

Calhoun: The NPS Institutional Archive DSpace Repository

Erosion effects on TVC vane heat transfer characteristics

Gardner, Steven R.

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/30906

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

EROSION EFFECTS ON
 TVC VANE HEAT
 TRANSFER CHARACTERISTICS

by

Steven R. Gardner
March, 1994

[^0]DUDLEY KNOX LIBRARY
NAVALPOSTGRADLATE SCHOO!
MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704	
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send commeats regarding this burden estimate or any other aspect of this collection of information, inclading suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.					
1. AGENCY USE ONLY	blank)	2. REPORT DATE March 1994	3. REPORT TYPE AND DATES COVERED Master's Thesis		
4. TITLE and subtitle Erosion Effects on TVC Vane Heat Transfer Characteristics				5. FUNDING NUMBERS	
6. AUTHOR(S) Steven R. Gardner					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey CA 93943-5000				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.					
12a. DISTRIBUTION/AVALLABILITY STATEMENT Approved for public release; distribution is unlimited.				12b. DISTRIBUTION CODE *A	
13. ABSTRACT (maximum 200 words) This work describes the effects of erosion on the heat transfer characteristics on thrust vector control vanes exposed to aluminized propellant exhaust flows. This was accomplished using an inverse heat transfer parameter identification of quarter scale models. The model is based on a four node lumped parameter system with two heat energy inputs. The erosion is modeled as decreasing the geometric dimensions linearly as a function of time and percentage of aluminum in the propellant. Excellent agreement was found between experimental and model temperature profiles. The heat transfer coefficients of the vanes were found to decrease with increasing erosion rates.					
14. SUBJECT TERMS Thrust vector control, erosion, ablation, parametric system identification, erosion front modeling, aluminized propellant					15. NUMBER OF PAGES 116
					16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified		19. SECURITY CLASSIF- CATION OF ABSTRACT Unclassified		20. LIMITATION OF ABSTRACT UL

Approved for public release; distribution is unlimited.

Erosion Effects on TVC Vane
Heat Transfer Characteristics
by

Steven R. Gardner
Lieutenant, United States Navy
B.S., Worcester Polytechnic Institute, 1988

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

Author:

Approved by:

Abstract

This work describes the effects of erosion on the heat transfer characteristics on thrust vector control vanes exposed to aluminized propellant exhaust flows. This was accomplished using an inverse heat transfer parameter identification of quarter scale models. The model is based on a four node lumped parameter system with two heat energy inputs. The erosion is modeled as decreasing the geometric dimensions linearly as a function of time and the percentage of aluminurn in the propellant. Excellent agreement was found between experimental and model temperature profiles. The heat transfer coefficients of the vanes were found to decrease with increasing erosion rates.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. THEORY 4
A. BACKGOUND 4

1. Physical Description 4
2. Basic Modeling 5
3. Lumped Parameter 7
4. PSI Process 8
B. PREVIOUS MODELS 15
C. THREE NODE FULL SCALE MODEL 15
III. ABLATION EFFECTS 19
A. ABLATION MODELING 19
B. FOUR NODE QUARTER SCALE MODEL 20
C. CONVERGING QUARTER SCALE MODEL WITH ABLATION 23
5. Case 1: 0\% Al in Propellant 23
6. Case 2: 9\% Al in Propellant 24
7. Case 3: 18\% Al in Propellant 26
D. Erosion Front Modeling 29
IV. DISCUSSION OF RESULTS 35

DUDLE K KNOX LIBRARY
NAVAL POSTGRADLIATE SCHOO! MONTEREY CA 93943-5101

LIST OF TABLES

Table I Geometric Data For Full Scale Vanes 18

LIST OF FIGURES

Figure 1 Thrust Vector Control System Schematic 1
Figure 2 Vane and Motor Assembly for Experimental Tests 4
Figure 3 Thermocouple Placement for Full and Quarter Scale 5
Figure 4 Thermal Energy Node Model 6
Figure 5 Jet Vane as a Lumped Parameter Model
(Actual Design Indicated by Dotted Lines) 9
Figure 6 Three Node Jet Vane Model 10
Figure 7 Simulated and Experimental Node Temperatures 14
Figure 8 Parker Five Node Full Scale Model 16
Figure 9 Temperature-time Histories for Three and Five Node Full Scale Models 18
Figure 10 Vane Erosion Profiles 20
Figure 11 Effect of Erosion on A Matrix Coefficients inthe 9\% Al and 18\% Al Cases 21
Figure 12 Case 1: Experimental and Model Temperatures Vs.Time . 24Figure 13 Case 2: Experimental and Model Temperatures Vs.Time25
Figure 14 Convective Heat Fransfer Coefficients Plotted Vs. Time For Case 2. 26
Figure 15 Case 3: Experimental and Model Temperatures Vs.
Time 27
Figure 16 Convective Heat Transfer Coefficients Plotted
Vs. Time For Case 3. 28
Figure 17 Erosion Rate and Total Length Eroded for the 9%
Case 31
Figure 18 Erosion Rate and Total Length Eroded for the 18\%
Case 31
Figure 19 Temperature Profiles Between Nodes One and Two
For the 9% Case 33
Figure 20 Temperature Profiles Between Nodes One and Two for the 18\% Case 34

I. INTRODUCTION

This thesis is a continuation of work done by the Naval Air Warfare Center Weapons Division (NAWCWPNS) and thesis work at the Naval Postgraduate School (NPS) to provide a better understanding of the heat transfer characteristics of jet vanes used for thrust vector control (TVC) of vertical launch missiles. This is accomplished using an inverse heat transfer parameter identification of quarter scale replicas which can be used to find full scale results.

Thrust vector control is a process by which jet vanes are inserted into the exhaust plume of a missile to control the flight path prior to the missile obtaining the required velocity for the external control surfaces to take effect. [Ref. 1] A schematic for the TVC system is shown in Figure 1.

Figure 1 Thrust Vector Control System Schematic

Due to the harsh thermal environment that the vanes are exposed to, a better understanding of the heat transfer processes which take place will help in the improved design of jet vanes. This will lead to longer operation and the ability to use propellants that burn hotter and use a higher percentage of aluminum for greater momentum flux and better performance. [Ref. 2:p. 1]

There are five basic steps in determining the heat transfer characteristics of the vane:

1. Develop a mathematical model of the heat transfer processes which take place in the vane. It is expressed in terms of a number of physical constants, some of which are known, some of which are to be determined. [Ref. 3:p. 1]
2. Gather experimental data in the form of temperaturetime data at selected locations on the vane.
3. Compare the predicted and experimental temperature-time data.
4. Use the differences between the simulated and actual temperatures to drive a systematic adjustment of unknown model parameters in an optimization routine. The process is repeated until the experimental and theoretical data differences are minimized in a least-squares sense.
[Ref. 3:p. 2]
5. Calculate the heat transfer parameters of the system using the physical parameters of the model which give the best estimate of the actual behavior.

Previous work has concentrated on using parametric system identification to validate the use of full and quarter scale models to predict the heat transfer characteristics for full scale vanes in a non-erosive environment. The research in this report extends the quarter scale model to an erosive environment.

II. THEORY

A. BACKGOUND

1. Physical Description

The main pieces of equipment used in the experimental tests are the rocket motor and the jet vanes. The rocket motor is set up to provide a constant thrust-time profile. The propellants used in the motor are aluminized hydroxylterminated polybutadiene (HTPB) with either 0%, 9%, or $18 \% \mathrm{Al}$ by weight. The jet vanes are made from pressed and sintered tungstan powder that is infiltrated by 10% copper by weight. There are four vanes for each motor. The experimental setup is shown in Figure 2. [Ref. 2:p. 1,2]

Figure 2 Vane and Motor Assembly for Experimental Tests

The experimental tests are conducted as either full or quarter scale. The quarter scale tests have stiveral advantages. Most important is the cost savings over a full scale test. The reduced size of the motor, vane and test equipment account for much of the savings. [Ref. 4:p. 15, 16] The biggest disadvantage of the quarter scale vane comes in the placement of the thermocouples. Whereas in the full scale vane the thermocouples can be placed inside the vane, for the quarter scale vane the thermocouples must be placed on the vane shaft. The thermocouple placement is contrasted in Figure 3.

Figure 3 Thermocouple Placement for Full and Quarter Scale
2. Basic Modeling

In order to predict the thermal response of the jet vane, a simple model had to be developed. The model had to

consider the physical characteristics of the vane and the heat transfer processes that were taking place.

The physical quantities can be broken into two categories: material and geometric. The material properties considered were the vane density, thermal conductivity, and specific heat. The geometric properties considered were the conductive lengths, cross sectional and surface areas and volume.

The heat transfer processes considered were convection at the surface of the vane and conduction of heat through the vane.

Figure 4 Thermal Energy Node Model

Heat transfer in the vane is modeled by applying the law of conservation of energy. Energy balance equations can be derived using a model consisting of thermal resistances and
capacitances driven by the temperature difference between the nodes. The energy balance for Figure 4 is,

$$
\begin{equation*}
\dot{T}_{1}=\frac{T_{i}}{C_{1} R_{i}}-\frac{T_{1}}{C_{1} R_{i}}-\frac{T_{1}}{C_{1} R_{o}}+\frac{T_{o}}{C_{1} R_{o}} \tag{1}
\end{equation*}
$$

where $T_{i}>T_{1}>T_{0}$. The convective resistance is found by,

$$
\begin{equation*}
R=\frac{1}{h A_{s}} \tag{2}
\end{equation*}
$$

where h is the convective heat transfer coefficient and A is the surface area. The conductive resistance is found by,

$$
\begin{equation*}
R=\frac{L}{k A_{x}} \tag{3}
\end{equation*}
$$

where L is the conductive length, k is the thermal conductivity and A_{x} is the cross sectional area. The thermal capacitance is given by,

$$
\begin{equation*}
C=\rho V C_{P} \tag{4}
\end{equation*}
$$

where ρ is the material density, V is the volume and C_{p} is the material specific heat.

3. Lumped Parameter

The nodes of the basic model lend itself to dividing the vane into different sections, or lumps. For the full
scale model, the vane was geometrically divided into three separate sections: the tip, fin and shaft. A node is located at the center of each section. The sections are defined as shown in Figure 5. For the quarter scale model, a fourth node was added at the mount to account for the different thermocouple placement.
4. PSI Process

A simple model was needed that could easily be changed for different materials, geometries and exhaust conditions. This lead to parametric system identification (PSI). PSI is a computer based procedure where the parameters of a model are changed until a best fit approximation in a least squares sense to experimental data is obtained. [Ref. 5:p. 6]

Parameter identification has several advantages over the other modeling choice, computational fluid dynamics (CFD). Creating a mathmatical model of the vane using CFD is almost impossible due to the complexity of the exhaust flow. The jet vane must operate in a high temperature, three-dimensional, turbulent, compressible supersonic flow. [Ref. 5:p. 3,4] PSI ignores these complexities and focuses on the end result. This makes PSI not only simpler, but the information that comes out of the PSI model can easily be used in improving the design. PSI also handles nonlinear conditions such as ablation. [Ref. 6: p.2]

(inctes)

Figure 5 Jet Vane as a Lumped Parameter Model (Actual Design Indicated by Dotted Lines)

The simple three node model shown in Figure 6 can serve as baseline for other models. The model is driven by two heat sources, represented by temperatures $\mathrm{T}_{\mathrm{R} 1}$ and T_{R2}, which are the stagnation and free stream recovery temperatures, respectively, The temperature $T_{R 1}$ heats the vane through convective heat transfer at node one through the thermal

Figure 6 Three Node Jet Vane Model
resistance $R_{F 1}$, and stores the energy as a thermal capacitance in C_{1}. The same process occurs at node two with recovery temperature $T_{R 2}$, thermal resistance $R_{P 2}$, and thermal capacitance C_{2}. Node three stores energy in thermal capacitance C_{3} and is connected to ground through thermal resistance R_{30}. All nodes are coupled by conductive resistances. [Ref. 6:p. 4] Applying the law of conservation of energy to the system leads to the following equations:

$$
\begin{gather*}
\dot{T}_{1}=-\frac{T_{1}}{C_{2} R_{F 1}}-\frac{T_{2}}{C_{1} R_{12}}+\frac{T_{2}}{C_{1} R_{12}}+\frac{T_{R 1}}{C_{1} R_{F 1}} \tag{5}\\
\dot{T}_{2}=\frac{T_{1}}{C_{2} R_{12}}-\frac{T_{2}}{C_{2} R_{F 2}}-\frac{T_{2}}{C_{2} R_{12}}-\frac{T_{2}}{C_{2} R_{23}}+\frac{T_{3}}{C_{2} R_{23}}+\frac{T_{R 2}}{C_{2} R_{F 2}} \tag{6}\\
\dot{T}_{3}=\frac{T_{2}}{C_{3} R_{23}}-\frac{T_{3}}{C_{3} R_{23}}-\frac{T_{3}}{C_{3} R_{3 G}} \tag{7}
\end{gather*}
$$

letting,

$$
\begin{array}{cc}
a_{12}=\frac{1}{C_{1} R_{12}} & a_{21}=\frac{1}{C_{2} R_{12}} \\
a_{23}=\frac{1}{C_{2} R_{23}} & a_{32}=\frac{1}{C_{3} R_{23}} \\
a_{3 G}=\frac{1}{C_{3} R_{3 G}} & b_{11}=\frac{1}{C_{1} R_{F 1}} \\
b_{22}=\frac{1}{C_{2} R_{F 2}} \tag{11}
\end{array}
$$

Combining coefficients at the same temperatures gives,

$$
\begin{gather*}
a_{11}=a_{12}+b_{12} \tag{12}\\
a_{22}=a_{21}+a_{23}+b_{22} \tag{13}\\
a_{33}=a_{32}+a_{3 G} \tag{14}
\end{gather*}
$$

Rewriting the equations,

$$
\begin{equation*}
\dot{T}_{1}=-a_{11} T_{1}+a_{12} T_{2}+b_{11} T_{R 1} \tag{15}
\end{equation*}
$$

$$
\begin{gather*}
\dot{T}_{2}=a_{21} T_{2}-a_{22} T_{2}+a_{23} T_{3}+b_{22} T_{R 2} \tag{16}\\
\dot{T}_{3}=a_{32} T_{2}-a_{33} T_{3} \tag{17}
\end{gather*}
$$

Rewriting into state-space form, $T=A T+B u$, or

$$
\begin{array}{lcccccccc}
\dot{T}_{1} & -a_{11} & a_{21} & 0 & T_{1} & b_{11} & 0 & 0 & T_{R 1} \tag{18}\\
\dot{T}_{2}= & a_{21} & -a_{22} & a_{23} & T_{2}+ & 0 & b_{22} & 0 & T_{R 2} \\
\dot{T}_{3} & 0 & a_{32} & -a_{33} & T_{3} & 0 & 0 & 0 & 0
\end{array}
$$

The energy balance equations are a set of linear, ordinary differential equations which can be readily solved on a computer. This was done in a Fortran program using an IMSL subroutine called DIVPRK. DIVPRK solves a double precision initial value problem for ordinary differential equations using fifth-order and sixth-order Runge-Kutta-Verner methods. DIVPRK requires a user supplied subroutine called FCN which defines the set of equations to be solved.

The main program containing DIVPRK and FCN is called SIM.FOR, and simulates the temperatures of the three node model. The model is driven by an input vector u which is the product of the recovery temperatures $T_{R 1}$ and $T_{R 2}$ and a step function simulating the thrust. Physical and geometric data was used to calculate the internal thermal conductive resistances and capacitances which lead to coefficients in the A matrix. Since the inputs at nodes one and two from
convection and node three from ground are unknown, values for these resulting coefficients must be guessed. The outpat of the program is temperature-time data which is written to a data file called TEMP.MAT. This data can then be read into MATLAB and plotted. The purpose is to try to match calculated temperatures with known experimental temperature data at node two and validate the numerical approach. The results are shown in Figure 7. Although the node two temperatures are close, they are not identical. By extending the program to include an optimizer that could adjust the unknown A and B coefficients, a closer approximation could be found.

This was done in a Fortran program called NODE3.FOR. It is in this parameter identification, or PID, program that the differential equations are set up and solved. First, physical and geometric data is read in from a data file called INPUT.DAT. This information is used to calculate the internal thermal conductive resistances and capactitances which lead to coefficients in the A matrix. Since the inputs at nodes one and two from convection and node three from ground are unknown, the resulting unknown coefficients from the A and B matrices are sent to the optimizer as variables to be found. The optimizer used is an IMSL routine called DBCLSF which uses a modified Levenberg-Marquardt method and an active set strategy to minimize an error in a least-squares sense subject to simple constraints placed on the variables by the user. DBCLSF calls a user written subroutine called TEMP that

Figure 7 Simulated and Experimental Node Temperatures
calculates the temperature-time history using the current parameters supplied by DBCLSF called from the PID program. It does this through DIVPRK and FCN. Once the temperature-time history is calculated, an error function is returned to DBCLSF based on the differences between predicted and experimental temperature-time histories. The optimizer then adjusts the
unknown parameters and the process repeats until certain convergence criteria is met.

B. PREVIOUS MODELS

Work on the jet vane thermal model began at the Naval Postgraduate School (NPS) by Nunn and Kelleher [Ref. 7] in 1986. Further development of the model was continued by Nunn [Ref. 5] and Hatzenbuehler. [Ref. 8] Hatzenbuehler was able to create a four node quarter scale model using PSI procedures and a computer software package called Matrix X. Reno [Ref. 1] followed Hatzenbuehler and refined the four node model and attempted to compare the quarter scale results to full scale vanes, but was unsuccessful. More recent work has been done by Parker [Ref. 4]. He obtained good results using a full scale model of the jet vane. He also looked more closely at the scaling of the models and the applicability of quarter scale results to full scale vanes. He also found that existing quarter scale models did not provide an accurate picture of the heat transfer processes in the full scale vanes.

C. THREE NODE FULL SCALE MODEL

Parker's five node full scale model was reduced to a three node full scale model to investigate whether the three fin nodes could be reduced to one node and obtain the same
results. Parker's five node full scale model is shown in Figure 8.

Figure 8 Parker Five Node Full Scale Model

The three node model was driven using the geometric data given in Table 1 and the following material data: $\rho=18310$ $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{k}=173 \mathrm{~W} / \mathrm{mK}$, and $\mathrm{C}_{\mathrm{p}}=146 \mathrm{~J} / \mathrm{kgK}$. The recovery temperatures used to drive the system were $T_{R 1}=2670 \mathrm{~K}$ and $\mathrm{T}_{\mathrm{R} 2}$ $=2570 \mathrm{~K}$. [Ref. 6:p. 7, 8] These temperatures were contained in the input vector u, whose values were the product of the recovery temperature and a step function simulating the thrust function.

Table I GEOMETRIC DATA FOR FULL SCALE VANES

	tip	to	vane	to	shaft
$\mathrm{V}, \mathrm{cm}^{4}$ $\mathrm{~A}_{y}, \mathrm{~cm}^{3}$ $\mathrm{~A}, \mathrm{~cm}$ $\mathrm{~L}, \mathrm{~cm}$	2.6		52.0		23.0

The program found the values for $b_{11}=1.0029$ and $b_{n}=$ 0.0809 . This corresponds to the convection heat transfer coefficients of $16,025 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $1003 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ at the tip and fin respectively. The ground resistance was found to be 0.0001 . These values were found to be reasonably close to those from Parker's five node model. He found $b_{11}=1.3787, b_{y}=0.0862$, and the ground resistance to be 0.0001 , while the convection heat transfer coefficients were $22027.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $1057 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ at the tip and fin respectively. [Ref. 4:p. 63] The temperaturetime histories for both models are shown in Figure 9.

Figure 9 Temperature-time Histories for Three and Five Node Full Scale Models

III. ABLATION EFFECTS

A. ABLATION MODELING

There was erosion in the quarter scale vanes exposed to aluminized propellant exhaust flows. For the 0% aluminized case, only 1% of the vane's mass was lost. But for the 9% and 18% aluminized cases, the loss became much more substantial. For the 9% case, 8% of the vane's mass was lost. For the 18% aluminized case, 50% of the vane's mass was lost. Vane mass loss was found to be nonlinear with the percentage of $A l$ in the propellant. The relationship using an exponential function by an empirical fit was found to be

$$
\begin{equation*}
\text { \%mass loss }=1.042 \mathrm{e}^{(0.2173)(8 A 1)} \tag{19}
\end{equation*}
$$

Vane erosion profiles for the three cases are shown in Figure 10. [Ref. 2:p. 6,7] At least part of this erosion was likely caused by ablation. Ablation is due to the melting of the surface of the vane [Ref. 9:p. 122].

A short FORTRAN program, COEF.FOR, was written to see how the known A matrix coefficients were affected by the mass loss. The geometric dimensions of length, area, and volume were modeled as decreasing linearly as a function of time and percent mass loss. The results for the $9 \% \mathrm{Al}$ and $18 \% \mathrm{Al}$ cases are shown in Figure 11.

Figure 10 Vane Erosion Profiles

Several trends in Figure 11 are worth noting. The dominent coefficient in both cases is a_{12}. This is expected since

$$
\begin{equation*}
a_{12}=\frac{1}{C_{1} R_{12}} \tag{20}
\end{equation*}
$$

and C_{1} is small due to the small volume at the tip of the vane. Also note that the coefficients are nonlinear over time and the nonlinearity increases with increased mass loss.

B. FOUR NODE QUARTER SCALE MODEL

The erosion present in the quarter scale vanes when the aluminized propellant was used needed to be investigated. A four node quarter scale model had already been derived by

Figure 11 Effect of Erosion on A Matrix Coefficients in the 9\% Al and 18\% Al Cases

Reno. [Ref. 1] Application of the law of conservation of energy led to the following equations:

$$
\begin{gather*}
\dot{T}_{1}=-a_{11} T_{1}+a_{12} T_{2}+b_{11} T_{R 1} \tag{21}\\
\dot{T}_{2}=a_{21} T_{1}-a_{22} T_{2}+a_{23} T_{3}+b_{22} T_{R 2} \tag{22}\\
\dot{T}_{3}=a_{32} T_{2}-a_{33} T_{3}+a_{34} T_{4} \tag{23}\\
\dot{T}_{4}=a_{43} T_{3}-a_{44} T_{4} \tag{24}
\end{gather*}
$$

These equations needed to be modified though, since they did not include the effects of erosion. Erosion of the vane caused the geometric dimensions of the vane to change, while the material properties of density, thermal conductivity and specific heat remained constant. The program COEF.FOR modeled the changing geometric dimensions with time. All that was needed was to attach COEF.FOR to the main PID program as a subprogram.

The other aspect of interest in the cases with aluminized propellant was whether the convective heat transfer coefficients were time varient. Once the values of b_{11} and b_{2} are found in the PID program, the program COEF.FOR can be modified so that the heat transfer coefficients can be calculated at every time step since

$$
\begin{equation*}
h_{t}=\frac{1}{R_{F 1} A_{s t}} \quad h_{f}=\frac{1}{R_{F 2} A_{s f}} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
R_{F 1}=\frac{1}{b_{11} C_{1}} \quad R_{F 2}=\frac{1}{b_{22} C_{2}} \tag{26}
\end{equation*}
$$

and C_{1}, C_{2}, A_{n}, and A_{4} are all time dependant.

C. CONVERGING QUARTER SCALE MODEL WITH ABLATION

1. Case 1: 0\% Al in Propellant

For case 1, data was taken for three seconds before thrust began to tailoff. This allowed for 61 temperature-time data points to be taken, or 20 per second. The data points on the vane corresponded to nodes three and four of the model. This data was read into the PID program NODE40.FOR along with the geometric data and the recovery temperatures. In the subroutine FCN, a delay of 0.3 seconds was used to account for the time before the thrust reached its steady state value. The results obtained were excellent; the square root of the sum of the squares of the difference between experimental and model temperatures at nodes three and four was only 1.19 degrees Kelvin. A plot of the experimental and model temperatures is shown in Figure 12.

The values obtained for the unknown variables were $a_{34}=0.5376, a_{43}=0.1528, a_{40}=-0.1651, b_{11}=7.6511$, and $b_{22}=0.0722$. These variables led to resistance values of $R_{F 1}=1.2221$, $R_{f 2}=6.4795$, and $R_{40}=-1.8206$. The negative value obtained for R_{40} indicates heating of the vane from ground. The convection heat transfer coefficients were calculated to be 30405.43

Figure 12 Case 1: Experimental and Model Temperatures Vs. Time
$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ and $222.43 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ at the tip and fin respectively.
2. Case 2: 9\% Al in Propellant

The same procedure was done for case 2. Temperaturetime data was only taken for two seconds before thrust tailoff. A delay of 0.7 seconds was used to account for the time before the thrust reached its steady state value. Again, the results were excellent: the sum of the squares difference was only 0.73 degrees Kelvin. A plot of the experimental and model temperatures is shown in Figure 13.

The values obtained for the unknown variables were $a_{44}=-0.2000, \quad a_{6}=3.5088, \quad a_{40}=100.00, b_{11}=3.4427$, and $b_{22}=0.0837$.

Figure 13 Case 2: Experimental and Model Temperatures Vs. Time

The variables lead to resistance values of $\mathrm{R}_{\mathrm{F} 1}=2.9135$, $R_{F 2}=5.9930$, and $R_{* 0}=-0.1989$. Again, the negative resistance of R_{*} indicates heating of the vane from ground. The convection heat transfer coefficients were calculated to be 13354.40 and 251.80 at the tip and fin respectively.

The values for b_{11} and b_{n} found from NODE49.FOR were added to the geometric and material data in COEF.FOR in order to calculate the convective heat transfer coefficients at every time step. The heat transfer coefficient at the tip decreased from an initial value of 13742.78 to the final value of 13354.40. The heat transfer coefficient for the fin decreased from an initial value of 259.17 to the final value
of 251.80 . In both cases, there was only a three percent decrease. The coefficients are plotted versus time in Iigure 14.

Figure 14 Convective Heat Transfer Coefficients plotted Vs. Time For Case 2.

3. Case 3: 18\% Al in Propellant

The same procedure was done for case 3. Temperaturetime data was only taken for 1.6 seconds before the severity of the erosion caused direct plume impingment to the vane shaft. [Ref. 2,p.9] A delay of 0.1 seconds was used to account for the time before the thrust reached its steady state value. Again the results were excellent: the sum of
the squares difference was only 1.52 degrees Kelvin. A plot of the experimental and model temperatures is shown in Figure 15.

Figure 15 Case 3: Experimental and Model Temperatures Vs. Time

The values obtained for the unknown variables were $a_{34}=-0.2000, a_{6}=5.9382, a_{40}=100.00, b_{11}=1.6236$, and $b_{n 2}=0.0500$. The variables lead to resistance values of $\mathrm{R}_{\mathrm{FI}}=11.7085$, $R_{F 2}=19.0253$, and $R_{40}=-0.6380$. Again, the negative resistance of R_{40} indicating heating from ground. The values of the convection heat transfer coefficients were calculated to be $4786.95 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $114.26 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ at the tip and fin respectively.

The values for b_{11} and b_{22} found from NODE418. FOR were added to the geometric and material data in COEF.FOR to again
find the convective heat transfer coefficients at every time step. At the tip, the heat transfer coefficient decreased from an initial value of 6451.38 to the final value of 4786.95. The heat transfer coefficient for the fin also decreased, from an initial value of 154.11 to the final value of 114.26 . There was a 26% decrease at both the tip and fin, with the tip showing nonlinearities. The coefficients are plotted in Figure 16.

Figure 16 Convective Heat Transfer Coefficients Plotted Vs. Time For Case 3.

D. Erosion Front Modeling

An energy balance equation can be written between the leading edge erosion heat $f l u x, q / A_{0}$, and the heat required to maintain the vane leading edge ablation rate, or

$$
\begin{equation*}
\frac{q}{A_{o}}=S_{T} p_{\infty} U_{\infty} C_{P_{-}}\left(T_{A N}-T_{W}\right)=\dot{S} \rho_{L E} F\left[1+\frac{C\left(T_{M}-T_{W}\right)}{F}\right] \tag{27}
\end{equation*}
$$

where S_{T} is the Stanton number, $T_{A w}$ is the leading edge recovery temperature, T_{w} is the vane leading edge temperature, T_{M} is the melting temperature of the vane material, F is the heat of fusion for tungsten, and C is the heat capacity of tungsten. Also note that

$$
\begin{equation*}
S_{\tau} \rho_{\infty} U_{\infty} C_{P_{-}}=H_{L E} \tag{28}
\end{equation*}
$$

where $H_{L B}$, the leading edge convection heat transfer coefficient, is found by a parameter identification program like one of those previously described. [Ref. 10:p. 2,3]

A theoretical erosion rate can be found by manipulating equations (27) and (28)

$$
\begin{equation*}
\dot{S}=\frac{H_{L E}\left(T_{A W}-T_{W}\right)}{\rho_{L E} F\left[1+\frac{C\left(T_{N}-T_{W}\right)}{F}\right]} \tag{29}
\end{equation*}
$$

T_{w} can be estimated by running a four node simulation model and using the node one temperatures at each time step.

Equation (27) is based upon ablation of the vane, which requires that $T_{w}>T_{M}$. Therefore the erosion rate was set equal to zero until T_{w} reaches T_{m}. The melting temperature for the vane, which is a 90% tungsten-10\% copper alloy by weight, is 3513 K . This temperature is higher than T_{w} for both the 9% and 18% cases, and therefore theoretically the vane should not erode. Since the vane does erode, T_{m} for the vane was taken as the melting temperature of copper, 1358 K . This seemed reasonable since the melting point of copper is lower than that of tungsten.

Once the erosion rate is found, it can then be integrated over the time of the firing to find a theoretical length of the vane eroded. This was done in both the 9% and 18% cases and is shown in Figures 17 and 18. The length of the vane eroded using this method is estimated as 1.1 cm for the 9% case and 2.3 cm for the 18% case. Although the 1.1 cm found for the 9% case is high compared to the 0.4 cm found experimentally, the 2.3 cm found for the 18% case is very close to the 2.5 cm found experimentally.

Equation (29) can also be used to try and validate the use of the melting temperature of copper for T_{M}. This was done by plotting the vane temperatures found in the simulation programs as a function of the length between nodes one and two, then using the known total length eroded from the experiment to find the apparent melting temperature. The plots for the 9% and 18% cases are shown in Figures 19 and 20.

Figure 17 Erosion Rate and Total Length Eroded for the 9\% Case

Figure 18 Erosion Rate and Total Length Eroded for the 18\% Case

The melting temperature found for the 9% case was 1732 K while the melting temperature found for the 18% case was 1580 K . Although both of these are higher than the melting temperature of copper, they are fairly close. The reason for the melting temperature of the vane being higher than predicted is due to the presence of tungsten which has a melting temperature of 3683 K .

Figure 19 Temperature Profiles Between Nodes One and Two For the 9\% Case
 the 18% Case

IV. DISCUSSION OF RESULTS

The full scale three node model attempted to show that the three fin nodes of the Parker five node full scale model could be reduced to one node. This was done, obtaining similar results for the convection heat transfer coefficients at the tip and fin. This validated the use of only one fin node in Reno's four node quarter scale model.

The erosion effects of aluminized propellent on the quarter scale vanes had to be investigated. There were three postulates considered of how the heat transfer coefficients changed:
(1) the heat transfer coefficients were independent of erosion rate and time,
(2) the heat transfer coefficients were dependent upon erosion rate, but given a fixed erosion rate, were time independent, and
(3) the heat transfer coefficients were dependent upon erosion rate and were time varient.

The first postulate was investigated by A. Danielson in [Ref. 2]. He found that as the percentage of aluminum in the exhaust and the erosion rate increased, nonlinear factors began to have a larger impact and show the limitations of the linear model [Ref. 2:p. 9].

To investigate the remaining two postulates, a model for the erosion of the vanes had to be developed. The erosion of the vanes was modeled as a linear decrease of the geometric dimensions as a function of time and mass loss percentage. This was done in the subprogram COEF.

For the second and third postulates, the coefficients in the PID subprogram COEF were set to the appropriate values for cases two and three, thereby allowing the geometric dimensions to vary. This led to excellent results which remained fairly constant even as the percentage of aluminum in the propellant increased. The sum of the squares error was only 1.19 for the $0 \% \mathrm{Al}$ case, 0.73 for the $9 \% \mathrm{Al}$ case, and 1.52 for the $18 \% \mathrm{Al}$ case. This seemed to link the erosion rate to the heat transfer coefficients.

To determine whether the heat transfer coefficients were time dependent, the program COEF. FOR was modified to calculate the heat transfer coefficients as a function of time. Although the heat transfer coefficients remained fairly constant at the fin, they decreased over time at the tip.

An equation based on ablation of the vane was used to try to predict the erosion rate. The erosion rate was then integrated over the time of the motor firing to obtain the theoretical length of the vane which eroded. Although the 9% case predicted an eroded length which was more than double the experimental value, the 18% case was very close. Two of the reasons the 9% case was off can be explained by the simplicity
of the model and the assumption that ablation would being occuring at the melting temperature of copper instead of the tungsten-copper alloy which the vane was composed of.

To find a closer value to the melting temperature of the vane, the simulated vane temperature was plotted as a function of length between nodes one and two. By using the known length of vane eroded, a theoretical melting temperature could be found. The melting temperatures found were 1732 K and 1580 K for the 9% and 18% cases respectively. This was much closer to the 1358 K for the melting temperature of copper than the 3513 K for the tungsten-copper alloy of the vane.

CONCLUSIONS

- The five node full scale model can be reduced to a three node full scale model by removing two of the three fin nodes and produce comparable convective heat transfer coefficients.
- Erosion of thrust vector control vanes can be adequately modeled by a linear decrease of the geometric properties as a function of time and the percentage of aluminum used in the propellant.
- The negative values found for R_{46} indicate heating of the vane from the mount area.
- Both the tip and fin convective heat transfer coefficients were dependant upon erosion rate and were time variant.
- The erosion rate and therefore the length of the vane which will erode over the time of a motor firing can be adequately predicted using an energy balance equation based upon ablation of the vane.
- The melting temperature of the vane appears to be much closer to that of copper than the tungsten-copper alloy which is expected.

RECOMMENDATIONS FOR FURTHER STUDY

- The erosion front modeling needs to be investigated further to see if erosion mechanisms other than ablation can be modeled such as direct impingement of the aluminized particles on the vane.
- The G-law erosion algorithm explained in [Ref. 9] may provide a method to use results from a quarter scale model to predict full scale heat transfer characteristics.
- The quarter scale model needs to be modified to include the heating effects in the vane mount area.

APPENDIX A. SIMULATION PROGRAM

This appendix contains the FORTRAN code used in the program SIM.FOR, which is a forward model program to simulate the temperatures of a three node full scale model, and SIM4.FOR which is a forward model program to simulate the temperatures of the four node quarter scale models.

```
C-
    Program SIM
c This is a forward model program to simulate the
c temperatures of a three node full scale model.
integer maxparam, neq
parameter (maxparam=50, neq=3)
integer ido, istep, nout
real*8 t, tend,a(3,3),b(3,3),u(3),t2(61),y(3)
real*8 param(maxparam),fcn,float,a3g
intrinsic float
external fon, divprk, sset
common/data1/a,b,u
c Open files for data input/output
open(9,name='sim3.mat', status='new')
open(8,name='datam.dat', status='old')
c read in experimental data
do i=1,61
    read(8,*) t2(i)
enddo
close(8)
c initialize matrices
do i=1,3
    do j=1,3
        a(i,j)=0.0
        b(i,j)=0.0
        enddo
enddo
c enter data for trial run
a(1,2)=0.2936
a (2,1)=0.0147
a (2,3)=0.0107
a(3,2)=0.0243
```

```
    a3g=0.0001
    b (1, 1) =1.0000
    b (2,2) =0.0500
    a(1, 1)=-(a(1,2)+b(1,1))
    a(2,2)=-(a(2,1)+a(2,3)+b(2,2))
    a(3,3)=-(a(3,2)+a3g)
    u(1) =2670
    u(2)=2570
    u(3)=0.0
c set initial conditions
    t=0.0
    do i=1,3
        y(i)=0.0
    enddo
    tol=0.0005
    call sset(maxparam, 0.0, param, 1)
    id0=1
    do istep=1,61
        tend=0.0768*float (istep)
        call DIVPRK(ido,neq,fcn,t,tend,tol,param,y)
        write(9,9001) t,t2(istep),y
    enddo
c final call to release workspace
        id0=3
    call DIVPRK(ido,neq,fcn,t,tend,tol,param,y)
    9001 format(1f6.3,4f10.4)
        close(9)
        end
```



```
subroutine fcn(neq, t,y,yprime)
integer neq
real*8 t,y(neq),yprime (neq)
real*8 a(3,3),b(3,3),u(3),d
common/datal/a,b,u
```

c thrust profile simulation as step input
if (t.gt.0.2) then
$\mathrm{d}=1.0$
else
$d=0.0$
end if
do $i=1$, neq
yprime (i)=0.0
do $j=1$, neq
yprime (i) =yprime (i) +a(i,j)*y(j)+b(i,j)*u(j)*d enddo
endao
return
end

Program SIM4

c This is a forward model program to simulate the temperatures of a four node quarter scale model.
integer maxparam, neq
parameter (maxparam=50, neq=4)
integer ido, istep, nout
real* t, tend, $a(4,4), b(4,4), u(4), y(4)$
real* 8 param(maxparam),fen,float, f 4 g
intrinsic float
external fon, divprk, sset, coef
common/datal/a, b, u
c Open files for data input/output
open(9, name='sim49.mat', status='new')
c initialize matrices
do $i=1,4$
do $j=1,4$
$a(i, j)=0.0$
$b(i, j)=0.0$
enddo
enddo
$u(1)=2155$
$u(2)=2061$
$u(3)=0.0$
$u(4)=0.0$
c set initial conditions
$\mathrm{t}=0.0$
do $i=1,4$
$y(i)=0.0$
enddo
tol $=0.0005$
call sset (maxparam, 0.0, param, 1)

```
        id0=1
        do istep=1,41
        tend=0.05*float (istep)
        call coef(tend)
        call DIVPRK(ido,neq,fcn,t,tend,tol,param,y)
        write(9,9001) t,y
        enddo
    c final call to release workspace
        id0=3
        call DIVPRK(ido,neq,fcn,t,tend,tol,param,y)
    9001 format(1f6.3,4f10.4)
    close (9)
    end
    c---------------------------------------------------------------
    subroutine fcn(neq,t,y,yprime)
    integer neq
    real*8 t,y(neq),yprime(neq)
    real*8 a(4,4),b(4,4),u(4),d
    common/data1/a,b,u
c thrust profile simulation as step input
    if (t.gt.0.7) then
        d=1.0
    else
    d=0.0
    end if
    do i=1,neq
    Yprime(i)=0.0
        do j=1, neq
        yprime(i)=yprime(i)+a(i,j)*y(j)+b(i,j)*u(j)*d
        enddo
    enddo
    return
    end
```



```
    subroutine coef(tend)
```

```
real*8 vt,vf,vs,atf,afs,ltf,lfs,rho,cp,k,sf
real*8 vt0,vf0,vs0,atf0,afs0,1tf0,lfs0,a12,a21,a23,a32
real*8 a(4,4),b(4,4),u(4),c1,c2,c3,r12,r23
common/data1/a,b,u
vtO=2.6
vf0=52.0
vs0=23.0
atf0=5.9
afs0=5.2
1tf0=5.0
1fs0=6.0
rho=18310.0
cp=146.0
k=173.0
sf=0.25
vt=vt0-0.0*tend
vf=vf0-0.0*tend
vs=vs0-0.0*tend
atf=atf0-0.0*tend
afs=afs0-0.0*tend
ltfmltf0-0.0*tend
lfs=lfs0-0.0*tend
r12=100.0*ltf/(k*atf)
r23=100.0*lfs/(k*afs)
cl=rho*cp*vt*0.000001
c2=rho*cp*vf**0.000001
c3=rho*cp*vs*0.000001
r12=r12/sf
r23=r23/sf
c1=c1*sf**3
c2=c2*sf**3
c3=c3*sf**3
a(1,2)=1/(c1*r12)
a (2,1)=1/(c2*r12)
a (2,3)=1/(c2*r23)
a(3,2)=1/(c3*r23)
a (3,4) =0.5376
a (4,3)=0.1528
a4g=-0.1651
```

```
    b (1,1) =7.6511
    b (2,2)=0.0722
    a(1,1)=-(a(1, 2)+b(1, 1))
    a(2,2)=-(a(2,1)+a(2,3)+b(2,2))
    a(3,3)=-(a(3,2)+a(3,4))
    a (4,4)=-(a(4,3)+a4g)
    return
    end
```


APPENDIX B. COEFFICIENT PROGRAM

This appendix contains the FORTRAN code used in the program COEF.FOR which calculated the effect of erosion on the known coefficients of the A matrix and the heat transfer coefficients.

```
c----------
integer i
real*g vt,vf,vs,atf,afs,ltf,lfs,t,rho,cp,k,sf
real*8 vt0,vf0,vs0,atf0,afs0,ltf0,lfs0,a12,a21,a23,a32
real*8 asf0,asf,ast0,ast,b11,b22,ht,hf
intrinsic float
open(10, name=' coef18.mat',status='new')
open(11, name='htc18.mat',status='new')
vt0=2.6
vf0=52.0
vs0}=23.
atf0=5.9
afs0=5.2
ast 0=4.35
asf0=112.16
lff0=5.0
lfsO=6.0
rho=18310.0
cp=146.0
k=173.0
sf=0.25
b11=1.6236
b}22=0.0
do i=1,33
    t=0.05*float(i)
    vt=vt0-0.8125*t
    vf=vf0-16.25*t
    vs=vs0-7.1875*t
    atf=atf0-0.0*t
    afs=afs0-0.0*t
    ast=ast0-0.90625*t
    asf=asf0-23.367*t
    ltf=ltf0-1.5625*t
```

```
    lfs=lfs0-1.875*t
    r12=100.0*1tf/(k*atf)
    r23=100.0*lfs/(k*afs)
    c1=rho*cp*vt*0.000001
    c2=rho*cp*vf*0.000001
    c3=rho*cp*vs*0.000001
    r12=r12/sf
    r23=r23/sf
    c1=c1*gf**3
c2=c2*sf**3
c3=c3*sf**3
ast=ast*sf**2
asf=asf*sf**2
a12=1/(c1*r12)
a21=1/(c2*r12)
a23=1/(c2*r23)
a32=1/(c3*r23)
rf1=1/(b11*c1)
rf2=1/(b22*c2)
ht=10000.0/(rf1*ast)
hf=10000.0/(rf2*asf)
9999 format (1f10.4,2f10.2)
9998 format(5f10.5)
write(10,9998)t,a12,a21,a23,a32
write(11,9999)t,ht,hf
end do
close(10)
close(11)
end
```


APPENDIX C. PID PROGRAMS

This appendix contains the PID programs for the three node full scale model (NODE3), and the four node quarter scale models for propellant with 0\% Al (NODE40), 9\% Al (NODE49) and 18\% Al (NODE418).

$$
\mathrm{C}
$$

Program NODE3 model.

external temp

integer m,n,iparm(6), ibtype, ldfjac
parameter ($\mathrm{m}=61, \mathrm{n}=3$, ldfjac=m)
real*8 $\operatorname{rparm}(7), x(n), f(m), x j a c(m, n), x g(n), s s q, u b 1, u b 2$
real*8 xlb(n), xub(n), xscale(n), fscale(m), float, ht, hf
real*8 $a(3,3), b(3,3), u(3), t 2(61), y s(3,61)$
real*8 rho,k,cp,sf,c1,c2,c3,r12,r23,a3g
real*8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
Variables
m
n
iparm
ibtype
ldfjac
rparm
$\mathrm{x}(\mathrm{n})$
$\mathrm{f}(\mathrm{m})$
$\mathrm{xjac}(m, n)$
= number of functions
= number of variables
= list of parameters for DBCLSF setup
$=$ type of bounds on variables
$=$ leading dimension of fjac
= list of parameters for DBCLSF setup
$=$ the pt where the function is evaluated
$=$ the computed function at the point x
$=$ matrix containing a finite difference approx Jacobian at the approx solution
$\mathrm{xg}(\mathrm{n}) \quad=$ initial guess of x
$\operatorname{xlb}(n) \quad=x$ lower bound
$\operatorname{xub}(\mathrm{n}) \quad=\mathrm{x}$ upper bound
xscale $(n)=$ vector containing the scaling matrix for the variables
fscale (m) = vector containing the scaling matrix for the functions
ssq $\quad=$ sum of the squares
$a(3,3) \quad=a \operatorname{matrix}$
$\mathrm{b}(3,3)=\mathrm{b}$ matrix
$\mathrm{u}(3)=[\mathrm{TR} 1, \mathrm{TR} 2,0]$
t2 (61) = experimental temperatures
ys $(3,61)=$ calculated temperatures
rho $=$ density
$k \quad=$ conduction heat transfer coefficient
cp $\quad=$ specific heat
$\mathrm{vt} \quad=$ volume of the tip
vf $\quad=$ volume of the fin
$=$ volume of the shaft
= cross sectional area from tip to fin
c

afs	$=$ cross sectional area from fin to shaft
ast	$=$ surface area of the tip
asf	$=$ surface area of the fin
ltf	$=$ length from tip to fin
lfs	$=$ length from fin to shaft
sf	$=$ scale factor
ubl	$=$ stagnation temperature, TR1
ub2	$=$
ht	$=$ convection heat transfer coefficient at
hf	
	tip
	$=$ convection heat transfer coefficient at
	fin

intrinsic float
common/data1/a, b, u, t2,ys
Open files for data input/output

```
open(10,name='result.dat', status='new')
open(9,name='temp.mat', status='new')
open(8,name='datam.dat', status='old')
open(7,name='input.dat', status='old')
```

read in experimental data
do $i=1,61$
$\operatorname{read}(8, *) \operatorname{t2}(i)$
endoo
close (8)
read in input data
read (7,*)
read (7,*)
read (7,*)
read (7, *)
read (7,*) rho, k, cp
read ($7, \star$)
read (7,*)
read (7,*) vt, vf, vs
read (7,*)
read (7,*)
read ($7, *$) atf, afs
read (7,*)
read (7,*)
read (7,*) ast, asf
read (7,*)
read (7,*)
read (7,*) ltf, lfs
read (7,*)

```
read(7,*)
read(7,*) sf, ub1, ub2
close(7)
```

initial conditions
full scale data
$r 12=100.0 * 1 t f /(k * a t f)$
r23 $=100.0$ *lfs/(k*afs)
c1=rho*cp*vt*0.000001
c2 $=$ rho*cp*vf*0.000001
c3 $=$ rho* ${ }^{\text {cp*vs*0.000001 }}$
c scaled data

```
r12=r12/sf
r23=r23/sf
c1=c1*sf**3
c2=c2*sf**3
c3=c3*sf**3
```

c initialize matrices to zero
do $i=1,3$
$u(i)=0.0$

$$
\text { do } j=1,3
$$

$$
a(i, j)=0.0
$$

$$
b(i, j)=0.0
$$

enddo
enddo
$a(1,2)=1 /(c 1 * r 12)$
$\mathrm{a}(2,1)=1 /(\mathrm{c} 2 * r 12)$
$a(2,3)=1 /(c 2 * r 23)$
$a(3,2)=1 /(c 3 * r 23)$
$\mathrm{a} 3 \mathrm{~g}=0.0$
$b(1,1)=0.0$
$b(2,2)=0.0$
$a(1,1)=-(a(1,2)+b(1,1))$
$a(2,2)=-(a(2,1)+a(2,3)+b(2,2))$
$a(3,3)=-(a(3,2)+a 3 g)$
$\mathrm{u}(1)=\mathrm{ub} 1$
$u(2)=u b 2$
$\mathrm{xg}(1)=\mathrm{a} 3 \mathrm{~g}$
$x g(2)=b(1,1)$
$\mathrm{xg}(3)=\mathrm{b}(2,2)$

```
c set up parameters for DBCLSF call
do \(i=1, n\)
    xscale(i)=1.0
    \(x \operatorname{lb}(i)=0.0001\)
    \(x u b(i)=100.0\)
    \(\mathrm{xg}(\mathrm{i})=0.01\)
    \(x(i)=0.0\)
end do
do \(i=1, m\)
    fscale(i)=1.0
end do
ibtype=0
call dbclsf(temp,m,n,xg,ibtype,xlb,xub,xscale,fscale,
    \& iparm, rparm, \(x, f, x j a c, 1 d f j a c\) )
c calculate unknown resistances and convection heat transfer
C coefficients
```

```
a3g =x(1)
```

a3g =x(1)
b (1, 1)=x(2)
b (1, 1)=x(2)
b}(2,2)=x(3
b}(2,2)=x(3
c1=rho*cp*vt*0.000001
c1=rho*cp*vt*0.000001
c2=rho*cp*vf*0.000001
c2=rho*cp*vf*0.000001
c3=rho*cp*vs*0.000001
c3=rho*cp*vs*0.000001
c1=c1*sf**3
c1=c1*sf**3
c2=c2*sf**3
c2=c2*sf**3
c3=c3*sf**3
c3=c3*sf**3
rf1 =1/(b (1, 1)*c1)
rf1 =1/(b (1, 1)*c1)
rf2 =1/(b (2,2)*c2)
rf2 =1/(b (2,2)*c2)
r3g =1/(a3g*c3)
r3g =1/(a3g*c3)
ht $=10000.0 /$ (rfi*ast)
hf $=10000.0 /(r f 2 * a s f)$
c print and save results

```
```

write(6,*) ' a3g b11 b22'

```
write(6,*) ' a3g b11 b22'
write(6,9000) x(1),x(2),x(3)
write(6,9000) x(1),x(2),x(3)
9000 format (3f12.4)
9003 format(2f12.4)
```

```
write(10,*)' a3g b(1,1) b(2,2)'
```

write(10,*)' a3g b(1,1) b(2,2)'
write(10,9000) x(1),x(2),x(3)

```
write(10,9000) x(1),x(2),x(3)
```

```
    write(10,*)
    write(10,*)
    write(10,*)' rf1 rf2 r3g'
    write(10,9000) rf1,rf2,r3g
    write(10,*)
    write(10,*)
    write(10,*)' ht hf'
    write(10,9003) ht,hf
c write the temp-time data for MATLAB analysis
    do i=1,61
        tt=0.0768*float(i)
        write(9,9001)tt,ys(2,i),t2(i)
    enddo
    9001 format(1f6.2,2f10.3)
    close(10)
    close(9)
    end
c---------------------------------------------------------------
Subroutine TEMP ( \(\mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{f}\) )
\(c\) This calculates the temperature-time history using the c current parameters supplied oy DBCLSF called from PID. It c calculates an error function returned to DBCLSF based on c the differences between predicted and observed temperature c histories.
integer maxparam, neq
parameter (maxparam=50, neq=3)
integer ido,istep,nout,m,n
real*8 t, tend,y(3), tol,fcn,float, param(maxparam),
real*8 \(\mathrm{x}(3), \mathrm{f}(61)\), coef
real*8 \(\mathrm{a}(3,3), \mathrm{b}(3,3), \mathrm{u}(3), \mathrm{t} 2(61), y s(3,61)\)
real* 8 rho,k,cp,sf,c1,c2,c3,r12,r23,a3g
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
intrinsic float
external fen, divprk,sset
common/data1/a,b,u,t2,ys
open(12, name='incoming.dat',status='new')
```

```
        a3g =x(1)
        b(1,1) =x(2)
        b}(2,2)=x(3
        write(6,8000) a3g,b(1,1),b(2,2)
    8000 format(3f12.4)
a(1, 1)=-(a(1,2)+b(1,1))
a(2,2)=-(a(2,1)+a(2,3)+b(2,2))
a(3,3)=-(a(3,2)+a3g)
c Set initial conditions
        t=0.0
        do i=1, neq
        y(i)=0.0
        do j=1,61
        ys (i,j)=0.0
        enddo
        enddo
        tol=0.0005
    call sset (maxparm, 0.0, param, 1)
    id0=1
    do istep=1,61
        tend=0.0768*float (istep)
        CALL DIVPRK (ido, neq, fcn, t, tend, tol, param, y)
        do i=1,3
        ys (i,istep)=y(i)
        enddo
enddo
c Final call to release workspace
id0 \(=3\)
call divprk (ido,neq,fon,t,tend, tol, param,y)
c calculate error functions
do \(i=1,61\)
\(f(i)=y s(2, i)-t 2(i)\)
enddo
c print out rms error
ssqr=0.0
do \(i=1,61\)
ssqr=ssqr\(+f(i) * f(i)\)
enddo
ssqr=ssqr/61
```

```
    xer=sqrt(ssqr)
    write(6,*) xer
    write(12,*) xer
    return
    end
C
    subroutine fon(neq,t,y,yprime)
    integer neq
    real*8 t,y(neq),yprime(neq)
    real*8 a(3,3),b(3,3),u(3),d,ys(3,61)
    common/datal/a,b,u,t2,ys
c thrust profile simulation as step input
    if (t.gt.0.2) then
        d=1.0
    else
        d=0.0
    end if
    do i=1,neq
    yprime(i)=0.0
        do j=1, neq
        yprime(i)=yprime(i)+a(i,j)*y(j)+b(i,j)*u(j)*d
        enddo
    enddo
    return
    end
```


Program NODE40

This program is the PID program for the four node vane model with ablation from exhaust with 0\% Al.
external temp
integer m, n , iparm(6), ibtype, Idfjac
parameter ($\mathrm{m}=122, \mathrm{n}=5,1 \mathrm{dfjac}=\mathrm{m}$)

```
real*8 rparm(7),x(n),f(m),xjac(m,n),xg(n),ssq,ubl,ub2
```

real*8 xlb(n), xub(n), xscale(n), fscale(m), float, ht, hf
real*8 $\mathrm{a}(4,4), \mathrm{b}(4,4), \mathrm{u}(4), \mathrm{t} 3(61), \mathrm{t} 4(61), \mathrm{ys}(4,61)$
real*8 rho,k, cp,sf, c1, c2, c3, c4, r12, r23,a4g
real*8 vto, vf0, vs0, atfo,afs0, asto,asf0,ltfo,lfs0
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs

Variables

m	= number of functions
n	= number of variables
iparm	$=$ list of parameters for DBCLSF setup
ibtype	= type of bounds on variables
ldfjac	= leading dimension of fjac
rparm	$=$ list of parameters for DBCLSF setup
\mathbf{x} (n)	$=$ the pt where the function is evaluated
$\mathrm{f}(\mathrm{m})$	$=$ the computed function at the point x
xjac (m, n)	= matrix containing a finite difference approx Jacobian at the approx solution
xg (n)	= initial guess of x
xlb (n)	$=\mathbf{x}$ lower bound
xub (n)	$=\mathrm{x}$ upper bound
xscale(n)	$=$ vector containing the scaling matrix for the variables
fscale(m)	```= vector containing the scaling matrix for the functions```
ssq	= sum of the squares
a (neq, neq)	= a matrix
b (neq, neq)	$=\mathrm{b}$ matrix
u (neq)	= [TR1, TR2, 0, 0]
t3 (61)	= experimental temperatures at node 3
t4 (61)	= experimental temperatures at node 4
ys (neq, 61)	= calculated temperatures
rho	= density
k	$=$ conduction heat transfer coefficient
cp	= specific heat
vt	= volume of the tip
vf	= volume of the fin

```
\begin{tabular}{|c|c|c|}
\hline c & vs & = volume of the shaft \\
\hline c & atf & \(=\) cross sectional area from tip to fin \\
\hline c & afs & \(=\) cross sectional area from fin to shaft \\
\hline c & ast & = surface area of the tip \\
\hline c & asf & = surface area of the fin \\
\hline c & ltf & \(=\) length from tip to fin \\
\hline c & lfs & \(=\) length from fin to shaft \\
\hline c & sf & = scale factor \\
\hline c & ub1 & = stagnation temperature, TR1 \\
\hline c & ub2 & = free stream temperature, TR2 \\
\hline c & ht & ```
= convection heat transfer coefficient at
    tip
``` \\
\hline C & hf & ```
= convection heat transfer coefficient at
 fin
``` \\
\hline
\end{tabular}
intrinsic float
common/data1/a,b,u,t3,t4,ys
common/data2/rho,k,cp,sf,c1,c2,c3
common/data3/vt0,vf0,vs0,atf0,afs0,ast0,asf0,ltf0,l£s0
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
c Open files for data input/output
open(10, name='resulto.dat', status='new')
open (9,name='temp0.mat', status='new')
open (8,name='datam0.dat', status='old')
open(7,name='input.dat', status='old')
read in experimental data
do i=1,61
    read(8,*) t3(i)
enddo
do i=1,61
    read(8,*) t4(i)
enddo
close (8)
c read in input data
read(7,*)
read(7,*)
read(7,*)
read(7,*)
read(7,*) rho,k,cp
read(7,*)
read(7,*)
read(7,*) vt0, vf0, vs0
read(7,*)
read(7,*)
```

```
read(7,*) atf0, afs0
read (7,*)
read(7,*)
read(7,*) ast0, asf0
read (7,*)
read (7,*)
read(7,*) ltf0, lfso
read (7,*)
read (7, *)
read(7,*) sf, ub1, ub2
close (7)
```

c initial conditions

```
t=0
tend=0
u(1) =ubl
u(2) =ub2
u(3) =0.0
u(4)=0.0
```

call coef (x, tend)
c set up parameters for DBCLSF call
do $i=1, n$
xscale (i) $=1.0$
$x \operatorname{lb}(i)=-0.2$
$\operatorname{xub}(i)=100.0$
$x g(i)=0.1$
$x(i)=0.0$
end do
do $i=1, m$
fscale (i) $=1.0$
end do
ibtype=0

```
call dbclsf(temp,m,n,xg,ibtype,xlb,xub,xscale,fscale,
    & iparm,rparm,x,f,xjac,ldfjac)
```

c calculate unknown resistances and convection heat transfer
c coefficients

```
a(3,4)=x(1)
a(4,3)=x(2)
a4g =x(3)
b}(1,1)=x(4
b}(2,2)=x(5
```

```
cl=rho*cp*vt**0.000001
c2=rho*cp*vf*0.000001
c3=rho*cp*vs*0.000001
c1=c1*sf**3
c2=c2*sf**3
c3=c3*sf**3
rf1 =1/(b(1,1)*c1)
rf2 =1/(b(2,2)*c2)
r34 =1/(a (3,4)*c3)
c4 =1/(a(4,3)*r34)
r4g =1/(a4g*C4)
ht =10000.0/(rf1*(ast*sf**2))
hf =10000.0/(rf2*(asf*sf**2))
c print and save results
```



```
write(6,9000) x(1),x(2),x(3),x(4),x(5)
    9000 format(5f10.4)
    9003 format(2f11.4)
        write(10,*) a34 a43 a4g b(1,1)
        b(2,2)'
        write(10,9000) x(1),x(2),x(3),x(4),x(5)
        write(10,*)
        write(10,*)
        write(10,*), rf1 rf2 r4g*
        write(10,9000) rf1,rf2,r4g
        write(10,*)
        write(10,*)
        write(10,*), ht hf'
        write(10,9003) ht,hf
c write the temp-time data for MATLAB analysis
        do i=1,61
            tt=0.05*float(i)
            write(9,9001)tt,ys(3,i),ys(4,i),t3(i),t4(i)
        enddo
    9001 format(2x,1f6.4,4f10.4)
        close(10)
        close (9)
        end
```


Subroutine TEMP ($\mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{f}$)

```
integer maxparam, neq
```

parameter (maxparam=50, neq=4)
integer ido,istep, nout, m,n
real*8 t, tend,y(4), tol,fcn,float, param(maxparam),
real* $8 \times(n), f(m)$, coef
real* 8 a $(4,4), b(4,4), u(4), t 3(61), t 4(61), y s(4,61)$
real* 8 rho, $k, c p, s f, c 1, c 2, c 3, c 4, r 12, r 23, a 4 g$
real*8 vt0,vf0,vs0,atf0, afs0,ast0,asf0,ltf0,lfs0
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
intrinsic float
external fon, divprk,sset, coef
common/data1/a,b,u,t3,t4,ys
common/data2/rho, k, cp, sf, c1, c2, c3
common/data3/vto, vfo, vs0, atfo, afso, asto, asfo, Itfo, Ifso
common/data4/vt, vf,vs,atf,afs,ast,asf,ltf,lfs
open (12, name='incoming. dat', status='new')
$\mathrm{a}(3,4)=\mathrm{x}(1)$
$a(4,3)=x(2)$
$\mathrm{a} 4 \mathrm{~g}=\mathrm{x}(3)$
$b(1,1)=x(4)$
$b(2,2)=x(5)$
write $(6,8000) a(3,4), a(4,3), a 4 g, b(1,1), b(2,2)$

8000 format (5f10.4)

```
a(1,1)=-(a(1,2)+b(1,1))
a(2,2)=-(a(2,1)+a(2,3)+b(2,2))
a(3,3)=-(a(3,2)+a(3,4))
a(4,4)=-(a(4,3)+a4g)
```

C
Set initial conditions
$t=0.0$
do $i=1$, neq
$y(i)=0.0$
do $j=1,61$

$$
y s(i, j)=0.0
$$ enddo

enddo
tol=0.0005
call sset (maxparm, 0.0, param, 1)
id $0=1$
do istep $=1,61$ tend $=0.05 *$ float (istep)
call $\operatorname{coef}(x$, tend $)$
CALI DIVPRK (ido, neq, fen, t, tend, tol, param, y) do $i=1,4$ ys (i, istep) $=y$ (i) enddo
enddo
c Final call to release workspace
id0 $=3$
call divprk (ido, neq, fcn,t,tend, tol, param, y)
c calculate error functions
do $i=1,61$
$\mathrm{f}(\mathrm{i})=\mathrm{ys}(3, \mathrm{i})-\mathrm{ta}(\mathrm{i})$
$f(i+61)=y s(4, i)-t 4(i)$
enddo
c print out rms error
ssqr=0.0
do $i=1, \mathrm{~m}$
ssqr=ssqr$+f(i) * f(i)$
enddo
ssqr=ssqr/m
xer=sqrt (ssqr)
write (6,*) xer
write (12,*) xer
return
end

subroutine fon(neq, $t, y, y p r i m e)$
integer neq
real*8 t,y (neq), yprime (neq)

```
real*8 \(\mathrm{a}(4,4), \mathrm{b}(4,4), \mathrm{u}(4), \mathrm{d}, \mathrm{ys}(4,61)\)
common/data1/a,b,u,t3,t4,ys
common/data2/rho,k, cp,sf, c1, c2, c3
common/data3/vt0,vf0,vs0, atf0,afs0,ast0,asf0, 1tf0, 1fs0
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
c thrust profile simulation as step input
if (t.gt.0.3) then
    \(\mathrm{d}=1.0\)
else
    \(\mathrm{d}=0.0\)
end if
do \(i=1\), neq
yprime (i) \(=0.0\)
    do \(j=1\), neq
    yprime (i) =yprime (i) +a(i,j)*y(j)+b(i,j)*u(j)*d
    enddo
enddo
return
end
```

C-
subroutine coef (x, tend)
integer i,j
real* 8 tend, $x(5)$
real*8 a(4,4),b(4,4),u(4)
real*8 rho,k,cp,sf,c1,c2,c3,c4,r12,r23,a4g
real* 8 vt0,vf0,vs0, atf0,afs0,asto, asf0, ltf0, lfso
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
common/data1/a, b, u, t3, t4, ys
common/data2/rho, $\mathrm{k}, \mathrm{cp}, \mathrm{sf}, \mathrm{cl}, \mathrm{c} 2, \mathrm{c} 3$
common/data3/vt0, vf0, vs0, atf0, afs0, ast0, asf0,1tf0, Ifso
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
c a, b matrix modification due to ablation effects
c full scale data

```
vt=vt0-0.013*tend
vf=vf0-0.26*tend
vs=vs0-0.115*tend
atf=atf0-0.0*tend
```

```
afs=afso-0.0*tend
ast=ast0-0.0145*tend
asf=asf0-0.374*tend
ltf=ltf0-0.025*tend
1fs=1fs0-0.03*tend
rl2=100.0*ltf/(k*atf)
r23=100.0*lfs/(k*afs)
cl=rho*cp*vt*0.000001
c2=rho*cp*vf*0.000001
c3=rho*cp*vs*0.000001
```

c scaled data

```
r12=r12/sf
r23=r23/sf
c1=c1*sf**3
c2=c2*sf**3
c3=c3*sf**3
```

$a(1,2)=1 /(c 1 * r 12)$
$a(2,1)=1 /(c 2 * r 12)$
$a(2,3)=1 /(c 2 * r 23)$
$a(3,2)=1 /(c 3 * r 23)$
$a(3,4)=x(1)$
$a(4,3)=x(2)$
a4g $=x(3)$
$b(1,1)=x(4)$
$b(2,2)=x(5)$
$a(1,1)=-(a(1,2)+b(1,1))$
$a(2,2)=-(a(2,1)+a(2,3)+b(2,2))$
$a(3,3)=-(a(3,2)+a(3,4))$
$a(4,4)=-(a(4,3)+a 4 g)$
return
end

Program NODE49

This program is the PID program for the four node vane model with erosion from exhaust with $9 \% \mathrm{Al}$.
external temp
integer m, n , iparm(6), ibtype, Idfjac
parameter ($m=82, n=5,1 \mathrm{dfjac}=\mathrm{m}$)
real* $8 \operatorname{rparm}(7), \mathrm{x}(\mathrm{n}), \mathrm{f}(\mathrm{m}), \mathrm{xjac}(\mathrm{m}, \mathrm{n}), \mathrm{xg}(\mathrm{n}), \mathrm{ssq}, \mathrm{ub} 1, \mathrm{ub} 2$
real* 8 xlb(n), xub (n), xscale (n), fscale (m), float, ht, hf
real* 8 a $(4,4), b(4,4), u(4), \mathrm{t} 3(41), \mathrm{t} 4(41), \mathrm{ys}(4,41)$
real* 8 rho, $\mathrm{k}, \mathrm{Cp}, \mathrm{sf}, \mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{r} 12, \mathrm{r} 23, \mathrm{a4g}$
real* 8 vto,vf0,vs0,atf0,afs0,asto,asf0,ltf0,lfs0
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
Variables

c	m	= number of functions
c	n	$=$ number of variables
c	iparm	= list of parameters for DBCLSF setup
c	ibtype	= type of bounds on variables
c	ldfjac	$=$ leading dimension of fjac
c	rparm	= list of parameters for DBCLSF setup
c	$\mathbf{x}(\mathrm{n})$	$=$ the pt where the function is evaluated
c	f (m)	$=$ the computed function at the point x
c	xjac (m, n)	= matrix containing a finite difference
c		approx Jacobian at the approx solution
c	xg (n)	= initial guess of x
c	$x \operatorname{lb}(\mathrm{n})$	$=\mathrm{x}$ lower bound
c	$x u b(n)$	$=\mathrm{x}$ upper bound
c	xscale (n)	= vector containing the scaling matrix for
c		e variables
c	fscale(m)	$=$ vector containing the scaling matrix for
c		e functions
c	ssq	$=$ sum of the squares
c	a (neq, neq)	= a matrix
c	b (neq, neq)	$=\mathrm{b}$ matrix
c	u (neq)	$=[T R 1, ~ T R 2, ~ 0,0]$
c	t3 (41)	= experimental temperatures at node 3
c	t4 (41)	= experimental temperatures at node 4
c	ys (neq, 41)	= calculated temperatures
c	rho	= density
c	k	$=$ conduction heat transfer coefficient
c	cp	= specific heat
c	vt	= volume of the tip
c	vf	$=$ volume of the fin
c	vs	= volume of the shaft
c	atf	$=$ cross sectional area from tip to fin
c	afs	$=$ cross sectional area from fin to shaft

```
c ast = surface area of the tip
c asf = surface area of the fin
c ltf = length from tip to fin
c lfs = length from fin to shaft
C sf
c ubl
c ub
c ht
c h
hf = con
intrinsic float
common/datal/a,b,u,t3,t4,ys
common/data2/rho,k, cp,sf, c1,c2,c3
common/data3/vt0,vf0,vs0, atf0,afs0,ast0, asf0,ltf0, lfs0
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
c Open files for data input/output
open(10, name=' result9.dat', status='new')
open(9,name='temp9.mat', status='new')
open(8,name='datam9.dat', status='old')
open(7,name='input.dat', status='old')
c read in experimental data
do i=1,41
    read(8,*) t3(i)
enddo
do i=1,41
    read(8,*) t4(i)
enddo
close (8)
c read in input data
read(7,*)
read(7,*)
read (7,*)
read (7, *)
read(7,*) rho,k,cp
read(7,*)
read(7,*)
read(7,*) vt0, vf0, vs0
read(7,*)
read(7,*)
read(7,*) atf0, afs0
read(7,*)
read(7,*)
```

```
read(7,*) ast0, asf0
read(7,*)
read(7,*)
read(7,*) ltf0, lfs0
read(7,*)
read(7,*)
read(7,*) sf, ub1, ub2
close(7)
```

c initial conditions

```
t=0
```

tend $=0$
call coef (x, tend)
$u(1)=u b 1$
$u(2)=u b 2$
$u(3)=0.0$
$u(4)=0.0$
c set up parameters for DBCLSF call

```
do i=1,n
    xscale(i)=1.0
    xlb(i)=-0.2
    xub (i)=100.0
    xg(i)=0.1
    x(i)=0.0
end do
```

```
do i=1,m
    fscale(i)=1.0
end do
```

ibtype=0
call dbclsf(temp,m,n,xg,ibtype,xlb,xub,xscale,fscale, \& iparm,rparm, $x, f, x j a c, 1 d f j a c)$
c calculate unknown resistances and convection heat transfer c coefficients

```
a (3,4)=x(1)
a(4,3)=x(2)
a4g =x(3)
b(1,1) =x (4)
b (2,2) =x (5)
c1=rho*cp*vt*0.000001
c2=rho*cp*vf*0.000001
c3=rho*cp*vs*0.000001
```

```
c1=c1*&f**3
c2=c2*sf**3
c3=c3*sf**3
rf1 =1/(b(1,1)*c1)
rf2 =1/(b (2,2)*c2)
r34 =1/(a (3,4)*c3)
c4 =1/(a(4,3)*r34)
r4g=1/(a4g*C4)
ht =10000.0/(rf1*(ast*sf**2))
hf =10000.0/(rf2*(asf*sf**2))
```

c print and save results
write (6,*) a34 a43 a4g b11 b22'
write (6,9000) $x(1), x(2), x(3), x(4), x(5)$
9000 format (5f10.4)
9003 format (5x,2f10.4)
write (10,*)' a34 a43 a4g b(1,1) b(2,2)'
write $(10,9000) x(1), x(2), x(3), x(4), x(5)$
write (10,*)
write (10,*)
write (10,*) rf1 rf2 r4g'
write $(10,9000)$ rf1,rf2,r4g
write (10,*)
write (10,*)
write (10,*), ht hf'
write (10,9003) ht, hf
c write the temp-time data for MATLAB analysis
do $i=1,41$
tt=0.05*float (i)
write $(9,9001)$ tt, ys (3,i), ys (4,i), t3(i), t4 (i)
enddo
9001 format (2x,1f6.4,4f10.4)
close (10)
close (9)
end
\qquad
Subroutine TEMP ($\mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{f}$)
c This calculates the temperature-time history using the c current parameters supplied by DBCLSF called from PID. It
c calculates an error function returned to DBCLSF based on c the differences between predicted and observed temperature c histories.
integer maxparam, neq
parameter (maxparam=50, neq=4)
integer ido, istep, nout, m, n
real*8t, tend, $y(4)$, tol, fcn, float, $\operatorname{param}(50), x(n), f(m)$, coef
real*8 a (4, 4), b(4, 4), u(4), t3 (41), t4 (41), ys (4, 41)
real* 8 rho, $k, c p, s f, c 1, c 2, c 3, c 4, r 12, r 23, a 4 g$
real*8 vto, vfo, vs0, atfo, afso, asto, asfo, ltfo, lfs0
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
intrinsic float
external fcn, divprk, sset, coef
common/datal/a, b, u, t3, t4,ys
common/data2/rho, k, cp,sf, c1, c2, c3
common/data3/vt0,vfo,vs0, atfo,afs0,asto,asf0,1tf0,1fs0
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
open(12, name='incoming9.dat',status='new')
$a(3,4)=x(1)$
$a(4,3)=x(2)$
$a 4 \mathrm{~g}=x(3)$
$b(1,1)=x(4)$
$b(2,2)=x(5)$
write $(6,8000) a(3,4), a(4,3), a 4 g, b(1,1), b(2,2)$
8000 format (5f10.4)

```
a(1, 1)=-(a(1,2)+b(1,1))
a(2,2)=-(a(2,1)+a(2,3)+b(2,2))
a(3,3)=-(a(3,2)+a(3,4))
a(4,4)=-(a(4,3)+a4g)
```

Set initial conditions
$t=0.0$
do $i=1$, neq
$y(i)=0.0$
do $j=1,41$
$y s(i, j)=0.0$
enddo
enddo

```
    tol=0.0005
    call sset (maxparm, 0.0, param, 1)
    id0=1
    do istep=1,41
        tend=0.05*float (istep)
        call coef(x,tend)
        CALL DIVPRK (ido, neq, fcn, t, tend, tol, param, y)
        do i=1,4
        ys(i,istep)=y(i)
        enddo
    enddo
c Final call to release workspace
    id0=3
    call divprk (ido,neq,fcn,t,tend, tol,param,y)
c calculate error functions
do i=1,41
        f(i)=ys(3,i)-t3(i)
        f(i+41)=ys(4,i)-t4(i)
enddo
C print out rms error
ssqr=0.0
do i=1,m
    ssqr=ssqr+f(i)*f(i)
enddo
ssqr=ssqqr/m
xer=sqrt(ssqr)
write(6,*) xer
write(12,*) xer
return
end
subroutine fon(neq,t,y,yprime)
integer neq
real*8 t,y(neq),yprime(neq)
real*8 a(4,4),b(4,4),u(4),d,ys(4,41)
common/datal/a,b,u,t3,t4,ys
common/data2/rho,k,cp,sf,c1,c2,c3
common/data3/vt0,vf0,vso, atf0,afso,asto, asfo,ltfo,lfso
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
```

c thrust profile simulation as step input

```
    if (t.gt.0.7) then
            \(d=1.0\)
        else
            \(\mathrm{d}=0.0\)
    end if
    do \(i=1\), neq
    yprime (i) \(=0.0\)
        do \(j=1\), neq
        yprime (i) =yprime (i) +a(i,j)*y(j)+b(i,j)*u(j)*d
        enddo
    enddo
    return
end
```

C
subroutine coef(x, tend)
integer i,j
real* 8 tend, $x(5)$
real*8 $\mathrm{a}(4,4), \mathrm{b}(4,4), \mathrm{u}(4)$
real*8 rho,k, cp,sf,c1, c2,c3, c4,r12,r23,a4g
real* 8 vt0,vf0, vso, atf0, afs0, asto, asfo, ltfo, lfso
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
common/data1/a,b,u,t3, t4,ys
common/data2/rho, $\mathrm{k}, \mathrm{cp}, \mathrm{sf}, \mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3$
common/data3/vt0, vf0, vs0, atf0, afs0, asto, asf0, Itfo, Ifs0
common/data4/vt, vf,vs,atf,afs,ast,asf,ltf,lfs
$c \quad a, b$ matrix modification due to ablation effects
c full scale data

```
vt=vt0-0.0*tend
vf=vf0-0.0*tend
vs=vs0-0.0*tend
atf=atf0-0.0*tend
afs=afs0-0.0*tend
ast=ast0-0.0*tend
asf=asf0-0.0*tend
1tf=1tf0-0.0*tend
lfs=1fs0-0.0*tend
```

```
    r12=100.0*ltf/(k*atf)
    r23=100.0*lfs/(k*afs)
    c1=rho*cp*vt*0.000001
    c2=rho*cp*vf*0.000001
    c3=rho*cp*vs*0.000001
c scaled data
r12=r12/sf
r23=r23/sf
cl=cl*sf**3
c2=c2*sf**3
c3=c3*sf***3
a(1,2)=1/(c1*r12)
a (2,1)=1/(c2*r12)
a (2,3)=1/(c2*r23)
a (3,2)=1/(c3*r23)
\(a(3,4)=x(1)\)
\(a(4,3)=x(2)\)
\(a 4 g=x(3)\)
\(b(1,1)=x(4)\)
\(b(2,2)=x(5)\)
\(a(1,1)=-(a(1,2)+b(1,1))\)
\(a(2,2)=-(a(2,1)+a(2,3)+b(2,2))\)
\(a(3,3)=-(a(3,2)+a(3,4))\)
\(a(4,4)=-(a(4,3)+a 4 g)\)
return
end
```

Program NODE418

This program is the PID program for the four node vane model with ablation from exhaust with 18\% Al.
external temp
integer m,n,iparm(6),ibtype,ldfjac
parameter ($\mathrm{m}=66, \mathrm{n}=5,1 \mathrm{dfjac}=\mathrm{m}$)
real* $8 \operatorname{rparm}(7), x(n), f(m), x j a c(m, n), x g(n), s s q, u b l, u b 2$
real*8 xlb(n), xub(n), xscale(n), fscale(m), float, ht, hf
real*8 $\mathrm{a}(4,4), \mathrm{b}(4,4), \mathrm{u}(4), \mathrm{t} 3(33), \mathrm{t} 4(33), \mathrm{ys}(4,33)$
real* 8 rho, $\mathrm{k}, \mathrm{cp}, \mathrm{sf}, \mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{r} 12, \mathrm{r} 23, \mathrm{a} 4 \mathrm{~g}$
real* 8 vto, vfo,vs0, atfo, afs0, asto, asfo,ltfo, lfso
real* 8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
Variables

m	$=$ number of functions
n	= number of variables
iparm	= list of parameters for DBCLSF setup
ibtype	$=$ type of bounds on variables
ldfjac	$=$ leading dimension of fjac
rparm	$=$ list of parameters for DBCLSF setup
$x(\mathrm{n})$	$=$ the pt where the function is evaluated
$\mathrm{f}(\mathrm{m})$	$=$ the computed function at the point x
xjac (m, n)	= matrix containing a finite difference approx Jacobian at the approx solution
$\mathrm{xg}(\mathrm{n})$	$=$ initial guess of x
$\mathrm{xib}(\mathrm{n})$	$=\mathrm{x}$ lower bound
xub (n)	= x upper bound
xscale (n)	$=$ vector containing the scaling matrix for variables
scale (m) th	$=$ vector containing the scaling matrix for e functions
ssq	= sum of the squares
a (neq, neq)	= a matrix
b (neq, neq)	$=\mathrm{b}$ matrix
u (neq)	$=[$ TR1, TR2, 0, 0]
t3 (33)	= experimental temperatures at node 3
t4 (33)	= experimental temperatures at node 4
ys (neq, 33)	= calculated temperatures
rho	= density
k	$=$ conduction heat transfer coefficient
cp	= specific heat
vt	= volume of the tip
vf	= volume of the fin
vs	$=$ volume of the shaft
atf	$=$ cross sectional area from tip to fin

C

C
C
C
C

C
c
C
C

C
afs ast asf 1tf
lfs sf
ubl ub2 ht
hf
$=$ cross sectional area from fin to shaft
$=$ surface area of the tip
$=$ surface area of the fin

- length from tip to fin
$=$ length from fin to shaft
= scale factor
= stagnation temperature, TR1
= free stream temperature, TR2
$=$ convection heat transfer coefficient at
tip
$=$ convection heat transfer coefficient at
fin
intrinsic float
common/data1/a,b,u,t3,t4,ys
common/data2/rho, $k, C p, s f, c 1, c 2, c 3$
common/data3/vt0, vf0, vs0, atf0, afs0, asto, asf0, ltf0, Ifs0
common/data4/vt,vf,vs, atf,afs,ast,asf,ltf,lfs
Open files for data input/output
open (10, name $=$ 'result18. dat', status $=$ ' $n e w ')$
open (9, name = 'temp18.mat', status='new')
open (8, name='datam181. dat', status='old')
open (7, name='input. dat', status='old')
read in experimental data
do $i=1,33$
read ($8, *$) t3 (i)
endio
do $i=1,33$
read (8,*) t4(i)
enddo
close (8)
read in input data
read (7, *)
read (7,*)
read ($7, *$)
read $(7, *)$
read ($7, *$) rho,k, cp
read ($7, *$)
read ($7, *$)
read (7,*) vto, vfo, vso
read $(7, *)$
read ($7, *$)
read (7,*) atf0, afso
read $(7, *)$

```
read(7,*)
read(7,*) ast0, asf0
read (7,*)
read (7,*)
read(7,*) ltf0, lfs0
read(7,*)
read(7,*)
read(7,*) sf, ub1, ub2
close(7)
c initial conditions
t=0
tend=0
call coef(x,tend)
u(1) =ubl
u(2) =ub2
u(3)=0.0
u(4)=0.0
c set up parameters for DBCLSF call
do i=1,n
    xscale (i)=1.0
    xlb(i)=-0.2
    xub (i)=100.0
    xg(i)=0.1
    x(i)=0.0
end do
do i=1,m
    fscale(i)=1.0
end do
ibtype=0
call dbclsf(temp,m,n,xg,ibtype,xlb,xub,xscale,fscale,
c calculate unknown resistances and convection heat transfer
coefficients
a(3,4)=x(1)
a(4,3)=x(2)
a4g =x(3)
b(1, 1) =x(4)
b}(2,2)=x(5
c1=rho*cp*vt*0.000001
c2=rho*cp*vf*0.000001
```

```
c3=rho*cp*vs*0.000001
cl=c1*sf**3
c2=c2*sf**3
c3=c3*sf**3
rf1 =1/(b(1, 1)*cl)
rf2 =1/(b(2,2)*c2)
r34 =1/(a(3,4)*c3)
c4 =1/(a(4,3)*r34)
r4g =1/(a.4g*c4)
ht =10000.0/(rf1*(ast*sf**2))
hf =10000.0/(rf2*(asf*sf**2))
c print and save results
write(6,*) ' a34 a43 a4g bl1 b22'
write(6,9000) x(1),x(2),x(3),x(4), x(5)
```

```
9000 format(5f10.4)
```

9000 format(5f10.4)
9003 format(2x,2f10.4)
write(10,*)' a34 a43 a4g b(1,1) b(2,2)'
write(10,9000) x(1),x(2),x(3),x(4),x(5)
write(10,*)
write(10,*)
write(10,*)' rf1 rf2 r4g'
write(10,9000) rf1,rf2,r4g
write(10,*)
write(10,*)
write(10,*)' ht hf'
write(10,9003) ht,hf
c write the temp-time data for MATLAB analysis
do i=1,33
tt=0.05*float(i)
write(9.9001)tt,ys(3,i),ys(4,i),t3(i),t4(i)
enddo
9001 format(2x,1f6.4,4f10.4)
close(10)
close(9)
end
Subroutine TEMP (m,n,x,f)

```
integer maxparam, neq
parameter (maxparam=50, neq=4)
integer ido, istep, nout, m, n
```

real*8 t,tend,y(4),tol,fcn,float,param(maxparam),
real*8 x(n),f(m), coef
real*8 a(4,4),b(4,4),u(4),t3(33),t4(33),ys(4,33)
real*8 rho,k,cp,sf,c1,c2,c3,c4,r12,r23,a4g
real*8 vt0,vf0,vs0,atf0,afs0,ast0,asf0,ltf0,lfs0
real*8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
intrinsic float

```
external fon, divprk, sset, coef
common/datal/a,b,u,t3,t4,ys
common/data2/rho, \(k, \mathrm{cp}, \mathrm{sf}, \mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3\)
common/data3/vt0, vf0,vs0, atfo, afso, asto, asfo, ltfo, 1fso
common/data4/vt,vf,vs, atf, afs,ast,asf,ltf,lfs
open(12, name='incoming18.dat', status='new')
\(\mathrm{a}(3,4)=\mathrm{x}(1)\)
\(a(4,3)=x(2)\)
\(\mathrm{a} 4 \mathrm{~g}=\mathrm{x}(3)\)
\(b(1,1)=x(4)\)
\(b(2,2)=x(5)\)
write \((6,8000) a(3,4), a(4,3), a 4 g, b(1,1), b(2,2)\)

8000
```

a(1,1)=-(a(1,2)+b(1,1))
a(2,2)=-(a(2,1)+a(2,3)+b(2,2))
a(3,3)=-(a(3,2)+a(3,4))
a(4,4)=-(a(4,3)+a4g)

```

Set initial conditions
\(t=0.0\)
do \(i=1\), neq
\(y(i)=0.0\)
do \(j=1,33\)
```

 ys (i,j)=0.0
 enddo
 enddo
 tol=0.0005
 call sset (maxparm, 0.0, param, 1)
 id0=1
 do istep=1,33
 tend=0.05* float (istep)
 call coef(x,tend)
 CALL DIVPRK (ido, neq, fcn, t, tend, tol, param, y)
 do i=1,4
 ys (i,istep)=y(i)
 enddo
 enddo
 c Final call to release workspace
 id0=3
 call divprk (ido,neq,fcn,t,tend,tol,param,y)
 c calculate error functions
 do i=1,33
 f(i)=ys(3,i)-t3(i)
 f(i+33)=ys(4,i)-t4(i)
 enddo
 c print out rms error
 ssqr=0.0
 do i=1,m
 ssqr=ssqr+f(i)*f(i)
 enddo
 ssqr=ssqr/m
 xer=sqrt(ssqr)
 write(6,*) xer
 write(12,*) xer
 return
 end
 C-
 subroutine fcn(neq,t,y,yprime)
 integer neq
 real*8 t,y(neq),yprime (neq)
 real*8 a(4,4),b(4,4),u(4),d,ys(4,33)
    ```
```

 common/datal/a,b,u,t3,t4,ys
 common/data2/rho,k,cp,sf,c1,c2,c3
 common/data3/vt0,vf0,vs0, atf0, afs0,ast0, asfo,ltf0,lfso
 common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
 c thrust profile simulation as step input
if (t.gt.0.1) then
d=1.0
else
d=0.0
end if
do i=1,neq
yprime(i)=0.0
do j=1,neq
yprime(i)=yprime(i) +a(i,j)*y(j) +b(i,j)*u(j)*d
enddo
enddo
return
end
C
subroutine coef (}x\mathrm{ , tend)
integer i,j
real*8 tend,x(5)
real*8 a(4,4),b(4,4),u(4)
real*8 rho,k,cp,sf,c1,c2,c3,c4,r12,r23,a4g
real*8 vt0,vf0,vs0, atf0,afs0,ast0,asf0,ltf0,lfs0
real*8 vt,vf,vs,atf,afs,ast,asf,ltf,lfs
common/datal/a,b,u,t3,t4,ys
common/data2/rho,k, cp,sf,c1,c2,c3
common/data3/vt0,vf0,vs0, atf0, afs0,ast0,asf0, Itf0,Ifs0
common/data4/vt,vf,vs,atf,afs,ast,asf,ltf,lfs
c a, b matrix modification due to ablation effects
c full scale data

```
```

vt=vt0-0.0*tend

```
vt=vt0-0.0*tend
vf=vf0-0.0*tend
vf=vf0-0.0*tend
vs=vs0-0.0*tend
vs=vs0-0.0*tend
atf=atf0-0.0*tend
atf=atf0-0.0*tend
afs=afs0-0.0*tend
```

afs=afs0-0.0*tend

```
```

ast=ast0-0.0*tend
asf=asf0-0.0*tend
ltf=1tf0-0.0*tend
lfs=lfs0-0.0*tend
r12=100.0*ltf/(k*atf)
r23=100.0*lfs/(k*afs)
c1=rho*cp*vt*0.000001
c2=rho*cp*vf*0.000001
c3=rho*cp*vs*0.000001

```
c scaled data
```

r12=r12/sf
r23=r23/sf
c1=c1*sf**3
c2=c2*sf**3
c3=c3*sf**3

```
\(a(1,2)=1 /(c 1 * r 12)\)
a \((2,1)=1 /(c 2 * r 12)\)
\(a(2,3)=1 /(c 2 * r 23)\)
\(a(3,2)=1 /(c 3 * r 23)\)
\(a(3,4)=x(1)\)
\(a(4,3)=x(2)\)
a4g \(=x(3)\)
\(b(1,1)=x(4)\)
\(b(2,2)=x(5)\)
\(a(1,1)=-(a(1,2)+b(1,1))\)
\(a(2,2)=-(a(2,1)+a(2,3)+b(2,2))\)
\(a(3,3)=-(a(3,2)+a(3,4))\)
\(a(4,4)=-(a(4,3)+a 4 g)\)
return
end

\section*{APPENDIX D. PHYSICAL DATA FILES}

The physical data files for the PID programs which contains the geometric and material properties of the vanes and the recovery temperatures used in each case.

NAWC INVERSE HEAT TRANSFER PROGRAM. INPUT DATA FOR NODE3.FOR Material properties:
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { rho }\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right), \\
18310.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{k} \quad(\mathrm{w} / \mathrm{m}-\mathrm{deg} \mathrm{k}), \\
173.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Cp}(\mathrm{~J} / \mathrm{kg} \operatorname{deg~\mathrm {k})} \\
146.0
\end{gathered}
\] \\
\hline Vol (tip, cm^3), 2.6 & \[
\begin{gathered}
\text { Vol (fin, } \mathrm{cm}^{\wedge} 3 \text { ) } \\
52.00
\end{gathered}
\] & \[
\begin{gathered}
\text { Vol (shaft, } \mathrm{cm}^{\wedge} 3 \text { ) } \\
23.0
\end{gathered}
\] \\
\hline X-section areas: & \[
\operatorname{tip}-\mathrm{fin}_{5.9}\left(\mathrm{~cm}^{\wedge} 2\right)
\] & \[
\begin{array}{r}
\text { fin-shaft } \\
5.2
\end{array}
\] \\
\hline Surface areas: & \[
\begin{gathered}
\operatorname{tip}\left(\mathrm{cm}^{\wedge} 2\right) \\
4.35
\end{gathered}
\] & \[
{ }_{112.16}^{\text {fin }}\left(\mathrm{cm}^{\wedge} 2\right)
\] \\
\hline Conductive path & \[
\begin{gathered}
\operatorname{tip}-f i n \\
5.0
\end{gathered}
\] & \[
\begin{aligned}
& \text { fin-shaft (cm) } \\
& 6.0
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\text { Scale factor: } \\
1.00
\end{gathered}
\] & \[
\begin{array}{rr}
\text { TR1 } & \text { TR2 } \\
2670 & 2570
\end{array}
\] & \\
\hline
\end{tabular}

NAWC INVERSE HEAT TRANSFER PROGRAM. INPUT DATA FOR NODE40.FOR Material properties:
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { rho }\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right) \\
18310.0
\end{gathered}
\] & \[
\begin{gathered}
k \quad(w / m-\operatorname{deg} k), \\
173.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Cp}(\mathrm{~J} / \mathrm{kg} \operatorname{deg~} \mathrm{k}) \\
146.0
\end{gathered}
\] \\
\hline \[
\begin{aligned}
\text { Vol }\left(t i p, \mathrm{~cm}^{\wedge} 3\right) \\
2.6
\end{aligned}
\] & \[
\begin{gathered}
\text { Vol (fin, } \left.\mathrm{cm}^{\wedge} 3\right) \\
52.00
\end{gathered}
\] & \[
\begin{gathered}
\text { Vol (shaft, } \mathrm{cm}^{\wedge} 3 \text { ) } \\
23.0
\end{gathered}
\] \\
\hline X -section areas: & \[
\operatorname{tip}_{5.9}\left(\mathrm{~cm}^{\wedge} 2\right)
\] & \[
\begin{array}{r}
\text { fin-shaft }\left(\mathrm{cm}^{\wedge} 2\right) \\
5.2
\end{array}
\] \\
\hline Surface areas: & \[
\begin{gathered}
\text { tip }\binom{\left.\mathrm{cm}^{\wedge} 2\right)}{4.35}
\end{gathered}
\] & \[
\operatorname{fin}_{112.16}\left(\mathrm{~cm}^{\wedge} 2\right)
\] \\
\hline Conductive path & \[
\begin{gathered}
\text { tip-fin }(\mathrm{cm}) \\
5.0
\end{gathered}
\] & \[
\begin{aligned}
& \text { fin-shaft ( } \mathrm{cm} \text { ) } \\
& 6.0
\end{aligned}
\] \\
\hline Scale factor:
\[
0.25
\] & \[
\begin{array}{rr}
\text { TR1 } & \text { TR2 } \\
2360 & 2260
\end{array}
\] & \\
\hline
\end{tabular}

NAWC INVERSE HEAT TRANSFER PROGRAM. INPUT DATA FOR NODE49.FOR Material properties:
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { rho }\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right), \\
18310.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{k} \quad(\mathrm{w} / \mathrm{m}-\mathrm{deg} \mathrm{k}), \\
173.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Cp}(\mathrm{~J} / \mathrm{kg} \operatorname{deg~\mathrm {k})} \\
146.0
\end{gathered}
\] \\
\hline Vol (tip, \(\mathrm{cm}^{\wedge} 3\) ), & \[
\begin{gathered}
\text { Vol (fin, } \left.\mathrm{cm}^{\wedge} 3\right) \\
52.00
\end{gathered}
\] & \[
\begin{gathered}
\text { Vol (shaft, } \mathrm{cm}^{\wedge} 3 \text { ) } \\
23.0
\end{gathered}
\] \\
\hline X-section areas: & \[
\underset{5.9}{\operatorname{tip}-f i n}\left(\mathrm{~cm}^{\wedge} 2\right)
\] & \[
\begin{array}{r}
\text { fin-shaft }\left(\mathrm{cm}^{\wedge} 2\right) \\
5.2
\end{array}
\] \\
\hline Surface areas: & \[
\begin{array}{r}
\text { tip }\left(\mathrm{cm}^{\wedge} 2\right) \\
4.35
\end{array}
\] & \[
{ }_{112.16}^{\text {fin }\left(\mathrm{cm}^{\wedge} 2\right)}
\] \\
\hline Conductive path & \[
\begin{gathered}
\operatorname{tip}-f i n \\
5.0
\end{gathered}
\] & \[
\begin{aligned}
& \text { fin-shaft (cm) } \\
& 6.0
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\text { Scale factor: } \\
0.25
\end{gathered}
\] & \[
\begin{array}{rr}
\text { TR1 } & \text { TR2 } \\
2464 & 2370
\end{array}
\] & \\
\hline
\end{tabular}

NAWC INVERSE HEAT TRANSFER PROGRAM. INPUT DATA FOR NODE418.FOR Material properties:
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { rho }\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right), \\
18310.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{k} \quad(\mathrm{w} / \mathrm{m}-\operatorname{deg} \mathrm{k}), \\
173.0
\end{gathered}
\] & \[
\mathrm{Cp}(\mathrm{~J} / \mathrm{kg} \operatorname{deg~\mathrm {k})}
\] \\
\hline Vol (tip, \(\mathrm{cm}^{\wedge} 3\) ), & \[
\begin{gathered}
\text { Vol (fin, } \left.\mathrm{cm}^{\wedge} 3\right) \\
52.00
\end{gathered}
\] & \[
\begin{gathered}
\text { Vol (shaft, } \mathrm{cm}^{\wedge} 3 \text { ) } \\
23.0
\end{gathered}
\] \\
\hline X -section areas: & \[
\operatorname{tip}-\operatorname{fin}_{5.9}\left(\mathrm{~cm}^{\wedge} 2\right)
\] & \[
\begin{array}{r}
\text { fin-shaft }\left(\mathrm{cm}^{\wedge} 2\right) \\
5.2
\end{array}
\] \\
\hline Surface areas: & \[
\begin{gathered}
\text { tip }\left(\mathrm{cm}^{\wedge} 2\right) \\
4.35
\end{gathered}
\] & \[
\operatorname{fin}_{112.16}\left(\mathrm{~cm}^{\wedge} 2\right)
\] \\
\hline Conductive path & \[
\underset{5.0}{\operatorname{tip}}(\mathrm{~cm})
\] & \[
\begin{aligned}
& \text { fin-shaft } \quad(\mathrm{cm}) \\
& 6.0
\end{aligned}
\] \\
\hline Scale factor:
\[
0.25
\] & \[
\begin{array}{rr}
\text { TR1 } & \text { TR2 } \\
2970 & 2870
\end{array}
\] & \\
\hline
\end{tabular}

\section*{APPENDIX E. IMSL ROUTINES}

A description of the IMSL routines DBCLSF, DIVPRK, and SSET used in the PID and simulation programs.
```

Purpose: Solve a nonlinear least squares problem subject =0 bounds
on the variables using a modified Levenberg-Marquardt
algoririm and a finite-difference Jacobian.
Usage: CALL BCLSF (FCN, M, N, KGUESS, IETYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,
LDFJAC)

```

Arguments
FCN - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL \(\operatorname{FCN}(M, N, X, F)\), where
H - Length of \(F\). (Input)
N - Length of X . (Inpuz)
\(X\) - The point at which the function is evaluared. (Input) \(X\) should not be changed by FCN.
\(F \quad-\) The computed function at the point \(X\). (Dutput)
FCN must be declared EXTERNAL in the calling program.
4 - Number of functions. (Input)
N - Number of variables. (Input)
XGUESS - Vector of length \(N\) containing the initial guess. (Input)
IETYPE - Scalar indicating the rypes of bounds on variables.
(Input)
IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variabies are monposivive.
3 User supplies only the bounds on lst variable,
all other variables will have the same bounds.
XLB - Vector of length \(N\) containing the lover bounds on variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if IBTYPE \(=3\) )
XUB - Vecror of length \(N\) concaining the upper bounds on variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if IBTYPE \(=3\) )
XSCALE - Vector of length \(N\) containing the diagonal scaling matrix for the variables. (Input) In the absence of other information, set all entries to 1.0 .

FSCALE - Vector of length \(M\) containing the diagonal scaling matrix
```

 for the functions. (Input)
 In the absence of other information, set ali entries to
 1.0.
 IPARAM - Parameter vector of lengrh 6. (Input/Output)
See Remarks.
RPARAM - Parameters vector of length 7. (Input/Dutput)
See Remarks.
X - Vector of length N containing the approximate solurion.
(Outpur)
FVEC - Vector of length M containing the residuals at the approximate solution. (Onrpur)
FJAC - N by N marrix containing a finite difference approximate
Jacobian at the approximate solution. (Dutput)
LDFJAC - Leading dimension of FJAC ezactly as specified in the
dimension statement of the calling program. (Input)

```

\section*{Remarks}
```

2. Automatic vorkspace usage is
BCLSF 14*N + 2*M - 1 units, or
DBCLSF 26*N + 4*N - 2 units.
Workspace may be explicitly provided, if desired, by use of
B2LSF/DB2LSF. The reference is
CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,
LDFJAC, WK, IWK)
The additional arguments are as follous:
WK - Work vector of length 12*N + 2*M - 1. WK contains
the following information on output:
The second N locations contain the last step taken.
The third N locations contain the last Gauss-Neuton step.
The fourth N locations contain an estimate of the
gradient at the solution.
IWK - Worik vector of length 2*N containing the
permutations used in the QR factorization of the Jacobian
at. the solution.
```
2. Informational errors
    Type Code
    31 Both the actual and predicted relative reductions in the
            - function are less than or equal to the relative function
                convergence tolerance.
    42 The iterates appear to be converging to a noncritical
        point.
    43 Maximum number of iterations exceeded.

44 Naximum number of function evaluations exceeded.
45 Five consecutive steps have been taken with the maximum step length.
3. The first stopping eriterion for BCLSF occurs when the norm of the function is less than the absolute function tolerance. The second stopping criterion occurs when the morm of the scaled gradient is Less than the given gradient tolerance. The third stopping cxiterion for BCLSF occurs when che scaled distance between the last two steps is less than the step tolerance.
4. If nondefault parameters are desired for IPARAM or RPARAM, then U4LSF is called and the corresponding parameters are set to the desired value before calling the optimization program. Otherwise, if the default parameters are desired, then set IPARAM(1) to zero and call the optimization program omitting the call to U4LSF. The call to U4ISF would be as follows:

CALL U4LSF (IPARAM, RPARAM)

The following is a lis: of the parameters and the default values: IPARAM - Integer vector of length 6.

IPARAM(1) = Initialization flag. (0)
IPARAM(2) \(=\) Number of good digits in the function. (Machine dependent)
IPARAM(3) \(=\) Maximum number of iterations. (100)
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations. (400)
IPARAM(5) a Maximum number of Jacobian evaluations. (100) (Not used in BCLSF.)
IPARAM (6) \(=\) Internal variable scaling fiag. (1) If \(\operatorname{IPARAM}(6)=1\) the values for XSCALE are set internally.
RPARAM - Real vector of length 7 .
RPARAM(1) \(=\) Scaled gradient colerance. (SQRT(eps) in single precision) (eps**(1/3) in double precision)
RPARAM(2) = Scaled step tolerance. (epsw*(2/3))
FPARAM (3) = Relative function tolerance. (MAX(1,OE-10, eps**(2/3)) in single precision) (MAX(1.OD-20,eps**(2/3)) in double precision)
RPARAM(4) = Absolute function tolerance. ( \(\operatorname{MAX}(1,0 E-20\), epsw*2) in single precision) (MAX(1.OD-40, epz**2) in double precision)
RPARAM(5) \(=\) False convergence tolerance. (100*eps) RPARAM \((6)=\) Maximum allowable step size.
```

 (1000-MAX(TOL1,TOL2)) where,
 TOL1 = SORT(sum of (XSCALE(I)=XGUESS(I))**2)
 for I = 1,\ldots.,N
 TOL2 = 2-nOrm of XSCALE.
 RPARAM(7) = Size of initial trust region radius.
 (Based on the initial scaled Cauchy step)
 eps is machine epsilon.
If double precision is desired, then DU4LSF is called and RPARAM
is declared double precision.
Keywords: Levenberg-Marquardt; Trust region

```

\section*{Algorithm}

BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least squares problems subject to simple bounds on the variables. The problem is stated as follows:
\[
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} F(x)^{T} F(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2} \\
& \text { subject to } l \leq x \leq u .
\end{aligned}
\]
where \(m \geq n . F: \mathbb{R}^{n}-\mathbb{R}^{m}\). and \(f_{i}(x)\) is the \(i\)-th component function of \(F(x)\). From a given starting point. an active set IA. which contains the indices of the variables at their bounds. is built. A variable is called a 'free variable' if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-\left(J^{T} J+\mu I\right)^{-1} J^{T} F,
\]
where \(\mu\) is the Levenberg-Marquardt parameter. \(F=F(x)\), and \(J\) is the Jacobian with respect to the free variables. The search direction for the variables in IA is set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally: the optimality conditions are checked. The conditions are:
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \epsilon, \quad l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, \quad x_{i}=u_{i} \\
g\left(x_{i}\right)>0, \quad x_{i}=l_{i} .
\end{gathered}
\]
where \(\epsilon\) is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration. or the optimality condition is met for the free variables but not for all variables in 1A. the active set. In the latter case, a variable which violates the
optimality condition will be dropped out of IA. For more detail on the LevenbergMarquardt method. see Levenberg (1944). or Marquardt (1963). For more detailed information on active set strategy. see Gill and Murray (1976),

Since a finite-difference method is used to estimate the dacobian. for some single precision caiculations. an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a noncritical point. In such cases high precision arithmetic is recommended. Also. whenever the exact Jacobian can be easily provided. IMSL routine BCLSJ should be used instead.

\section*{Example}

The nonlinear least squares problem
\[
\begin{array}{r}
\min _{x \notin \mathbb{R}^{2}} \frac{1}{2} \sum_{t=1}^{2} f_{1}(x)^{2} \\
\text { subject to }-2 \leq x_{1} \leq 0.3 \\
\\
-1 \leq x_{2} \leq 2 .
\end{array}
\]
where \(f_{1}(x)=10\left(x_{2}-x_{1}^{2}\right)\), and \(f_{2}(x)=\left(1-x_{1}\right)\) is solved with an initial guess \((-1.2,1.0)\). and default values for parameters.
```

C Declaration of variables
INTEGER LDFJAC, M, %
PARMMETER (LDFJAC=2,N=2,N=2)
c
integER IParam(7), ITP, nout
REAL FJAC(LDFJAC,N), FSCALE(M), FVEC(N), ROSBCK,
k RPARAM(T), X(N), xGUESS(N), XLB(N), XS(N), xUB(N)
EXTERNAL BCLSF, ROSBCK, UMACH
C Compute the least squares for the
C Rosenbrock function.
DATA XGUESS/-1.2EO, 1.OEO/, XS/2*1.OEO/, FSCALE/2*1.OEO/
DATA XLB/-2.OEO, -1.OEO/. XUB/0.5EO, 2.OEO/
c
ITP = 0
C Defaulz parameters are used
IPARAM(1) = 0
c
CaLL BCLSF (ROSBCK, M, N, yGUESS, ITP, xLb, xUB, xS, FSCALE,
z iparam, rparam, x, fVEC, fjac, idfjac)
C
CALL UMACH (2. HOUT)
WRITE (NOUT.99999) X, FVEC, IPARAM(3), IPARAM(4)
C
99999 FORKAT (' The solution 13 ', 2F9.4, //,' The function '.
z evaluated at the solution 2s,,/, 18X. 2F9.4,//.
* 'The number of 2terations is ', 10x, 13, /, 'The'.

```

BCLSF/DBCLSF
```

 * 'number of function evaluatione is ', :3, /)
 END
 c
SUBROUTINE ROSBCK (M, K, y, F)
INTEGER M, N
REAL X(N),F(M)
c
F(1) = 1.OE1 * (X(2)-X(1)*X(1))
F(2) = 1.0E0 - X(1)
RETURN
END

```

\section*{Output}
The solution is . 5000 . 2500
The function evaluated at the solution is
\(.0000 \quad .5000\)

The number of aterations is 15
The number of function evaluations is 22

\section*{References}

Dennis. J. E.. Jt.. and Robert B. Schnabel (1983), Numericai Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall. Englewood Cliffs. New Jersey,
Gill. Philip E., and Walter Murray (1976). Minimization subject to bounds on the variables. NPL Report NAC 72. National Physical Laboratory, England.
Levenberg. K. (1944). A method for the solution of certain problems in least squares. Quartery of Applied Mathematics. 2. 164-168.
Marquardt. D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics. 11. 431-441.

IVPRK/DIVPRK Simgic/Donble prexisob
```

 Purpose Solve an mnitial-value problem for ordinary differervia:
 equations using the Runge-kutta-Verner fifth-order and
 sixth-order method
 Usage CALL IVPRK (IDO, NEQ. FCN. X, XEND, TOL, PARAN, Y)

```
Arguments
    IDO - Fiag indicating the state of the computation.
    (Input/Output)
    1 Interal entry
    2 Normal reentry
    3 Final call to release workspace
    4 Returar because of interrupt 1
    5 Return because of interrupe 2 with step accepred
    6 Recurn because of interrupt 2 with step rejectec
    Normaily, the imitial call is wade kith IDO=1. The
    routine then sets \(I D O=2\) and this value is then used for
    211 but the last call which is made sith IDO=3. Thas
    finel call is only used to release warkspace. which was
    automatically allocated by the initial call with IDO=1.
    See Remark 3 for a description of the interrupts
    NEO - Number of differential equations. (Inpuc)
    FCR - User-supplied SUBRDUTINE to evaluate functions.
        The usage is
        CALL FCN (NEQ, \(X, Y, Y P R I M E\) ), where
        NEQ - Number of equations (Input)
        X - Independent variable. (Input)
        Y - Array of length NED concaining the dependent
                        variable values. (Input)
        YPRIME - Array of length NEQ containing the vaiues of
            \(d Y / d X\) at ( \(X, Y\) ). (Output)
    FCN must be deciared EXTERNAL in the calling program
    \(\chi\) - Independent variable. (Input/Output)
        On input. \(X\) supplies the initial value.
        On output. \(X\) is repiaced by XEND unless error conditions
        arise See IDO for details.
    \(X E N D\) - Vaiue of \(X\) at which the solution is desired. (Input)
        XEND may be less than the initial value of \(X\).
    TOL - Iolerance for error control. (Input)
        An attempt is made to control the norm of the local error
        such that the global error is proportional to TOL.
        More than one run, with different values of TOL, can be
IMSL. Inc. MATH/LIBRARY
```

 usec to estimate the global error
 Generally. 2t should not be greater than 0.001
 PARAM - Veczor of length 50 contaming oprional parameters
(Input/Outpuz)
If a parameter is zero then a defaulc value is used
The following parameters must be set by the user
PaRAN Meaning
1 HINIT - Initial value of the step size H.
Default: See Algorzthm section.
2 HMIN - Minimum value of the step size H.
Default: 0.0
3 HMAX - Maximum value of the step size H.
Default: No limit is imposed on the
step size.
4 MXSTEP - Maximum number of sreps allowed.
Default: 500
5 MXFCN - Maximum number of function evaluations
allowed.
Deffault: No limit
6 - Not used.
7 EMTRP1 - If nonzero then return with IDC=4.
before each step.
See Remark 3.
Default: 0.
3 INTRP2 - If nonzero then =eturn with TDO=5,
after every successful step and wich
IDO=6 after every unsuccessful step.
See Remark 3.
Default: 0.
9.SCALE - A measure of the scale of the problem.
such as an approximation to the average
value of a norm}\mathrm{ of the Jacobian along
the trajectory.
Default: 2.0
10 INORM - Switch determining error norm.
In the following Ei is the absolute
value of an estmate of the error in
Y(i), called Yi here.
0 = min(absolute error. relative error)
= max}(Ei/Wi). i=1,2,···.NEQ, where
Wi}=\operatorname{max}(abs(Yi,1,0)
1 - absolute error = max(Ei). {=1.2.···.
2-max(Ei/Wi). i=1,2,···...where
Wi = max(abs(Yi).FLOOR).
and FLOOR is PARAM(11).

```
```

 3 - Euzi2dian norm scaiec by yMAX
 = scrtisum(E2 - 2/kz**2)), where
 *: = max{abs(Y2),1.0), for YasX
 see Remark:
 11 F:MOR - Usec an the norm computa=ion
 Defavit: 1.0
 12-30 * Not used
 The following entries in PARAN are set by the program
 31 HTRIAL - Cumzent trial step saze
 32 HNINC - Compuzed minlmum scep size zilowed
 33 HMAXC - Computed maximum step slze aljowed
 34 NSTEP ~ Number of steps taken
 35 NFCN - NumDer of function evaluataons used
 36-50 - Not used.
 Y - Vector of length NEG có dependent variabies.
(Input/Ou\taupu\tau)
On inpuz. Y contains sife initial values. On output.
Y contains the approximace soluzion

```

\section*{Remarks}
i. Automatic workspace usage is

IVPRK \(10 * N E Q\) units, or
DIVPRK 20 \(=\) NEQ units.
Workspace may be explicitly provided, if desired, by use of I2PRK/DI2PRK. The reference is

CALL I2PRK (IDO, IEEQ, FCN. X, XEND, TOL, PARAM, Y, VNORN. WK)
The additional arguments are as follows:
VNORN - User-supplied SUBROUTIKE to compute the norm of the error. (Input)
The routine may be prorided by the user, or the IMSL routine I3PRK/DI3PRK maT be used.
The usage is
CALL VNORM (NEQ. V, Y. YMAX, ENORN), where
NEQ - Number of equazions. (Input)
\(V\) - Vector of length NEQ contalming the vector wiose norz 15 to be computed. (Input)
\(Y\) - Vector of length NEQ containang the values of the dependent variable. (Input)
YMAX - Vector of length NEQ containing the maximum \(Y\) values compured so far. (Input)
ENORM - Norm of the vector V. (Outpot)
VNORM must be declared EXTERNAL in the calling program
WK - Work array of lengeh 10 N NEQ WK must not be changed

IMSL. Inc. MATH/LIBRARS
NPRK/DIVPRK
```

from the first call with IDO=1 unzil efter the finaz sall
wlth IDO=3.

```
```

2. Informational errors
Type Code
4 Cannor sat2sfy error condition. TOL may be too sma:L
4 2 Too many funczion evaluations needed
4 3 Too many steps needed. The problem may be stiff.
3. If PaRAM(7) is nonzero the subroutane returns wazh
IDO = 4, and will resume calculation at the point of interruption
If reentered with IDO = 4. If PARAM(8) is nonzero, the
subroutine will interrupt the calculations immediately after it
deczdes whetier or not to accept the result of the most
recent trial step. IDO = 5 if the routine plans to accept.
or IDO = 6 if it plans to reject IDO may be changed by the user
in order to force acceptance of a step (by changang IDO frow 6
so 5) that would otherwise be rejected. or vice versa
Relevant parameters to observe after return from an znterrup%
are IDO, HTRIAL, NSTEP, NFCN, and Y, Y is the newly computec
traal value, accepted or not.
```

\section*{Algorithm}

IVPRK zuck in approximation to the solution of a system of Arst-order differential equations of the form \(y^{\prime}=\int(r . y)\) with intial conditions. The contine attempts to keep the global error proportional to a naer-specinied tolerance. The proportionality depends on the differential equation and the range of integrarion.

TVPRK is etficient for nonstiff systems where the derivative evaluations are not expensive and where the solution is not required at a large number of finely spaced point: : as might be required for graphical vutpur).

IVPRK is based on a code designed by T. E. Hull. W. H. Enright and K. R. lackson :19\%6. 19\%). It uses Runge-Kutta formulas of order five and six dieveloped w. J. H. Verner.

\section*{Example}

Cunsider a predator-prey problem with rabbits and foxes. Let \(r\) be the density of rabbits and let \(f\) be the density of foxes. In the absence of any predator-prey interaction the rabbits would increase at a rate proportional to their number. and the foxes would die of starvation at a rate proportional to their number. Mathemarically.
\[
\begin{aligned}
r^{\prime} & =2 r \\
\rho^{\prime} & =-f
\end{aligned}
\]

IVPRK, DIIPRK
IMSL. Ine MATHILIBRARY
- The rase at whel the rabbin are caten by the foxes is \(2 r f\) and the rate at whel. Whe foxe hercase becouse hey are eating the rabbits. is \(f f\). So the mode; to be soiveci 15
\[
\begin{aligned}
& r^{\prime}=2 r-2 r f \\
& f^{\prime}=-f-r f
\end{aligned}
\]

The mitial conditions are \(r(0)=1\) and \(f(0)=3\) over the interval \(0 \leq t \leq 10\).
in the program \(Y(1)=r\) and \(Y(2)=f\). Note that the parameter vector is firs; set to zero (using IMSL routine SSET) and then absolute error control is selected by setting \(\operatorname{Param}(10)=1.0\).

The last call to IVPRK with IDO \(=3\) releases IMSL workspace, that was reserved on the first call 10 IVPRK. It is not necessary to release the workspace in this example berause the program ends after solving a single problem. The call to release workspace is made as a model of what would be needed if the program included further calls to IMSL rontines.

The following plots are the result of using IVPRK with more closely spaced ourput than what is printed. (The program which does the plotting is no: shown.l The second piot is a phase diagram for this system and cleariy shows the periodic nature of the soiution.
```

 INTEGER NXPARY, NEQ
 PARAMETER (KXPARM=50, NEQ=2)
 INTEUER IDO, ISTEP, NOUT
 REAL FCK, FLOKI, PARAN(MXPARN), I, TEND, TOL, Y(NEQ)
 INTRINSIC FLOAT
 EXTERNAL FCN, IVPRK,, SSET, YMACH
 CALL UMACH (2. NOUT)
 C Set 2nitial conditions
T=0.0
Y(1) = 1.0
Y(2) = 3.0
C Set error tolerance
TOL = 0.0005
Set PARAM to default
CALL SSET (MXPARM, 0.0, PARAN, 1)
PARAH(10) = 1.0
Print header
WRITE (NOUT,99999)
99999 FORMAT (4X, 'ISTEP', 5X, 'Time', 9X, 'Y1', 11X, 'Y2')
IDO = 1
DD 10 ISTEP=1. 10
TEND = FLORT(ISTEP)
CALL IVPRX (IDD. NEL, FCN, I. TEND, TOL, PARANA, Y)
WRITE (NOUT, '(16.3F12.3)') ISTEP. T, Y
10 CONTINUE

```
\(C\)
C
6

IMSL. Inc. MATH/LIBRARY
IVPRK/DIVPRK
                IDO \(=3\)
        - CALL IVPRK (IDO, NEQ. FCN. T. TEND, TOL. PARAN, Y)
                END
                SUEROUTINE FCN (NEQ, T. Y, YPRIME)
                IHTEGER NED
                REAL T. Y(NEO), YPRINE(NEQ)
\(c\)
        \(Y P R I M E(1)=2.0=Y(1)-2.0=Y(1) * Y(2)\)
        YPRIME (2) \(=-Y(2)-Y(1)=Y(2)\)
        RETURN
        END

Output
\begin{tabular}{crcr} 
ISTEP & Time & Y1 & \(Y 2\) \\
1 & 1.000 & 078 & 1465 \\
2 & 2.000 & 085 & .578 \\
3 & 3.000 & .292 & .250 \\
4 & 4.000 & 1.449 & 137 \\
5 & 5.000 & 4.046 & 1.444 \\
6 & 6.000 & .176 & 2.256 \\
7 & 7.000 & .066 & .908 \\
8 & 8.000 & .148 & .367 \\
9 & 9.000 & .655 & .188 \\
10 & 10.000 & 3.157 & .352
\end{tabular}

[MSL. Inc. MATH/LISRARY


\section*{References}

Hull. T. E.. W. H. Enright. and K. R. Jackson (1976). User's guide for DVERK - A subroutine for solving non-stiff ODEs, Department of Computer Science Technical Report 100. University of Toronto.
Jackson. K. R., W. H. Enright. and T. E. Hull (1977). A theoretical criterion for comparing Runge-Kutta formulas. Department of Computer Science Technical Report 101. University of Toronto.

\section*{Basic Linear Algebra Subprograms}

The basic linear algebra subprograms, usually called the BLAS, are routines for low-level vector operations such as dot products. Lawson et al. (1979) developed the original set of 38 BLAS routines. The IMSL BLAS collection includes these original 38 routines pius additional routines. The original BLAS are marked with a * in the descriptions.

\section*{Programming Notes}

The BLAS do not follow the usual IMSL naming conventions. Instead the names consist of a prefix of one or more of the letters ' I '. ' \(\mathrm{S}^{\prime}\). D '. ' C ' and ' \(Z\) ', a root name. and sometimes a suffix. For subprograms invoiving a mixture of data types the output type is indicated by the first prefix letter. The suffix denotes a variant algorithm. The prefix denotes the type of the operation according to the following table:

I Integer

S Real
D Double
SD Single and double
DQ Double and quadruple

C Complex
Z Double complex
CZ Single and double complex
ZQ Double and quadrupie complex
vector arguments have an increment parameter which specifies the storage space between elements. The correspondence between the vector \(I\) and the arguments \(S X\) and INCX is
\[
x_{i}= \begin{cases}S X((I-1)=I N C X+1) & \text { if } I N C X \geq 0 \\ S X((I-N) * I N C X+1) & \text { if } I N C X<0\end{cases}
\]

Only positive values of INCX are allowed for operations which have a singie vector argument.

The loops in all of the BLAS routines process the vector arguments in order of increasing \(i\). For INCX \(<0\), this implies processing in reverse storage order.

With the definitions,
\[
\begin{aligned}
\mathrm{MX} & =\max \{1.1+(\mathrm{N}-1)|\mathrm{INCX}|\} \\
\mathbf{N Y} & =\max \{1.1+(\mathrm{N}-1)|\mathbf{I N C Y}|\} \\
\mathrm{MZ} & =\max \{1.1+(\mathrm{V}-1)|I N C Z|\}
\end{aligned}
\]
the routine descriptions assume the following FORTRAN deciarations:
```

IMPLICIT INTEGER (I-N)
IMPLICIT REAL S
IMPLICIT DOUBLE PRECISION D
IMPLICIT COMPLEX C
IMPLICIT DOUBLE COMPLEX Z
INTEGER IX(MX)
REAL SX(MX), SY(MY), SZ(MZ), SPARAM(5).
z
SH(LDH,*)

```

Basic Linear Algebra Subprograms
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I & Integer & Real & Double & Complex & Double Complex & Page \\
\hline \(J_{1}=0\) & ISET & SSET & DSEI & , CSET & ZSET & 1026 \\
\hline \(y_{1}=I_{3}\) & ICOPY & SCOPY & DCOPY & CCOPY & ZCOPY & 1026 \\
\hline \(z_{1}=a r\). & & SSCAL & DSCAL & CSCAL & ZSCAL & 1026 \\
\hline \(a \in \mathbb{R}\) & & & & 1 CSSCAL & ZDSCAL & 1026 \\
\hline \(y_{1}=a x_{1}\) & & SVCAL & DVCAL & CVCAL & ZVCAL & 102\% \\
\hline \(a \in \mathbb{R}\) & & & & CSVCAL & 2DVCAL & 1027 \\
\hline \(x_{1}=z_{i}-a\) & IADD & SADD & DADD & 1 CADD & ZADD & 1027 \\
\hline \(I_{1}=a-I_{i}\) & ISUB & SSUB & DSUB & I CSUB & 2SUB & 1027 \\
\hline \(y_{i}=a x_{i}+y_{1}\) & 1 & SAXPY & DAXPY & CAXPY & ZAXPY & 1027 \\
\hline \(y,-x_{\text {r }}\) & ISWAP & SSWAP & DSWAP & CSWAP & ZSWAP & 1028 \\
\hline I'Y & & SDOT & DDOT & CDOTV & ZDOTU & 1028 \\
\hline \(\bar{z} \cdot y\) & & & & CDOTC & ZDDTC & 1028 \\
\hline \(x \cdot y\) T & & DSDOT & & CZDOTU & 20D0TV & 1028 \\
\hline F- 4 & & & & CzDOTC & zQDOTC & 1028 \\
\hline \(a+x+y\) & & SDSDOT & \(\overline{\text { DQDDOT }}\) & CZUDOT & 20UDOT & 1028 \\
\hline \(a+\bar{x} \cdot y\) & & & & CZCDDT & ZQCDOT & 1028 \\
\hline b+a y T & & SDDOTI & DQDOTI & C2DOTI & 2QDOTI & 1029 \\
\hline ACC + b-x \(\boldsymbol{y}\), \(\dagger\) & & SDDOTA & DQDOTA & C2DOTA & ZQDOTL. & 1029 \\
\hline \(z_{1}=J_{i} y_{1}\) & & SHPROD & DHPROD | & & & 1029 \\
\hline \(\sum x_{i} y_{t} z_{1}\) & & SXYZ & DXYZ & & & 1029 \\
\hline \(\sum x\), & ISUM & SSUM & DSUK & & & 1029 \\
\hline \(\sum\left|x_{i}\right|\) & & SASUM & DASUM & SCASUM & DZASUM & 1030 \\
\hline \(\|x\|_{2}\) & & SNRM2 & DNRM2 & SCNRM2 & DZNRM2 & 1030 \\
\hline \(\Pi x\), & & SPRDCT & DPRDCT & & & 1030 \\
\hline 1: \(x_{1}=\min _{1} x_{1}\) & IIMIN & ISMIN & IDMIN & & & 1030 \\
\hline i: \(x_{1}=\max _{1} x_{1}\) & IIMAX & ISMAX & IDMAX & & & 1030 \\
\hline i: \(\left|I_{i f}=\mathrm{min},\left|x_{y}\right|\right.\) & & ISAMIN & IDAMIN & ICAMIN & IZAMIN & 1031 \\
\hline i: \(\left|x_{1}{ }^{\prime}=\max ,\left|x_{j}\right|\right.\) & & ISAMAX & IDAMAX & ICAMAX & IZAMAX & 1031 \\
\hline Construct Given's rotation & & SROTG & DROTG & & & 1031 \\
\hline Apply Given's rotation & & SROT & DRDT & CSROT & ZDROT & 1032 \\
\hline Construct modified Given's transiorm & & SROTMG & DROTMG & & & 1032 \\
\hline Apply modified Given's transform & & SROTM & DROTM & CSROTM & 2DROTM & 1033 \\
\hline Construct Householder transform & & SHOUTR & DHOUTR & & & 1034 \\
\hline Appiy Householder transform & & SHOUAP & DHOUAP & & & 1034 \\
\hline
\end{tabular}
\(\dagger\) Higher precision accumulation used.
IMSL MATH/LIBRARY
```

DOUBLE PRECISION
z
DOUBLE PRECISION
COMPLEX
DOUBLE COMPLEX

```
```

DX(MX), DY(MY), DZ(MZ), DPARAM(5),

```
DX(MX), DY(MY), DZ(MZ), DPARAM(5),
DH(LDH,*)
DH(LDH,*)
DACC(2), OZACC(4)
DACC(2), OZACC(4)
CX(MX), CY(MY)
CX(MX), CY(MY)
ZX(MX), ZY(MY)
```

ZX(MX), ZY(MY)

```

Since FORTRA. 77 does not inciude the type dOUBLE COMPLEX. rourines with DOUBLE COMPLEX arguments are not available for all systems. Some systems use che declaration COMPLEX +16 instead of DOUBLE COMPLEX.

The set of BLAS routines are summarized by the table on page 1025. Routines marked with a dagger ( \(\dagger\) ) in the cable use higher precision accumulation.

\section*{Set a Vector to a Constant Value}
```

CALL ISET (N, IA, IX, INCX)
CALL SSET (}M, SA, SX, INCX)
CALL DSET (N, DA, DX, IMCX)
CALL CSET (N, CA, CX, INCX)
CALL ZSET (N, ZA, ZX, INCX)

```

These subroutines set \(x_{i}=a\) for \(i=1.2 \ldots \ldots, \mathrm{~V}\). If, \(\mathrm{V} \leq 0\) then the routines return immediately.

\section*{Copy a Vector}

CALL ICOPY ( \(\mathrm{A}, \mathrm{IX}\), INCX, IY, INCY)
- CALL SCOPY (N, SX, INCX, SY, INCY)
- CALL DCDPY (N, DX, INCX, DY, INCY)
* CALL CCOPY (N, CX, incx, CY, incy)

GALL ZCOPY (N, ZX, INCX, ZY, INCY)
These subroutines set \(y_{i}=x_{i}\) for \(i=1.2 \ldots \ldots . N\). If \(\mathrm{V} \leq 0\) then the routines return immediately.

\section*{Scale a Vector}
- Call sscal ( \(\mathrm{N}, \mathrm{Sa}, \mathrm{Sx}, \mathrm{m} \mathrm{m} \cdot \mathrm{x}\) )
- Call dScal ( \(\mathrm{N}, \mathrm{DA}, \mathrm{DX}, \mathrm{INCX}\) )
- Call cscal (N, Ca, Cx, incx)

CALL ZSCAL ( \(\mathrm{N}, \mathrm{ZA}, \mathrm{ZX}\), INCX)
* Call CSSCAL ( \(\mathrm{M}, \mathrm{Sa}, \mathrm{CX}, \mathrm{incx}\) )

CALL ZDSCAL (N, DA, 2X, INCX)

These subroutines set \(r_{i}=a x\), for \(i=1.2 \ldots \ldots . \mathrm{V}\). If \(. \mathrm{V} \leq 0\) then the routines return immediately.

\section*{LIST OF REFERENCES}
1. Reno, M. M., "Modeling Transient Thermal Behavior in a Thrust Vector Control Jet Vane", Masters Thesis, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, California, December 1988.
2. Danielson, A. O., "Inverse Heat Transfer Studies and the Effects of Propellant Aluminum on TVC Jet Vane Heating and Erosion", Naval Weapons Center, China Lake, California, July 1990.
3. Danielson, A. O. and Driels, M. R., "Testing and Analysis of Heat Transfer in Materials Exposed to Non-metallized HTPB Propellant", Department of Mechanical Engineering, Naval Postgraduate School, Monterey, California, November 1992.
4. Parker, G. K., "Heat Transfer Parametric System Identification", Masters Thesis, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, California, June 1993.
5. Nunn, R. H., "Jet Vane Modeling Development and Evaluation", Final Report from VRC Corporation, Monterey, California, January 1990.
6. Driels, M. R., "Heat Transfer Parametric Identification", Final Report FY92, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, California, 1992.
7. Nunn, R. H. and Kelleher, M. D., "Jet Vane Heat Transfer Modeling", Research Report, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, California, October 1986.
8. Hatzenbuehler, M. A., "Modeling of Jet Vane heat Transfer Characteristics and Simulation of Thermal Response", Masters Thesis, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, California, June 1988.
9. Rohsevow, W. M. and Choi, H. Y., "Heat, Mass and Momentum Transfer", Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1961.
10. Danielson, A. O. and Figueiredo, W., "Erosion and Heating Correlations for Tungstan Subscale and Full-scale Thrust Vector Control (TVC) Vanes Exposed to Aluminized Propellant", Naval Air Warfare Center Weapons Division, China Lake, California, November 1992.

\section*{INITIAL DISTRIBUTION LIST}
1. Defense Technical Information Center ..... 2 Cameron Station Alexandria, Virginia 22304-6145
2. Library, Code 52 ..... 2
Naval Postgraduate School
Monterey, California 93943-5002
3. Department Chairman, Code ME ..... 1
Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5002
4. Professor Morris R. Driels ..... 2
Code ME/DR
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93943-5002
5. LT Steven R. Gardner ..... 2
P.O. Box 188
Gilmanton, New Hampshire 03237
6. Naval Engineering Curricular Officer, Code 34 ..... 1
Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5002
7. A. Danielson ..... 2
Thermal Structures Branch Naval Air Weapons Center Code C2891
China Lake, California ..... 93555

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOO!
MONTEREY CA 93943-5101```


[^0]:    Approved for public release; distribution is unlimited.

