
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-03

The comparison of SQL, QBE, and DFQL as
query languages for relational databases

Girsang, Paruntungan
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/30910

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

The sis
G4 5 42

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE COMPARISON OF SQL, QBE, AND DFQL
AS QUERY LANGUAGES

FOR
RELATIONAL DATABASES

by

Paruntungan Oirsang

March 1994

Thesis Advisor: c. ThomasWu

Approved for pubhc release; distnbunon IS unlimited.

"1, ;')I.EY KNOX Llr • -:- ' J

:;. ' ,,\1. POSTG' 'IOO!
MONTEREY CI ."

REPORT DOCUMENTATION PAGE
f'W1 .. _ng , ... _ .. .-._ .. _' ... ' _, __ . 'l1li __
~"' _'"" __ """"'"""' _ ... _ .. ___ ~ .. ""' __ II'/ __ .. 1hiI <OI_ --. __ "'.bu_"'-..... fIMoIo_-.O'_"" ____ , 1211_

O""H~,S.i.,-. VA~,01111 ~ .. "'"'-.......... P _____ "......(o_8II,_....,tx:_

:~:::U::-_·_I a.~ORTDA~Q4 Master'

The Comparison of ~QL. DFQL, and DFQL as Query Languages
for Relational Databases

L~.'_"")
Girsang, Parunmngan

7·N=Po~;:d':':'S'~~~~S)ANDADDRiSS(ESl

Monterey, CA 93943-5000

ANDADDRESS(U)

t1.SUPPlEMENTARYNDTU

LJIE MINO
AEPOIITNUMBEA

lo.SPONSORINGIMONITCAIMQ
AQENCYIISPORTNI.IIIIBIiR

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States GovemmenL

13.AIBTRACT(Mui'l'llm2Oll_J
Structw'e Query Language (SQL) and Query By Example (QBE) are the most widely used query

languages for Relational Database Management Systems (RDBMS·s). However, both of them have
problems concerning ease-of-use issues. especially in expressing universal quantification, specifying
complex nested queries. and flexibility and consistency in specifying queries with respect to data retrieval.
To alleviate these problems. a new query language called "'DataFlow Query Language» (DFQL) was
proposed.

This thesis investigates the relative strengths and weaknesses of these three languages. We divide
queries into four categories: single-value, set-value, statistical result, and set-count value. In each
category. a representative set of queries from each language is specified and compared. Some of 1hc
queries specified are logical extensions of the other (already defined) queries. which are used. to analyze
the query languages' flexibility and consistency in fonnulating logically related queries. We perform a
simple experiment of asking NPS CS students to write a small set of queries in all three languages.

Based on the analysis. we conclude that DFQLeliminatcs the problems of SQL and QBE mentioned
above. The relative strengths of DFQL comes mainly from its strict adherence to relational algebra and
dataflow-based visuality.

14.SUliJiCTTERUS
SQL, QBE. DFQL, Relational Model, Database Management SystmIS,
Flexibility, Ease-of-use, Consistency.

I.S&'CU

"''''''" Unclassified

NSN 7540-01-28{l-5SOO

I' OfnllBMGI!
IUnc1assified

142

..~

UL
SWldmd Fonn 298 (Rev. 2-89)
"'-ribDdbyANSfSld.239-11

Author:

Approved By:

Approved for public release; distribution is unlimited

THE COMPARISON OF SQL, QBE, AND DFQL
AS QUERY LANGUAGES

FOR RELATIONAL DATABASES

by

Licu=~~n:~avy
B.S .• University of North Sumatera, Indonesia. 1981
Jr., University of North Sumatera, Indonesia. 1983

Subr.·:"ed in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

fromlh.

NAVAL POSTGRADUATE SCHOOL

---Paruntongan Girsang

~

ABSTRACT

Structure Query Language (SQL) and Query By Example (QBE) are the most widely

used query languages for Relational Database Management Systems (RDBMS's).

However, both of them have problems concerning ease-of-use issues, especially in

expressing universal quantification, specifying complex nested queries. and flexibility and

cnnsistency in specifying queries with respect to data retrieval. To alleviate these problems.

a new quczy language called "DataFlow Query Language" (DFQL) was proposed.

This thesis investigates the relative strengths and weaknesses of these three languages.

We divide queries into four categories: single-value. set-value, statistical result. and set

count value. In each category, a representative set of queries from each language is

specified and compared. Some of the queries specified are logical extensions of the other

(already deimed) queries. which are used to analyze the query languages' flexibility and

consistency in fonnulating logically related queries. We perform a simple experiment of

asking NPS CS students to write a small set of queries in all three languages.

Based on the analysis. we conclude that DFQL eliminates the problems of SQL and

QBE mentioned above. The relative strengths of DFQL comes mainly from its strict

adherence to relational algebra and dataflow-based visuality.

iii

,', '·.r

TABLE OF CONTENTS

INTRODUCTION ..

A. BACKGROUND

B.

c.
M011V A TION .. .

OBJECTIVE ..

D. CHAPTER SUMMARY

. 1

. 1

............... 2

. 3

......... .4

II. DESCRIPTION OF mE RELATIONAL MODEL AND QUERY LANGUAGES

FOR RDBMS's ...

A. TIlE RELATIONAL MODEL CONCEPTS ..

1. Fonnal Terminology•...

2. Properties of Relation

B. TEXT-BASED QUERY LANGUAGES.

1. The Relational Algebra

2. The Relational Calculus

3. Structure Query Language (SQL) ..

DataDefInitioninSQL.

b. Data Manipulation

Logical Operators of SQL

d. The Problems with SQL ..

(1) Declarative Nature

(2) Universal Quantification ..

(3) Lack of Orthogonality ...

(4) Nesting Construct

C. VISUAL-BASED QUERY LANGUAGES ..

1. QBE, a Form-based Query Language ...

DataRetrieval

. 5

. 5

. 6

............... 8

. 8

. 8

................ 10

. 10

. 11

................ 11

. 13

............ 13

. 14

. 15

. 17

................. 17

. 18

. 18

....... 19

b. Built-in functions, Grouping and other Operators 20

The Problems with QBE 21

[JUOlEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOl
~~ONTEREY CA 93943-5101

2. DataFlow Query Language (DFQL) ... 21

DFQL Operators•.••.••.......................•..•...........•.....••... 22

(1) Basic Operators ..•••.••••••••••••••••••••••.•••..••••.•..••••••••.••••••.•• 23

(2) Other PriInitives Operators ... 26

(3) Display Operators•...............•................ 29

(4) U",,-dofined Operaton •••••• __ •• __ •••••• __ •••• ____ ._ •••...... __ . __ ••• __ 29

(5) DFQL Query Construction ... 29

(6) Incremental Queries ..••.•.•.. 30

(7) Universal Quantification•.. 30

(8) Nesting and Functional Notation ..•................................. 31

(9) GraphStructureofDFQLQIlCI}'•.••.•.......•.••........•..•. 31

3. Entity-Relationship Model Interface .. 31

Ill. lHE COMPARISON OF SQL. QBE. AND DFQL wrm RESPECf TO

DATA RETRIEVAL CAPABILITIES .. 34

A. CATEGORIES OF QUER.Y •..•••••••.•••....•.•••.•.•... 35

1. Single-Value .. _ 35

Query 1: Sintple retrieval .. 36

b. Query 2: Qualified retrieval ... 38

Query 3: Retrieval involves more than two tables•....•... .40

d. Query 4: Retrieval involving universal quantification42

Query 5: Retrieval involving a negation statement 44

2. Set-Value ...••••...•....•.•••••••.....•...•.••••••••••••••••••......................••.•..............• 47

Query 6: Retrieval involving existential and universal

quantification ..••••......•.•.•••.•..........•.....................•....••••................ 47

b. Query 7: Retrieval involving explicit sets49

Query 8: Retrieval involving explicit sets51

d. Query 9: Retrieval involving universal quantification ..••••••••. 54

Query 10: Retrieval involving existential and universal

quantification .. .57

Query 11: Retrieval involving set operation••........ 59

3. Statistical Result " 62

Query 12: Retrieval involving aggregate AVG function 62

b. Query 13: Retrieval involving AVG and Groupmg function ... 64

Query 14: Retrieval involving Count, /\. VO, and Grouping

function 66

d. Query 15: Retrieval involving Count and AVO function 68

Query 16: Retrieval involving Max and Grouping function 70

Query 17: Retrieval involving Max and Grouping function 72

g. Query 18: Retrieval involving Avg, Max, Sum, and Grouping

function.. 74

h. Query 19: Retrieval involving Count and Grouping function .. 76

4. Set-Count Value '. 79

Query 20: Retrieval involving existential quantification.. 79

b. Query 21: Retrieval involving Count and Gronping function .. 81

Query 22: Retrieval involving Count and Grouping function ... 84

d. Query 23: Retrieval involving Count function.. 87

Query 24: Retrieval involving universal quantification 89

Query 25: Retrieval involving unlversal quantification 91

B. AN.AL YSrS 93

1. Ease-of-use 93

Queries involving existential or universal quantification 94

(1) SQL ..

(2) QBE ..

(3) DFQL

b. Queries involving nested queries

(1)

(2)

SQL.

QBE

(3) DFQL

2. Flexibility ..

SQL.

. 94

.. 95

............ 95

.. 96

................... 96

..................... 96

...... 96

. 98

.. 98

b. QBE 98

DFQL.•.............. 99

3. Consmency. . .. 99

SQL 100

QBE .. 100

DFQL 100

RelatJ.ve Strenglhs and \\rt:akne~~e~ .. .

IV HUMAN FACTORS E)"'PERIMENT 111

A. HUMAN FACI"ORS ANALYSIS OF QUERY LANGUAGES

B. EXPERIMENTAL COMPARISOK OF SQL, QBE, AND DFQL ... 111

As~esment of the Experimt:nt 111

Subjects ..

Teaching Method ..

TestQuenes ..

d. Evaluation Method .

2. Expenment Results ...

3. Experiment Conclusion ...

Query(QI) .

b. Query (Q2) ...

Q~ery(Q3)

Query (Q4L

d. Query (Q5)

V. CONCLUSIONS

LIST OF REFERENCES.

APPENDlXA

INTI1AL DISTRIBUTIOJ\" UST .

........... 112

. .. 112

. 112

. 113

...................................... 114

. 117

.................................. 117

. 117

. 117

............................... 118

.................................. 118

. 120

.. .122

. 125

. 128

LIST OF TABLES

TABLE 2.1 BASIC DFQL OPERATORS AND THEIR SQL EQUN ALENTS 23

TABLE 2.2 NON·BASIC DFQL OPERATORS AND THEIR SQLEQUIVA-

LENTS ... 26

TABLE 3.1 RELATIVE STRENG11IS AND WEAKNESSES OF SQL. QBE.

ANDDFQL ... 102

TABLE 4.1 EXPERThtEN1'RESULT ... 115

TABLE 4.2 PERCENT CORRECT OF SUBJECT CLASSIFICA nON FOR

Ql. Q2,ANDQ3 .. 116

TABLE 4.3 reRCENT CORRECf OF SUBJECT CLASSIFICATION FOR Ql

nIROUGBQ5 ... 116

viii

Figure 2.1

Figure 2.2

Figure 2.3

LIST OF FIGURES

A Relation STUDENT Schema ... 7

Operator Construction .. 22

ER-Oiagram of the COMPANY database ... 32

Ix

Query 2.1

Ql.lery2.2

Query 2.3

Query 2.4

LIST OF QUERIES

Example of Relational Algebra Ql.lery

Example of Relational Calcull.ls Query

Example of SQL Query .

Example of QBE Ql.lery

......... 9

.............. 10

. 16

. 19

ACKNOWLEDGEMENTS

I would like to thank the Indonesian Navy for the opportunity to study at the Naval

Postgraduate School (NPS) in Monterey, California.

I would like to thank Dr. C. Thomas Wu for his continued support, enthusiasm,

patience, and guidance. These were invaluable assets for the completion of this work. I

would also like to thank: LCOR John S. Falby for his help and support in editing. His

assistance and direction were both enlightening and timely.

I wish to thank to Computer Science students at NPS who participated in a human

factors experiment. These support was instrumental in the completion of this thesis.

I am very grateful to my parents for their support and faith. Most importantly, I am

indebted to my wife Ediana, my daughter Jean Liatri Augustine and my son lohn Samuel

Sebastian, for their constant love, patience and understanding.

L INTRODUCTION

A. BACKGROUND

The Relational model is used most often in current commercial Database

Management Systems (DBMS's) compared to hierarchical and network models, since it is

the simplest and most uniform data structure and is the most fannal in nature with respect

to mathematical logic {Elma891. The theory was introduced by E. F. Codd in 1969

[Codd90]. Today, numerous companies and institutions use Relational Database

Management Systems (RDBMS's) in many different kinds of software packages that are

equipped with several manipulation languages (database languages or query languages).

The query languages that have been implemented and are available on commetcial

DBMS's include Structure Query Language (SQL) and Query By Example (QBE),

SQL is the best known text-based (line oriented) query language. Originally. SQL

was known as SEQUEL. and was introduced in 1974 [Cham141. The earliest version of

SQL was implemented in the system R project at IBM Rescareh Laboratory in San Jose,

California [Astr76]. In 1986. the American National Standard Institute (ANSI) approved a

standard (function and syntax) fm SQL [ANSI86J. which was accepted by the International

Organization for Standardization (ISO) in 1987 [Date90a].

QBE was developed by IBM in 1976 at the IBM yorktown Heights Research

Laboratory. NY. [Zloo77]. It is the ancestor of today's form-based interfaces (visual

oriented query language). In QBB the query is specified by filling in a proper column in

form of tables (relations) displayed on the screen, instead of writing linear or text

statements.

B. MOTIVATION

SQL and QBE are two commonly used query languages and exist together in several

DBMS products (e.g., DB21, SQI..IDS2, Oracle3, dBasc~, etc.), However. neither of

these query languages have succeeded in alleviating the problems conce.m:ing ease-.of-use

issues, especially in expressing universal quantification, specifying complex nestm

queries., flexibility and consistency in specifying queries with respect to data retrieval. As

discussed in [Date871. SQL docs not posses a simple, clean, and consistent structure, in

either its syntax and semantics. Codd points out that SQL permits duplicate rows in

relations. it supports an inadequa1cly defined kind of nesting of a query and does not

adequately snppon three-valued logic [C0dd88a] [Codd9O]. In [Negr89] SQL constmcts

are very complex. in particular Universal quantification. which are full of pitfalls for the

inexperienced user. In contrast. QBE is much more intuitive. Bnt QBE still falls short,

providing no support for existential or universal. quantification (Ema891 [~].

In order to alleviate the problems at issue above, a new language callod "Data Flow

Query Language" (DFQL), was P"'JX>'Cd. DFQL is • graphical database m_ based

on the data flow paradigm. DFQL retains all the power of current query languages and is

equipped with an easy to use facility for extending the language with advanced operators,

thus providing query facilities beyond the bencbmaJk of first-order predicate logic.

Although. these three languages are all relationally complete6 [Date82] [Date841 [CIar91]

[Fran88], thus expn:ssive powers are equiValent. However, they are not necessarily equally

1. DB2 (lBM DATABASE 2) is a Il'adcmart ofImcmadonal BusineG Madtincs Cotpomlion.
2.. SQ[JData System is a 1mdcmark of IDIemational Business Machines Corporation.
3. 0Iw::le is a trademark of 0racIt CoIponRon.
4.dBas=IVisattadcmaJkofAshton-Tatc.
S. DFQL implemented by Lt. Oard I. ClaJk as his thesis work. (sec: Olaprer ll.C.2) under the
supervisslon of Dr. C. 'Ibomas Wu, CompuIcr Science DcpartIQent, at Naval PosrpaduaIB Sc.bool
(NPS}.ltiaiJnplmnlmaldinProJp:apb.
6. Rdadc:ml Compleceaess meInS tbal a iangWIF is at 1cast as powerful as telItioDal aJ&ebra
[lJ>M921.

useful. For example.. a simple qucry is more easily specified in QBE than SQL. A number

of comparative studies of two or three query languages have been perfonned [Reis751

[ReisBl]. However, no direct comparison has been made of SQL. QBE. and DFQL, with

respect to the above mentioned problems. Also. a simple experiment regarding ease~of-use

in qucry writing for these three languages needs to be accomplished.

C_ OBJECI1VE

The focus of this research is to evaluate whether DFQL can alleviate the problems at

issue faced by SQL and QBE by investigating the relative strengths and weaknesses

concerning ease-of-use, especially in expressing universal quantification and specifying

complex nested queries. A Category~based approach of comparing query languages is

developed. With this approach, queries are divided into four categories: single-value. set

value. statistical result. set-count value. In each category, a representative set of queries

from each language is specified and compared. Some of the queries specified are logical

extensions of other (already defined) queries. and we used such extension types of queries

are used to analyze the query languages's flexibility and consistency in fonnulating a

logically related queries. In addition, a simple experiment of asking Naval Postgraduate

School (NPS) Computer Science (CS) students to write a small set of queries in all three

languages are perfonned.

Our finding in this thesis work should serve as a basis for developing/improving the

query language. In addition, by having a higher level of understanding on the relative

strengths and weaknesses of each language in respective query categories, we will be able

to provide or :recommend a suitable query language depending on the intended users.

D. CHAPTER SUMMARY

Chapter II presents a description of the Relational Model concept, SQL, QBE . .md

DFQL and discusses the problems faced by SQL and QBE. In Chapter m, the numerous

queries are presented by each category and composed in these three languages: SQL, QBE,

and DFQL. The relative strengths and weaknesses with respect to data retrieval capabilities

concerning ease-of-use, and flexibility and consistency in specifying the queries are

discussed. The relational schema database is provided in Appendix A. Chapter III also

provides an analysis of these three query languages.

Chapter IV provides a discussion and analysis of a simple experiment of asking NPS

CS students to write a small set of queries in all three query languages. Chapter V provides

a conclusion.

II. DESCRIPTION OF THE RELATIONAL MODEL AND QUERY

LANGUAGES FOR RDBMS's

As mentioned previously, the Relational Model was introduced by Codd in 1969. The

basic concepts oithe Relational Model are needed as fundamental knowledge forproviding

a better understanding of high~level data manipulation languages or query languages with

respect to query specification for relational database retrieval operation.

Query languages for RDBMS's can be classified into two categories: text-based

languages and visual-based languages. This chapter presents the Relational Model

concepts, text-based query languages and visual-based (or graphical) query languages.

Within the discussion ofrext-based query languages, in addition to discussion of relational

algebra and relational calculus, we particularly focus on SQL. The visual or graphical query

languages discussion specifically emphasizes QBE and DFQL rather than the Entity

Relationships (ER) model.

A. THE RELATIONAL MODEL CONCEPTS

The relational model represents the data in a database as a collection of relations. A

relation is a mathematical tenn which represents a simple two-dimensional table structure,

consisting of n-rows and m-columns that contain data values. In other words, a relational

database is a collection of related information, or data values, stored in two-dimensional

tables.

To explain the relational data structure, we use the STUDENT relation (table) in

Figure 2.1. In the STUDENT table, data is logically ordered by values of NAME, SSN

(stands for Social_Security_Number), PHONE_NO, ADDRESS, and GPA, for each

student data. Each student has a unique identification number, represented by SSN.

1. Formal Terminology

The relational database has lts own tenninology which is u:,ually u~ed in RDBMS

appli.:atlOns. Examples include the tenns relation, attribute, tuple. domain, degree,

cardinality, primary key, candidate keys and [oreiRn key. Consider the following brief

explanation of these terms:

• A relation corresponds to what we have generally been calling a table.

• A tuple corresponds to a row in such a table, and an attribute corresponds to a table
column.

• Cardinality represents a number of tuples. and the number of atuibutes is called the
deRree.

• The primary key is a unique identifier for a table -- that is. a column or column
combination with the property that, at any given time, no twO rows of the table contain
the same value in that column or column combination.

• Candidate keys are sets of attributes in a relation that could be chosen as a key.

• A foreign key is a set of attributes in one relation that constitute a primary key of
another relation's (or possibly the same) table.

• A domain is a pool of values, from which one or more attributes (columns) draw their
actual values [Date90a]. For example, the domain of SSN in Figure 2.1, written
dom(SSN). is the set of all legal STUDENT SSNs. The set of values appearing in the
attribute SSN of the STUDENT relation at any time is a subset of the domain.

Using the terms above, and Figure 2.1, the relation schema for the STIJDENT

relation has degree 6, which is: STUDENT (NAME, SSN, PHONE_NO, ADDRESS, SEX,

GPA). The attributes have the following domains: dom(NAME) = Names, dom(SSN) '"

dom(PHONE.-NO) LocaLPhoneflumber,

dom(ADDRESS) = Addresses. dom(Sex) = Male/Female, dom(GPA) =
Grade]oinCAverages. A relation r of the relation schema R (AI. A2, An), also

denoted by r(R), is a set of n-tuples r = {tl,t2, , an}. Each n tuple t is an ordered list of

n values t= < Vl,V2, , Vo>, where each value Vi, 1<= i <=n, is an element of dom(Al)

or is a special null value. Each tuple in the relation represents a particular student entity.

where an entity IS an objeGt that i~ represented in the database. Null values represent

attribute,s whose values are unknown or do not exist for some individual STUDENT tuples

[Elma89]. In mathemao(;al terms, a relation I(R) is a subset o/the canesianproducr of the

domains that define R

r(R) !:; (dom(Al) X dom(A2) X X dom(An).

Therefore, all possible combinations of values from the underlying domains can

be specified by the cartesian product.

NAME

......... §
Super key

SSN

\
,~

111·11·1111

222·22"2222

333·33·3133

604-52-4982

604-52·2942

ADDRESS GPA

PHONE_NO ADDRESS

373·3726 12S0 First St.#8

545·2589 3008 PaJsonCir.

nun 1335 ThirdSt.#9

646-8928 398 E Ricketts Rd.

649-17'i6 302 Ocean Av. # 3

Attributes
Degree

Figure 2.1: A Relation STUDENT Schema

Domain

SEX GPA

M 3.9

M 34

F 15

F J9

M 40

~ :

j:

2. Properties of Relations

Relations possess certain properties, all of them immediate consequence~ of the

definition of "relation". There are four properties, as follow [Date 9Oa]:

• There arc no duplicate tuples; it follows the fact that the relation is a mathematical set
(i.e. a set of tuples), and seL" in mathematics by definition do not include duplicate
elements. An important corollary is that there always exlsts a primary key in a relation.
Since each tuple is unique, it follows that at least the combination of all attributes of
the relation has the uniqueness property.

• Tuples are unordered within a relation (top to bottom) which follows the fact that seL'>
in mathematics are not ordered.

• All attribute values are atomic. At every row-and-column position within the table,
there always exists precisely one value, never a list of values. However. a special value
"null" is used as a column value of a particular tuple which is either "unknown",
"attribute does not apply", or "has no value" in it.

• Attributes are unordered (left to right), which follows the fact that the heading of a
relation is also defined as a set (i.e. , a set of attributes, Of more accurately attribute
domain pairs).

B. TEXT -BASED QUERY LANGUAGES

The nature of text- based query languages is that queries are written in normal text

editors (text-based). This category can be divided into three subclasses: relational algebra

based, relational calculus based, and the combination of both. This section will focus on

SQL. However, the general concept of the relational algebra and relational calculus is also

covered.

1. The Relational Algebra

The Relational algebra is a technique fOf combining mathematical sets that have

the property of being relations (tables); it was proposed by Codd [Codd70/. It is said to be

a "proceduraf' Janguage, which means that the user must not only know what he wants

when performing operations on relations, but also know how to get it. The user can specify

a sequence (step by step) of relational operations to be performed on the tables of the

schema to produce a desired result. The result of each operation fonns a new relation,

which can be further manipulated. In other words, relational operators can be nested. The

operations included in the Relational Model are: UNION, INTERSECTION,

DIFFERENCE, CARTESIAN PRODUcr, SELEcr, PROJECT, and JOIN. Consider lhe

query example in Query 2.1, which is specified using relational algebra. The English

translation of the query is: "Retrieve the frrstname, last name, and salary of employees who

work in project Computerization". Notice that all query examples in this chapter are

matched to a relational database insrance of the COMPANY schema in Appendix A.

COMPU]ROJ t- a PNAME =" Computerization" (pROJEcn

COMPU_PROJ_EMPS t- (COMPU_PROJ X DNO = DNUMEMPWYEE)

RESULT t-1t FNAME.llIAME.SAl.ARy(COMPU_PROJ~MPS)

Query 2.1: Example or Relational Algebra Query

From the query above, we can detennine that:

• There are three lines executed in sequence to give the desired result

• The user is allowed to use a temporary name to store the result of a line and then use
that name as an input to subsequent lines.

• The query is written in a procedural language.

2. The Relational Calculus

The Relational Calculus was also proposed by Codd [Codd7l]. In relational

calculus, a query is specified in a single step; which is why it is known liS a "IWn"

proceduraf' language. However, Codd showed that relational calculus and relational

algebra are logically equivalent, where any query specified in relational calculus can be

specified in relational algebra as well, and vice versa.

In this type of query language, a predicate calculus expression is used to specify

the tuples desired. If Query 2.1 is specified using relational calculus, the structure is

formulated like Query 2.2. Here, the free tuple variables "e" and "p" are used to make the

logical connections between the EMPLOYEE (e) and PROJECf (P) relations, according to

the join condition and selection condition specified by p. DNUM =e.DNO and p. PNM.1E

= 'Computerization' respectively. The free tuple variables e. FNAJ\.1E, e. LNAME, e.

SALARY are the attributes in which their tuples are considered to be retrieved, as long as

its tuples the condition specified is satisfLied.

{e. FNAME, e. LNAME, e. SALARY I EMPLOYEE (e) and (3 p)(PROJECf (p)

andp. PNAME "" 'Computerization' and p. DNUM=e. DNO)}

Query 2.2: Example of Relational Calculus Query

3. Structure Query Language (SQL)

The earliest version was designed and implemented by IBM Research as an

interface for a relational database system Imown as SYSTEM R. It was the earliest of the

high-level database language (non-procedural languages). Today SQL exists in several

commercial RDBMS's products such as IBM's DB2. SQUDS, and Oracle.

10

SQL is a comprehensive database language; it has statements (text-based) for data

definition language (DOL) and data manipulation language (DML). SQL also provides

facilities for defining views on a database, for creating and dropping indexes on the mes

that represent relations, and for embedding SQL statements into a general purpose language

such as PL/I or Pascal [Elma89].

Data Definition in SQL

As a SYSTEM R database language, SQL implements the terms table

(relation), row (tuple), and column (attribute). The SQL commands for data definition are

CREATE TABLE, ALTER TABLE, and DROP TABLE. These commands are used to

specify the attributes of a relation, to add an attribute to a relation, and to delete a relation,

respectively.

b. Data Manipulation

SQL contain a wide variety of data manipulation capabilities, both for

querying and updating the database. However, this chapter will emphasize the features of

queryingl that are related to the discussion in previous chapter. SQL is a relationally

complete language. lis statements directly or indirectly contain some basic operators of

both relational algebra and relational calculus. However, the "SELEcr" statement has no

relationship to the "SELECf" operation of relational algebra. SQL allows arelation to have

two or more tuples that are identical in their attribute values. To eliminate the duplicate

tuples, SQL provides the keyword "DISTINIT' to be used in the SELECI' -clause; it means

that only distinct tuples should remain in the result. The general syntax to be used for

rettieving data in SQL consists of up to six clauses:

1. Query in DBMS is used to describe daIa retrieval, not updale.

11

SELECT <attribute list>

FROM <relation list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s»}

[HAVING <grouping condition>}

(ORDER BY <attribute list>]

• SELECT-clause; <attribute list> is a list of attribute names whose values are to be
retrieved by the query.

• FROM-clause; <relation list> is a list of the relation names required in the query, but
not those needed in nested queries level.

• WHERE-clause: <condition> is a conditional (Boolean) expression that identifies the
tuples to be retrieved by the query from the relation(s) listed in the FROM-clause.

• GROUP BY-clause; <grouping attribute(s» specifies grouping according to each
value of the attribute(s).

• HAVING-clause: <grouping condition> specifIes a condition on the groups being
selected rather than on the individual tuples.

• ORDER BY-clause; <attribute list> specifies an order for displaying the result of a
query rElma89].

Notice, if the SELECT-clause and FROM-clause contain more than one

attribute name or relation name respectively, they should be separated by commas. All

attribute names listed in the SELECT or WHERE clauses must be found in one of the

relations of the FROM-clause. The basic fonn of the SELECT statement sometimes calls a

mapping or a SELEcr FROM WHERE block. Which looks like:

SELEcr <attribute list>

FROM <relation list>

WHERE <condition>

However, only the first two clauses, SELECT and FROM are mandatory. SQL

provides five statistical functions, called built-in functions, which are COUNT. SUM. MIN.

MAX and AVG. These functions examine a set ofmples in a relation and produce a single

12

value. For example, the COUN[function will return the number of tuples satisfying the

query. On the other hand, the functions SUM, MAX, MIN, and AVG, usually specified in

the SELEcr -clause or the HAVING-clause, are applied to a set or multi-set of numeric

values and perfonn the indicated operation on the values.

Logical Operators of SQL

The logical operators nonnally used while specifying the query are:

• Comparison operators: =, < >, <, >, < =, > =.
• Boolean connectives: any of the logical connectives AND, OR, NOT.

o IN uses in nested queries, the expression evaluates to TRUE if there is included. at least
a tuple in a sub-query; this operator corresponds to the set operator "is a member of'
which is symbolized by "e "

• EXISTS and NOT EXISTS always precede a sub-query. EXISTS evaluates to TRUE if
the set resulting from a sub-query is not empty, and FALSE otherwise. This operator
corresponds to the mathematical existential quantifier "3". The NOT EXISTS is the
reverse evaluating to TRUE if the resulting set is empty, and FALSE otherwise. This
operator conesponds to the "every" quantifier in the condition; the mathematical
universal quantifier C"v''').

o liKE allows the user to obtain around the fact that matching to each value which is
considered atomic and indivisible.

The first two logical operators are normally used in the WHERE-clause. The

comparison operators are used to specify the selection conditions desired, and the equality

("=") operator is used to specify the join condition between the relations. On the other hand,

Boolean connectives are used to create compound condition or to negate a condition

[Ebna89] [Fran88] [Hans92J.

d. The Problems with SQL

SQL is implemented as a mixture of both relational calculus and relational

algebra by including the nesting capability and block structure feature. However, SQL

tends more towards the relational calculus approach; it is primarily declarative in nature

13

rather than a procedural language. The user specifies what the result should be in one

statement rather than in a sequence of statements. Date conunents: "When the language

(SQL) was frrst designed. it was specifically intended to differ from the relational calculus

(and, I believe, from the relational algebra) As time went by, however, it turned out that

certain algebraic and calculus features were necessary after all, and the language grew to

accommodate them" [Date87J. As aresult, it is a strict implementation of neither relational

algebra nor relational calculus.

(1) Declarative Nature. As mentioned above, SQL is prirnarily a

declarative query language. As a matter of fact, the user is intended to construct the query

based on relational calculus or first-order predicate calculus logic. So, all of the conditions

are specified in a single statement. For a simple query, this is straight-forward approach;

for more complex query however, the logical expression required to specify the conditions

to be met can become quite complicated. This problem is compounded when the complex

query involves universal quantification (discussed later). 'This approach may not always

present the clearest representation of the query to the user. From the user point of view, we

consider that it's related to human nature to think of a complex problem in a sequential

fashion rather than in a declarative fashion of the entire the problem at once.

In addition. ease-of-use issues for database query languages relating

to improving the human factors aspect have become evident [Schn781. Subsequently,

human factors studies have been done regarding the declarative versus procedural

implementations of query languages. The result of these studies show that, for complex or

difficult queries, the users perform correctly more often in specifying queries when using

a procedural query language than a declarative language such as SQL [WeltS 1]. However,

the complexity of the declarative nature of SQL is compensated for by embedding SQL

queries into a procedural third generation programming language such as PUt, PASCAL,

or COBOL Here, mostembedded query languages give the user the ability to use the query

14

language in a procedural manner if desired. In this way. the user is allowed to obtain

advantage of the features of the host language to accomplish operations that are very

difficult to code in the query language.

(2) Universal Quantification. In English query, the idea of universal

quantification is phrased "for all". 1bis kind of query is supponed indirectly in SQL, which

occurs due to the lack of a specific "for all" operator. In the case of the above mentioned.

SQL forces the user to use a "NOT EXIST' operator as a "negative logic" in order to achieve

the effect of universal quantification and "EXIST' for existential quantification in a nesting

SELECT statement As a matter of fact, the logical meaning of these operations is not

completely intuitive, especially to the inexperienced user who is not accustomed to using

predicate logic. When using the logical ideas presented by these operators, most individuals

(of users) fall into error; it has been shown to be difficult to use them correctly even when

the user has experience in this area [Negr89].

The following example is presented to show how SQL expresses the

idea of universal quantification in a query; in fact. it is somewhat complicated. If the

complexity of queries increases, then the difficulty of specifying or understanding it

increases rapidly. Consider the following relation as a subset of a database schema that is

presented in Appendix A (key attributes are~.

EMPLOYEE (FNAME. MINIT, LNAME, sm BOA TE,

ADDRESS, SEX.

SALARY, SUPERSSN, DNO)

DEPARTMENT (DNAME. Illi!lMBER. MGRSSN,

MGRSTARTDATE)

DEPENDENT (ESSN, PEPRNQRNT NAME SEX, BDATE,

RELATIONSHIP)

15

The English query is: "Retrieve the department names in which all of

its employees who have a salary more than $40,000 also have at least one male dependent".

The SQL query is given in Query 2.3.

SELECT DNAME

FROM DEPARTMENT

WHERE NOT EXISTS (SELECT *

FROM EMPLOYEE

WHERE DNUMBER = DNO

AND SALARY < = 40000

AND EXISTS

(SELECT *
FROM DEPENDE.t-.!

WHERE SSN::I ESSN

AND SEX<> 'M'))

Query 2.3: Example of SQL Query

The query implements a NOT EXISTS operator in the WHERE

clause (in the third line) of the query as a negative logic in order to express the universal

quantification. The attribute SALARY is compared as "less than or equal to" instead of

"greater than" in the "outer" nested query and the attribute SEX is also compared as "not

equal" rather than "equal" in the "inner" nested query where the logic of "there exists" is

used for the dependents. Therefore, a direct English translation of the SQL query above is:

"Select the names of departments such that there does not exist any employee whose salary

is less than or equal to $40,000. and there exists at least one dependent that is not "male".

16

The specification required to fonn the query above is not straight forward at all; the query

formulation involves negative logic that is extremely easy to mix-up, even for the

experienced user. In addition, it is difficult to read and know what is actually being

specifIed. So, if it is difficult to understand what the query is going to do, it means the

language lacks ease of comprehension and will affect not only query readability but also

the ability of the user to specify the correct query.

(3) Lack of Orthogonality. "Orthogonality in a programming language

means that there is a relatively small set of primitives that can be combined in a relatively

small number of ways to build the conlrOl and data structures of the language." [Sebe89]

[DateS7]. SQL does not provide the user with a simple. clean, and consistent structure. In

SQL, there are numerous examples of "arbitrary restrictions, exceptions, and specialrules."

[Date90b]. An example of an unorthogonal construct in SQL is allowing only a single

DISINCT keyword in a SELECT statement at any level of nesting,

(4) Nesting Construct. SQL permits a nesting structure of the form:

SELECT <attribute list>

FROM <relation list>

WHERE attribute IN

(SELECT)

This format allows for a block strucwre type of construct. The original PUIpose of

this nesting construct was to allow the specification of certain types of queries without

resorting to the use of relational algebra or relational calClllus, According to Codd, the

nesting construct is a part of the "psychological mix~up" in SQL. While all queries that are

specified using the nesting construct should be directly translatable into queries using an

equi-join instead, Codd shows that if allowing for the existence of duplicate rows in tables

(as SQL does), one will come up with a different result when performing the equi-join

17

version of the query than when perfonning the nested version [Codd90]. For detailed

descriptions of SQL probll:ms. see [Clar911 [Wu91J.

C. VISUAL-BASED QUERY LANGUAGES

Visual query languages allow the user to visually specify a query on the screen by

using special graphical editors. Here, visual means not purely textual. This kind of language

is also know as a graphical language. We can classify these languages into three categories

of visual-based query languages. The first category includes those which use a/orm-based

representation, the second is based on the entity-relationship2 model's [Chen76]

representation, and the third includes data flow query languages. In this section we

examine QBu as an example of a form-based query language, DFQL as a data flow query

language, and tbe ER modeL

1. QBE, a Form-based Query Language

QBE was developed roughly at the same time as SQL during the seventies at

mM's Laboratory Research Center [Zloo77]. Today, both languages are available and

supported in the Query Management Facility (QMF)3 offered by IBM. QBE has a user

friendly interface. While specifying tbe query, the user does not have to specify a structured

query or text statement explicitly as in SQL. Instead, the query is formulated by filling!

placing "variables" in the proper colunms in forms of tables (relations) that are displayed

on the tenninal screen. This means that the user does not have to remember the name of

attributes or relations. Since operations are specified in the tabular from of tables, it can be

said that QBE has a "two~dimensional syntax" [Date82] [Elma89]. In addition, in QBE

2. Entity-relationship Model is introduced by Chen, P. in 1976 as a pictorial conceptual design
methodology for the relation modeL
3. ThediaiectofQBE supponed in QMF is~lightIydifferentfromlhalproposedbyZLoof. the orig
inal designe(of QBE lZI00771, because QMF implements QBE by IUlItttanslaIing it to SQL
[Date90]. QMF is a separale product from DB2 and acts as aqooryJanguage and report writer -.

I'

there are no rigid syntax rules that should be followed by the user while specifying the

query specifIcation. Instead, the user enters the ''variables'' as "constanf' and "example"

values in the proper columns of the fonns to construct an "example" of the data for the

retrieval or update query. Like in SQL, this pan also emphasizes data retrieval queries.

QBE is related to the domain relational calculus, and its original specification has been

shown to be relationally complete [E1ma89].

Data Retrieval

As mentioned above, in order to specify the query for data retrieval, the

user should enter "example" or "constanf' values into the proper colwnns in the fonn of

tables (relations). In QBE, the entering of "example" values, usually preceded by "_"

(underscore) character, means the example value does not have to match specific values of

tuples in the database, so it really represents the "free domain variable". On the other hand,

"constant" values must be matched by corresponding tuple values in the database. If the

user is interested in particular tuple values, the user types the preflX "P." in that particular

column (attribute). "P." is used to retrieve a desired attribute value from a tuple which

satisfies the query, "P" standing for "prinf'.

EMPLOYEE I FNAME I MINIT I !.NAME I ~ I BDATE I ADDRESS I SEX I SALARY I SUPERSNN I DNO I
I' 1 I' 1 1 1 1 1 'UNQ 1 1 Jh 1

I .. orner I PNAME I ~ I PLOCATION I DNtTh1 I
Computenzatton ' p. _Dx

Query 2.4: Example of QBE Query

Similar to SQL, QBE also allows relations to have duplicate tuples. To

eliminate the duplicate tuples in the result of a query. QBE uses the prefix "UNQ." which

19

means keep only unique tuples in a query result. See the query example in Query 2.4. The

English translation of the query is; "Retrieve the first name, last name, and distinct ~alary

of employee~ who works in projects ·'computerization".

From the example QRE query, it can be determined that:

• "_Dx" is an "example" value to join the two tables by using "Dno" as aforeign key

• "Computerization" is an actual "constant" value. In other words, the selection
condition using the equality (=) comparison is specified by entering directly a constant
value under a proper colunm.

• "P" means to retrieve the attribute value for tuples satisfying the query.

h. BuiU-infunctiDns, Grouping and other Operators

Like SQL, QBE is also equipped with built-functions, such as CNT. (for

count), SUM., .MAX., :MIN., and AVa. However, in QBE the functions SUM., CNT., and

AVG. are applied to "distinct' values. If the user wants these function to awly to all value~

desired. it should be entered by using the prefix ".ALL" 4. QBE provides a "0." operator as

a grouping aggregate function. It is analogous to the SQL GROUP BY -clause. and the

"condition box" in QBE is used in the same manner as the HAVING-clause in SQL QBE

also uses the same comparison operators as SQL except equality (=). Therefore. the user

explicitly enters the >. ;::. < , :S:before typing a constant value. QBE also has a negation

symbol (--,), which is used in a manner similar to the NOT EXISTS in SQL, but the same

effect can also be obtained by using the ",*" operator. In addition, QBE also has prefixes

"AO." (for ascending order), and "DD."(for descending order), in order to get an ordered

list of tuples.

4. InQBE underQMF "AU~ is unrelated to theuniversaJ. quantifier [Elma891.

20

The Problems wUh QBE

As mentioned above, QBE is very intuitive, even for novice users. It allows

the relatively inexperienced users to get started in specifying simple queries, even though

they have no prior knowledge of programming languages. Unfortunately, it becomes less

and less useful as the complexity of the queries increases and has problems with more

complex queries [Ozso93].

The expression of universal quantification in QBE as originally proposed

by Zloof [Zloo77] did include support for "NOT EXISTS", but it was difficult and always

somewhat troublesome [Date90a]. However, today's QBE that has been released as a

conunercial product cannot implement universal quantification. In fact, the QBE that we

discuss here (QBE under ffiM's QMF) provides no support for universal or existential

quantification of the form of "'<:/" or "3". Thus, queries which involve universal

quantification cannot be specified [Date90a] [Elma89] [Ozso89]. Therefore, it is not

reiationally complete.

2. DataFlow Query Language (DFQL)

DFQL is a visuaVgraphical interface to relational algebra based on the dataflow

paradigm. It retains all the capabilities of current query languages and is provided with an

easy to use facility which extends the query language. This extension allows the users to

create new operators from existing primitive or user-defined operators. DFQL includes

aggregate functions in addition to the operators of relation ally complete query language. It

has the power of expression beyond the benchmark. of first order predicate calculus by

providing the user with the capabilities to specify universal and existential quantification.

Queries are specified by the user connecting the desiwdDFQL operators graphically on the

computer screen. The arguments for the operator flow from the bottom or "output node" of

the operator to the top or "input node" of the next operator.

21

DFQL Operators

All DFQL operators have the same basic appearance to enhance tile

orthogonality5 of lhe language, Tn Figure 2.2. is a sample operator (with no name). It is

made up of three types of components; the input nodes, the body, and the output node.

In DFQL, the functional paradigm is fully supported by the DFQL notation.

The input to each operator, or function, arrives at the input nodes of the operator and the

result leaves from the output node. Therefore, all of the operators of DFQL implement

operational closure. TIris means that the inputs to the operators are relations and associated

textual instructions, and the output from each operator is always a relation.

;rTnpmnodes
Body , ;-

~
L Output node

Figure 2.2: Operator Construction

Infact, DFQL operators can be grouped into two basic categories: primitive

and user-dejined operators. Eachprimitive has a one-to·one correspondence with an actual

method in the implementation language of the interpreter. User-defined operators are

created from primitive operators and possibly other user-defined operators which have been

previously created. Next, primitive operators can be broken down into basic, other

primitives, and display operators.

s. Orthogonality in a programming language means th= is areladvely small set ofprimltives \hat
can be comllined in arelatively smaIl number of ways 10 buildlhe control anddarasttucttaes of the
Ianguage[Sabe89j.

22

(1) Basic Operators. DFQL provides six basic operators derived from the

requirement for relational completeness and also the requirement to provide a fonn of

grouping or aggregation. Thus, DFQL has the expressive power of ftrst-order predicate

calculus. To be relationally complete, at least ftve relational operators must be

implemented, namely select, project, union, join, and difference. See Table 2.1, which

illustrates the basic DFQL operators and their corresponding translation in SQL.

TABLE 2.1: BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS

SQL

SELECT

PROJECT

Description SQL Equivalent

Implements the relational algebra SELECT DISTINCT of<

selection operator. The algebraic FROM relaiion
notation is: WHERE condition

a<condition> (<relation».
It retrieves tuples from the relation
wbich fits the specified condition. There
are no duplicate tuples in the result

Implements the relational algebra SELECT DISTINCT
projection operator. The algebraic attribute list
notation is: FROM relation

1t<attribute liSI> (<relation».
The attributes list, separated by commas
contains the names of attributes to be
retrieved from the relation. The project
operator eliminates duplicate tuples from
the result

23

DFQL

TABLE 2.1: (Continued).

Description

Implements the relational algebra theta
join operator. The algebraic notation is: Vreiation2 <relation1> x<CQruJition> <relation2>.

relation! condition ;:;se~p:s :~~~!s th~t:itic':te~
product. If there is no condition input.

om the join o~rator is "canesian product".
If both relations have the same name for

JOIN an attribute which must be used in the
condition, use left to right order of
relations coming into the operator (e.g.
rl.ssn = r2.essn), where ssn and essn are
primary keys or foreign keys of relationl
and relation2 respectively.

SQL Equivalent

SELECT DISTINCT *
FROM relationl rl,
re1ati0n2I'2
WHERE condition

,,'¥Q02 Implements the relational algebra, SELECT DISTINCT"

:!"'::':~s: operation. The algebraic :S relalionl
SELECT DISTINCT"

<relation!> • <relation2>. FROM relation2
Relational difference returns as a result a
relation that contains all the tuples that
occur in <relation!> but not in

DIFFERENCE <relation2>. diff requires that both
relations be union compatible.

24

DFQL

UNION

TABLE 2.1: (Continued).

Description

Implements the relational algebra union
operation. The algebraic notation is:
<relation I> u <relation2>.

This operator takes aU the tuples from
both relations and combines them,
duplicate tuples being eliminated. Union
requires both relations to be union
compatible. This restriction is necessary
since union does not create additional
columns for the output relation.

GroupCnt (a shon hand for group count)
grouping attributes is defined as a basic operator in order to 1/z-- provide the user with some simple relatton

count attribute aggreganon capabihnes. It provides the
user a means to fonnulate queries that
involve universal quantification.

group t ~:~: a=:. am:la!o:n~ li:~!
GROUP eNT for the result. Grouping attributes can be

mOte than one attribute. separated by
commas. The count result is an integer
which gives the total number of tuples in
that grouping.

"

SQL Equivalent

SELECT DISTINCT"
FROM relational!
UNION
SELECT DISTINCT"
FROMrelational2

SELECT DISTINCT
grouping attributes,
COUNT(") COWlt attr.
FROM relation
GROUP BY
groupingactributes

(2) Other Primitives Operators. DFQL provides several other primitive

operators to perfonn special operations on relations. Most of these additional primitives

perform operations at such a low level that the user would not be able to specify them as a

user-defined operator. However, all of these additional operators could also be specifIed as

user-defmed. operators as well, To illustrate, see Table 2.2, which lists th.ese other primitive

operators and their corresponding translation into SQL.

TABLE 2.2: NON-BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS

SQL Description

hnplements relational algebra
intersection operation. The algebraic
notation is:
<relationl> n <relation2>.
It returns the tuples which exist in both
relations, as a result out relation.
Intersect requires both relations to be
union compatible. The implementation
of intersect is identical to union and diff
operators.

II SQL Equivalent

SELECT DISTINCT '"
FROMrelationl
INTERSECT
SELECT DISTINCT '"
FROMrelation2

Finds the minimum value of the SELECT DISTINCT
attributes specified attribute in separated sections

according to the grouping attributes. It
gives the grouping attributes and
produces the minimum values of each
group in a column named with the given
alias name as a result of relation.

GROUPI'tfIN

26

grouping attributes,
MIN (aggr. attr)
FROM relation
GROUP BY
grouping attributes

DFQL

GROUPAVG

TABLE 2.2: (Continued).

Description SQL Equivaleht

Similar to groupMin except it finds the SELECT DISTINCT
maximum value of the aggregate grouping attributes,
attributes according to the grouping MAX(aggr. !l!tr.)
attribute. FROM relation

GROUP BY group!l!tr.

Similar to the previous operator, except SELECT DISTINCT
it finds the total value of all the aggregate grouping attributes,
attribute's values according to the SUM (aggr. attr.)
grouping attributes. :~~re~~on

grouping anributes.

As previous operators, except it finds the SELECT DISTINCT
average value of the aggregate attributes grouping attributes,
according to the grouping attributes. AVG(aggr. attr.)

FROMre1ation
GROUP BY
grouping attributes.

DFQL

groUtlln2 attributes

l~lT
grou All ati

GROUP AU. SATISFY

grouping attributes

~11
oneSati

GROUP NONE SATISFY

groupinl!; attributes

I~
(groupNSatisfy)

GROUP N SATISFY

TABLE 2.2: (Continued).

Description II SQL EqUi~
It is a simple way of introducing It can be translated into
universal quantification. It takes a a sequence of SQL

relation and splits the tuples according to statements.
the grouping attribute list and then
checks all tuples in individual groups
according to the condition specified. If
all the tuples satisfy the condition then
an output tuple value is generated
consisting of the grouping attribute list.
So, it means that this group satisfies the
condition in all their tuples.

This operator is the opposite of It can be translated into
groupAllSatisj'y operator. It gives the a sequence of SQL
grouping attributes only if none of the
tuples satisfies the condition.

It is closely related to groupAUSatisfy. It can be translated into
The only difference is that groupNSatisfy a sequence of SQL
takes an extra input which allows the statements.
user to specify exactly how many of the
tuples in the group need to satisfy the
given condition in order for that group to
be included in the resulting relation. So,
the fourth argument (number), most
consist of one of the operators (<, >, = <
=, >=, 1=) andanumber.

,.

(3) Display Operators. The display opemtors are provided to allow the:

user to print the contents of a relation on the computer screen. The most common usage is

to print out the fmal result of a query. There are two display operators:

• display. It takes as inputs a relation and a text string to be used as a title. The title
makes it easy to differentiate between printed results when more than one display
operator is used in a query.

• sdisplay. It is used to produce a sorted printout of a relation. Each attribute in the list
may be followed by "ASC" (ascending) or "DESC" (descending).

(4) User-defined Operators. These kinds of operators give the flexibility

to the user to defIne his/her own style of operator and extend the capability of the language

according to his/her desires. With user-defined operators, the user can construct his own

operators that look and behave exactly like the primitive operators provided in DFQL. The

user can create operators for situations that are unique to his query needs. This kind of

flexibility is gained without a loss of the power of orthogonality, since user-defmed

operators are constructed by combining the available primitives with previously dermed

user operators WI well.

(5) DFQL Query Construction. General ideas behind DFQL construction

have been implicitly discussed. Query constructions will be presented in Chapter m. All

DFQL queries exist as data flow programs in which text objects and operators are

connected to each other by lines called data flow paths and all of the information traverse

these paths dming execution. DFQL objects, except operations. do not have any input

nodes and can be executed anytime. They pass the relation object, attribute list, or condition

in order to be used by an operator. As soon WI all the input nodes have the information, the

operator can be executed and produces a relation at its output node. Since a DFQL query

does not pennit iteration and recursion, however, execution of the query can be visualized

29

as flowing from the top the diagram to the bottom.. There is no resttiction on how operators

are placed on the scr~ top-down placement is rectlmmended for readability.

(6) Incremental Queries. This is the most important feature provided by

DFQL. It allows the user to specify or create his/her queries incrementally. In other words,

the user can fonnulate one portion of the query, and then check the Results (returns backif

needed), and continue to build/create other portions of the query one by one. This capability

gives more flexibility to the user during hlslher work, especially when creating a complex

query. It helps the user prevent losing track of what he/she is doing and provides

intermediate results to help in query construction. Specifically, this feature can be divided

into two sections, namely incremental construction and incremental execution.

• Incremental Construction. This provides the user with the capability to specify/create
the query part by part, which is ncreasingly helpful as the complexity of the query
increases.

• Incremental Execution.This feature is helpful during the debugging of complex
queries. IT a complete query does not produce a desired result. it allows the user to
check level by level in order to fmd the erroneous part and fix it. Therefore, the user
can see the intermediate result at any level by executing the query incrementally.

(7) Universal Quantification. The problem of expressing universal

quantification in existing query languages has been discussed in previous section. DFQL

provides a unique solution to this problem. by implementing simple counting logic to

achieve the result that fulfill the requirements of universal quantification. The basic idea

employed is that if all tuples in a relation or a group must satisfy some criteria, the number

of tuples that meet the criteria are counted and then compared to the total number of tuples

under consideration. If these two numbers are equal, then the universal quantifier has been

satisfied. In DFQL, the operators that can implement universal quantification are:

groupAllSatisfy, groupNoneSatisj'y, and groupNSatisfy operators. However, the users can

30

achieve universal quantification as well by building their own quantifications as a user

defmed operator using the primitive operators.

(8) Nesting and Functional Notation. The nesting feature of SQL exists

naturally in DFQL. As discussed before, one by one execution of operators to supply input

data to other operator is like block structured execution in SQL from the "inside" to the

"outside" of nesting queries. The lack of specific nesting structures in DFQL improves the

readability and orthogonality of the language. The use of functional notation for all of the

DFQL operators greatly enhances orthogonality. Relational operational closure is

implemented by the functional paradigm. The use of operators that may take more than one

input but produce only one output allows for their easy combination into user-defmed

operators as discussed before.

(9) Graphical Structure ofDFQL Query. DFQL's visual representation of

the query is a data flow graph consisting of DFQL objects which are connected together

by lines of data flow paths. As such, the graphical structure represents the relational

algebra structure for execution of the query. By using a graphical relational algebra

approach to query fonnulation, it provides a much more consistent and straight forward

interface to the databases.

3. Entity.Relationsbip Model Interface

The Entity- Relationship (ER) model was introduced in [Chen76]. The ER model

has been used extensively as a high-level conceptual data model. The main idea behind this

model is to illustrate the concepts of entity types and relationships between entity types in

a graphical way in order to enhance understanding of the structure desire for a database. An

example of visual representation of the ER model is shown in Figure 2.3.

31

Figure 2.3: ER schema diagram of the COMPANY database [Elma89]

From the ER diagram we can illustrate thai:

• The entity types such as EMPLOYEEE, DEPARTMENT, and PROJECf are
represented as rectangular boxes .

• Relationship types such as WORKS~FOR, MANAGES, CONTROLS, and
WORKS_ON are represented as diamond-shape boxes that are attached to the
partici.pating entity types with straight lines.

o Both entity types and relationship types have attributes which are represented by the
oval circles where each attribute is attached to its entity type or relationship type by
a straight line.

32

• "Name" is an attribute of EMPLOYEE and has composite attributes such as Fname,
Minit, and Lname.

• Location in double ovals represents multivalued attributes, and dotted ovals represent
derived attributes.

• Key attributes have their names underlined

• Double rectangles represent a weak entity, where the weak entity means an entity type
which may not have any key attributes, aru:t the double diamond as the identifying
relationship.

• The partial key of the weak entity type is underlined with dotted line.

• The participation constraint is specified by a single line for partial participation, with
the cardinality ratio is attached; a double line illustrates total participation. For
example, the participation of EMPLOYEE in WORKS_FOR is total (every employee
must work: for a department), while the participation of EMPLOYEE in MANAGES
is partial (not every employee manages a department). [Elma89]

The idea of using the ER diagram as a query language is to let the user not worry

about the particularjoin conditions between entity types, however, it tends to force the user

to rely on the specified relationships. These relationships are all displayed to the user. Th.i.s

can be a benefit to a novice user, who does not really understand how the data in the

database fits together, but it seems somewhat fatal, to write queries which depend on

relationships that the user may not fully understand. The ability to use a relationship

without knowing how it is actually set up increases the chance of syntactically correct

queries that will produce the wrong result The ER model as mentioned above does not

affect our next discussion. It is presented in order to illustrate features of another visual

based query language that are also available for RDBMS's.

33

IlL THE COMPARISON OF SQL, QBE AND DFQL WITH RESPECT

TO DATA RETRIEVAL CAPABILITIES

First of all. we consider that the notion of a query language as a high Jevellanguage

means it is intended to be used by a non-programmer or a user without specialized training.

However. as mentioned in two previous chapters, the user faces some difficulties in

specifying correct queries, especially as they relate to universal quantification and nesting

in SQL, and universal quantification in QBE. Then, we attempt to observe how DFQL

overcomes the problems that are encountered by SQL and QBE.

This chapter focuses on the comparison of SQL. QBE, and DFQL. In order to

accomplish the comparison of these three languages. numerous queries arc composed by

category, in which each language is specified and compared. Some of the queries are stand

alone, but some others specified are logical extensions (or the complexity is increased)

from one query to the next. Such extension types of queries are chosen to analyze the query

language's ease-of-use, flexibility, and consistency in formulating logically related queries

with respect to data retrieval for RDBMS's. Consider the following. brief explanation:

• Ease·oj-use particularly emphasizes how easy the query language is to learn and
express queries in.

• Flexibility means more than one way of expressing a single query.

• Consistency means similar thinking in a mental mooel can be expressed in a similar
structure in the language.

All the representative set of queries presented are matched to the rabies of a relational

database instance of the COMPANY schema which are provided in Appendix A. Some of

the queries are related to queries that are presented in [Bma89]. Based on the above, this

chapter is divided into two sections: first the categories of the queries, and second is the

analysis of the strengths and weaknesses of the comparison of all three languages.

34

A. CATEGORIES OF QUERY

In order to compare these three languages, numerous queries are composed by

category. The queries are divided into four categories: single-value, set-value, statistical

result, and set-count value. In each category SQL, QBE, and DFQL are specified and

compared.

1. Single-Value

In this category the user (end user) attempts to obtain a proper relation of a

relation (table). based on a single-value expression. As a result of the single value

expression in the queries, the user can expect to obtain a table. a single column, a single

row, or a single scalar value. These correspond to a constant value of table-expression.

column--ex.pression. row-expression and scalar-ex.pression, respectively. in a relation. A

scalar-expression is a special case of a row-expre:lsion and a special case of a column

expression [Date83J. The null value in this case is also presented as single value (see

Chapter ILA).

In this category. the operators such as "=", "c', "<=", ''>'', ">=", and "like", are

generally used in the relation-operation, but we can also perform the standard arithmetic

operators "+", ".", "*" and "/". In addition, if we are concemed with a single scalar value,

a set of special aggregate functions such as COUNT, SUM, AVa, MIN and MAX can also

be applied. In this research these aggregate functions fall under the statistical-result

category. Consider the following queries:

35

a. Query 1: Simple retrieval

List the salary of every employee.

(I) SQL

SELECT SALARY • SELECT SALARY

FROM EMPLOYEE FROM EMPLOYEE

WHERE TRUE = TRUE

Sinee in the WHERE"c1ause we ean specify TRUE:::; TRUE, the

above query can be considered single value. It yields a single column to be a new relation.

If there are multiple employees with the same salary, that salary will be displayed multiple

times as redundant duplicate tuples in the result of the query. If we are concerned with

distinct values, SQL a!lows us to use the keyword DISTINCf in the SELECT -clause:

SELECT DISTINCT SALARY

FROM E1v1PLOYEE

The results of these two alternative queries are:

Without keyword DISTINCT

SALARY

30000

40000

25000

43000

3"""
25000

25000

55000

36

With keyword DISTINCT

40000

25000

43000

38000

55000

(2) QBE

Since we are interested in retrieving the SALARY values, in QBE

"P._Sx" is placed in the column of the SALARY atEribute. As discussed in Chapter II, the

prefix "P" is used to indicate that the values of the SALARY column are to be retrieved.

General speaking, QBE al10ws the user just to specify "P." instead of "P._Sx". In other

words, QBE retrieves the same thing. This seems very simple to specify. However, in some

cases QBE also allows redundant duplicate tuples to exist in the result. In order to avoid

redundant tuples, the prefix "UNQ." is needed as an operator since it keeps only unique

tuples in a query result. Therefore, if we are concerned with distinct values. the "P._Sx"

from the above query can be replaced by "P. UNQ._Sx". The results are the same as for the

SQL query above.

(3) DFQL

~
;J;

The attribute list Salary is to be retrieved from the EMPLOYEE

relation. The result of the projection is displayed on the screen by display operator. The

37

result is a proper relation which contains only the values from the column of the specified

attribute Salary. Here, the project operator eliminates the redundant duplicate tuples of the

attribute. The result is the same as the SQL query using the DISTINCf operator in "a(l)"

above.

b. Query 2: Qualified retrieval

List all employees whose salary is more than $50,000.

(1) SQL

SELECT '"

FROM EMPLOYEE

WHERE SALARY >5OCKJO

The asterisk ('II) in the SELECT --clause is shorthand for retrieving all

the attribute values, in order. of tuples satisfying the query. The tuple selected must satisfy

the condition "SALARY >50000". Since the query is asking for the list of all employees

who fulfil the condition, the asterisk character should be used in SELECT-clause. The

SELECT-clause retrieves all the employee attributes of tuples from the EMPLOYEE

relation that satisfy the condition specified. There are no redundant tuples in the result

(2) QBE

The ">50000" is specified in order 10 get the tuples that satisfy the

condition ''> 5OJOO", where "50000" is as an actual constant value. Placing the "P." below

the relation name means to retrieve all the attribute values of tuples of the relation which

match the condition specified. Since the key attribute is included in all tuples returned,

there are no duplicate tuples in the result.

(3) DR;1L

By using the select operator, the query retrieves tuples from the

EMPLOYEE relation which meet the specific condition Salary >50000. There is no

alteration in the structure of the relation, so there are no redundant tuples in the query result

The resul t of the Query 2 is:

3.

c. Qtury 3: Retrieml involver more than two fabler

For every project locatcd in Houston, list the project name, the

controllmg department number, and department manager's last name, ssn, and sex.

(1) SQL

SELECT PNAME, DNUM, LNAME, SSN, SEX

FROM EMPLOYEE, DEPARTMENT, PROJECf

WHERE MGRSSN = SSN AND DNUM = DNUMBER

AND PLOCATION= 'Houston'

This query is seiect"project-join with two join conditions. The join

condition is specIfied according to the key and the foreign key of the relations. Hcrc we

specIfy DNUM = DNUMBER as the join condition regarding l11c controlling department

of a project. while the MGRSSN = SSN joins the controlling dep,J.rtmcnt 10 the employee

who manages the department. PLOCATION = 'Houston' specifically specifies projects

that are located in Houston.

(2) QBE

I D<YAR"-I I ONI:", I M~::SN I MammDATE I

In this query an example vanablc "_Sx" is used to join relations

EMPLOYEE and the DEPARTMENT at the key and foreign key "_Ox" is used to relate

40

the key and foreign key of the joined relations DEPARTMENT and PROJECT. "P." is used

to retrieve the attribute values of joined tuples that fulfil the condition

PROJECT.PLOCATION = "HouslOn".

(3) DFQL

PRO.JECT Placation'"" HOU5tOQ

The select operator will select the projects that are located in Houston

from the PROJEcr relation. The result at the select operator output retains all the attributes

of each. selected project tuple, assuming it is as a new relation rl (a subset of PROJEcr

relation). The rl is joined with the DEPARTMENT relation by employing the join operator

with the equi-join condition r1. Dnum = rz. Dnumber in order to get the controlling

department. The result is used by the next join operator, with the equi-join condition

mgrssn = 5SB relating the employee who manages the department. Each join operator

produces a cartesian product of all the possible tuples of both incoming relations based on

the join condition. This result is then used by the following operator. Finally the project

operator produces the desired relation result with values from the attribute list.

41

The result of Query 3 is:

d. Query 4: Retrieval illvolvillg universal quantification

Retrieve the department number where all of its employees have salaries of

more than $40,000.

(1) SQL

SELECT DNO

FROM EMPLOYEE E

WHERE NOT EXISTS

SELECT *

FROM EMPLOYEE E1

WHERE E. DNO = E1. DNO

AND SALARY,... 4OCXXl)

This query involves one nested query which selects all the

EMPLOYEE tuples related to an E:.'vIPLOYEE relation itself. SQL in this ease implements

a NOT EXISTS operntor in order to express universal quanti/ier in the WHERE-clause by

use of a negative lugic. The nested query checks all the EMPLOYEE (EI) tuples according

to the condition specified, such that none of the employee tuples satisfies the condition,

then the B.1PLQYEE (E) tuple is selected. If we rephrase the query, it becomes "retrieve

the department number if there does not exist any employee with the department number

who has a salary less than $40,000". Notice the use of "E" and "El" as aliases [or the

EMPLOYEE relation. In this case "E" and "EI" represent two different copies of

42

copies of EMPLOYEE rclations. Each DNO will be duplicated if the department has more

than one employee. This can be avoided by using DISTINCT.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

EMPLOYEE Dn. S.al.arg) 40000

As discussed in chapter II. DFQL provides the user some group

aggregate fUnctions that can be used to express the query that contains universal

quantification. One possibility is specified just by employing the groupAIlSatisfy. It takes

the EMPLOYEE relation and checks all the tuples in each group of department number

"Dno" that satisfies the condition Salary> 40000.

The result of Query 4 is: none

43

e. Query 5: RetriewJlinvolving a negatiQIl stotement

For each department retrieve the first namcs ami thc Ja\it names of employees

who havc no dependents.

(1) SQL

SELECT DNO FNAME. LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT '*'

GROUP BY DNa

FROM DEPENDENT

WHER SSN = ESSN)

The nested query retrieves all DEPENDENT tuples related to the

EMPLOYEE tuple. As in Query 4, this query also uses the NOT EXISTS operator.The

nested query chocks all the DEPENDENT tuples to see if the ESSN is the same as the SSN

of the current EMPLOYEE tuple. If none malch the nested query returns an cmpty relation

since there are no dependents associated with the current employee. Therefore. the desired

attribules of the tuple are selected.

(2) QBE

By looking at this query, we notice that Q8E has a negation symbol

(~). In this case the negation symbol .. ~ .. is used in a way similar to the NOT EXIST

function of SQL. It will join tuples of relations EMPLOYEE and DEPENDENT if their

values of "_Sx" do not match each other. However, the query can also be specified by

placing a" .. _Sx" in the ESSN column, producing the same result [Elma89].

(3) DFQL

DEPENDENT
EMPLOYEE

DFQL provides the groupNoneSa/isfy operator which can be used to

specify this kind of query. FiINt., we join both relations EMPLOYEE and DEPARTMENT,

which results in the cartesian product as an input to the groupNoneSatisfy operator. The

groupNoneSatisfy takes the tuples according to the grouping attribute essn and checks to

see if none of the tuples satisfies the condition ssn;o:: essn. If so, the project operator will

project the first name and last name of the employee.

45

In DFQL this query can also be specified by using the diff operator. In

the following query, the inputs to the difjoperator are the results of two project operators,

say left and right side. The left side result holds the ssn all of the employee in r1, while the

right side holds the ssn of employees who have dependents in result r2. The difjoperator

checks these two relations r1 and r2, and returns any ssn(s) which do not appear in both rl

and r2 as the result, i.e., the ssn of employees who do not have dependents.

Fft~m •• LftillllW

if

The result of Query 5 is:

Fname Lname

Alicia Zelaya

Ramesh Narayan

Joyce English

Ahmad Jabbar

Jamesh Borg

2. Set~Value

In this category the user (end user) tries to obtain a proper relation from one or

more relation based on the set-value-expression that correspond to a constant-set of query

specifications. In this category. the set operations such as union, difference (minus). and

intersection can also be applied. Consider the following queries:

a. Query 6: Retrieval involving existential and universal quantification

Retrieve the department names, first names, and last names where all of its

employees have salaries of more than $4O,(X)() and have no dependents.

(I) SQL

SELECT DNAME, FNAME, LNAME

FROM DEPARTMENT 0, EMPLOYEE El

WHERE D. NUMBER = E. DNO

AND NOT EXISTS (SELECT *

GROUP BY DNAME

FROM EMPLOYEE E2

WHERE D.DNUMBER = E2, DNO

AND (SALARY:s; 400Xl

OR EXISTS

(SELECT *

FROM DEPENDENT

WHERE SSN = ESSN)))

This query is an extension of Query 4 or like a combination of Query

4 and Query 5. SQL specifies this query by employing the EXISTS and NOT EXISTS

operators with two nested queries. The existential quantification is specified by the

EXISTS operator in the nested select statement and universal quantification is expressed

47

by using the Nar EXIsrS operator. Therefore. a rephrasing would be "retrieve the name

of departments together with their employee's first and last names such that there does not

exist any employee whose salary is less than or equal to $40,000 or who has at least one

dependent". In order to specify this query. in SQL we cannot combine Query 4 and Query

5 without rewriting or specifying a new query structure.

(2) QBE. As discussed in Chapter II. QBE lacks the existential and

universal quantification expressions. Therefore, this kind of query cannot be specified.

(3) DFQL

..

By looking at this query, we recognize this query as a combination of

Query 4 as the "X" part of the query and "Y" as the main part of Query 5. The intersect

operator takes two relations which are union compatible (rl and r2) and returns as a result

(r3) the tuples which are in both. Then. by employing the join operator, we join r3 with the

DEPARTMENT relation (r4) based on the aqui-join condition r3. Dnum = r4. Dnumber.

The result is a subset of the cartesian product of r3 and r4 and becomes an input to the

project operator.

The result of Query 6 is:

b. Query 7: Retrieval illvoMlIg explicit setl

Retrieve the Social Security Numbers of employees who worked on project

numbers 1,3, and 10 (or maybe more).

(I) SQL

SELECT DISTINCT ESSN

FROM WORKS_ON WI W2 W3

WHERE Wl.ESSN =W2.ESSN AND W1.ESSN = W3.ESSN

ANDWl.PNO= 1

ANDW2.PNO=3

AND W3.PNO = 10

This query is retrieving the distinct ESSN attribute of an employee whose

PNO include all values 1,3, 10 or more. This can be done jfthe tuples satisfy the condition

which are specified in the WHERE-clause.

(2) QBE

P.UNQ . ..,X,
LNQ._X2

L'NQ,J:j

In this case, "P.UNQ.~Xl". "UNQ.--"2", and "UNQ._X3" retncve

the unique ESSN of an employee whose PNO values include all the constant values 1,3,

and 10. All of the tuples retrieved must satisfy the condition which is specified in the

tondl tion box.

(3) DFQL

(J :3 10)

... OR:I{SJJN

,1

This query shows that a result (r2) of another query makeJelation

which contains the set values (1 3 10) IS an input to the groupContain1

50

opemtor.ThegroupContain operator takes the WORKS_ON relation (rl) and the second

relation (r2) and groups the tuples according to the grouping attribute essn. It then compares

attribute Pno to see if one essn has all the Pno values contained in r2. If so, the essn is

selected.

The result of Query 7 is: none

c. Query 8: Retrieval involving expUcit sets

Retrieve the social security numbers of employees who worked on project

number 1.3,and 10 exactly.

(I) SQL

SELECT DISTINCT ESSN

FROM WORKS_ON WI W2 W3

WHERE Wl.ESSN = W2.ESSN AND Wl.ESSN = W3.ESSN

AND WI.PNO= 1

AND W2.PNO = 3

AND W3.PNO = 10

AND NOT EXISTS

(SELECT'"

FROM WORKS_ON W4

WHERE WI. ESSN = W4. ESSN

AND W4.PNO .. I

OR W4.PNO .. 3

OR W4. PNO .. 10)

1. GroupCon/ain operatOr is a part of Group Set ComparaJwn. GroupSet ComparatWn also pr0-

vides Group£quaJ and GroupCOnlainBy operatotll. These opernf<)rs are discussed in class notes of
Dr. C. Thomas Wu, Computer Science Dcp!ll1ment, Naval Postgraduate School, Monterey. CA.

51

This query is similar to Query 7. We can use the NOT EXISTS

operator with an included nested query that checks the explicit set. Therefore, a rephrasing

would be "retric\'c the soclUl security numbers where there are not exists any employees

who worked not on project number 1,3 and 10". So, it selects exactly the social security

numbers of employees who worked on project number L 3, 10.

(2) QBE

l WORKS_ON ~ ""- HOURS

P.UNQ XI
UNQ._Xl
UNQ. __ 'G 10

_X4 -""
Condition

In QBE, the query is specified according to actual constant values 1,

3 and 10 wlnch satisfy the condition in the condition box. This query keeps a similar

structure to the Query 7. "P.UNQ . .J{l", "UNQ._X2. "UNQ._X3", and,_X4" are used

to retneve the tuples which satisfy the condition specified. Notice that the " _X4" couple

with the condition "X3 = X4" specifies set equality. An essn is selected only if it has PNO

values of I, 3, and 10 and no other values.

(3) DFQL

(1310)

YORKS-DN

This query also presents the same structure as query 7. Since the query

is asking to retrieve the Social Security Numbers of employees who worked on project

number I, 3, and 10 exactly, this query uses the gToupEqual operator instead of

gToupContain operator. It selects the tuples of employees Social Security Numbers only if

the set ofPno values associated with the essn is exactly equal to (1, 3, 10),

The result of Query 8 is: none

53

d. Query 9: RetrieFal involving rLRivert;al quantification

Retrieve the first name and last name of each employee who works on all the

projects managed by department number 5.

(1) SQL

SELECT FNAME. LNAME

FROM EMPLOYEE

WHERE (SELECT PNO

FROM WORKS_ON

WHERE SSN = ESSN)

CONTAINS

(SELECT PNUM:BER

FROM PROJECf

WHERE DNUM:o: '5')

There are two nested queries. If the set of PNO values from the first

nested query contains all projects that are controlled by department 5, then the employee

tuple is selected. Notice that the CONTAINS comparison operator in this query is similar

in function to the DIVISION operation of the relational algebra [Elma 89].

54

However, for SQL systems which do not have the CONTAINS

comparison operator. the user must specify by using EXIST and Naf EXIST functions, as

in the query below:

SELECT FNAME. LNAME

FROM EMPLOYEE

WHERE NOT EXISTS

(SELECT *
FROM WORKS_ON B

WHERE (B.PNO IN (SELECf PNUMBER

FROM PROJECT

WHERE DNUM:::; 5))

AND

NOT EXIST (SELECT *

FROM WORKS_ON C

WHERE C. ESSN = SSN

AND C. PNO:::; B. PNO)

Notice this query involves two level-nested queries. Thus this

fonnulation is quite a bit more complex than the prior query with the CONTAINS operator.

Consider the first nested query which selects WORKS-ON (8) tuples whose PNO is a

project controlled by department 5 in the IN operator nested query, and there does not exist

a tuple with the same PNO and SSN in WORKS-ON (C) relation which is related to the

EMPLOYEE tuple in the outer query. Since the outer WHERE-clause uses the NOT

EXISTS operator, negative logic is reflected. If the nested query returns the empty tuple,

the EMPLOYEE tuple should be selected. For a detailed description see [Elma89].

55

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

Universal quantification expressions. Therefore this kind of query cannot he specified.

(3) OFQL

PRO~IECT I)num = 5

First we use the select operator to retneve PROJECT tuples into rl

that maICh the condition department number equals 5, then we project the project numbers

from the result into r2. Concurrently, we use the join operator in order to join the

EMPLOYEE and WORKS_ON relations according to equality of the keys and foreign

keys essn and S8n into a relation, say r3. By applying the groupConlain function operator.

it will compare the tuples of the Pno attributes and splLts the group of tuples desired by 55n.

Finally, by using the project operntor, we retrieve the desired result. Next, the

groupContain function operator groups r3 by essn. Then gro1tpCOfltaill checks to see if an

essn group's set of Pno values eonlains all thc values lD r2. If so. all the tuples in the essn

56

group are selected. The result (r4) flows to the project function opemtor where the desired

attribute values are obtained for display.

The output of Query 9 is:

FNAME LNAME

John Smith
Ramesh Namvan
Joice I Emlish
Franklin Woo

e, Query 10: Relriel'al imoll'ing existential and universal quantijicatilm

List the first name and last name of employees who worked exactly 10 hours

on each of the projects they worked on.

(1) SQL

SELECT FNAME, LNAME

FROM EMPLOYEE E

WHERE NOT EXIST

(SELECT ESSN

FROM WORKS_ON W

WHERE W. ESSN .. E. SSN

AND

AND EXIST

(SELECT '"

FROM WORKS_ON WI

WHERE WI. ESSN = E.SSN

AND HOURS<> '10'»

EXlSfS (SELECT '"

FROM WORKS_ON W2

WHERE W2.esn = E,essn)

57

This query involves NOT EXISTS and EXISTS operators with two

nested yuenes. It selects the tuples of EM:PLOYEE relation if there does not exist any

employees in the WORKS_ON (W) relation ami there exists an employee In WORKS-ON

(WI) who does not work 10 hours for all projects.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified,

(3) DFQL

.... ORKS-DH
EMPLOYEE

First we join the E.\1PLOYEE and WORKS_ON relations. In DFQL

we are allowed not to declare specifically the condition according to the key and foreign

key ssn and essn. i.lS equi-join. however, it works similarly, automatically matching the

tuples of both reiatlOns. Then applying the groupAliSatisjy opemtor takes care of the

universal quantification. Thus, it simply takes a relation rl and splits the tupJes according

to the grouping attribute list, essn in this case, and then checks all the tuples in the

individual group related to the condition Hours = 10. If all the tuples satisfy the condition

specified then the values of that grouping attribute list are passed out. It means that these

groups satisfy the condition by all their tuples. Finally, by using project operator, we

project the desired tuples.

The result of Query 10 is:

f. Query II: Retrkval invoMng Set Operation

List of all project numbers and project names for projects that involve an

employee whose last name is 'Smith' as a worker or as a manager of the department that

controls the project

(I) SQL

SELECT DISTINCT PNAME, PNUMBFR

FROM PROJECT

WHERE PNUMBER IN (SELECT PNUMBFR

OR

FROM PROJECT, DEPARTh1ENT. EMPLOYEE

WHERE DNUM = DNVMBER

AND MGRSSN = SSN

AND LNAME = 'Smith')

PNUMBERIN(SELECT PNO

FROM WORKS _ ON, EM:PLOYEE

WHERE ESSN = SSN AND LNAME = 'Smith')

59

This query uses IN operators and includes nested queries in the

SELECT qtlery. The first nested query selects the PNUMGER of projeds that have a

'Smith' as a manager, while the second selects the projcct numbers of projects that have a

'Smith' [ts a worker. In lhis query, the comparison operator IN compares the value

PNUMBER in the outer WHERE-clause and evaluatcs to true if and only if at least one

value of the sets result from the nested queries matches it. For a detailed description of the

above mentioned and another way to specify this query using the UNION operator, see

[Elma89].

(2) QBE

ioce=-rl DNAME

I~I 1
M'"'' ARmAlE I

_3:<

WORKS_ON

I
ESSN I~IHOHR'I _S,

i PROJECf
1 ~~·'tUXATION 1 D_I

P.J'Io; J)lt

1

FNAME

1 P":ER 1 P.UNQ. -'"
In QBE. any number of joins can be specified in a smgle query

IElma89]" When we specify ajoin, we can also specify a result table to display the result

of the que!"}", as in the query above. This is required if the result includes attributes from

60

two or more relations. Sometimes, if there is no result table specified, tile system provides

the query result in the columns of the various relation. This tends to be difficult to interpret

and become meaningless in most cases.

(3) OFQL

EMPLOYEE Lnam. = Smith

')1"

Since the query involves more than three relations, we make use

severnl join operators. First we select the last name "Smith" as an employee, then the tuple

result flows to two join opemtors. One part joins with the WORKS_ON relation on the left

side (we marked as "jl") and checks to see if the employee is a worker, and on the right

61

side (we marked as "j2") joins with the DEPA RTMENT rdation to check the tuple to see

l[1he employee is a manager. Since we want to obtain the tuples that relate to Pno and

Pname, we need to join the tuples results of lxlth sides. Then we use the union operator

which takes all the tuples from both sides and combines thcm (as they are union

compatible). Finally, by employing the project operator, we retneve the Pno and the Pname

that involve 'Smith' as a worker and as a manager of a department who controls that

projcct.

The result of Query 11 is: none

3. Statistical Result

In this category the user (end user) attempts to obtam a proper relation fmm one

or more relations based on a special case or statistical result. This category involves

aggregate function opeIlltors such as MIN, MAX, A VG. COUNT. ConsIder the folloWing

quencs:

a. Query 12: Retrieval invollling aggregate A VG fUllction

Retrieve the aveIllge hours of working load for project number 3,

(1) SQL

SELECT A VG (HOURS)

FROM WORKS_ON

WHERE PNO:'3'

The average functlon is used to calculate the average of the values in

the HOURS column from the WORKS _ON relation. The values to be calculated must

satisfy the specified condition PNO = '3' in the WHERE-clause.

(2) QBE

In QBE, we place ''3'' as an actual value which represent an equality

condition in the PNO column. And "P.A va." is used to retrieve the avemge of the values

that match the condition.

(3) DFQL

The select operator selects the tuples from the WORKS_ON relation

that match the condition specified "Pna = 3". The result is used by next project operator,

which projects the average value of the result according to "AVa (HOUTS): average

/wilTS ... ". In this case, an alias name is needed after the colon to indicate clearly what the

result is [Turg93]. The select and project operators are very often used together. SO, DFQL

allows the user to define a new operator by giving a related name selproj as a combine

63

operator. It is used to select the tuples that satisfy the condition and directly project the

desired attribute as a result.

The result of Query 12 is:

Average Hours

25

c. Query 13: RelrWpal inpoMng AVG and Grollping fllnctioIJ

Retrieve the average hours of working load for each project.

(1) SQL

SELECT PNO, A VG (HOURS)

FROM WORKS_ON

GROUPBY rno

Since we are interested in the average hours of each project, in SQL we have

to apply the GROUP BY -clause. Here the OROUP BY -clause is used in order to divide

WORKS-ON tuples into groups by their PNO values. Then. the A VG function is used to

calculate the average of the HOURS values of tuples according to the PNO grouping

attribute separately.

(2) QBE

I WO=_ON I = I H<l I HO~ I
G. PAVG.AIL

QBE keeps the same structure as Query 12 except in the PNO attribute

where we have to place "G." in order to group the tuples which have the same value in

PNO. Then, "P. A VO.ALL" retrieves the average of the values accordins to each group.

(3) DFQL

DFQL provides severa! grouping aggregate function operators for

statistical results. One of them is the groupAvg operator. It gets the tuples of WORKS_ON

relation and splits the tuples according to grouping attribute PNO, then produces the

average of the values of each group of aggregate attribute Hours. The result value is given

an alias name "Average hours".

The result of Query 13 is:

Pno Average Hours

I 2li25

2 18.75

3 25.00

!O Z7.5J

20 125J

30 Z7.5J

65

d. Quer, 14: RetrieMl involving Count, AVG and Grouping/unction

For each project retrieve the project number. the number of employees in the

project, and their average hours.

(1) SQL

SELECT PNO, COUNT (*), AVG (HOURS)

FROM WORKS_ON

GROUP BY PNO

In this query, the GROUP BY -clause is needed in order to group

tuples by the project number. Then, the AVG and COUNT (*) operators calculate the

average hours and counted the number of employees respectively for each PNO grouping

from the WORKS_ON relation.

(2) QBE

QBE uses a similar structure to Query 13. Since Query 13 is

expanded by asking the project number and the number of employees involved in each

project, it can be specified by adding "P. to beside "G." in the PNO attribute and placing

"P.CNT.ALL" in the ESSN attribute.

..

(3) DFQL

This query is an extension of Query 13. The "X" part is exactly the

same as Query 13 and we add the groupCnt function part "Y" that counts the number of

tuples in each Pno group. Here, we need to join the tuples as a result of part "X" and "Y"

which match according to the Pno. Finally the project operator retrieves the desired

attributes from tuples.

The result of Query 14 is:

Pno The number of employees Average Hours

1h.25

18.75

25.00

10 7:75J

20 12 . .50

30 7:7.50

67

project 3.

d. Query 15: Retrieval involving Count ttndA va function

Retrieve the number of employees and their average hours who worked on

(I) SQL

SELECT PNO, COUNT (*), AVG (HOURS)

FROM WORKS_ON

WHERE PNO='3'

This query is an extension of Query 12 in which we can count the

number of employees by applying the function COUNT (*). Since we are concerned with

a particularly project, it is specified as a condition in !he WHERE-clause.

(2) QBE

The only different with Query 12 is the "p.eNT.ALL". It retrieves the

number of employees that match the condition specified under the PNO column.

68

(3) DFQL

In this query, the "X" part is the same as Query 12, and we add the

groupCnl operator "Y" part in order to count the number of employees who participate in

project number 3. Next we need to join the tuples as a result of both sides "X" and "Y".

Then, the project operator is used to retrieve the desired attribute values.

The result of Query 15 is:

The number of employees

69

e. Query 16: Retrieval involving Max and Grouping junction

For each department retrieve the employee's social security number who has

the highest salary.

(1) SQL

SELECT DNO, SSN, MAX (SALARY)

FROM EMPLOYEE

GROUPBY DNO

The employment of the MAX aggregate fUnction is used in order to

obtain the maximum (or highest) value of the SALARY attribute from the EMPLOYEE

relation. We select the tuples with the max salary from each group according to DNO in the

GROUP BY -clause. Based on DNa and highest pay we also retrieve from the tuple the

SSNs attribute value.

(2) QBE

In QBE we just need to specify ''0.'' in the DNO attribute in order to

separate into each group. The ·'P.MAX. ALL" is specified to get the tuple with highest

salary in the SALARY attribute from all tuples in each group of DNO. And the other "P."

is used to retrieve the SSNs.

70

(3) DFQL

The structure which is specified for this query is similar to the

previous queries that involve the groupAvg operator. The only different is we have to use

the grQupMax operator. The result of groupMax is the tuple of each Dno group with the

highest pay. Since we are also interested in the g8n of selected employees. we join the

EMPLOYEE relation to the result mentioned above. Then, by using the project operator

we retrieve the attributes desired.

The resul t of Query 16 is:

Dno SSN Max pay

5 333445555 40000

4 987654321 43000

1 888665555 55000

71

f. Query 17: Rell'ieviJl involving Max and Grouping/WICtion

For each department retrieve employee (SSNs) and their dependent name,

who has the highest pay.

(1) SQL

SELECT DNO, SSN. DEPENDENT ..-NAME, MAX (SALARY)

FROM EMPLOYEE E. DEPENDENT D

WHERE E.SSN = D. ESSN

GROUPBYDNO

The above query is extended from Query 15 in which the

DEPENDENT relation is involved. In this query we select the tuples from EMPLOYEE

and DEPENDENT relation according 10 the attributes list in SELECT-clause which satisfy

the join condition specified according to the keys SSN and ESSN in E. SSN = D. ESSN.

The DNO which is specified in GROUP BY -clause is used to separate the tuples of DNO

in each group.

(2) QBE

I DEPFNDENT

_s.

Here we need to join the two relations EMPLOYEE and

DEPENDENT by using the "_Sx" as an example variable that we place in the key attribute

72

of SSN and ESSN. The "G." is used to separate the tuples in each group according to the

DNO. Then. "P.MAX. ALL", "P and "P._Sx" are used to retrieve the values of the

attributes desired.

(3) DFQL

Since Query 17 is an extension of Query 16. we see relation rl is a

result of Query 16 which holds the tuples of [dno, ssn. max pay .. }. Then we need ajoin

operator for the purpose of joining with the DEPENDENT relation r2 according to the keys

ssn and essn of both relations. The tuples as a result of the cartesian product that we

obtained from the join operator above are used by the project operator in order to retrieve

the vaJues of ssn(s) and the Dependencname.

73

The result of Query 17 is:

SSN Dependent-name

333445555 Alice

987654321 Ab""

888665555

g. Query 18: Retrieval illvolving AVG, Max, Sum, and Grouping function

Retrieve the avemge, maximum and sum of the salaries of each department's

highest paid employee.

(1) SQL

SELECT AVG (SALARY), MAX(SALARY), SUM (SALARY)

FROM EMPLOYEE E

WHERE E.SALARY IN (SELECT DNO, MAX (SALARY)

FROM EMPLOYEE El

GROUP BY DNO)

Again if we increase the complexity of Query 16 to QUery 18 as

above, SQL presents a structure which is quite different from the query 16. Here the

GROUP BY concerns DNO in the nested queries in order to separate the tuples and

calculate the highest paid employees. Then, the outer query specifically calculates the

A VG, MAX, and SUM values of the highest paid of all groups in the department.

74

(2) QBE

P.MAXALL

In QBE, this type of query can be specified into two steps, where first

we attempt to retrieve th.e highest paid according to each group of the DNa. Then we

retrieve the attribute values of selected tuples by placing the "P." under the Result colUmn

and "MAX.ALL.A VG.ALLSVM.ALL" under the Dept top pay column.

(3) DFQL

7S

Again. in this query the results of Query 16 can be used as a source or

(lS an input to the other group operators. In the case of this query groupStn/1 operators are

used to perfonn the calculation of avg (max salary), sum (max salary). and max (max

salary). Here, each of these opemtors produces the values we are concerned with.

The result of Query 18 is:

Avg (max pay) Sum (max pay) Max (max pay)

46000 138000 55000

Il. Query 19: Rem'eval invoLvingColwJalU/ Grollpingfil1lctioll

For each department retrieve the department name and the total number 01

employees who are paid more than $40.000.

(1) SQL

SELECT DNO, DNAME, COUNT (*)

FROM ENlPLOYEE, DEPARTMENT

WHERE DNUMBER = DNO AND SALARY> 40000

GROUPBY DNO

Like the previous queries, the GROUP BY ·clause is used to separate

the tuples into groups by DNO attribute value. Then, the values of the attributes listed in

SELECT -clause are selected from EMPLOYEE and DEPARTMENT relation in the

FROM·clause which satisfy the conditions specified in the WHERE·c1ause.

1. Group.tatopem.toris discllllsedin DOles of Dr. C. Tho= Wu. Computer Science Departmenl.
NavllI Postgraduate School.. Monterey.

(2) QBE

In this query the "P.G.CNT.ALL_Dx" is specified in order to retrieve

("P.") the tuples based on the grouping "G." of DNO attribute, and CNT. ALL is used to

count DNO in each group to represent the number of employees. All of these can be

perfonned if the tuples match the join condition specified by "J)x" according to the key

and foreign key DNUMBER and DNO.

71

(3) DFQL

EMPLOYEE SalanJ) 40000

DEPARTMENT

elect rl.Dno = r2.Dnumbl!'r
,[

First we select the tuples of the EMPLOYEE relation that fulfill the

condition Salary> 40000. Then we join the result of the select operator with the

DEPARTMENT relation by equality of the key and foreign key Dnumbcr and Dna. Then.

the result is used by the groupCnt operator which splits the tuples according to Dno groups.

Finally, by using the project operator, we retrieve the values of the dname and dno, and also

the number of employees.

The result of Query 19 is:

The number of Employees

4. Set-Count Value

In this category the user (end user) is interesled in obtaining a proper relatiOl} from

one or more relations based on a special case of set-count testing. Consider the following

queries:

a. Query 20: Retrieval involving exirtenJial quantification

Retrieve the first name and the last name of managers who have at least one

female as a dependent

(1) SQL

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXlSTS(SELECT *
FROM DEPENDENT

WHERE SSN = ESSN

AND SEX = 'F')

AND EXISTS (SELECT *

FROM DEPARTMENT

WHERE SSN =MGRSSN)

One way to specify this query as shown above involves two nested

queries. The first nested query selects all DEPENDENT tuples, and the second selects the

DEPARTMENT tuples managed by the EMPLOYEE. Therefore, if there exists at least one

tuple dependent with SEX equal to female in the first nested query, and at least one tuple

of the employee who managed the department; then the EMPLOYEE tuple is selected

according to the FNAME and LNAME of the employees.

(2) QBE. As discussed in Chapter II. QBE lacks the existential and

universal quantification expression. Therefore this kind of query cannot be specified.

(3) DFQL

Frrst we join the EMPLOYEE and DEPARTMENT relation by using

the equi-join based on their key and foreign key. in this case ssn = mgrssn. Then, the tuples

as a result of the equi-join. say as rl flows to the next join operator. At this point rl contains

the tuples of employees who manage a department joined with DEPENDENT relation, say

1'2. according to the key and foreign key join condition rLssn = 1'2. essn. Then. by applying

selproj operator, we select the tuples desired which satisfy the condition specified ''Sex =
F" and directly project or retrieve the values of Fname and Lname of the manager.

The result of Query 20 is:

b. Query 11: Retrieval involving CDunt turd Grouping fimctiDn

Retrieve the total number of employees with salaries more than $40,000 who

worked in each department, but only for those departments where more than four

employees work.

(I) SQL

SELECT DNAME. COUNT (*)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER = DNO AND SALARY> 40000

AND DNO IN (SELECT DNO

GROUP BY DNAME

FROM EMPLOYEE

GROUPBY DNO

HAVING COUNT (*) > 4)

While reading Query 21, it can lead to misunderstanding the point in

specifyinS the SQL query. It may lead us to specify the query as follows:

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER = DNO AND SALARY> 40000

GROUP BY DNAME

HAVING COUNT (*»4

This is an incorrect query since it will retrieve only departments that

have more than five employees who each earn more than $40,000. For a more detailed

description of the above queries see [Ehna89].

Query 21 is expanded from Query 19in the previous Section "3. h.",

but they are very different in structure. QUery 21 is specified by using the nested query.

While specifying this kind of query we must be careful, especially when we have to apply

81

two different conditions like the query above; where "SALARY> 40000" is applied to the

COUNT function in the SELECf -clause and the other in the HAVING-clause. And for the

GROUP-BY function. Elmasri comments "Some SQL implementations may not allow a

GROUP BY -clause without a function in the SELECT -clause. Hence, the nested query in

this example (Query 21 (1) SQL) cannot be pennitted in such SQL implementations",

(2) QBE

171 MGRSSN 1 MGmAroDATE 1

Condition

I rnr.ALL.J>x:>4

Here, QBE reaJly keeps a structure similar to Query 19. Here we need.

to specify in the condition box "CNT.ALLJJ" > 4" in order to retrieve the total number

of employees if it is more than fOUf members in each department according to the value of

DNO.

82

(3) DFQL

Since it is expanded from Query 19, we can use all of Query 19 and

connect it with the new part of the query. The "X" is tile whole part of Query 19 and '<Y"

is related to groupCnt and select operators, which specifically count the tuples according

to Dno in order to represent the total number of employees as a specified condition.

The result of Query 21 is: none

c. Query 22: Retrieval involving CoulII and Grouping jimctioll

For each project on which there arc three or more employees working,

rctneve the project number, project name, ami number of cmployecs who work on that

proJcct.

(1) SQL

SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT. WORKS_ON

WHERE PNUMBER:::: PNO

GROUP BY PNUMBER. PNAME

HAVING COUNT (*»3

This query involves two relations PROJECT and \VORKS-ON. Here.

the GROUP BY -clause is used in order to separ.ltc thc project in cach group and selection

of tuples is used to satisfy the join condition in WHERE·dause. The HAVING-clause in

this ca.~e uscs whole groups of projects. and specifically specifics the number of employees

which s:ltisfies the groups themselves.

84

(2) QBE

Condition

I CNT.AILJ"x a:3

Here, P.G.CNT.ALLJ>x" is specified in order to retrieve the tuples

of the grouping attribute of PNO which satisfied the join condition related to the key of

PNUMBER and PNO. But, it must satisfy the condition box "eNT. ALL._Px > 3". Here

the use of the condition box is similar to the HA VING-clause in SQL

(3) DFQL

We Join the two relations PROJECf and WORKS·ON according to

the join condition Pnumber = Pno. The tuples of the cartesian product is flower.! to

groupCnt operator, and it splits Pno into each group. Then, it selects the tuples that fulfil

the condition specified "cnt .. 3 "as connting the number of employees. Through the project

operator we retrieve the tuples needed according to the attribute list

The result of Query 22 is:

P",,,no Pnumber The number of employees

ProductY

Computerization 10

Reorganization 20

Newbenefi t 30

86

d. Query 23: Retrkval involving Countfunction

Retrieve project name, where there are three or more employees.

(1) SQL

SELECT PNAME

FROM PROJECT

WHERE (SELECT COUNT (*)

FROM WORKS_ON

WHERE PNUMBER = PNO) ~ 3

By modifying Query 22just a little bit, we get Query 23. One way to

specify the SQL query is shown above involving a nested query. The nested query counts

the tuples (representing the number of employees) involved in the project in the

WORKS_ON relation. If it is greater than or equal to three. the PROJECT tuple is then

selected. In some implementations of SQL the above query may not be pennitted [Elma89].

(2) QBE

In this query "CNT. AlL._Px;;" 3" counts the tuples concerning the

number of employees. If it is greater than or equal to three then the tuples of Pname are

retrieved by "P." according to key as specified by an example value" _Px".

(3) DFQL

In order to get the counting result, DFQL in this case applies the

grollpCIll operator in all kind of queries that relate to set coUIlI query. That's why Query 22

and Query 23 are specified with exactly the ~amc structure, just slightly different in the

attribute list of the tuples desired.

The result of Query 23 is:

Pname The number of employees

ProductY

Computerization

Reorganization

Newbenefit

By looking at the results of Query 22 and 23, we notice that the tuples

results of PNAME and the total number of employcc~ retrieved are absolutely equal. In

~hon, we can say that both Query 22 and 23 arc rcally the same in the structure.

e. Query 24: Retrieval involving universal qlUlntijiCtJlion

Retrieve project name, where there are three or more employees, and all of

them has a work load of 20 hours.

(1) SQL

SELECT PNAME

FROM PROJECT p. WORKS_ON W

WHERE P.PNUMBER = W.PNO

AND PNO IN (SELECT PNO

FROM WORKS_ON

WHERE HOURS = 20

GROUP BY PNO

HAVING COUNT (*) :d)

Query 24 above is an extension of Query 23. In the SQL query above,

the GROUP BY -clause and HA VING-clnuse are particularly related to PNO in the nested

query. If each group of PNO tuples satisfies the condition "HOURS = 20", and also if in

each PNO there are three or more employees as a worker. then the PROJECT tuple will be

selected. However, it must satisfy tile join condition specified in the WHERE-clause..

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

89

(3) DFQL

~-~,~-----.-C PRO.JECT ..,ORK$-DN -Pn-.-m.-.r-:;~"

""-,,,,\\

\

Consider the DFQL query above. Part "X" is Query 23, and it can be

directly used as a relation to be an input to the groupAlISatisfy operator. It tak.es Ihe tuples

and splits the tuples according to the PNO as a grouping attribute, und the tuples in each

group must satisfy the condition specified "Hours =20". Then, we rctneve the tuple result

of the attribute desired by using the project operator.

The result of Query 24 is: none

90

f. Query 25: Retrieval involving .miverrrd quantification

Retrieve the department names which offer two or more projects where there

are three or more employees who worked on it, and all of them has a work load of 20 hours.

(1) SQL

SELECT DNAME

FROM DEPARTMENTD, WORKS_ONW, PROJECT P

WHERE D.DNUMBER = P.DNUM

AND P.PNUMBER = W.PNO

AND PNO IN (SELECT PNO

FROM WORKS-ON

WHERE HOURS = 20

GROUPBY PNO

HAVING COUNT (*) ;2!:3)

GROUP BY DNUM

HAVING COUNT (*);2!: 2

Query 25 is expanded from Query 24, and the complexity of the query

has increased. This query involves three relations and nested query. A GROUP BY -clause

and HA VING-clause are used specifica!1y for the nested query, and another GROUP BY

clause and HA VING-clause are used for the whole groups. Even though this query is just

slightly different from previous Query 24, we have to rewrite while specifying this query.

9I

(2) QBE. As discussed in Chapter II, QBE lacks the eXistential and

universal quantification expressIOns. Therefore this kind of query cannot be SpeCl i·ied.

(3) DFQL

Notice that the "X" part is Query 24. The tuple result is directly used

as a relation to be joined with the OEPARTvlENf retation according to the key and foreign

key Onumber and Onum. The result of the cartesian product which is produced by the join

92

operator flows to the groupCnt operator which groups according to the grouping attribute

of Dnum. Then, by employing the selproj operator we can count specifically the tuples

which satisfy the condition specified. and directly project the values desired of the attribute

list

The result of Query 25 is: none

B. ANALYSIS

In the previous section, we observed how SQL, QBE, and DFQL specify all of the

query examples which are composed in categories. Queries range from simple ones to

queries which involve existential or universal quantifications, and complex ncsted queries

in SQL. Some of the querIes are stand-alone, but some others specified are logical

extensions in complexity from one query to the next. By examining these queries the

relative strengths and weaknesses related to ease..Qf-use, especially in expressing universal

quantification, specifying the complex nested queries. and flexibility and consistency in

formulating the queries with respect to data retrieval for ROBMS' s are investigated.

1. Ease-of~use

Ease-of-use of query languages is part of the human factor aspect In this research

we emphasize the learning and writing of the query, as well as attempting to retrieve the

output result. However, we have to keep in mind that query languages are high level

languages that are also intended to be used by non programmers. Related to Ease-of-use,

some researchers described that

• The SQL language bas been designed and intended to be easily learned and used by
inexperienced user without specialized computer training [Reis75J.

• The result of various psychological studies of language (QBE) show that it requires
less than three hours of instruction for non programmers to acquire the skill to make
fairly complicated queries [ZIoo77J. People will write queries in QBE between two or
three times faster than in SQL [ReisS)].

93

• DFQL is proPJsed and implemented to mitigate problems that are encountered by the
current query languages, SQL in particular. It requires about halfan hour in a database
class at NPS to acquire the coneeptand make more correct queries than SQL [Cku91].

According to our research through the previous Section "A." of this chaplcr, the

above comments and results are absolutely valid for QBE and DFQL but not for SQL.

Consider the representative sets of queries that we have in each category or from one

category to the other categories. Here ease-of-use of each language can be PJinted out

clearly, where "once we learn a general construct from a sample query, if the way of

thinking can be applied in a new query" we can say that there is certain degree of ease-of

use. For example, when we learn the technique to drive a car for 500 yards, then we could

most likely can drive for another 1000 yards. Now, let's take a look at some of the queries

that we have.

a. Queries iTivolvillg existelltial or uniJ1enai quantification

In the following discussions we covers several queries that are comPJsed in

single-value, set-value, and set-wunt value categories. Consider the queries below:

• Query 4: Retrieve the department number where all of its employees have salaries of
more than $40,000.

• Query 5; For each department retrieve the first name and the last name of employees
who have no dependents.

• Query 6: Retrieve the first name, last name and department names where all of its
employees have salaries of more than $40,000 and have no dependents.

By looking at these three queries we realize that Query 6 is virtually the

combination of Query 4 and 5. Now let's consider how do SQL, QBE, and DFQL construct

all of these queries.

(1) SQL. See the construct of the structure of Query 4 and Query 5, where

both queries contain]\'OT EXISTS ()perd\Or~ that interpret the queries in a negative logic

approach. Generally, these kind of query structures are not easy to understand, especially

94

Query 4. Assume, we underslmld the construct of both queries. however we cannot apply

this similar thinking to specify the structure of Query 6. In this case, we do have to think

very carefully since we have to specify a new query that may be very different in tbe

structure. Therefore, these types of queries are difficult to specify even for the experienced

(2) QBE. QBE lacks universal quantification expressions. Therefore we

cannot express these types of queries.

(3) DFQL. By learning the construct of Query 4 and Query 5, we can use

the similar thinking of Query 4 and Query 5 in order to fonn a new Query 6. Once we know

the construct of Query 4 and Query 5 we can use them in the other new query easily. Notice

in Query 6 that the "X" part retrieves the tuples of employees who have salaries of more

than $40,000, as Query 4, and that the "y" part retrieves employees who do not have

dependents. We can logically combine these two constructs by using the intersect operator

that combines union compatible tuples so that we have the tuples of ali employees who

have salaries of more than $40,000 and have no dependents. Since we are interested in the

department name also, we can easily join the tuples result above as new relation (r3) with

the DEPARTMENT relation (r4) which match according to lhe key and foreign key of both

relations, r3, Dno = r4, Dnumber. Finally, by employing the project operator we retrieve

from the tuples the first name, last name, and department names of those employees.

By investigating the above queries, once we learn how to specify

Query 4 and Query 5, we can genernlize them in a straight forward manner to specify Query

6. We can say that this language is easy to learn (and thus easy to use), Consider the

following queries that are similar to lhe above discussions:

• See Query 9, 10, which are difficult to specify in SQL, cannot be specified in QBE
(see QBEdescription in Chapter II.C.I.c.), but are very easy in DFQL since we can
apply the construct concept of Query 4,

• Query 20 also shows that in SQL it is not easy to learn or understand the structure, and
in QBE it cannot be expressed, (See QBE description in Chapter II.C.Lc.). But in
DFQL the data flows from one part to another are easy to follow and one can

9S

undcrntand what's going on.

b. Queries inrolring nested queries

In this section. we analyze queries which involve the IN operator in the nested

query. In addition, we also examine several queries which contain the universal quantifier

in the nested queries. Consider the following queries in the set-count value category:

• Query 21: Retrieve the total number of employees with salaries more than $40,CXXl
who worked in each depanment, but only for those departments where more than four
employees work.

However, before going into any detail in Query 21, see first Query 19 in the

set-value category. By examining these two queries we realize that Query)9 is expanded

to Query 21.

• Query 19: For each department retrieve the department name and the total number of
employees who arc paid more than $4O,CXXl.

Similar to the above description "l.a" we attempt to learn the construct from

one sample query and extend it to create another new query. Consider how SQL, QBE and

DFQL construct both queries:

(I) SQL When we Jearn Query 19 and understand the construct, we are

sti ll not confidcnt of how to specify the structure for Query 21 (or an incorrect query can

be specified. see SQL query below Query 21). In other words. in SQL we cannot use the

construct of a sample query to build a new query in a straight forward manner.

(2) QBE. In QBE we realize that the same thinking of the construct in

Query 19 can also be used to specify Query 21 . QBE in this case presents a simple and very

intuitive extension.

(3) DFQL. When we learn the cunstruct of Query 19, it is easy to

understand Query 21. Here, the construct of Query 19 can be used as a part of Query 21.

To build Query 21 we know Ihat we need two parts; first the employees with salaries more

96

than $40,000 and second, tuples of those department with more than four employees. See

Query 21 of DFQL for details.

We also look at several queries which are similar 10 the above

discussion. These types of queries are composed in the set-value, statistical-result, and set

counl categories. Consider the queries below:

• Query 7 is extended to Query 8.

• Query 16 is extended to Query 18.

• Query 22 is modified to Query 23.

• Query 23 is extended to QUery 23.

• Query 24 is extended to Query 25.

In addition to discussion in "l.a" and "l.b" above, see Query 1 in the single-

value category. If we are interested in the distinct value, in SQL we have to use the keyword

"DISTINcr" in the SELECT-clause, and in QBE the prefix "UNQ On the contrary,

DFQL implements the primitive operatof8 which have a similar capabilities 10 the

relational algebm operators, so the duplicate tuples in the query result are eliminated. In this

case, we consider that DFQL is easy to use, since we do not need to worry when and where

we have to eliminate the duplicate tuples. For detailed problems concerning the duplicate

tuples see [Codd90].

Next we examine the query that involves select-project-join with two-join

conditions. See Query 3. In SQLit is not easy to comprehend what is going on in the query.

QBE in this case presents a simple construct in which it is easy to follow the joining

between relations and we know what's going on. Furthermore, in DFQL we can easily

follow how the data flows from one part to the other part. It is understandable.

2. Flexibility

The flexibility which is offered by each. language, is considered vcry useful in

specifying queries. Therefore, we feel free to chOClse the techniques which are most

comfortable and confident in order to specify the correct query. However, by having

numerous ways of specifying the single query, it may mtroduce confusion about which

technique to use to specify particular types of queries [Elma89].

a. SQL

SQL support<;join conditions thai can be used to specify many queries or use

nested queries with or without the IN operator in it. Scc Query 9. Instead of using the

CONTAINS operator we can use NOT EXISTS and the IN operator with a nested query.

Also Query 11 that uses IN and OR operators can be specified using the UNION operator.

Sometimcs, queries in which are involved NOT EXISTS may be specified using the IN

operator with nested query or vice versa Query 8 is an example. It can be specified without

the IN operator. Generally speaking, there are numerous ways to specify the same query in

SQL [Elma891. However, in some cases we have no confidcnce that our query writing is

well specified or correct.

b, QBE

QBE provides less syntax than SQLand DFQL, therefore it does not have the

flexibility like SQL does. However, the tuples result that are existed in several relations can

be formed in one result relation. This flexibility makes the query result more meaningful.

See Queries 11 and 18.

98

c. DFQL

DFQL provides primitive operators as described in Chapter II and also we

have been demonstrated. in Section" A" of this chapter. DFQL in this case, offers the

flexibility to the user to use the combination or stand alone of the primitive operators with

respect to the query concern. In queries which involved. universal quantifier. like Query 4,

instead of using the groupAlISatisfy operator we can apply the select and groupCrIl

operators. In Query 5, instead ofusing the groupNoneSalisfy operator we can also apply the

dijfoperator in the main part of the query. In addition, DFQLallows the user to define their

own user-dejined operator such as the selproj operator of Queries 9, 10, 22, and 25.

Furthermore, the output of one query can be used as an input or as a part of another new

query. In fact, once we know the concept of each operator, we can use it in query

construction easily. In DFQL, we feel more confident that our query is correct, since we

can trace or check the flow 10 the result part by part.

3. Consisteney

As described before, our investigation here is focused. on the structure of queries

specified in each language. If a mental model that we have for one sample query can be

built or continued to another new query, where the new query keeps the same mental model

of structure with the prior query, we can say that the language is consistent in structure.

Consider the queries in the single-value, set-value. statistical-result, and set-count value

categories:

• Query 6 is extended or combined from Query 4 and 5. All of these queries involve
universal quantification.

• Query 7 and 8 involve explicit set

• Queries 12, 13,14, 15 relate toAVG function.

• Queries 16. 17. and 18 relate to MAX function .

..

• Query 19 is extended to Query 21.

• Query 22 is mocllfied to Query 23, then Query 23 is extended to Query 24. Fmally
Query 24 IS extended to Query 25.

By USing the \ minus ljuery cxamples above, we can examine the stfw.:lurc of

SQL, QBE, and DFQL. For detail, see and compare the structure of each query. ConsIder

the followmg brief explanation:

a. SQL

SQL is not consistent in structure. If we attempt to extcnd the queries

(complexity increases) as the queries above, so far we cannot apply our mental model of

one construct of query structure to the next new query. In fact, we havc to rewrite a new

query from thc bcgmrung, which will often be very different in structure (incon~)stent) with

the prior qucncs. Therefore, Inconsistency in specifying queries in SQL, exist" and l~

confusing to the user.

h. QBE

QBE is very intuitive. In specifying the queries which are presented abo\c

QBE is very consistent III ~tructure. The mental models that are fOmled in one qucry can Ix:

continued to other new queries easily, except for queries that involve universal

quantification. Since QBE lacks existential and universal quantification expressions, thiS

kind of query cannot be expressed.

c. DFQL

DFQL exhIbits consistency in structure. If the queries arc extended, we can

usc the output of a query result, whether a portion or the whole of a previous query, to be

a pan of other new qucries. This flexibility)s not exhibited in SQL, nor in Q8E. Even

though the ljucnc" arc extended (complexity increases), DFQL remains consistent III Its

structure of query.

100

4. Relative Strengths and \Veaknesses

In this section we present the relatlve strengths and weakness of these three

languages. The following result is presented by referring to our previous discussion plus

some geneml descnpnons of each language. The relative strengths and \veakncsses of SQL,

QBE, and DFQL are summarized in Table 3, 1.

101

13

TABLE 3.1: RELATIVE STRENGmS AND WEAKNESSES OF SQL, QBE, AND DFQL.

Criteria SQL QBE DFQL

(1). Expressive I' It is approved as ANSI and I' It is commonly used in I' It is implemented in academic
Power ISO standard and commonly commercial systems. research.

used in commercial systems .

. It is re1anonally complete. In • QBB was proposed by ZJoof • It is relationally complete. In fact
fact it bas all the relational as relationally complete. it has an of the relational algebra
algebra operations. and also However QBE under QMF as operators, and extends the
based on a relational calcu1us discussed above is not capabilities of first order predicate
structure. In addition, it relationally complete. It logic including set, grouping and
provides the capabilities for includes the grouping function, built-in functions for statistical
Statistical result based on the built-in function for statistical results.
built-in function, also the result and has condition box
GROUP BY, HAVING and which is the same as the
ORDER clauses. However, HAVING-clause in SQL.
several type of queries are still
somewhat difficult to specify
and comprehend .

• Allows duplicate tuples to I' Allows duplicate tuples to I' Duplicate tuples are automatically
exist in the query result. see exist in query result, see Query eliminated from the query result.
Query L L

§

TABLE 3.1: (Continued).

Criteria SQL QBE - T DFQL J
(1). Expressive • It is somewhat difficult to Queries which involve. It can express an existentially or
Power express the queries that universal quantification cannot universally quantified query
(continued) involve existential or universal be specified. See Queries 4, 6, easily. See Queries 4, 6, 9, 10,20,

quantification. The use of 9, 10,20,21,24, and 25. 21,24, and 25.
negative predicate logic
(NOT EXISTS) is hard to
comprehend, see Queries 4, 6,
9,10.20.21,24, and 25 .

• It can be embedded within a,' The embedment within a,' The embedment within a general
general purpose programming general purpose programming propose programming language is
language (host language), such language is not implemented. not implemented.
as COBOL, C, PUI, and
Pascal.

Ii

TABLE 3.1: (Continued).

II --- Criteri; SQL QBE II - DFQL

(2). Extensibility I . The capability for extending ,. The ,capability tor extending
the existing operators does the eXisting operators does not
not exist. exist.

• DFQL provides the user-defined
operator, so the user may extend
the query language by defining his!
her own-defined operators from the
existing set of primitive operators
and/or from his/her own previously
defined user-defined operators (Le.
the selproj operator). This
flexibility is gained without a loss
of the power of orthogonality. By
thIng user-defined operators,
common operations for any given
user can be provided at whatever
level of abstraction is needed. To
illustrate the above description see
Queries 9, 12, 17, 18, 22, and 25.

L-______ ~ ______________ ~______________ ~ ._____ _ __ _

51

TABLE 3.1: (Continued).

SQL -QiiE ==r=. ------oFQi --I!
Text input is not a user Has a very user friendly ,Even complex problems can be

friendly interface. interface, more intuitive than specified in an intuitive manner.
DFQL and SQL .

• It has rigid rules and syntax, I , It uses less rigid syntax.
Must understand exactly Requires user to place an actual
when and where we have to value, an example variable,
use a particular syntax. and/or commands in the proper

. It requires longer time in
order to acquire the concept
than QBE and DFQL. Once
we leam general construct of a
sample query. we cannot apply
the same thinking in a straight
forward manner to specify
other new queries. To illustrate
the above mentioned. see
Queries 4-5-6, 7-8,16-18,19-
21, and 22-23-24-25.

place (columns) in the table
(relation).

• As previously mentioned, it
requires three hours of
instruction for a non
progranuner to acquire the skill
to use QBE. Once we learn the
construct of a sample query, we
can use the same thinking in a
sttaight forward manner for
specifying the new query. To
illustrate the above mentioned
see Queries 7-8. 12-13-14-15,
16-17-18, and 22-23.

• Once the construct is learned, it is
easy to remember and to
implement. The dataflow style
query graph, flowing from one
operator to the other, is easy to
comprehend.

• As previously mentioned,
requires about a half hour for data
base class to acquire the concept
and construct more correct quires
than SQL. Once we learn the
construct of a sample query, we
can, in a straight forward manner,
apply it for specifying a new query.
More than that, in DFQL we can
use the output of one query (or part
of it) directly as an input or part of
another new query. To illustrate the
above mentioned see Queries 4-5-
6,7-8. 16-18,19-21,and22-23-24-
25.

iii

TABLE 3.1: (Continued).

Criteria C· -SQL ~ QBE DFQL
r T _ ••

(3). Ease-of-use I_ Somenmes we are nO!
(continued) confident while specifying the

queries. This occurs when the
complexity increases.,
particularly in queries that
involve universal
quantification. In other words.
the use of negative predicate
logic in the queries is not
completely intuitive, see
Queries 4. 5, 6. 8, 9, to. The
nested queries that involve the
IN operator are also diffkult to
specify and comprehend. and
easily lead us to be mixed-up
and in specifying incorrect
queries. Furthermore, some of
the nested queries that are
presented may not be pennited
in the implementation of SQL.
See Queries 21, 23, 24.25.

• We feel more confident in
specifying correct queries than
in SQL. It is faster than SQL for
all kinds of queries. and faster
than DFQL (for simple queries
only). See Queries 3, 5, 12, 13,
14, 16, 17, 18, 19, 23 But, if
complexity increases it
becomes less and less useful.
See Queries 7, 8, 21, 22.

• We feel more confident in
specifying queries (especially
when the comple~ity of query
increases) more correctly in DFQL
than in SQL or QBE. For example,
if the query involves universal
quantification. as the main part we
can use Just one primitive operator
such as groupAIlSati~fy,

groupContain. groupNoneSatisfy.
See Queries 4, 6, 9, 10.24.25. For
nested query with IN 0pclator in
SQL; see Queries 1 e. 24, 25 in
DFQL. both queries present a
simple way and easy to grasp how
the data How from one part of the
query to another part.

11

TABLE 3.1: (Continued).

Criteria SQL II QUE II DFQL

(3). Ease-or-use
(continued)

. _ I . i
. This language lacks
orthogonality, i.e. SQL allows
only a single DISTINCT
keyword in a SELECT
statement at any level of
nesting.

• 1bis language is orthogonal,
and is both syntactically and
semantically easier to use. It
provides consistency in
structure. It can be realized by
examining all the QBE queries
that are presented in Section
"A.".

• We can not reuse the result of I . We can not reuse the result of
one query in another new
query. SQL just returns or
passes the result of one part to
the other, occurs in nesting
queries.

one query in another new query.
In QBE we are allowed to make
a new relation as result desired
from other relation in the same
query, then we can specify the
other connnands in order to get
the other new relation, but it is
usually applied in order to
obtain a unique result. To
illustrate, see the Queries 11,
18.

• This language is orthogonal. and
is syntactically and semantically
easier to use. It provides
consistency and naturalness in
using the operators. Since it
possesses relational functional
closure, we can use the result of
any operator as a new relation that
can be used as an input to other
operators. It can be realized by
examining all the queries that are
presented in Soction "A.".

. Incremental queries is another
feature that makes DFQL distinct
from SQL and QBE. We can
increase or modify queries easily.
and obtain the intermediate resuit
of certain operators as desired.
Then, the output of an operator is a
relation that can be combined with
another operator to form more a
complex query. A subquery can be
defined as a user-defined operator
if desired to encapsulate. and use it
as an input to the other new query.
To illustrate, see Queries 6, 14, 15,
17.18.21,24,25.

iii

TABLE 3.1: (Continued).

Criteria SQL QDE DFQL

(4). Flexibility I. See the above description in I' See the above description in I' See the above description in
"A.2.". "A.2.... "A.2.".

(5). Consistency 1 • See the above description in I' See the above description in I' See the above description in
"A.3.". "A.3.". "A.3.".

(6). Visual I' It is not provided in text· I' Visual interface is the feature I' Visual interface is the one feature
Interlace based query language. that can perronn all the that can perfonn all the strengths

strengths of QDE. of the DFQL .

• This feature grants the user to I' This feature grants the user to
obtain the relation tables, and interactively manipulate the DFQL
place all the example variables, query on the computer screen.
actual constants, and
commands in order to fannulate
the query.

s

TABLE 3.1: (Continued).

Criteria SQL

(7). Interface I' Since it is not equipped with
problem visual interface, SQL has no

problem with it

QBE

• This is the common problem
that generally faces the visual
interface applications. If the
complexity increases, and we
need several relations at once,
then it becomes inconvenient,
since it is hard to specify the
connection between or know
what is going on in the query.

DFQL

• This is the common problem that
is encountered by the visual
interface applications. If the
complexity of the queries
increases, then the objects in the
field of drawing become cluttered.
We use the scroll bar, but we can
not see the whole query at once.

• One way that DFQL can reduce
this problem, is encapsulate some
portions of the query into user
defined operators and combine
with the other portions. so it will
be more readable.

5

TABLE 3.1: (Continued).

Cd .. d, II --S()L - J QBE DFQL - J
(8). Language. Has no problem embedded . QDE stands alone. It can not • DFQL queries can be compiled
problem with host language (as be embedded in a host language and inserted into textual programs

mentioned above). like SQL. as functions, however we can not

• Since SQL has several
dialects, the same query will
be specified in different way
and different structure
(inconsistent) .

see the DFQI. code in the context
of the query program. It will still
be a problem since the host
language is purely proceduraL
while DFQL is dataflow oriented.

. Has it's own dam definitions I' Has it's own data definition I' The current implemenwtion does
language (DDL). language (DDL). not have it's own data definition

language (DOL) but relie'i on the
Underlying relational DBMS.

IV. HU~FACTORSEXPER~ENT

A. HUMAN F ACTORS ANALYSIS OF QUERY LANGUAGES

There are several query languages commercially available, and there is a need to

examine a variety of different query languages in order to measure the notion of "ease-af

use" of query languages. The most common approach in capturing what is the query

writing, in which subjects are given questions in English and asked to write the

corresponding query language statement [ReisS1).

B. EXPERIMENTAL COMPARISON OF SQL, QBE, AND DFQL

In this section, we review a very simple human factors experiment for comparing

SQL, QBE. and DFQL. A general assessment of the experiment is provided. Since we

know that QBE cannot express universal quantification (see Chapter II. C. L c), the tasks

are divided into two parts:

• FIrst part consists of five queries which can be specified in SQL and DFQL. In this
group wriversal quantification is required.

• Second part consists three queries which can be specified by all three languages
SQL,QBE. and DFQL. Universal quantification is not includoo.

TIlls experiment is not intended to be a rigorous comparison of SQL. QBE. and DFQL.

1. Assessment of the Experiment

In this experiment 15 subjects were given five tasks of query in English on the

relational database schema of Appendix A. The subjects coded or specified each of the

query task. Three query tasks were applied to all three query languages. and two query tasks

just applied to SQL and DFQL. Each response was then graded as either correct or

incorrect.

111

a. Subjects

The experiment was conducted on 15 students enrolled in "Advance

Database" and "Database Seminar" courses at the Naval Postgraduate School (NPS) in

Monterey, California. The students at NPS are primarily U.S. military officers; foreign

military officers and Deparnnent of Defense civilian employees are also represented. The

composition of the student are recorded based on their academic backgrounds, which are

broken down based on their bachelor degree which is classified as "technical" or "non

te1:hnical". In addition, subjects are also characterized by their programming experience.

For analysis purposes, subjects with programming experience more than 1 year are

classified as "experienced".

b. Teaching Method

All the subjects have already taken the introductory database system course

for one quarter, so all of them have a background in relational algebra, relational calculus.

SQL and QBE. A 30 minute presentation ofDFQL concept was given at the beginning of

the experiment. A handout describing the DFQL operators was giveu to the subjects.

c. Test Querie6

The five test queries were based on the relational database schema in

Appendix A. They are;

• Query Ql: "List the name and location of the projects whose member (at least one)
eams more than $40,000." The first query (Ql) involved only selection, projection,
and joining to achieve the correct answer.

• Query Q2: "For each project, list the number of employees working on that project."
The second query required grouping and counting. Here the comprehension is
somewhat more complex than Q1.

• Query Q3: "Retrieve the total number of employees who worked more than or equal
to 20 hours in each project, with more than two employees working." The third query,
in addition to grouping and counting operations, also required ,>pecial condition that
needed another grouping and counting; in SQL, it is specified by HA VL"lG-c1ause.

• Query 04: "Retrieve the name of each employee who works on all projects that are
located in Houston." The fourth query required the DIVISION operation of relational
algebra, in SQL it could be specified wether using CONTAINS comparison or NOT
EXITS operators. In DFQL. it can be specified using groupContain operator.
However, since QBE lacks universal quantifier, this type of query can not be
expressed .

• The question Q5: "List the fIrst name and last name of all employees who have only
female dependents." The fIfth query required the use of the universal quantifIer and
was subjectively viewed more difficult than the first three queries, but almost the same
with query Q4. Here, SQL applied NOT EXISTS operator in the WHERE-clause, and
in DFQL specified by the groupAllSatisfy operator. Similar to the fourth query. it
cannot be expressed by QBE.

By providing five queries which were of increasing complexity. it was

intended to see if DFQL perfonn better than SQL and QBE in more difficult queries.

Subjects were given one week to complete the experiment.

d. Evaluation Method

The tests were collected and hand-graded by the researcher. The criterion

evaluated by this experiment was graded as either correct or incorrect queries. Correct

included responses that were either completely correct or contained a minor language or

minor operand error. The following taxonomy of minor language error and minor operand

error were given by Welty and Stemple [WeltS1}. A minor language error is a basically

correct solution with a small error that would be found by a reasonably good translator. A

minor operand error is a solution with a minor error in its data specification, such as a

misspelled column name. However. a transposition of colunm names (or simple use of the

wrong column name) was classified as an incorrect answer because there is no way for the

grader. or computer to determine the subject's intent.

113

2. Experiment Results

In this section we present a general discussion of the results derived from the data

taken. The primary measurements of this experiment were made based on the entire sample

population. The primary metric used was the number of questions answered correctly. This

was calculated for each individual question and also for each language as a whole, the result

are summarized in Table 4.1. In addition we also provided the results based on subject

backgrounds (tcchnicaVnon-technical and programming experience). However, since the

percentage differences between SQL, QBE, and DFQL for all queries were nearly similar

and the number of subjects in individual classification was small (due to small overall

population size), the detailed statistical analysis was performed only on the total sample,

see Table 4.2 and Table 4.3.

From Table 4.1., for the easiest query (Q 1), subjects wrote a greater percentage of

correct answers in SQL than in QBE (7%) or in DFQL (20%). But, in Q2 there was a

difference of 53% for correct answer in DFQL compared to SQL and 40% compared to

QBE. In Q3, there was only 7% more correct answers in DFQL compared to SQL and 0%

compared to QBE. For Q4 the difference was 7% between DFQL and SQL. In Q5 there was

a difference of 33% for correct answers in of DFQL compared to SQL. In the above

analysis. we always subtract the SQL and QBE percentages of com:c:t answers from DFQL;

a difference of 20% means that DFQL produced 20% more correct answers than SQL or

QBE.

Table 4.2. swnmarit.es the percentage of correct queries for SQL, QBE, and

DFQL for Q1, Q2, and Q3 broken down by technicaVnon-technical as well as experienced!

non-experienced. We see that the subjects with a non-technical background got a slightly

greater percentage of queries correct in all three languages than those with a technical

background. Thedifference was 3% more correct for SQL, 2% for QBE, and 9% for DFQL.

114

In classification by experience, there was no difference in percentage of queries correct for

SQL, while the less experienced subjects got 8% more correct for QBE queries, _and the

more experienced got 3% more correct for DFQL.

Table 4.3. summarizes the percentage of correct queries for SQL and DFQL for

QI through Q5 broken down by technical/non-technical as well as experienced/non

experienced. We see that the non-technical got a slightly higher percentage correct for both

(3% for SQL and 1% for DFQL). The experienced subjects got 7% more cormct than the

less experienced for SQL and 8% more correct for DFQL.

,
!

TABLE 4.1: EXPERIMENT RESULT

% of Correct
Task

SQL QBE DFQL

Ql 87 80 67

Q2 40 53 93

Q3 6 13 13

Q4 33 NotlComparable 40

Q5 0 Not Compamble 33

Overa11oftbe 33 49 50
firstZ part which

contains
Ql tbruugh Q5.

OveraU of the 44 49 58
second3 part

which
contains

Ql, Q2, and Q3.

1. Not ComJ)lllllble. smce QBE lacks of uruven;ai quantifier.
2. Overall fust pan is calculaled for aU the three languages
SQL, QBE and DFQL.
3. Overall second pan is caJculaled just for SQL and DFQL.

l1S

TAHLE 4.2: PERCENT CORRECT OF SUBJECT CLASSIF1CATION FOR
Qt, Q2, AND Q3

Subject Number % Of Correct

Classification of Subjects SQL QBE DFQL

Technical 43 48 53

Non-Technical 46 50 62

Experience> 1 Yr. 12 44 47 59

Experience $ 1 Yr. 44 55 56

Total Sample 15 44 49 58

TABLE 4.3: PERCENT CORRECf OF SUBJECT CLASSll'ICATION FOR
Qt THROUGH Q5

Subject Number % Of Correct

Classification of SUbjects SQL DFQL

Technical 31 51

Non-Technical 34 52

Experience> 1 Yr. 12 32 45

Experience S. 1 Yr. 39 53

Total Sample 15 33 50

116

3. Experiment Condusions

Generally speaking, since this human factors experiment was conducted on only

15 subjects, the result is not a rigorous statistical comparison of SQL, QBE, and DFQL.

However, we still can mab: the following observations:

a. Qa61Y(QI)

SQL is better than QBE and DFQL for a simple query which involves only

selection, projection. andjoining, that is a query in thesingle-value category. Once the user

learns and knows the concept of this type of query, it is easy for the user to build another

query in a single-value category as long as the query requires only project, select, and join

operations. See a representative query (Query 3) in Ompter m. A.1.c., which requires a

simple selection and projection without a need of nesting. As long as nesting is not

required, SQL seem1 to provide a simple and logical quCl')' construct.

b. Q...,(QZ)

DFQL is bettec than SQL and QBE for queries requiring grouping and

counting operations. This kind of query composes statistical result. In DFQL. the idea of

grouping and counting is easy to understand since it requires just one operator (groupCnt).

See Query 14 as one similar to Q2. In SQL, some of the subjects misunderstood how the

COUNT operator works, and they specified GROUP BY followed by an attribute name but

did not specified this attribute in the SELECT -clause. In QBE, some of the subjects mixed

up the CNT and CNT.ALL operators.

~ Q...,(Q3)

In this query all three languages had an approximately equal pen;entage of

comet answers. Query (Q3) requires grouping. counting functions and special condition.

In SQL the special condition is known as HAVING COUNT (*), and in QBB it is nOIIllally

117

~pecilied using condition box. In DFQL. it is formulated by using f?rollpCllt followed by

select operators. A representative of this kind of quer)' is illustrated by Query 21 which is

composed in set-count value, Olapter m. A. 4. b. Since Q3 increases in complexity

compared to Q2, logically Q3 is more difficult. If ~ubjects did not have a good

understanding of the concept of this type of query, nonnally they come up with incorrect

query. For instance in SQL, this query requires nesting. with GROUP BY and HAVING

COUNT (*) operators in the nested part and another GROUP BY is needed for the whole

query. Therefore, we can say this type of query was more difficult to formulate in SQL

compared to QBE and DFQL.

d. Query (Q4)

Query (Q4) exhibited no significant difference in percentage of correct

answer~ between SQL and DFQL. This type of query requires the DIVISION operation of

relational algebra, whlchis similar to Query 9 (set·value category, see Chapter lILA. 2. d.).

For SQL. this query is easy if the subject understand~ the relational division and the SQL

implementation supports the CONTAINS operation. In cases where the CONTAINS

operation is not available, it would be much more difficult because either:

• User has to translate relational division into equivalent relational operations, and then
write the SQL corresponding to the translated relational operations, or

• User has to re-think: in SQL using operations such as the NOT EXISTS operator. [n

this case, user has to change his/her mental model to negative logic while fonnulating
tbequery.

e. Query (QS)

Query (Q5) involves existential or universal quantification. In SQL the NOT

EXISTS and EXISTS operators with two nested queries are required to specify the query.

This kind of query is similar to Query 10 which is composed in set-value, Chapter m. A.

2. e. Since the NOT EXISTS is used the user must think in the negative logic, which is more

118

difficult to fonnulate even for the experienced users. Not one of the subjects formulated a

correctanswerin SQLforthis query (QS). However, in DFQL, universal. quantifica~ can

be formulated just by using the groupAllSatiify operator. Therefme, for queries which

involve universal quantification, DFQL offers a mOle understandable approach than SQL.

By examining these five tasks. for a simple query which requires selection

and projection without nesting. SQL seems a simple and logical construct However, for

queries which require grouping. counting and universal quantification, DFQL seems better

in specifying the query than QBE and SQL.

n9

V. CONCLUSIONS

There are some known problems with a widely used query language such as SQL and

QBE. Some of the problems are the lack of expressing universal quantification. specifying

complex nested queries. and flexibility and consistency in specifying queries with respect

to data retrieval. To alleviate these problems, a new query language called "DFQL" was

proposed. We conducted a comparison of three languages: SQL, QBE. and DFQL.

Numerous queries were grouped into four categories: Single-value, sel-value,

statistical result, and set-coullt value; specified in SQL, QBE, and DFQL, and compared in

each category. In the queries comparison, queries ranged from the simple ones to queries

which are involved existential or universal quantification and complex nested queries.

Some of the queries are stand-alone, while some others specified are logical extensions of

one query to the next, with the complexity increasing (refer to Query 1 through 25 in

Chapter m). These representative sets of queries were chosen in order to investigate the

relative strengths and weaknesses of each language related to ease-of-use issues, especially

in e)(pressing universal quantification, nested queries, and flexibility and consistency in

specifying the queries with respect to data retrieval for RDBMS's.

In this research, based on the above queries mentioned, and the analysis which are

summarized in Table 3.1., we conclude that DFQL eliminates the problems which are

encountered by SQL and QBE mentioned above. The relative strengths of DFQL comes

mainly from its strict adherence to relational algebra and dataflow-based visuality. Strict

adherence to relational algebra allowed users not to worry about e)(ceptions as was the case

with SQL. Dataflow-based visuality required users only to master a very simple and

intuitive dataflow paradigm to write queries. A simple paradigm of dataflow suffices even

for a very complex query, because the complexity of the query is handled by high-level,

user-defined operations, not by e)(tending the language construct as is the case with the

120

other two languages. Although the number of subjects in our experiment is too small to

conclude affirmatively that DFQL is better than the other two. the result of the experiment

showed that DFQL's ease of query writing resulted in a greater percentage of cot:rect

queries, especially queries which involved count, grouping functions and universal

quantification (complex queries), than in either SQL or QBE.

121

LIST OF REFERENCES

[ANSI86] American National Standards Institute (ANSI), The Database Language
SQL. Document ANSI X3. 135-1986 (1986).

[Astr76] Astrahan, M. M., et aI., System R: Relational Approach to Database
Management, ACM Transactions on Database Systems, voLl, no.2, pp. 97-
137, June 1976.

[Cham74] Chamberlin, D. D., and Boyce, R.E. SEQUEL: A Structure English Query
language, Proceedings of the ACM--SIGFIDET Workshop, Ann Arbor,
Michigan, May 74.

[Chen76J Chen, P. P., The Entity-Relationship Model -- Toward a Unified of Data,
ACM transactions on Database System, voLl, March 1976.

[Clar91] Clark, G., and Wu, C. T., Dataflow Query Language for Relational
Database. Department of Computer Science Naval Postgraduate School,
Monterey CA.

[Codd70] Cadd, E. E, A Relational Model of Data Large Shared Data BanJc,
Communication oftheACM, vol. 13, no.6, pp. 377-397, June 1970.

[Codd71] Codd, E. E, Relational Completness of Data Base Sublanguages, Courant
Computer Science Symposiwn 6, Data base Systems, pp. 65-98, May 1971.

[Codd88a] Codd, E. F., Fatal Flaws in SQL: Pan I, Datamation, voL 34, pp. 45-48, 15
August 1988.

[Codd88bJ Codd, E. F., Fatal Flaws in SQL: Part 1[, Datamation, voL 34, pp. 71-74, 1
September 1988.

[Codd90] Codd, E. E, TIu! Relational Model for Database Management: Version 2,
Addison-Wesley, 1990.

[Date821 Date, C. J., An lntroduction to Database Systems, 'Third Edition Addition
Wesley, 1982.

[Date84] Date. C. J., A Critique of The SQL Database Language. ACM Sigmod
Record vol. 14,no. 3 pp. 8-54, November 1984.

[DateS7] Date, C. J., Where SQL Falls Short, Datamation, vol. 33, pp. 83-86, 1 May
1987.

122

[Date9Oa] Date,. C. J., Relational Database Writings 1985-1989, Addison-Wesley,
1990.

[Date90bj Date,. c. J.t An Introduction to Database Systems, Fifth Edition, Addition
Wesley, 1990.

[Elma89] Ebnasri, R.t and Navathe, S. B., Fundamental of Database Systems,
Benjamin/Cwnmings, 1989.

[Fran88] Frank. 1... Dotabase Theory and Practice. Addison-Wesley, 1988.

[Hans92] Hansen. G. W .• and Hansen, 1. W., Database Management and Design.
Prentice Hall, 1992.

[Negr89] Negri, M .• Pelagatti, G., and Sbattela, 1... Short Notes: Semantics and
Problem of Universal Quantification in SQL. The computer Joumal, voL 32,
pp.9O, 91, 1989.

[0zs089] Ozssoyoglu, G.. Matos, v., and Ozsoyoglu, Z. M.. Query Processing
Techniques in the Summary-Table-by-Example Database Query Language.
ACM Transactions on Database Synsns. vol. 14, no. 4, pp. 526-573.
December 1989.

[0zs093] Ozsoyoglu, G., "'" W B., Exmnpk-BOS<d Graphkal Da1iUxJs< Qrwy
l..dnguages. Computer, vol 26. DO. 5, May 1993.

[Reis7S] Reisner, P., Boyce. R. P •• and Chamberlin, D. D., Human factors evaluattoll
of two data base query languages-square and setJl"l, AFlPS Proceedings,
vol. 44, pp. 447-452. May 19-22, 1975.

[Reis811 Reisner. P.. Human Factors Studies of Database Query Languages: A Survey
and Assessment, Computing Surveys. voL 13. pp. 13-31, March 1981.

[Sebe89] Sebesta, R. w.. Concept 0/ Programming Languages. Benjamin Cumming,
1989.

[Schn78] Schneiderman, B., Improving the Human Factors Aspect 0{ Database
Interactions. ACM Thmsactions 011 Database Systems. voL 3, pp. 417-439.
Decen!be< 1978.

[Thrg93] 'IbrgaY. c., Design and implementation of Amadew Front-end System which
wes Data Flow Query Language for multiple RDBMS. Dcpanrnent of
Computer Science Naval Postgraduate School. Monterey CA.

[WeltSl] Welty. C., and Stemple, D. w.. Human Factors Comparison 0/ a Procedural
and a Nonp1'r1C«lura1 Query Language, ACM 'll"ansactions on Database
Sys1mlS, voL 6, pp. 626-649. December 1981.

123

fWu91J Wu, c. T., and Clark, G., DFQL: Dataflow Language for Relational
Databases, Department of Computer Science' Postgraduate School,
Monterey CA., 1991.

lZloo771 Zloof, M. M., Query-by-Example: A Data Base language, IBM System
Journal, vol. 16, pp, 324-343. 1977.

124

APPENDIX· A

EXAMPLE DATABASE

Through out this thesis all the query examples are matched the relational schema

database which is called COMPANY database [Ehna89).

'"

I EMPLOYEE

731F<!IIdreft.ik<u...,q.TX M

M

nu Cu&.Spring. IX F

291 Beny. BollU",. IX

97SRreOok,HIllllIU IX

'5631Rico.~TX

9S0Daibs.HrulllOn.TX

I DEP_LOCATIONS IllillMBl!R. ~

H<,,,u,,
Stafford
Bellaire

Su arland
Hoo""",

I DEPARTMENT I DNAMB I Dl:i!.!MIW& I MGRSSN I MGRSTAlITDATE

Resean:b , 333445555 22-Mav-78

981654321 Ol-JUI-1I5

HeadquBtfn 19-1un_71

I PROJRCT PNAME "'""""" PLQCATION DNUM I
Pm_ Bellaire ,
ProductY Sugarland -C~

'26

I DEPENDENT

11344~5555

3334455555

333445555 10 100

333445555 20 100

10 ,5.0

5.0

987654321 30

DSPENDENT NAME

05-A r-76 DAUGHTER

2.'5-Od_73 SON

127

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Stancn
Alexanderia, VA 22304-6145

2. Dudley Kno); Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis, Code CSILt
Chainnan. Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. C. Thomas Wu, Code CS[Wq
Professor, Computer Science Department
Naval Postgnuluate School
Monterey. CA 93943-5000

5, LCDR John S. Falby, USN, Code CS/Fa
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Head of Education of the Department of Defence and Security
KAPUSDIKLAT Departement Hankam
n. PangkaJan Jati No.1
Jakarta~ Selatan
Indonesia

Direktorat Pendidikan TNI-AL
Mabesal - Cilangkap
Jakarta - Timur
Indone~ia

R. Office of Defence Attache
Embassy of the Republic of Indonesia
2020 Ylassachusens Avenue, N.W.
Washington, D.C., 20036

Sl. Ka Dislitbangal
n. Pangkaian Jati :--'0. 1
Jakarta - Selatan
Indonesia

128

10. Ka Dispullahta
MABES TNI-AL
Cilangkap-Jakarta Timur
Indonesia

11. Paruntungan Girsang
Jl. Cawang Baru 34-36
Jakarta Timur
Indonesia

12. Main Library
University of Nonh Sumatera
Medm
Indonesia

13. Library of the Faculty of Technology
University of North Sumatera
Medm
Indonesia

129

r\!. ''''\U::",,' ;·:.,<)X LlBRP.RY
~ POSTGRADUATE SCHOOl
""'-REV ell. Q'1:9J.3"5101

