd., Inmos Technical Note 53 - Some Issues in SCientific LangUlJge

Application Portion and Farming Using Transputers, by A. Hamilton, pp.

7-8, Iuly 1989.

[Ref. 16] Inmos Ltd., IMS BOO4 EvalUlJtion Board User ManUlJI, pp. 1-18, 1985.

{Ref 171 InmosLtd., Inmos TechnicalNote II -IMSBOO4IBM PC Add-InBoard. by S.

Ghee, 1989.

211

[Ref. 18J Alta Technology Corporation. CIRAM Computation Transputer Module Data

Sheet. 1993.

[Ref.19J Alta Technology Corporation. Remote Tram Holder Installation Guide and

User Manual (VerSion 1.0). September 1991.

[Ref.2OJ Alta Technology Corporation. HSlfSBUS Installation Guide and User

Reference (Version 1 .1). October 1992.

[Ref. 21] Inmos Ltd .• IMS BOl2 User Guide and Reference Manual. 1988.

[Ref. 22] Digital Equipment Corporation. Alpha AXP Systems Handbook. 1993.

[Ref. 23] ParaSoft Corporation. EXPRESS 3.0 Introductory Guide. 1990.

[Ref. 24] Perihelion Software Ltd., The HEUOS Parallel Operating System, Prentice

Hall International (UK) Ltd .• 1991.

212

INITIAL DISTRmUTION LIST

Defense Technical Information Center
Cameron Station
Alexanderia, VA 22304-6145

2. Dudley Knox Library
Cocle 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis
Code CS/Lt
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Se-Hung Kwak
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Se-Hung Kwa.k:
75 Adams Avenue
West Newton, MA 02165

6. Maj. Eugene Paulo
TRAC-MTRY
Naval Postgraduate School
Monterey, CA 93943

7. Dr. Amr M. Zaky
Code CS/Za
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

8. Dr. Wolfgang Baer
Code CSJBa
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

9. Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanli.kJar, Ankara I TURKEY

213

10. Golcuk Tersanesi Komutanligi
Golcuk, Kocaeli / TURKEY

11. Deniz Harp Okulu Kornutanligi
Tuzla, Istanbul/ TIJRKEY 81704

12. Taskizak Tersanesi Komutanligi
Kasimpasa, Istanbul/ TURKEY

13. LTJG Cern Ali Dundar
Ziya Bey Cad. Etibank Sitesi No:14
Balgat, Ankara / TIJRKEY

DUDLEY KNOX LIBRARy
NAVAl POSTGRADUATE SCHOOl
MONTEREY CA 93943-0101

IIIII!lwmlllijiHffiliulll
32768000385116

