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ABSTRACT 

Structure Query Language (SQL) and Query By Example (QBE) are the most widely 

used query languages for Relational Database Management Systems (RDBMS's). 

However, both of them have problems concerning ease-of-use issues, especially in 

expressing universal quantification, specifying complex nested queries. and flexibility and 

cnnsistency in specifying queries with respect to data retrieval. To alleviate these problems. 

a new quczy language called "DataFlow Query Language" (DFQL) was proposed. 

This thesis investigates the relative strengths and weaknesses of these three languages. 

We divide queries into four categories: single-value. set-value, statistical result. and set

count value. In each category, a representative set of queries from each language is 

specified and compared. Some of the queries specified are logical extensions of the other 

(already deimed) queries. which are used to analyze the query languages' flexibility and 

consistency in fonnulating logically related queries. We perform a simple experiment of 

asking NPS CS students to write a small set of queries in all three languages. 

Based on the analysis. we conclude that DFQL eliminates the problems of SQL and 

QBE mentioned above. The relative strengths of DFQL comes mainly from its strict 

adherence to relational algebra and dataflow-based visuality. 
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L INTRODUCTION 

A. BACKGROUND 

The Relational model is used most often in current commercial Database 

Management Systems (DBMS's) compared to hierarchical and network models, since it is 

the simplest and most uniform data structure and is the most fannal in nature with respect 

to mathematical logic {Elma891. The theory was introduced by E. F. Codd in 1969 

[Codd90]. Today, numerous companies and institutions use Relational Database 

Management Systems (RDBMS's) in many different kinds of software packages that are 

equipped with several manipulation languages (database languages or query languages). 

The query languages that have been implemented and are available on commetcial 

DBMS's include Structure Query Language (SQL) and Query By Example (QBE), 

SQL is the best known text-based (line oriented) query language. Originally. SQL 

was known as SEQUEL. and was introduced in 1974 [Cham141. The earliest version of 

SQL was implemented in the system R project at IBM Rescareh Laboratory in San Jose, 

California [Astr76]. In 1986. the American National Standard Institute (ANSI) approved a 

standard (function and syntax) fm SQL [ANSI86J. which was accepted by the International 

Organization for Standardization (ISO) in 1987 [Date90a]. 

QBE was developed by IBM in 1976 at the IBM yorktown Heights Research 

Laboratory. NY. [Zloo77]. It is the ancestor of today's form-based interfaces (visual 

oriented query language). In QBB the query is specified by filling in a proper column in 

form of tables (relations) displayed on the screen, instead of writing linear or text 

statements. 



B. MOTIVATION 

SQL and QBE are two commonly used query languages and exist together in several 

DBMS products (e.g., DB21, SQI..IDS2, Oracle3, dBasc~, etc.), However. neither of 

these query languages have succeeded in alleviating the problems conce.m:ing ease-.of-use 

issues, especially in expressing universal quantification, specifying complex nestm 

queries., flexibility and consistency in specifying queries with respect to data retrieval. As 

discussed in [Date871. SQL docs not posses a simple, clean, and consistent structure, in 

either its syntax and semantics. Codd points out that SQL permits duplicate rows in 

relations. it supports an inadequa1cly defined kind of nesting of a query and does not 

adequately snppon three-valued logic [C0dd88a] [Codd9O]. In [Negr89] SQL constmcts 

are very complex. in particular Universal quantification. which are full of pitfalls for the 

inexperienced user. In contrast. QBE is much more intuitive. Bnt QBE still falls short, 

providing no support for existential or universal. quantification (Ema891 [~]. 

In order to alleviate the problems at issue above, a new language callod "Data Flow 

Query Language" (DFQL), was P"'JX>'Cd. DFQL is • graphical database m_ based 

on the data flow paradigm. DFQL retains all the power of current query languages and is 

equipped with an easy to use facility for extending the language with advanced operators, 

thus providing query facilities beyond the bencbmaJk of first-order predicate logic. 

Although. these three languages are all relationally complete6 [Date82] [Date841 [CIar91] 

[Fran88], thus expn:ssive powers are equiValent. However, they are not necessarily equally 

1. DB2 (lBM DATABASE 2) is a Il'adcmart ofImcmadonal BusineG Madtincs Cotpomlion. 
2.. SQ[JData System is a 1mdcmark of IDIemational Business Machines Corporation. 
3. 0Iw::le is a trademark of 0racIt CoIponRon. 
4.dBas=IVisattadcmaJkofAshton-Tatc. 
S. DFQL implemented by Lt. Oard I. ClaJk as his thesis work. (sec: Olaprer ll.C.2) under the 
supervisslon of Dr. C. 'Ibomas Wu, CompuIcr Science DcpartIQent, at Naval PosrpaduaIB Sc.bool 
(NPS}.ltiaiJnplmnlmaldinProJp:apb. 
6. Rdadc:ml Compleceaess meInS tbal a iangWIF is at 1cast as powerful as telItioDal aJ&ebra 
[lJ>M921. 



useful. For example.. a simple qucry is more easily specified in QBE than SQL. A number 

of comparative studies of two or three query languages have been perfonned [Reis751 

[ReisBl]. However, no direct comparison has been made of SQL. QBE. and DFQL, with 

respect to the above mentioned problems. Also. a simple experiment regarding ease~of-use 

in qucry writing for these three languages needs to be accomplished. 

C_ OBJECI1VE 

The focus of this research is to evaluate whether DFQL can alleviate the problems at 

issue faced by SQL and QBE by investigating the relative strengths and weaknesses 

concerning ease-of-use, especially in expressing universal quantification and specifying 

complex nested queries. A Category~based approach of comparing query languages is 

developed. With this approach, queries are divided into four categories: single-value. set

value. statistical result. set-count value. In each category, a representative set of queries 

from each language is specified and compared. Some of the queries specified are logical 

extensions of other (already defined) queries. and we used such extension types of queries 

are used to analyze the query languages's flexibility and consistency in fonnulating a 

logically related queries. In addition, a simple experiment of asking Naval Postgraduate 

School (NPS) Computer Science (CS) students to write a small set of queries in all three 

languages are perfonned. 

Our finding in this thesis work should serve as a basis for developing/improving the 

query language. In addition, by having a higher level of understanding on the relative 

strengths and weaknesses of each language in respective query categories, we will be able 

to provide or :recommend a suitable query language depending on the intended users. 



D. CHAPTER SUMMARY 

Chapter II presents a description of the Relational Model concept, SQL, QBE . .md 

DFQL and discusses the problems faced by SQL and QBE. In Chapter m, the numerous 

queries are presented by each category and composed in these three languages: SQL, QBE, 

and DFQL. The relative strengths and weaknesses with respect to data retrieval capabilities 

concerning ease-of-use, and flexibility and consistency in specifying the queries are 

discussed. The relational schema database is provided in Appendix A. Chapter III also 

provides an analysis of these three query languages. 

Chapter IV provides a discussion and analysis of a simple experiment of asking NPS 

CS students to write a small set of queries in all three query languages. Chapter V provides 

a conclusion. 



II. DESCRIPTION OF THE RELATIONAL MODEL AND QUERY 

LANGUAGES FOR RDBMS's 

As mentioned previously, the Relational Model was introduced by Codd in 1969. The 

basic concepts oithe Relational Model are needed as fundamental knowledge forproviding 

a better understanding of high~level data manipulation languages or query languages with 

respect to query specification for relational database retrieval operation. 

Query languages for RDBMS's can be classified into two categories: text-based 

languages and visual-based languages. This chapter presents the Relational Model 

concepts, text-based query languages and visual-based (or graphical) query languages. 

Within the discussion ofrext-based query languages, in addition to discussion of relational 

algebra and relational calculus, we particularly focus on SQL. The visual or graphical query 

languages discussion specifically emphasizes QBE and DFQL rather than the Entity 

Relationships (ER) model. 

A. THE RELATIONAL MODEL CONCEPTS 

The relational model represents the data in a database as a collection of relations. A 

relation is a mathematical tenn which represents a simple two-dimensional table structure, 

consisting of n-rows and m-columns that contain data values. In other words, a relational 

database is a collection of related information, or data values, stored in two-dimensional 

tables. 

To explain the relational data structure, we use the STUDENT relation (table) in 

Figure 2.1. In the STUDENT table, data is logically ordered by values of NAME, SSN 

(stands for Social_Security_Number), PHONE_NO, ADDRESS, and GPA, for each 

student data. Each student has a unique identification number, represented by SSN. 



1. Formal Terminology 

The relational database has lts own tenninology which is u:,ually u~ed in RDBMS 

appli.:atlOns. Examples include the tenns relation, attribute, tuple. domain, degree, 

cardinality, primary key, candidate keys and [oreiRn key. Consider the following brief 

explanation of these terms: 

• A relation corresponds to what we have generally been calling a table. 

• A tuple corresponds to a row in such a table, and an attribute corresponds to a table 
column. 

• Cardinality represents a number of tuples. and the number of atuibutes is called the 
deRree. 

• The primary key is a unique identifier for a table -- that is. a column or column 
combination with the property that, at any given time, no twO rows of the table contain 
the same value in that column or column combination. 

• Candidate keys are sets of attributes in a relation that could be chosen as a key. 

• A foreign key is a set of attributes in one relation that constitute a primary key of 
another relation's (or possibly the same) table. 

• A domain is a pool of values, from which one or more attributes (columns) draw their 
actual values [Date90a]. For example, the domain of SSN in Figure 2.1, written 
dom(SSN). is the set of all legal STUDENT SSNs. The set of values appearing in the 
attribute SSN of the STUDENT relation at any time is a subset of the domain. 

Using the terms above, and Figure 2.1, the relation schema for the STIJDENT 

relation has degree 6, which is: STUDENT (NAME, SSN, PHONE_NO, ADDRESS, SEX, 

GPA). The attributes have the following domains: dom(NAME) = Names, dom(SSN) '" 

dom(PHONE.-NO) LocaLPhoneflumber, 

dom(ADDRESS) = Addresses. dom(Sex) = Male/Female, dom(GPA) = 
Grade]oinCAverages. A relation r of the relation schema R (AI. A2, ...... An), also 

denoted by r(R), is a set of n-tuples r = {tl,t2, ..... , an}. Each n tuple t is an ordered list of 

n values t= < Vl,V2, ..... , Vo>, where each value Vi, 1<= i <=n, is an element of dom(Al) 

or is a special null value. Each tuple in the relation represents a particular student entity. 



where an entity IS an objeGt that i~ represented in the database. Null values represent 

attribute,s whose values are unknown or do not exist for some individual STUDENT tuples 

[Elma89]. In mathemao(;al terms, a relation I(R) is a subset o/the canesianproducr of the 

domains that define R 

r(R) !:; (dom(Al) X dom(A2) X .... X dom(An). 

Therefore, all possible combinations of values from the underlying domains can 

be specified by the cartesian product. 

NAME 

......... § 
Super key 

SSN 

\ 
,~ 

111·11·1111 

222·22"2222 

333·33·3133 

604-52-4982 

604-52·2942 

ADDRESS GPA 

PHONE_NO ADDRESS 

373·3726 12S0 First St.#8 

545·2589 3008 PaJsonCir. 

nun 1335 ThirdSt.#9 

646-8928 398 E Ricketts Rd. 

649-17'i6 302 Ocean Av. # 3 

Attributes 
Degree 

Figure 2.1: A Relation STUDENT Schema 

Domain 

SEX GPA 

M 3.9 

M 34 

F 15 

F J9 

M 40 

~ : 

j: 



2. Properties of Relations 

Relations possess certain properties, all of them immediate consequence~ of the 

definition of "relation". There are four properties, as follow [Date 9Oa]: 

• There arc no duplicate tuples; it follows the fact that the relation is a mathematical set 
(i.e. a set of tuples), and seL" in mathematics by definition do not include duplicate 
elements. An important corollary is that there always exlsts a primary key in a relation. 
Since each tuple is unique, it follows that at least the combination of all attributes of 
the relation has the uniqueness property. 

• Tuples are unordered within a relation (top to bottom) which follows the fact that seL'> 
in mathematics are not ordered. 

• All attribute values are atomic. At every row-and-column position within the table, 
there always exists precisely one value, never a list of values. However. a special value 
"null" is used as a column value of a particular tuple which is either "unknown", 
"attribute does not apply", or "has no value" in it. 

• Attributes are unordered (left to right), which follows the fact that the heading of a 
relation is also defined as a set (i.e. , a set of attributes, Of more accurately attribute
domain pairs). 

B. TEXT -BASED QUERY LANGUAGES 

The nature of text- based query languages is that queries are written in normal text 

editors (text-based). This category can be divided into three subclasses: relational algebra 

based, relational calculus based, and the combination of both. This section will focus on 

SQL. However, the general concept of the relational algebra and relational calculus is also 

covered. 

1. The Relational Algebra 

The Relational algebra is a technique fOf combining mathematical sets that have 

the property of being relations (tables); it was proposed by Codd [Codd70/. It is said to be 

a "proceduraf' Janguage, which means that the user must not only know what he wants 

when performing operations on relations, but also know how to get it. The user can specify 



a sequence (step by step) of relational operations to be performed on the tables of the 

schema to produce a desired result. The result of each operation fonns a new relation, 

which can be further manipulated. In other words, relational operators can be nested. The 

operations included in the Relational Model are: UNION, INTERSECTION, 

DIFFERENCE, CARTESIAN PRODUcr, SELEcr, PROJECT, and JOIN. Consider lhe 

query example in Query 2.1, which is specified using relational algebra. The English 

translation of the query is: "Retrieve the frrstname, last name, and salary of employees who 

work in project Computerization". Notice that all query examples in this chapter are 

matched to a relational database insrance of the COMPANY schema in Appendix A. 

COMPU ]ROJ t- a PNAME =" Computerization" (pROJEcn 

COMPU_PROJ_EMPS t- (COMPU_PROJ X DNO = DNUMEMPWYEE) 

RESULT t-1t FNAME.llIAME.SAl.ARy(COMPU_PROJ~MPS) 

Query 2.1: Example or Relational Algebra Query 

From the query above, we can detennine that: 

• There are three lines executed in sequence to give the desired result 

• The user is allowed to use a temporary name to store the result of a line and then use 
that name as an input to subsequent lines. 

• The query is written in a procedural language. 



2. The Relational Calculus 

The Relational Calculus was also proposed by Codd [Codd7l]. In relational 

calculus, a query is specified in a single step; which is why it is known liS a "IWn" 

proceduraf' language. However, Codd showed that relational calculus and relational 

algebra are logically equivalent, where any query specified in relational calculus can be 

specified in relational algebra as well, and vice versa. 

In this type of query language, a predicate calculus expression is used to specify 

the tuples desired. If Query 2.1 is specified using relational calculus, the structure is 

formulated like Query 2.2. Here, the free tuple variables "e" and "p" are used to make the 

logical connections between the EMPLOYEE (e) and PROJECf (P) relations, according to 

the join condition and selection condition specified by p. DNUM =e.DNO and p. PNM.1E 

= 'Computerization' respectively. The free tuple variables e. FNAJ\.1E, e. LNAME, e. 

SALARY are the attributes in which their tuples are considered to be retrieved, as long as 

its tuples the condition specified is satisfLied. 

{e. FNAME, e. LNAME, e. SALARY I EMPLOYEE (e) and (3 p)(PROJECf (p) 

andp. PNAME "" 'Computerization' and p. DNUM=e. DNO)} 

Query 2.2: Example of Relational Calculus Query 

3. Structure Query Language (SQL) 

The earliest version was designed and implemented by IBM Research as an 

interface for a relational database system Imown as SYSTEM R. It was the earliest of the 

high-level database language (non-procedural languages). Today SQL exists in several 

commercial RDBMS's products such as IBM's DB2. SQUDS, and Oracle. 
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SQL is a comprehensive database language; it has statements (text-based) for data 

definition language (DOL) and data manipulation language (DML). SQL also provides 

facilities for defining views on a database, for creating and dropping indexes on the mes 

that represent relations, and for embedding SQL statements into a general purpose language 

such as PL/I or Pascal [Elma89]. 

Data Definition in SQL 

As a SYSTEM R database language, SQL implements the terms table 

(relation), row (tuple), and column (attribute). The SQL commands for data definition are 

CREATE TABLE, ALTER TABLE, and DROP TABLE. These commands are used to 

specify the attributes of a relation, to add an attribute to a relation, and to delete a relation, 

respectively. 

b. Data Manipulation 

SQL contain a wide variety of data manipulation capabilities, both for 

querying and updating the database. However, this chapter will emphasize the features of 

queryingl that are related to the discussion in previous chapter. SQL is a relationally 

complete language. lis statements directly or indirectly contain some basic operators of 

both relational algebra and relational calculus. However, the "SELEcr" statement has no 

relationship to the "SELECf" operation of relational algebra. SQL allows arelation to have 

two or more tuples that are identical in their attribute values. To eliminate the duplicate 

tuples, SQL provides the keyword "DISTINIT' to be used in the SELECI' -clause; it means 

that only distinct tuples should remain in the result. The general syntax to be used for 

rettieving data in SQL consists of up to six clauses: 

1. Query in DBMS is used to describe daIa retrieval, not updale. 
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SELECT <attribute list> 

FROM <relation list> 

[WHERE <condition>] 

[GROUP BY <grouping attribute(s»} 

[HAVING <grouping condition>} 

(ORDER BY <attribute list>] 

• SELECT-clause; <attribute list> is a list of attribute names whose values are to be 
retrieved by the query. 

• FROM-clause; <relation list> is a list of the relation names required in the query, but 
not those needed in nested queries level. 

• WHERE-clause: <condition> is a conditional (Boolean) expression that identifies the 
tuples to be retrieved by the query from the relation(s) listed in the FROM-clause. 

• GROUP BY-clause; <grouping attribute(s» specifies grouping according to each 
value of the attribute(s). 

• HAVING-clause: <grouping condition> specifIes a condition on the groups being 
selected rather than on the individual tuples. 

• ORDER BY-clause; <attribute list> specifies an order for displaying the result of a 
query rElma89]. 

Notice, if the SELECT-clause and FROM-clause contain more than one 

attribute name or relation name respectively, they should be separated by commas. All 

attribute names listed in the SELECT or WHERE clauses must be found in one of the 

relations of the FROM-clause. The basic fonn of the SELECT statement sometimes calls a 

mapping or a SELEcr FROM WHERE block. Which looks like: 

SELEcr <attribute list> 

FROM <relation list> 

WHERE <condition> 

However, only the first two clauses, SELECT and FROM are mandatory. SQL 

provides five statistical functions, called built-in functions, which are COUNT. SUM. MIN. 

MAX and AVG. These functions examine a set ofmples in a relation and produce a single 
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value. For example, the COUN[ function will return the number of tuples satisfying the 

query. On the other hand, the functions SUM, MAX, MIN, and AVG, usually specified in 

the SELEcr -clause or the HAVING-clause, are applied to a set or multi-set of numeric 

values and perfonn the indicated operation on the values. 

Logical Operators of SQL 

The logical operators nonnally used while specifying the query are: 

• Comparison operators: =, < >, <, >, < =, > =. 
• Boolean connectives: any of the logical connectives AND, OR, NOT. 

o IN uses in nested queries, the expression evaluates to TRUE if there is included. at least 
a tuple in a sub-query; this operator corresponds to the set operator "is a member of' 
which is symbolized by "e " 

• EXISTS and NOT EXISTS always precede a sub-query. EXISTS evaluates to TRUE if 
the set resulting from a sub-query is not empty, and FALSE otherwise. This operator 
corresponds to the mathematical existential quantifier "3". The NOT EXISTS is the 
reverse evaluating to TRUE if the resulting set is empty, and FALSE otherwise. This 
operator conesponds to the "every" quantifier in the condition; the mathematical 
universal quantifier C"v'''). 

o liKE allows the user to obtain around the fact that matching to each value which is 
considered atomic and indivisible. 

The first two logical operators are normally used in the WHERE-clause. The 

comparison operators are used to specify the selection conditions desired, and the equality 

("=") operator is used to specify the join condition between the relations. On the other hand, 

Boolean connectives are used to create compound condition or to negate a condition 

[Ebna89] [Fran88] [Hans92J. 

d. The Problems with SQL 

SQL is implemented as a mixture of both relational calculus and relational 

algebra by including the nesting capability and block structure feature. However, SQL 

tends more towards the relational calculus approach; it is primarily declarative in nature 
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rather than a procedural language. The user specifies what the result should be in one 

statement rather than in a sequence of statements. Date conunents: "When the language 

(SQL) was frrst designed. it was specifically intended to differ from the relational calculus 

(and, I believe, from the relational algebra) .... As time went by, however, it turned out that 

certain algebraic and calculus features were necessary after all, and the language grew to 

accommodate them" [Date87J. As aresult, it is a strict implementation of neither relational 

algebra nor relational calculus. 

(1) Declarative Nature. As mentioned above, SQL is prirnarily a 

declarative query language. As a matter of fact, the user is intended to construct the query 

based on relational calculus or first-order predicate calculus logic. So, all of the conditions 

are specified in a single statement. For a simple query, this is straight-forward approach; 

for more complex query however, the logical expression required to specify the conditions 

to be met can become quite complicated. This problem is compounded when the complex 

query involves universal quantification (discussed later). 'This approach may not always 

present the clearest representation of the query to the user. From the user point of view, we 

consider that it's related to human nature to think of a complex problem in a sequential 

fashion rather than in a declarative fashion of the entire the problem at once. 

In addition. ease-of-use issues for database query languages relating 

to improving the human factors aspect have become evident [Schn781. Subsequently, 

human factors studies have been done regarding the declarative versus procedural 

implementations of query languages. The result of these studies show that, for complex or 

difficult queries, the users perform correctly more often in specifying queries when using 

a procedural query language than a declarative language such as SQL [WeltS 1]. However, 

the complexity of the declarative nature of SQL is compensated for by embedding SQL 

queries into a procedural third generation programming language such as PUt, PASCAL, 

or COBOL Here, mostembedded query languages give the user the ability to use the query 
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language in a procedural manner if desired. In this way. the user is allowed to obtain 

advantage of the features of the host language to accomplish operations that are very 

difficult to code in the query language. 

(2) Universal Quantification. In English query, the idea of universal 

quantification is phrased "for all". 1bis kind of query is supponed indirectly in SQL, which 

occurs due to the lack of a specific "for all" operator. In the case of the above mentioned. 

SQL forces the user to use a "NOT EXIST' operator as a "negative logic" in order to achieve 

the effect of universal quantification and "EXIST' for existential quantification in a nesting 

SELECT statement As a matter of fact, the logical meaning of these operations is not 

completely intuitive, especially to the inexperienced user who is not accustomed to using 

predicate logic. When using the logical ideas presented by these operators, most individuals 

(of users) fall into error; it has been shown to be difficult to use them correctly even when 

the user has experience in this area [Negr89]. 

The following example is presented to show how SQL expresses the 

idea of universal quantification in a query; in fact. it is somewhat complicated. If the 

complexity of queries increases, then the difficulty of specifying or understanding it 

increases rapidly. Consider the following relation as a subset of a database schema that is 

presented in Appendix A (key attributes are~. 

EMPLOYEE (FNAME. MINIT, LNAME, sm BOA TE, 

ADDRESS, SEX. 

SALARY, SUPERSSN, DNO) 

DEPARTMENT (DNAME. Illi!lMBER. MGRSSN, 

MGRSTARTDATE) 

DEPENDENT (ESSN, PEPRNQRNT NAME SEX, BDATE, 

RELATIONSHIP) 
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The English query is: "Retrieve the department names in which all of 

its employees who have a salary more than $40,000 also have at least one male dependent". 

The SQL query is given in Query 2.3. 

SELECT DNAME 

FROM DEPARTMENT 

WHERE NOT EXISTS (SELECT * 

FROM EMPLOYEE 

WHERE DNUMBER = DNO 

AND SALARY < = 40000 

AND EXISTS 

(SELECT * 
FROM DEPENDE.t-.! 

WHERE SSN::I ESSN 

AND SEX<> 'M')) 

Query 2.3: Example of SQL Query 

The query implements a NOT EXISTS operator in the WHERE

clause (in the third line) of the query as a negative logic in order to express the universal 

quantification. The attribute SALARY is compared as "less than or equal to" instead of 

"greater than" in the "outer" nested query and the attribute SEX is also compared as "not 

equal" rather than "equal" in the "inner" nested query where the logic of "there exists" is 

used for the dependents. Therefore, a direct English translation of the SQL query above is: 

"Select the names of departments such that there does not exist any employee whose salary 

is less than or equal to $40,000. and there exists at least one dependent that is not "male". 
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The specification required to fonn the query above is not straight forward at all; the query 

formulation involves negative logic that is extremely easy to mix-up, even for the 

experienced user. In addition, it is difficult to read and know what is actually being 

specifIed. So, if it is difficult to understand what the query is going to do, it means the 

language lacks ease of comprehension and will affect not only query readability but also 

the ability of the user to specify the correct query. 

(3) Lack of Orthogonality. "Orthogonality in a programming language 

means that there is a relatively small set of primitives that can be combined in a relatively 

small number of ways to build the conlrOl and data structures of the language." [Sebe89] 

[DateS7]. SQL does not provide the user with a simple. clean, and consistent structure. In 

SQL, there are numerous examples of "arbitrary restrictions, exceptions, and specialrules." 

[Date90b]. An example of an unorthogonal construct in SQL is allowing only a single 

DISINCT keyword in a SELECT statement at any level of nesting, 

(4) Nesting Construct. SQL permits a nesting structure of the form: 

SELECT <attribute list> 

FROM <relation list> 

WHERE attribute IN 

(SELECT ....... ) 

This format allows for a block strucwre type of construct. The original PUIpose of 

this nesting construct was to allow the specification of certain types of queries without 

resorting to the use of relational algebra or relational calClllus, According to Codd, the 

nesting construct is a part of the "psychological mix~up" in SQL. While all queries that are 

specified using the nesting construct should be directly translatable into queries using an 

equi-join instead, Codd shows that if allowing for the existence of duplicate rows in tables 

(as SQL does), one will come up with a different result when performing the equi-join 
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version of the query than when perfonning the nested version [Codd90]. For detailed 

descriptions of SQL probll:ms. see [Clar911 [Wu91J. 

C. VISUAL-BASED QUERY LANGUAGES 

Visual query languages allow the user to visually specify a query on the screen by 

using special graphical editors. Here, visual means not purely textual. This kind of language 

is also know as a graphical language. We can classify these languages into three categories 

of visual-based query languages. The first category includes those which use a/orm-based 

representation, the second is based on the entity-relationship2 model's [Chen76] 

representation, and the third includes data flow query languages. In this section we 

examine QBu as an example of a form-based query language, DFQL as a data flow query 

language, and tbe ER modeL 

1. QBE, a Form-based Query Language 

QBE was developed roughly at the same time as SQL during the seventies at 

mM's Laboratory Research Center [Zloo77]. Today, both languages are available and 

supported in the Query Management Facility (QMF)3 offered by IBM. QBE has a user

friendly interface. While specifying tbe query, the user does not have to specify a structured 

query or text statement explicitly as in SQL. Instead, the query is formulated by filling! 

placing "variables" in the proper colunms in forms of tables (relations) that are displayed 

on the tenninal screen. This means that the user does not have to remember the name of 

attributes or relations. Since operations are specified in the tabular from of tables, it can be 

said that QBE has a "two~dimensional syntax" [Date82] [Elma89]. In addition, in QBE 

2. Entity-relationship Model is introduced by Chen, P. in 1976 as a pictorial conceptual design 
methodology for the relation modeL 
3. ThediaiectofQBE supponed in QMF is~lightIydifferentfromlhalproposedbyZLoof. the orig
inal designe( of QBE lZI00771, because QMF implements QBE by IUlItttanslaIing it to SQL 
[Date90]. QMF is a separale product from DB2 and acts as aqooryJanguage and report writer -. 
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there are no rigid syntax rules that should be followed by the user while specifying the 

query specifIcation. Instead, the user enters the ''variables'' as "constanf' and "example" 

values in the proper columns of the fonns to construct an "example" of the data for the 

retrieval or update query. Like in SQL, this pan also emphasizes data retrieval queries. 

QBE is related to the domain relational calculus, and its original specification has been 

shown to be relationally complete [E1ma89]. 

Data Retrieval 

As mentioned above, in order to specify the query for data retrieval, the 

user should enter "example" or "constanf' values into the proper colwnns in the fonn of 

tables (relations). In QBE, the entering of "example" values, usually preceded by "_" 

(underscore) character, means the example value does not have to match specific values of 

tuples in the database, so it really represents the "free domain variable". On the other hand, 

"constant" values must be matched by corresponding tuple values in the database. If the 

user is interested in particular tuple values, the user types the preflX "P." in that particular 

column (attribute). "P." is used to retrieve a desired attribute value from a tuple which 

satisfies the query, "P" standing for "prinf'. 

EMPLOYEE I FNAME I MINIT I !.NAME I ~ I BDATE I ADDRESS I SEX I SALARY I SUPERSNN I DNO I 
I' 1 I' 1 1 1 1 1 'UNQ 1 1 Jh 1 

I .. orner I PNAME I ~ I PLOCATION I DNtTh1 I 
Computenzatton ' p. _Dx 

Query 2.4: Example of QBE Query 

Similar to SQL, QBE also allows relations to have duplicate tuples. To 

eliminate the duplicate tuples in the result of a query. QBE uses the prefix "UNQ." which 
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means keep only unique tuples in a query result. See the query example in Query 2.4. The 

English translation of the query is; "Retrieve the first name, last name, and distinct ~alary 

of employee~ who works in projects ·'computerization". 

From the example QRE query, it can be determined that: 

• "_Dx" is an "example" value to join the two tables by using "Dno" as aforeign key 

• "Computerization" is an actual "constant" value. In other words, the selection 
condition using the equality (=) comparison is specified by entering directly a constant 
value under a proper colunm. 

• "P" means to retrieve the attribute value for tuples satisfying the query. 

h. BuiU-infunctiDns, Grouping and other Operators 

Like SQL, QBE is also equipped with built-functions, such as CNT. (for 

count), SUM., .MAX., :MIN., and AVa. However, in QBE the functions SUM., CNT., and 

AVG. are applied to "distinct' values. If the user wants these function to awly to all value~ 

desired. it should be entered by using the prefix ".ALL" 4. QBE provides a "0." operator as 

a grouping aggregate function. It is analogous to the SQL GROUP BY -clause. and the 

"condition box" in QBE is used in the same manner as the HAVING-clause in SQL QBE 

also uses the same comparison operators as SQL except equality (=). Therefore. the user 

explicitly enters the >. ;::. < , :S:before typing a constant value. QBE also has a negation 

symbol (--,), which is used in a manner similar to the NOT EXISTS in SQL, but the same 

effect can also be obtained by using the ",*" operator. In addition, QBE also has prefixes 

"AO." (for ascending order), and "DD."(for descending order), in order to get an ordered 

list of tuples. 

4. InQBE underQMF "AU~ is unrelated to theuniversaJ. quantifier [Elma891. 
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The Problems wUh QBE 

As mentioned above, QBE is very intuitive, even for novice users. It allows 

the relatively inexperienced users to get started in specifying simple queries, even though 

they have no prior knowledge of programming languages. Unfortunately, it becomes less 

and less useful as the complexity of the queries increases and has problems with more 

complex queries [Ozso93]. 

The expression of universal quantification in QBE as originally proposed 

by Zloof [Zloo77] did include support for "NOT EXISTS", but it was difficult and always 

somewhat troublesome [Date90a]. However, today's QBE that has been released as a 

conunercial product cannot implement universal quantification. In fact, the QBE that we 

discuss here (QBE under ffiM's QMF) provides no support for universal or existential 

quantification of the form of "'<:/" or "3". Thus, queries which involve universal 

quantification cannot be specified [Date90a] [Elma89] [Ozso89]. Therefore, it is not 

reiationally complete. 

2. DataFlow Query Language (DFQL) 

DFQL is a visuaVgraphical interface to relational algebra based on the dataflow 

paradigm. It retains all the capabilities of current query languages and is provided with an 

easy to use facility which extends the query language. This extension allows the users to 

create new operators from existing primitive or user-defined operators. DFQL includes 

aggregate functions in addition to the operators of relation ally complete query language. It 

has the power of expression beyond the benchmark. of first order predicate calculus by 

providing the user with the capabilities to specify universal and existential quantification. 

Queries are specified by the user connecting the desiwdDFQL operators graphically on the 

computer screen. The arguments for the operator flow from the bottom or "output node" of 

the operator to the top or "input node" of the next operator. 
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DFQL Operators 

All DFQL operators have the same basic appearance to enhance tile 

orthogonality5 of lhe language, Tn Figure 2.2. is a sample operator (with no name). It is 

made up of three types of components; the input nodes, the body, and the output node. 

In DFQL, the functional paradigm is fully supported by the DFQL notation. 

The input to each operator, or function, arrives at the input nodes of the operator and the 

result leaves from the output node. Therefore, all of the operators of DFQL implement 

operational closure. TIris means that the inputs to the operators are relations and associated 

textual instructions, and the output from each operator is always a relation. 

;rTnpmnodes 
Body , ;-

~ 
L Output node 

Figure 2.2: Operator Construction 

Infact, DFQL operators can be grouped into two basic categories: primitive 

and user-dejined operators. Eachprimitive has a one-to·one correspondence with an actual 

method in the implementation language of the interpreter. User-defined operators are 

created from primitive operators and possibly other user-defined operators which have been 

previously created. Next, primitive operators can be broken down into basic, other 

primitives, and display operators. 

s. Orthogonality in a programming language means th= is areladvely small set ofprimltives \hat 
can be comllined in arelatively smaIl number of ways 10 buildlhe control anddarasttucttaes of the 
Ianguage[Sabe89j. 
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(1) Basic Operators. DFQL provides six basic operators derived from the 

requirement for relational completeness and also the requirement to provide a fonn of 

grouping or aggregation. Thus, DFQL has the expressive power of ftrst-order predicate 

calculus. To be relationally complete, at least ftve relational operators must be 

implemented, namely select, project, union, join, and difference. See Table 2.1, which 

illustrates the basic DFQL operators and their corresponding translation in SQL. 

TABLE 2.1: BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS 

SQL 

SELECT 

PROJECT 

Description SQL Equivalent 

Implements the relational algebra SELECT DISTINCT of< 

selection operator. The algebraic FROM relaiion 
notation is: WHERE condition 

a<condition> (<relation». 
It retrieves tuples from the relation 
wbich fits the specified condition. There 
are no duplicate tuples in the result 

Implements the relational algebra SELECT DISTINCT 
projection operator. The algebraic attribute list 
notation is: FROM relation 

1t<attribute liSI> ( <relation». 
The attributes list, separated by commas 
contains the names of attributes to be 
retrieved from the relation. The project 
operator eliminates duplicate tuples from 
the result 
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DFQL 

TABLE 2.1: (Continued). 

Description 

Implements the relational algebra theta
join operator. The algebraic notation is: Vreiation2 <relation1> x<CQruJition> <relation2>. 

relation! condition ;:;se~p:s :~~~!s th~t:itic':te~ 
product. If there is no condition input. 

om the join o~rator is "canesian product". 
If both relations have the same name for 

JOIN an attribute which must be used in the 
condition, use left to right order of 
relations coming into the operator (e.g. 
rl.ssn = r2.essn), where ssn and essn are 
primary keys or foreign keys of relationl 
and relation2 respectively. 

SQL Equivalent 

SELECT DISTINCT * 
FROM relationl rl, 
re1ati0n2I'2 
WHERE condition 

,,'¥Q02 Implements the relational algebra, SELECT DISTINCT" 

:!"'::':~s: operation. The algebraic :S relalionl 
SELECT DISTINCT" 

<relation!> • <relation2>. FROM relation2 
Relational difference returns as a result a 
relation that contains all the tuples that 
occur in <relation!> but not in 

DIFFERENCE <relation2>. diff requires that both 
relations be union compatible. 
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DFQL 

UNION 

TABLE 2.1: (Continued). 

Description 

Implements the relational algebra union 
operation. The algebraic notation is: 
<relation I> u <relation2>. 

This operator takes aU the tuples from 
both relations and combines them, 
duplicate tuples being eliminated. Union 
requires both relations to be union 
compatible. This restriction is necessary 
since union does not create additional 
columns for the output relation. 

GroupCnt (a shon hand for group count) 
grouping attributes is defined as a basic operator in order to 1/z-- provide the user with some simple relatton ..... 

count attribute aggreganon capabihnes. It provides the 
user a means to fonnulate queries that 
involve universal quantification. 

group t ~:~: a=:. am:la!o:n~ li:~! 
GROUP eNT for the result. Grouping attributes can be 

mOte than one attribute. separated by 
commas. The count result is an integer 
which gives the total number of tuples in 
that grouping. 

" 

SQL Equivalent 

SELECT DISTINCT" 
FROM relational! 
UNION 
SELECT DISTINCT" 
FROMrelational2 

SELECT DISTINCT 
grouping attributes, 
COUNT(") COWlt attr. 
FROM relation 
GROUP BY 
groupingactributes 



(2) Other Primitives Operators. DFQL provides several other primitive 

operators to perfonn special operations on relations. Most of these additional primitives 

perform operations at such a low level that the user would not be able to specify them as a 

user-defined operator. However, all of these additional operators could also be specifIed as 

user-defmed. operators as well, To illustrate, see Table 2.2, which lists th.ese other primitive 

operators and their corresponding translation into SQL. 

TABLE 2.2: NON-BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS 

SQL Description 

hnplements relational algebra 
intersection operation. The algebraic 
notation is: 
<relationl> n <relation2>. 
It returns the tuples which exist in both 
relations, as a result out relation. 
Intersect requires both relations to be 
union compatible. The implementation 
of intersect is identical to union and diff 
operators. 

II SQL Equivalent 

SELECT DISTINCT '" 
FROMrelationl 
INTERSECT 
SELECT DISTINCT '" 
FROMrelation2 

Finds the minimum value of the SELECT DISTINCT 
attributes specified attribute in separated sections 

according to the grouping attributes. It 
gives the grouping attributes and 
produces the minimum values of each 
group in a column named with the given 
alias name as a result of relation. 

GROUPI'tfIN 
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grouping attributes, 
MIN (aggr. attr) 
FROM relation 
GROUP BY 
grouping attributes 



DFQL 

GROUPAVG 

TABLE 2.2: (Continued). 

Description SQL Equivaleht 

Similar to groupMin except it finds the SELECT DISTINCT 
maximum value of the aggregate grouping attributes, 
attributes according to the grouping MAX(aggr. !l!tr.) 
attribute. FROM relation 

GROUP BY group!l!tr. 

Similar to the previous operator, except SELECT DISTINCT 
it finds the total value of all the aggregate grouping attributes, 
attribute's values according to the SUM (aggr. attr.) 
grouping attributes. :~~re~~on 

grouping anributes. 

As previous operators, except it finds the SELECT DISTINCT 
average value of the aggregate attributes grouping attributes, 
according to the grouping attributes. AVG(aggr. attr.) 

FROMre1ation 
GROUP BY 
grouping attributes. 



DFQL 

groUtlln2 attributes 

l~lT 
grou All ati 

GROUP AU. SATISFY 

grouping attributes 

~11 
oneSati 

GROUP NONE SATISFY 

groupinl!; attributes 

I~ 
(groupNSatisfy) 

GROUP N SATISFY 

TABLE 2.2: (Continued). 

Description II SQL EqUi~ 
It is a simple way of introducing It can be translated into 
universal quantification. It takes a a sequence of SQL 

relation and splits the tuples according to statements. 
the grouping attribute list and then 
checks all tuples in individual groups 
according to the condition specified. If 
all the tuples satisfy the condition then 
an output tuple value is generated 
consisting of the grouping attribute list. 
So, it means that this group satisfies the 
condition in all their tuples. 

This operator is the opposite of It can be translated into 
groupAllSatisj'y operator. It gives the a sequence of SQL 
grouping attributes only if none of the 
tuples satisfies the condition. 

It is closely related to groupAUSatisfy. It can be translated into 
The only difference is that groupNSatisfy a sequence of SQL 
takes an extra input which allows the statements. 
user to specify exactly how many of the 
tuples in the group need to satisfy the 
given condition in order for that group to 
be included in the resulting relation. So, 
the fourth argument (number), most 
consist of one of the operators (<, >, = < 
=, >=, 1=) andanumber. 
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(3) Display Operators. The display opemtors are provided to allow the: 

user to print the contents of a relation on the computer screen. The most common usage is 

to print out the fmal result of a query. There are two display operators: 

• display. It takes as inputs a relation and a text string to be used as a title. The title 
makes it easy to differentiate between printed results when more than one display 
operator is used in a query. 

• sdisplay. It is used to produce a sorted printout of a relation. Each attribute in the list 
may be followed by "ASC" (ascending) or "DESC" (descending). 

(4) User-defined Operators. These kinds of operators give the flexibility 

to the user to defIne his/her own style of operator and extend the capability of the language 

according to his/her desires. With user-defined operators, the user can construct his own 

operators that look and behave exactly like the primitive operators provided in DFQL. The 

user can create operators for situations that are unique to his query needs. This kind of 

flexibility is gained without a loss of the power of orthogonality, since user-defmed 

operators are constructed by combining the available primitives with previously dermed 

user operators WI well. 

(5) DFQL Query Construction. General ideas behind DFQL construction 

have been implicitly discussed. Query constructions will be presented in Chapter m. All 

DFQL queries exist as data flow programs in which text objects and operators are 

connected to each other by lines called data flow paths and all of the information traverse 

these paths dming execution. DFQL objects, except operations. do not have any input 

nodes and can be executed anytime. They pass the relation object, attribute list, or condition 

in order to be used by an operator. As soon WI all the input nodes have the information, the 

operator can be executed and produces a relation at its output node. Since a DFQL query 

does not pennit iteration and recursion, however, execution of the query can be visualized 
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as flowing from the top the diagram to the bottom.. There is no resttiction on how operators 

are placed on the scr~ top-down placement is rectlmmended for readability. 

(6) Incremental Queries. This is the most important feature provided by 

DFQL. It allows the user to specify or create his/her queries incrementally. In other words, 

the user can fonnulate one portion of the query, and then check the Results (returns backif 

needed), and continue to build/create other portions of the query one by one. This capability 

gives more flexibility to the user during hlslher work, especially when creating a complex 

query. It helps the user prevent losing track of what he/she is doing and provides 

intermediate results to help in query construction. Specifically, this feature can be divided 

into two sections, namely incremental construction and incremental execution. 

• Incremental Construction. This provides the user with the capability to specify/create 
the query part by part, which is ncreasingly helpful as the complexity of the query 
increases. 

• Incremental Execution.This feature is helpful during the debugging of complex 
queries. IT a complete query does not produce a desired result. it allows the user to 
check level by level in order to fmd the erroneous part and fix it. Therefore, the user 
can see the intermediate result at any level by executing the query incrementally. 

(7) Universal Quantification. The problem of expressing universal 

quantification in existing query languages has been discussed in previous section. DFQL 

provides a unique solution to this problem. by implementing simple counting logic to 

achieve the result that fulfill the requirements of universal quantification. The basic idea 

employed is that if all tuples in a relation or a group must satisfy some criteria, the number 

of tuples that meet the criteria are counted and then compared to the total number of tuples 

under consideration. If these two numbers are equal, then the universal quantifier has been 

satisfied. In DFQL, the operators that can implement universal quantification are: 

groupAllSatisfy, groupNoneSatisj'y, and groupNSatisfy operators. However, the users can 
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achieve universal quantification as well by building their own quantifications as a user

defmed operator using the primitive operators. 

(8) Nesting and Functional Notation. The nesting feature of SQL exists 

naturally in DFQL. As discussed before, one by one execution of operators to supply input 

data to other operator is like block structured execution in SQL from the "inside" to the 

"outside" of nesting queries. The lack of specific nesting structures in DFQL improves the 

readability and orthogonality of the language. The use of functional notation for all of the 

DFQL operators greatly enhances orthogonality. Relational operational closure is 

implemented by the functional paradigm. The use of operators that may take more than one 

input but produce only one output allows for their easy combination into user-defmed 

operators as discussed before. 

(9) Graphical Structure ofDFQL Query. DFQL's visual representation of 

the query is a data flow graph consisting of DFQL objects which are connected together 

by lines of data flow paths. As such, the graphical structure represents the relational 

algebra structure for execution of the query. By using a graphical relational algebra 

approach to query fonnulation, it provides a much more consistent and straight forward 

interface to the databases. 

3. Entity.Relationsbip Model Interface 

The Entity- Relationship (ER) model was introduced in [Chen76]. The ER model 

has been used extensively as a high-level conceptual data model. The main idea behind this 

model is to illustrate the concepts of entity types and relationships between entity types in 

a graphical way in order to enhance understanding of the structure desire for a database. An 

example of visual representation of the ER model is shown in Figure 2.3. 
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Figure 2.3: ER schema diagram of the COMPANY database [Elma89] 

From the ER diagram we can illustrate thai: 

• The entity types such as EMPLOYEEE, DEPARTMENT, and PROJECf are 
represented as rectangular boxes . 

• Relationship types such as WORKS~FOR, MANAGES, CONTROLS, and 
WORKS_ON are represented as diamond-shape boxes that are attached to the 
partici.pating entity types with straight lines. 

o Both entity types and relationship types have attributes which are represented by the 
oval circles where each attribute is attached to its entity type or relationship type by 
a straight line. 
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• "Name" is an attribute of EMPLOYEE and has composite attributes such as Fname, 
Minit, and Lname. 

• Location in double ovals represents multivalued attributes, and dotted ovals represent 
derived attributes. 

• Key attributes have their names underlined 

• Double rectangles represent a weak entity, where the weak entity means an entity type 
which may not have any key attributes, aru:t the double diamond as the identifying 
relationship. 

• The partial key of the weak entity type is underlined with dotted line. 

• The participation constraint is specified by a single line for partial participation, with 
the cardinality ratio is attached; a double line illustrates total participation. For 
example, the participation of EMPLOYEE in WORKS_FOR is total (every employee 
must work: for a department), while the participation of EMPLOYEE in MANAGES 
is partial (not every employee manages a department). [Elma89] 

The idea of using the ER diagram as a query language is to let the user not worry 

about the particularjoin conditions between entity types, however, it tends to force the user 

to rely on the specified relationships. These relationships are all displayed to the user. Th.i.s 

can be a benefit to a novice user, who does not really understand how the data in the 

database fits together, but it seems somewhat fatal, to write queries which depend on 

relationships that the user may not fully understand. The ability to use a relationship 

without knowing how it is actually set up increases the chance of syntactically correct 

queries that will produce the wrong result The ER model as mentioned above does not 

affect our next discussion. It is presented in order to illustrate features of another visual

based query language that are also available for RDBMS's. 
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IlL THE COMPARISON OF SQL, QBE AND DFQL WITH RESPECT 

TO DATA RETRIEVAL CAPABILITIES 

First of all. we consider that the notion of a query language as a high Jevellanguage 

means it is intended to be used by a non-programmer or a user without specialized training. 

However. as mentioned in two previous chapters, the user faces some difficulties in 

specifying correct queries, especially as they relate to universal quantification and nesting 

in SQL, and universal quantification in QBE. Then, we attempt to observe how DFQL 

overcomes the problems that are encountered by SQL and QBE. 

This chapter focuses on the comparison of SQL. QBE, and DFQL. In order to 

accomplish the comparison of these three languages. numerous queries arc composed by 

category, in which each language is specified and compared. Some of the queries are stand

alone, but some others specified are logical extensions (or the complexity is increased) 

from one query to the next. Such extension types of queries are chosen to analyze the query 

language's ease-of-use, flexibility, and consistency in formulating logically related queries 

with respect to data retrieval for RDBMS's. Consider the following. brief explanation: 

• Ease·oj-use particularly emphasizes how easy the query language is to learn and 
express queries in. 

• Flexibility means more than one way of expressing a single query. 

• Consistency means similar thinking in a mental mooel can be expressed in a similar 
structure in the language. 

All the representative set of queries presented are matched to the rabies of a relational 

database instance of the COMPANY schema which are provided in Appendix A. Some of 

the queries are related to queries that are presented in [Bma89]. Based on the above, this 

chapter is divided into two sections: first the categories of the queries, and second is the 

analysis of the strengths and weaknesses of the comparison of all three languages. 
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A. CATEGORIES OF QUERY 

In order to compare these three languages, numerous queries are composed by 

category. The queries are divided into four categories: single-value, set-value, statistical 

result, and set-count value. In each category SQL, QBE, and DFQL are specified and 

compared. 

1. Single-Value 

In this category the user (end user) attempts to obtain a proper relation of a 

relation (table). based on a single-value expression. As a result of the single value 

expression in the queries, the user can expect to obtain a table. a single column, a single 

row, or a single scalar value. These correspond to a constant value of table-expression. 

column--ex.pression. row-expression and scalar-ex.pression, respectively. in a relation. A 

scalar-expression is a special case of a row-expre:lsion and a special case of a column

expression [Date83J. The null value in this case is also presented as single value (see 

Chapter ILA). 

In this category. the operators such as "=", "c', "<=", ''>'', ">=", and "like", are 

generally used in the relation-operation, but we can also perform the standard arithmetic 

operators "+", ".", "*" and "/". In addition, if we are concemed with a single scalar value, 

a set of special aggregate functions such as COUNT, SUM, AVa, MIN and MAX can also 

be applied. In this research these aggregate functions fall under the statistical-result 

category. Consider the following queries: 
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a. Query 1: Simple retrieval 

List the salary of every employee. 

(I) SQL 

SELECT SALARY • SELECT SALARY 

FROM EMPLOYEE FROM EMPLOYEE 

WHERE TRUE = TRUE 

Sinee in the WHERE"c1ause we ean specify TRUE:::; TRUE, the 

above query can be considered single value. It yields a single column to be a new relation. 

If there are multiple employees with the same salary, that salary will be displayed multiple 

times as redundant duplicate tuples in the result of the query. If we are concerned with 

distinct values, SQL a!lows us to use the keyword DISTINCf in the SELECT -clause: 

SELECT DISTINCT SALARY 

FROM E1v1PLOYEE 

The results of these two alternative queries are: 

Without keyword DISTINCT 

SALARY 

30000 

40000 

25000 

43000 

3""" 
25000 

25000 

55000 
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With keyword DISTINCT 

40000 

25000 

43000 

38000 

55000 



(2) QBE 

Since we are interested in retrieving the SALARY values, in QBE 

"P._Sx" is placed in the column of the SALARY atEribute. As discussed in Chapter II, the 

prefix "P" is used to indicate that the values of the SALARY column are to be retrieved. 

General speaking, QBE al10ws the user just to specify "P." instead of "P._Sx". In other 

words, QBE retrieves the same thing. This seems very simple to specify. However, in some 

cases QBE also allows redundant duplicate tuples to exist in the result. In order to avoid 

redundant tuples, the prefix "UNQ." is needed as an operator since it keeps only unique 

tuples in a query result. Therefore, if we are concerned with distinct values. the "P._Sx" 

from the above query can be replaced by "P. UNQ._Sx". The results are the same as for the 

SQL query above. 

(3) DFQL 

~ 
;J; 

The attribute list Salary is to be retrieved from the EMPLOYEE 

relation. The result of the projection is displayed on the screen by display operator. The 
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result is a proper relation which contains only the values from the column of the specified 

attribute Salary. Here, the project operator eliminates the redundant duplicate tuples of the 

attribute. The result is the same as the SQL query using the DISTINCf operator in "a(l)" 

above. 

b. Query 2: Qualified retrieval 

List all employees whose salary is more than $50,000. 

(1) SQL 

SELECT '" 

FROM EMPLOYEE 

WHERE SALARY >5OCKJO 

The asterisk ('II) in the SELECT --clause is shorthand for retrieving all 

the attribute values, in order. of tuples satisfying the query. The tuple selected must satisfy 

the condition "SALARY >50000". Since the query is asking for the list of all employees 

who fulfil the condition, the asterisk character should be used in SELECT-clause. The 

SELECT-clause retrieves all the employee attributes of tuples from the EMPLOYEE 

relation that satisfy the condition specified. There are no redundant tuples in the result 

(2) QBE 

The ">50000" is specified in order 10 get the tuples that satisfy the 

condition ''> 5OJOO", where "50000" is as an actual constant value. Placing the "P." below 

the relation name means to retrieve all the attribute values of tuples of the relation which 



match the condition specified. Since the key attribute is included in all tuples returned, 

there are no duplicate tuples in the result. 

(3) DR;1L 

By using the select operator, the query retrieves tuples from the 

EMPLOYEE relation which meet the specific condition Salary >50000. There is no 

alteration in the structure of the relation, so there are no redundant tuples in the query result 

The resul t of the Query 2 is: 
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c. Qtury 3: Retrieml involver more than two fabler 

For every project locatcd in Houston, list the project name, the 

controllmg department number, and department manager's last name, ssn, and sex. 

(1) SQL 

SELECT PNAME, DNUM, LNAME, SSN, SEX 

FROM EMPLOYEE, DEPARTMENT, PROJECf 

WHERE MGRSSN = SSN AND DNUM = DNUMBER 

AND PLOCATION= 'Houston' 

This query is seiect"project-join with two join conditions. The join 

condition is specIfied according to the key and the foreign key of the relations. Hcrc we 

specIfy DNUM = DNUMBER as the join condition regarding l11c controlling department 

of a project. while the MGRSSN = SSN joins the controlling dep,J.rtmcnt 10 the employee 

who manages the department. PLOCATION = 'Houston' specifically specifies projects 

that are located in Houston. 

(2) QBE 

I D<YAR"-I I ONI:", I M~::SN I MammDATE I 

In this query an example vanablc "_Sx" is used to join relations 

EMPLOYEE and the DEPARTMENT at the key and foreign key "_Ox" is used to relate 
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the key and foreign key of the joined relations DEPARTMENT and PROJECT. "P." is used 

to retrieve the attribute values of joined tuples that fulfil the condition 

PROJECT.PLOCATION = "HouslOn". 

(3) DFQL 

PRO.JECT Placation'"" HOU5tOQ 

The select operator will select the projects that are located in Houston 

from the PROJEcr relation. The result at the select operator output retains all the attributes 

of each. selected project tuple, assuming it is as a new relation rl (a subset of PROJEcr 

relation). The rl is joined with the DEPARTMENT relation by employing the join operator 

with the equi-join condition r1. Dnum = rz. Dnumber in order to get the controlling 

department. The result is used by the next join operator, with the equi-join condition 

mgrssn = 5SB relating the employee who manages the department. Each join operator 

produces a cartesian product of all the possible tuples of both incoming relations based on 

the join condition. This result is then used by the following operator. Finally the project 

operator produces the desired relation result with values from the attribute list. 
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The result of Query 3 is: 

d. Query 4: Retrieval illvolvillg universal quantification 

Retrieve the department number where all of its employees have salaries of 

more than $40,000. 

(1) SQL 

SELECT DNO 

FROM EMPLOYEE E 

WHERE NOT EXISTS 

SELECT * 

FROM EMPLOYEE E1 

WHERE E. DNO = E1. DNO 

AND SALARY,... 4OCXXl) 

This query involves one nested query which selects all the 

EMPLOYEE tuples related to an E:.'vIPLOYEE relation itself. SQL in this ease implements 

a NOT EXISTS operntor in order to express universal quanti/ier in the WHERE-clause by 

use of a negative lugic. The nested query checks all the EMPLOYEE (EI) tuples according 

to the condition specified, such that none of the employee tuples satisfies the condition, 

then the B.1PLQYEE (E) tuple is selected. If we rephrase the query, it becomes "retrieve 

the department number if there does not exist any employee with the department number 

who has a salary less than $40,000". Notice the use of "E" and "El" as aliases [or the 

EMPLOYEE relation. In this case "E" and "EI" represent two different copies of 
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copies of EMPLOYEE rclations. Each DNO will be duplicated if the department has more 

than one employee. This can be avoided by using DISTINCT. 

(2) QBE. As discussed in Chapter II, QBE lacks the existential and 

universal quantification expressions. Therefore this kind of query cannot be specified. 

(3) DFQL 

EMPLOYEE Dn. S.al.arg ) 40000 

As discussed in chapter II. DFQL provides the user some group 

aggregate fUnctions that can be used to express the query that contains universal 

quantification. One possibility is specified just by employing the groupAIlSatisfy. It takes 

the EMPLOYEE relation and checks all the tuples in each group of department number 

"Dno" that satisfies the condition Salary> 40000. 

The result of Query 4 is: none 
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e. Query 5: RetriewJlinvolving a negatiQIl stotement 

For each department retrieve the first namcs ami thc Ja\it names of employees 

who havc no dependents. 

(1) SQL 

SELECT DNO FNAME. LNAME 

FROM EMPLOYEE 

WHERE NOT EXISTS (SELECT '*' 

GROUP BY DNa 

FROM DEPENDENT 

WHER SSN = ESSN) 

The nested query retrieves all DEPENDENT tuples related to the 

EMPLOYEE tuple. As in Query 4, this query also uses the NOT EXISTS operator.The 

nested query chocks all the DEPENDENT tuples to see if the ESSN is the same as the SSN 

of the current EMPLOYEE tuple. If none malch the nested query returns an cmpty relation 

since there are no dependents associated with the current employee. Therefore. the desired 

attribules of the tuple are selected. 

(2) QBE 



By looking at this query, we notice that Q8E has a negation symbol 

(~). In this case the negation symbol .. ~ .. is used in a way similar to the NOT EXIST 

function of SQL. It will join tuples of relations EMPLOYEE and DEPENDENT if their 

values of "_Sx" do not match each other. However, the query can also be specified by 

placing a" .. _Sx" in the ESSN column, producing the same result [Elma89]. 

(3) DFQL 

DEPENDENT 
EMPLOYEE 

DFQL provides the groupNoneSa/isfy operator which can be used to 

specify this kind of query. FiINt., we join both relations EMPLOYEE and DEPARTMENT, 

which results in the cartesian product as an input to the groupNoneSatisfy operator. The 

groupNoneSatisfy takes the tuples according to the grouping attribute essn and checks to 

see if none of the tuples satisfies the condition ssn;o:: essn. If so, the project operator will 

project the first name and last name of the employee. 
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In DFQL this query can also be specified by using the diff operator. In 

the following query, the inputs to the difjoperator are the results of two project operators, 

say left and right side. The left side result holds the ssn all of the employee in r1, while the 

right side holds the ssn of employees who have dependents in result r2. The difjoperator 

checks these two relations r1 and r2, and returns any ssn(s) which do not appear in both rl 

and r2 as the result, i.e., the ssn of employees who do not have dependents. 

Fft~m •• LftillllW 

if 

The result of Query 5 is: 

Fname Lname 

Alicia Zelaya 

Ramesh Narayan 

Joyce English 

Ahmad Jabbar 

Jamesh Borg 



2. Set~Value 

In this category the user (end user) tries to obtain a proper relation from one or 

more relation based on the set-value-expression that correspond to a constant-set of query 

specifications. In this category. the set operations such as union, difference (minus). and 

intersection can also be applied. Consider the following queries: 

a. Query 6: Retrieval involving existential and universal quantification 

Retrieve the department names, first names, and last names where all of its 

employees have salaries of more than $4O,(X)() and have no dependents. 

(I) SQL 

SELECT DNAME, FNAME, LNAME 

FROM DEPARTMENT 0, EMPLOYEE El 

WHERE D. NUMBER = E. DNO 

AND NOT EXISTS (SELECT * 

GROUP BY DNAME 

FROM EMPLOYEE E2 

WHERE D.DNUMBER = E2, DNO 

AND (SALARY:s; 400Xl 

OR EXISTS 

(SELECT * 

FROM DEPENDENT 

WHERE SSN = ESSN))) 

This query is an extension of Query 4 or like a combination of Query 

4 and Query 5. SQL specifies this query by employing the EXISTS and NOT EXISTS 

operators with two nested queries. The existential quantification is specified by the 

EXISTS operator in the nested select statement and universal quantification is expressed 
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by using the Nar EXIsrS operator. Therefore. a rephrasing would be "retrieve the name 

of departments together with their employee's first and last names such that there does not 

exist any employee whose salary is less than or equal to $40,000 or who has at least one 

dependent". In order to specify this query. in SQL we cannot combine Query 4 and Query 

5 without rewriting or specifying a new query structure. 

(2) QBE. As discussed in Chapter II. QBE lacks the existential and 

universal quantification expressions. Therefore, this kind of query cannot be specified. 

(3) DFQL 

.. 



By looking at this query, we recognize this query as a combination of 

Query 4 as the "X" part of the query and "Y" as the main part of Query 5. The intersect 

operator takes two relations which are union compatible (rl and r2) and returns as a result 

(r3) the tuples which are in both. Then. by employing the join operator, we join r3 with the 

DEPARTMENT relation (r4) based on the aqui-join condition r3. Dnum = r4. Dnumber. 

The result is a subset of the cartesian product of r3 and r4 and becomes an input to the 

project operator. 

The result of Query 6 is: 

b. Query 7: Retrieval illvoMlIg explicit setl 

Retrieve the Social Security Numbers of employees who worked on project 

numbers 1,3, and 10 (or maybe more). 

(I) SQL 

SELECT DISTINCT ESSN 

FROM WORKS_ON WI W2 W3 

WHERE Wl.ESSN =W2.ESSN AND W1.ESSN = W3.ESSN 

ANDWl.PNO= 1 

ANDW2.PNO=3 

AND W3.PNO = 10 

This query is retrieving the distinct ESSN attribute of an employee whose 

PNO include all values 1,3, 10 or more. This can be done jfthe tuples satisfy the condition 

which are specified in the WHERE-clause. 



(2) QBE 

P.UNQ . ..,X, 
LNQ._X2 

L'NQ,J:j 

In this case, "P.UNQ.~Xl". "UNQ.--"2", and "UNQ._X3" retncve 

the unique ESSN of an employee whose PNO values include all the constant values 1,3, 

and 10. All of the tuples retrieved must satisfy the condition which is specified in the 

tondl tion box. 

(3) DFQL 

(J :3 10) 

... OR:I{SJJN 

,1 

This query shows that a result (r2) of another query makeJelation 

which contains the set values (1 3 10) IS an input to the groupContain1 
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opemtor.ThegroupContain operator takes the WORKS_ON relation (rl) and the second 

relation (r2) and groups the tuples according to the grouping attribute essn. It then compares 

attribute Pno to see if one essn has all the Pno values contained in r2. If so, the essn is 

selected. 

The result of Query 7 is: none 

c. Query 8: Retrieval involving expUcit sets 

Retrieve the social security numbers of employees who worked on project 

number 1.3,and 10 exactly. 

(I) SQL 

SELECT DISTINCT ESSN 

FROM WORKS_ON WI W2 W3 

WHERE Wl.ESSN = W2.ESSN AND Wl.ESSN = W3.ESSN 

AND WI.PNO= 1 

AND W2.PNO = 3 

AND W3.PNO = 10 

AND NOT EXISTS 

(SELECT'" 

FROM WORKS_ON W4 

WHERE WI. ESSN = W4. ESSN 

AND W4.PNO .. I 

OR W4.PNO .. 3 

OR W4. PNO .. 10) 

1. GroupCon/ain operatOr is a part of Group Set ComparaJwn. GroupSet ComparatWn also pr0-

vides Group£quaJ and GroupCOnlainBy operatotll. These opernf<)rs are discussed in class notes of 
Dr. C. Thomas Wu, Computer Science Dcp!ll1ment, Naval Postgraduate School, Monterey. CA. 
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This query is similar to Query 7. We can use the NOT EXISTS 

operator with an included nested query that checks the explicit set. Therefore, a rephrasing 

would be "retric\'c the soclUl security numbers where there are not exists any employees 

who worked not on project number 1,3 and 10". So, it selects exactly the social security 

numbers of employees who worked on project number L 3, 10. 

(2) QBE 

l WORKS_ON ~ ""- HOURS 

P.UNQ ..... XI 
UNQ._Xl 
UNQ. __ 'G 10 

_X4 -"" 
Condition 

In QBE, the query is specified according to actual constant values 1, 

3 and 10 wlnch satisfy the condition in the condition box. This query keeps a similar 

structure to the Query 7. "P.UNQ . .J{l", "UNQ._X2. "UNQ._X3", and .. ....,_X4" are used 

to retneve the tuples which satisfy the condition specified. Notice that the " ..... _X4" couple 

with the condition "X3 = X4" specifies set equality. An essn is selected only if it has PNO 

values of I, 3, and 10 and no other values. 



(3) DFQL 

(1310) 

YORKS-DN 

This query also presents the same structure as query 7. Since the query 

is asking to retrieve the Social Security Numbers of employees who worked on project 

number I, 3, and 10 exactly, this query uses the gToupEqual operator instead of 

gToupContain operator. It selects the tuples of employees Social Security Numbers only if 

the set ofPno values associated with the essn is exactly equal to (1, 3, 10), 

The result of Query 8 is: none 
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d. Query 9: RetrieFal involving rLRivert;al quantification 

Retrieve the first name and last name of each employee who works on all the 

projects managed by department number 5. 

(1) SQL 

SELECT FNAME. LNAME 

FROM EMPLOYEE 

WHERE (SELECT PNO 

FROM WORKS_ON 

WHERE SSN = ESSN) 

CONTAINS 

(SELECT PNUM:BER 

FROM PROJECf 

WHERE DNUM:o: '5') 

There are two nested queries. If the set of PNO values from the first 

nested query contains all projects that are controlled by department 5, then the employee 

tuple is selected. Notice that the CONTAINS comparison operator in this query is similar 

in function to the DIVISION operation of the relational algebra [Elma 89]. 
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However, for SQL systems which do not have the CONTAINS 

comparison operator. the user must specify by using EXIST and Naf EXIST functions, as 

in the query below: 

SELECT FNAME. LNAME 

FROM EMPLOYEE 

WHERE NOT EXISTS 

(SELECT * 
FROM WORKS_ON B 

WHERE (B.PNO IN (SELECf PNUMBER 

FROM PROJECT 

WHERE DNUM:::; 5)) 

AND 

NOT EXIST (SELECT * 

FROM WORKS_ON C 

WHERE C. ESSN = SSN 

AND C. PNO:::; B. PNO) 

Notice this query involves two level-nested queries. Thus this 

fonnulation is quite a bit more complex than the prior query with the CONTAINS operator. 

Consider the first nested query which selects WORKS-ON (8) tuples whose PNO is a 

project controlled by department 5 in the IN operator nested query, and there does not exist 

a tuple with the same PNO and SSN in WORKS-ON (C) relation which is related to the 

EMPLOYEE tuple in the outer query. Since the outer WHERE-clause uses the NOT 

EXISTS operator, negative logic is reflected. If the nested query returns the empty tuple, 

the EMPLOYEE tuple should be selected. For a detailed description see [Elma89]. 
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(2) QBE. As discussed in Chapter II, QBE lacks the existential and 

Universal quantification expressions. Therefore this kind of query cannot he specified. 

(3) OFQL 

PRO~IECT I)num = 5 

First we use the select operator to retneve PROJECT tuples into rl 

that maICh the condition department number equals 5, then we project the project numbers 

from the result into r2. Concurrently, we use the join operator in order to join the 

EMPLOYEE and WORKS_ON relations according to equality of the keys and foreign 

keys essn and S8n into a relation, say r3. By applying the groupConlain function operator. 

it will compare the tuples of the Pno attributes and splLts the group of tuples desired by 55n. 

Finally, by using the project operntor, we retrieve the desired result. Next, the 

groupContain function operator groups r3 by essn. Then gro1tpCOfltaill checks to see if an 

essn group's set of Pno values eonlains all thc values lD r2. If so. all the tuples in the essn 
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group are selected. The result (r4) flows to the project function opemtor where the desired 

attribute values are obtained for display. 

The output of Query 9 is: 

FNAME LNAME 

John Smith 
Ramesh Namvan 
Joice I Emlish 
Franklin Woo 

e, Query 10: Relriel'al imoll'ing existential and universal quantijicatilm 

List the first name and last name of employees who worked exactly 10 hours 

on each of the projects they worked on. 

(1) SQL 

SELECT FNAME, LNAME 

FROM EMPLOYEE E 

WHERE NOT EXIST 

(SELECT ESSN 

FROM WORKS_ON W 

WHERE W. ESSN .. E. SSN 

AND 

AND EXIST 

(SELECT '" 

FROM WORKS_ON WI 

WHERE WI. ESSN = E.SSN 

AND HOURS<> '10'» 

EXlSfS (SELECT '" 

FROM WORKS_ON W2 

WHERE W2.esn = E,essn) 
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This query involves NOT EXISTS and EXISTS operators with two 

nested yuenes. It selects the tuples of EM:PLOYEE relation if there does not exist any 

employees in the WORKS_ON (W) relation ami there exists an employee In WORKS-ON 

(WI) who does not work 10 hours for all projects. 

(2) QBE. As discussed in Chapter II, QBE lacks the existential and 

universal quantification expressions. Therefore this kind of query cannot be specified, 

(3) DFQL 

.... ORKS-DH 
EMPLOYEE 

First we join the E.\1PLOYEE and WORKS_ON relations. In DFQL 

we are allowed not to declare specifically the condition according to the key and foreign 

key ssn and essn. i.lS equi-join. however, it works similarly, automatically matching the 

tuples of both reiatlOns. Then applying the groupAliSatisjy opemtor takes care of the 

universal quantification. Thus, it simply takes a relation rl and splits the tupJes according 

to the grouping attribute list, essn in this case, and then checks all the tuples in the 



individual group related to the condition Hours = 10. If all the tuples satisfy the condition 

specified then the values of that grouping attribute list are passed out. It means that these 

groups satisfy the condition by all their tuples. Finally, by using project operator, we 

project the desired tuples. 

The result of Query 10 is: 

f. Query II: Retrkval invoMng Set Operation 

List of all project numbers and project names for projects that involve an 

employee whose last name is 'Smith' as a worker or as a manager of the department that 

controls the project 

(I) SQL 

SELECT DISTINCT PNAME, PNUMBFR 

FROM PROJECT 

WHERE PNUMBER IN (SELECT PNUMBFR 

OR 

FROM PROJECT, DEPARTh1ENT. EMPLOYEE 

WHERE DNUM = DNVMBER 

AND MGRSSN = SSN 

AND LNAME = 'Smith') 

PNUMBERIN(SELECT PNO 

FROM WORKS _ ON, EM:PLOYEE 

WHERE ESSN = SSN AND LNAME = 'Smith') 
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This query uses IN operators and includes nested queries in the 

SELECT qtlery. The first nested query selects the PNUMGER of projeds that have a 

'Smith' as a manager, while the second selects the projcct numbers of projects that have a 

'Smith' [ts a worker. In lhis query, the comparison operator IN compares the value 

PNUMBER in the outer WHERE-clause and evaluatcs to true if and only if at least one 

value of the sets result from the nested queries matches it. For a detailed description of the 

above mentioned and another way to specify this query using the UNION operator, see 

[Elma89]. 

(2) QBE 

ioce=-rl DNAME 

I~I 1
M'"'' ARmAlE I 

_3:< 

WORKS_ON 

I 
ESSN I~IHOHR'I _S, 

i PROJECf 
1 ~~·'tUXATION 1 D_I 

P.J'Io; J)lt 

1 

FNAME 

1 P":ER 1 P.UNQ. -'" 
In QBE. any number of joins can be specified in a smgle query 

IElma89]" When we specify ajoin, we can also specify a result table to display the result 

of the que!"}", as in the query above. This is required if the result includes attributes from 
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two or more relations. Sometimes, if there is no result table specified, tile system provides 

the query result in the columns of the various relation. This tends to be difficult to interpret 

and become meaningless in most cases. 

(3) OFQL 

EMPLOYEE Lnam. = Smith 

')1" 

Since the query involves more than three relations, we make use 

severnl join operators. First we select the last name "Smith" as an employee, then the tuple 

result flows to two join opemtors. One part joins with the WORKS_ON relation on the left 

side (we marked as "jl") and checks to see if the employee is a worker, and on the right 
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side (we marked as "j2") joins with the DEPA RTMENT rdation to check the tuple to see 

l[ 1he employee is a manager. Since we want to obtain the tuples that relate to Pno and 

Pname, we need to join the tuples results of lxlth sides. Then we use the union operator 

which takes all the tuples from both sides and combines thcm (as they are union 

compatible). Finally, by employing the project operator, we retneve the Pno and the Pname 

that involve 'Smith' as a worker and as a manager of a department who controls that 

projcct. 

The result of Query 11 is: none 

3. Statistical Result 

In this category the user (end user) attempts to obtam a proper relation fmm one 

or more relations based on a special case or statistical result. This category involves 

aggregate function opeIlltors such as MIN, MAX, A VG. COUNT. ConsIder the folloWing 

quencs: 

a. Query 12: Retrieval invollling aggregate A VG fUllction 

Retrieve the aveIllge hours of working load for project number 3, 

(1) SQL 

SELECT A VG (HOURS) 

FROM WORKS_ON 

WHERE PNO:'3' 

The average functlon is used to calculate the average of the values in 

the HOURS column from the WORKS _ON relation. The values to be calculated must 

satisfy the specified condition PNO = '3' in the WHERE-clause. 



(2) QBE 

In QBE, we place ''3'' as an actual value which represent an equality 

condition in the PNO column. And "P.A va." is used to retrieve the avemge of the values 

that match the condition. 

(3) DFQL 

The select operator selects the tuples from the WORKS_ON relation 

that match the condition specified "Pna = 3". The result is used by next project operator, 

which projects the average value of the result according to "AVa (HOUTS): average 

/wilTS ... ". In this case, an alias name is needed after the colon to indicate clearly what the 

result is [Turg93]. The select and project operators are very often used together. SO, DFQL 

allows the user to define a new operator by giving a related name selproj as a combine 
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operator. It is used to select the tuples that satisfy the condition and directly project the 

desired attribute as a result. 

The result of Query 12 is: 

Average Hours 

25 

c. Query 13: RelrWpal inpoMng AVG and Grollping fllnctioIJ 

Retrieve the average hours of working load for each project. 

(1) SQL 

SELECT PNO, A VG (HOURS) 

FROM WORKS_ON 

GROUPBY rno 

Since we are interested in the average hours of each project, in SQL we have 

to apply the GROUP BY -clause. Here the OROUP BY -clause is used in order to divide 

WORKS-ON tuples into groups by their PNO values. Then. the A VG function is used to 

calculate the average of the HOURS values of tuples according to the PNO grouping 

attribute separately. 

(2) QBE 

I WO=_ON I = I H<l I HO~ I 
G. PAVG.AIL 

QBE keeps the same structure as Query 12 except in the PNO attribute 

where we have to place "G." in order to group the tuples which have the same value in 

PNO. Then, "P. A VO.ALL" retrieves the average of the values accordins to each group. 



(3) DFQL 

DFQL provides severa! grouping aggregate function operators for 

statistical results. One of them is the groupAvg operator. It gets the tuples of WORKS_ON 

relation and splits the tuples according to grouping attribute PNO, then produces the 

average of the values of each group of aggregate attribute Hours. The result value is given 

an alias name "Average hours". 

The result of Query 13 is: 

Pno Average Hours 

I 2li25 

2 18.75 

3 25.00 

!O Z7.5J 

20 125J 

30 Z7.5J 
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d. Quer, 14: RetrieMl involving Count, AVG and Grouping/unction 

For each project retrieve the project number. the number of employees in the 

project, and their average hours. 

(1) SQL 

SELECT PNO, COUNT (*), AVG (HOURS) 

FROM WORKS_ON 

GROUP BY PNO 

In this query, the GROUP BY -clause is needed in order to group 

tuples by the project number. Then, the AVG and COUNT (*) operators calculate the 

average hours and counted the number of employees respectively for each PNO grouping 

from the WORKS_ON relation. 

(2) QBE 

QBE uses a similar structure to Query 13. Since Query 13 is 

expanded by asking the project number and the number of employees involved in each 

project, it can be specified by adding "P. to beside "G." in the PNO attribute and placing 

"P.CNT.ALL" in the ESSN attribute. 
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(3) DFQL 

This query is an extension of Query 13. The "X" part is exactly the 

same as Query 13 and we add the groupCnt function part "Y" that counts the number of 

tuples in each Pno group. Here, we need to join the tuples as a result of part "X" and "Y" 

which match according to the Pno. Finally the project operator retrieves the desired 

attributes from tuples. 

The result of Query 14 is: 

Pno The number of employees Average Hours 

1h.25 

18.75 

25.00 

10 7:75J 

20 12 . .50 

30 7:7.50 
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project 3. 

d. Query 15: Retrieval involving Count ttndA va function 

Retrieve the number of employees and their average hours who worked on 

(I) SQL 

SELECT PNO, COUNT (*), AVG (HOURS) 

FROM WORKS_ON 

WHERE PNO='3' 

This query is an extension of Query 12 in which we can count the 

number of employees by applying the function COUNT (*). Since we are concerned with 

a particularly project, it is specified as a condition in !he WHERE-clause. 

(2) QBE 

The only different with Query 12 is the "p.eNT.ALL". It retrieves the 

number of employees that match the condition specified under the PNO column. 
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(3) DFQL 

In this query, the "X" part is the same as Query 12, and we add the 

groupCnl operator "Y" part in order to count the number of employees who participate in 

project number 3. Next we need to join the tuples as a result of both sides "X" and "Y". 

Then, the project operator is used to retrieve the desired attribute values. 

The result of Query 15 is: 

The number of employees 
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e. Query 16: Retrieval involving Max and Grouping junction 

For each department retrieve the employee's social security number who has 

the highest salary. 

(1) SQL 

SELECT DNO, SSN, MAX (SALARY) 

FROM EMPLOYEE 

GROUPBY DNO 

The employment of the MAX aggregate fUnction is used in order to 

obtain the maximum (or highest) value of the SALARY attribute from the EMPLOYEE 

relation. We select the tuples with the max salary from each group according to DNO in the 

GROUP BY -clause. Based on DNa and highest pay we also retrieve from the tuple the 

SSNs attribute value. 

(2) QBE 

In QBE we just need to specify ''0.'' in the DNO attribute in order to 

separate into each group. The ·'P.MAX. ALL" is specified to get the tuple with highest 

salary in the SALARY attribute from all tuples in each group of DNO. And the other "P." 

is used to retrieve the SSNs. 
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(3) DFQL 

The structure which is specified for this query is similar to the 

previous queries that involve the groupAvg operator. The only different is we have to use 

the grQupMax operator. The result of groupMax is the tuple of each Dno group with the 

highest pay. Since we are also interested in the g8n of selected employees. we join the 

EMPLOYEE relation to the result mentioned above. Then, by using the project operator 

we retrieve the attributes desired. 

The resul t of Query 16 is: 

Dno SSN Max pay 

5 333445555 40000 

4 987654321 43000 

1 888665555 55000 
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f. Query 17: Rell'ieviJl involving Max and Grouping/WICtion 

For each department retrieve employee (SSNs) and their dependent name, 

who has the highest pay. 

(1) SQL 

SELECT DNO, SSN. DEPENDENT ..-NAME, MAX (SALARY) 

FROM EMPLOYEE E. DEPENDENT D 

WHERE E.SSN = D. ESSN 

GROUPBYDNO 

The above query is extended from Query 15 in which the 

DEPENDENT relation is involved. In this query we select the tuples from EMPLOYEE 

and DEPENDENT relation according 10 the attributes list in SELECT-clause which satisfy 

the join condition specified according to the keys SSN and ESSN in E. SSN = D. ESSN. 

The DNO which is specified in GROUP BY -clause is used to separate the tuples of DNO 

in each group. 

(2) QBE 

I DEPFNDENT 

_s. 

Here we need to join the two relations EMPLOYEE and 

DEPENDENT by using the "_Sx" as an example variable that we place in the key attribute 
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of SSN and ESSN. The "G." is used to separate the tuples in each group according to the 

DNO. Then. "P.MAX. ALL", "P .... and "P._Sx" are used to retrieve the values of the 

attributes desired. 

(3) DFQL 

Since Query 17 is an extension of Query 16. we see relation rl is a 

result of Query 16 which holds the tuples of [dno, ssn. max pay .. }. Then we need ajoin 

operator for the purpose of joining with the DEPENDENT relation r2 according to the keys 

ssn and essn of both relations. The tuples as a result of the cartesian product that we 

obtained from the join operator above are used by the project operator in order to retrieve 

the vaJues of ssn(s) and the Dependencname. 
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The result of Query 17 is: 

SSN Dependent-name 

333445555 Alice 

987654321 Ab"" 

888665555 

g. Query 18: Retrieval illvolving AVG, Max, Sum, and Grouping function 

Retrieve the avemge, maximum and sum of the salaries of each department's 

highest paid employee. 

(1) SQL 

SELECT AVG (SALARY), MAX(SALARY), SUM (SALARY) 

FROM EMPLOYEE E 

WHERE E.SALARY IN (SELECT DNO, MAX (SALARY) 

FROM EMPLOYEE El 

GROUP BY DNO) 

Again if we increase the complexity of Query 16 to QUery 18 as 

above, SQL presents a structure which is quite different from the query 16. Here the 

GROUP BY concerns DNO in the nested queries in order to separate the tuples and 

calculate the highest paid employees. Then, the outer query specifically calculates the 

A VG, MAX, and SUM values of the highest paid of all groups in the department. 
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(2) QBE 

P.MAXALL 

In QBE, this type of query can be specified into two steps, where first 

we attempt to retrieve th.e highest paid according to each group of the DNa. Then we 

retrieve the attribute values of selected tuples by placing the "P." under the Result colUmn 

and "MAX.ALL.A VG.ALLSVM.ALL" under the Dept top pay column. 

(3) DFQL 
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Again. in this query the results of Query 16 can be used as a source or 

(lS an input to the other group operators. In the case of this query groupStn/1 operators are 

used to perfonn the calculation of avg (max salary), sum (max salary). and max (max 

salary). Here, each of these opemtors produces the values we are concerned with. 

The result of Query 18 is: 

Avg (max pay) Sum (max pay) Max (max pay) 

46000 138000 55000 

Il. Query 19: Rem'eval invoLvingColwJalU/ Grollpingfil1lctioll 

For each department retrieve the department name and the total number 01 

employees who are paid more than $40.000. 

(1) SQL 

SELECT DNO, DNAME, COUNT (*) 

FROM ENlPLOYEE, DEPARTMENT 

WHERE DNUMBER = DNO AND SALARY> 40000 

GROUPBY DNO 

Like the previous queries, the GROUP BY ·clause is used to separate 

the tuples into groups by DNO attribute value. Then, the values of the attributes listed in 

SELECT -clause are selected from EMPLOYEE and DEPARTMENT relation in the 

FROM·clause which satisfy the conditions specified in the WHERE·c1ause. 

1. Group.tatopem.toris discllllsedin DOles of Dr. C. Tho= Wu. Computer Science Departmenl. 
NavllI Postgraduate School.. Monterey. 



(2) QBE 

In this query the "P.G.CNT.ALL_Dx" is specified in order to retrieve 

("P.") the tuples based on the grouping "G." of DNO attribute, and CNT. ALL is used to 

count DNO in each group to represent the number of employees. All of these can be 

perfonned if the tuples match the join condition specified by "J)x" according to the key 

and foreign key DNUMBER and DNO. 
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(3) DFQL 

EMPLOYEE SalanJ ) 40000 

DEPARTMENT 

elect rl.Dno = r2.Dnumbl!'r 
,[ 

First we select the tuples of the EMPLOYEE relation that fulfill the 

condition Salary> 40000. Then we join the result of the select operator with the 

DEPARTMENT relation by equality of the key and foreign key Dnumbcr and Dna. Then. 

the result is used by the groupCnt operator which splits the tuples according to Dno groups. 

Finally, by using the project operator, we retrieve the values of the dname and dno, and also 

the number of employees. 

The result of Query 19 is: 

The number of Employees 



4. Set-Count Value 

In this category the user (end user) is interesled in obtaining a proper relatiOl} from 

one or more relations based on a special case of set-count testing. Consider the following 

queries: 

a. Query 20: Retrieval involving exirtenJial quantification 

Retrieve the first name and the last name of managers who have at least one 

female as a dependent 

(1) SQL 

SELECT FNAME, LNAME 

FROM EMPLOYEE 

WHERE EXlSTS(SELECT * 
FROM DEPENDENT 

WHERE SSN = ESSN 

AND SEX = 'F') 

AND EXISTS (SELECT * 

FROM DEPARTMENT 

WHERE SSN =MGRSSN) 

One way to specify this query as shown above involves two nested 

queries. The first nested query selects all DEPENDENT tuples, and the second selects the 

DEPARTMENT tuples managed by the EMPLOYEE. Therefore, if there exists at least one 

tuple dependent with SEX equal to female in the first nested query, and at least one tuple 

of the employee who managed the department; then the EMPLOYEE tuple is selected 

according to the FNAME and LNAME of the employees. 



(2) QBE. As discussed in Chapter II. QBE lacks the existential and 

universal quantification expression. Therefore this kind of query cannot be specified. 

(3) DFQL 

Frrst we join the EMPLOYEE and DEPARTMENT relation by using 

the equi-join based on their key and foreign key. in this case ssn = mgrssn. Then, the tuples 

as a result of the equi-join. say as rl flows to the next join operator. At this point rl contains 

the tuples of employees who manage a department joined with DEPENDENT relation, say 

1'2. according to the key and foreign key join condition rLssn = 1'2. essn. Then. by applying 

selproj operator, we select the tuples desired which satisfy the condition specified ''Sex = 
F" and directly project or retrieve the values of Fname and Lname of the manager. 

The result of Query 20 is: 



b. Query 11: Retrieval involving CDunt turd Grouping fimctiDn 

Retrieve the total number of employees with salaries more than $40,000 who 

worked in each department, but only for those departments where more than four 

employees work. 

(I) SQL 

SELECT DNAME. COUNT (*) 

FROM DEPARTMENT, EMPLOYEE 

WHERE DNUMBER = DNO AND SALARY> 40000 

AND DNO IN (SELECT DNO 

GROUP BY DNAME 

FROM EMPLOYEE 

GROUPBY DNO 

HAVING COUNT (*) > 4) 

While reading Query 21, it can lead to misunderstanding the point in 

specifyinS the SQL query. It may lead us to specify the query as follows: 

FROM DEPARTMENT, EMPLOYEE 

WHERE DNUMBER = DNO AND SALARY> 40000 

GROUP BY DNAME 

HAVING COUNT (*»4 

This is an incorrect query since it will retrieve only departments that 

have more than five employees who each earn more than $40,000. For a more detailed 

description of the above queries see [Ehna89]. 

Query 21 is expanded from Query 19in the previous Section "3. h.", 

but they are very different in structure. QUery 21 is specified by using the nested query. 

While specifying this kind of query we must be careful, especially when we have to apply 
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two different conditions like the query above; where "SALARY> 40000" is applied to the 

COUNT function in the SELECf -clause and the other in the HAVING-clause. And for the 

GROUP-BY function. Elmasri comments "Some SQL implementations may not allow a 

GROUP BY -clause without a function in the SELECT -clause. Hence, the nested query in 

this example (Query 21 (1) SQL) cannot be pennitted in such SQL implementations", 

(2) QBE 

171 MGRSSN 1 MGmAroDATE 1 

Condition 

I rnr.ALL.J>x:>4 

Here, QBE reaJly keeps a structure similar to Query 19. Here we need. 

to specify in the condition box "CNT.ALLJJ" > 4" in order to retrieve the total number 

of employees if it is more than fOUf members in each department according to the value of 

DNO. 

82 



(3) DFQL 

Since it is expanded from Query 19, we can use all of Query 19 and 

connect it with the new part of the query. The "X" is tile whole part of Query 19 and '<Y" 

is related to groupCnt and select operators, which specifically count the tuples according 

to Dno in order to represent the total number of employees as a specified condition. 

The result of Query 21 is: none 



c. Query 22: Retrieval involving CoulII and Grouping jimctioll 

For each project on which there arc three or more employees working, 

rctneve the project number, project name, ami number of cmployecs who work on that 

proJcct. 

(1) SQL 

SELECT PNUMBER, PNAME, COUNT (*) 

FROM PROJECT. WORKS_ON 

WHERE PNUMBER:::: PNO 

GROUP BY PNUMBER. PNAME 

HAVING COUNT (*»3 

This query involves two relations PROJECT and \VORKS-ON. Here. 

the GROUP BY -clause is used in order to separ.ltc thc project in cach group and selection 

of tuples is used to satisfy the join condition in WHERE·dause. The HAVING-clause in 

this ca.~e uscs whole groups of projects. and specifically specifics the number of employees 

which s:ltisfies the groups themselves. 
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(2) QBE 

Condition 

I CNT.AILJ"x a:3 

Here, P.G.CNT.ALLJ>x" is specified in order to retrieve the tuples 

of the grouping attribute of PNO which satisfied the join condition related to the key of 

PNUMBER and PNO. But, it must satisfy the condition box "eNT. ALL._Px > 3". Here 

the use of the condition box is similar to the HA VING-clause in SQL 



(3) DFQL 

We Join the two relations PROJECf and WORKS·ON according to 

the join condition Pnumber = Pno. The tuples of the cartesian product is flower.! to 

groupCnt operator, and it splits Pno into each group. Then, it selects the tuples that fulfil 

the condition specified "cnt .. 3 "as connting the number of employees. Through the project 

operator we retrieve the tuples needed according to the attribute list 

The result of Query 22 is: 

P",,,no Pnumber The number of employees 

ProductY 

Computerization 10 

Reorganization 20 

Newbenefi t 30 
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d. Query 23: Retrkval involving Countfunction 

Retrieve project name, where there are three or more employees. 

(1) SQL 

SELECT PNAME 

FROM PROJECT 

WHERE (SELECT COUNT (*) 

FROM WORKS_ON 

WHERE PNUMBER = PNO) ~ 3 

By modifying Query 22just a little bit, we get Query 23. One way to 

specify the SQL query is shown above involving a nested query. The nested query counts 

the tuples (representing the number of employees) involved in the project in the 

WORKS_ON relation. If it is greater than or equal to three. the PROJECT tuple is then 

selected. In some implementations of SQL the above query may not be pennitted [Elma89]. 

(2) QBE 

In this query "CNT. AlL._Px;;" 3" counts the tuples concerning the 

number of employees. If it is greater than or equal to three then the tuples of Pname are 

retrieved by "P." according to key as specified by an example value" _Px". 



(3) DFQL 

In order to get the counting result, DFQL in this case applies the 

grollpCIll operator in all kind of queries that relate to set coUIlI query. That's why Query 22 

and Query 23 are specified with exactly the ~amc structure, just slightly different in the 

attribute list of the tuples desired. 

The result of Query 23 is: 

Pname The number of employees 

ProductY 

Computerization 

Reorganization 

Newbenefit 

By looking at the results of Query 22 and 23, we notice that the tuples 

results of PNAME and the total number of employcc~ retrieved are absolutely equal. In 

~hon, we can say that both Query 22 and 23 arc rcally the same in the structure. 



e. Query 24: Retrieval involving universal qlUlntijiCtJlion 

Retrieve project name, where there are three or more employees, and all of 

them has a work load of 20 hours. 

(1) SQL 

SELECT PNAME 

FROM PROJECT p. WORKS_ON W 

WHERE P.PNUMBER = W.PNO 

AND PNO IN (SELECT PNO 

FROM WORKS_ON 

WHERE HOURS = 20 

GROUP BY PNO 

HAVING COUNT (*) :d) 

Query 24 above is an extension of Query 23. In the SQL query above, 

the GROUP BY -clause and HA VING-clnuse are particularly related to PNO in the nested 

query. If each group of PNO tuples satisfies the condition "HOURS = 20", and also if in 

each PNO there are three or more employees as a worker. then the PROJECT tuple will be 

selected. However, it must satisfy tile join condition specified in the WHERE-clause.. 

(2) QBE. As discussed in Chapter II, QBE lacks the existential and 

universal quantification expressions. Therefore this kind of query cannot be specified. 
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(3) DFQL 

~-~,~-----.-C PRO.JECT ..,ORK$-DN -Pn-.-m.-.r-:;~" 

""-,,,,\\ 

\ 

Consider the DFQL query above. Part "X" is Query 23, and it can be 

directly used as a relation to be an input to the groupAlISatisfy operator. It tak.es Ihe tuples 

and splits the tuples according to the PNO as a grouping attribute, und the tuples in each 

group must satisfy the condition specified "Hours =20". Then, we rctneve the tuple result 

of the attribute desired by using the project operator. 

The result of Query 24 is: none 
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f. Query 25: Retrieval involving .miverrrd quantification 

Retrieve the department names which offer two or more projects where there 

are three or more employees who worked on it, and all of them has a work load of 20 hours. 

(1) SQL 

SELECT DNAME 

FROM DEPARTMENTD, WORKS_ONW, PROJECT P 

WHERE D.DNUMBER = P.DNUM 

AND P.PNUMBER = W.PNO 

AND PNO IN (SELECT PNO 

FROM WORKS-ON 

WHERE HOURS = 20 

GROUPBY PNO 

HAVING COUNT (*) ;2!:3) 

GROUP BY DNUM 

HAVING COUNT (*);2!: 2 

Query 25 is expanded from Query 24, and the complexity of the query 

has increased. This query involves three relations and nested query. A GROUP BY -clause 

and HA VING-clause are used specifica!1y for the nested query, and another GROUP BY

clause and HA VING-clause are used for the whole groups. Even though this query is just 

slightly different from previous Query 24, we have to rewrite while specifying this query. 
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(2) QBE. As discussed in Chapter II, QBE lacks the eXistential and 

universal quantification expressIOns. Therefore this kind of query cannot be SpeCl i·ied. 

(3) DFQL 

Notice that the "X" part is Query 24. The tuple result is directly used 

as a relation to be joined with the OEPARTvlENf retation according to the key and foreign 

key Onumber and Onum. The result of the cartesian product which is produced by the join 
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operator flows to the groupCnt operator which groups according to the grouping attribute 

of Dnum. Then, by employing the selproj operator we can count specifically the tuples 

which satisfy the condition specified. and directly project the values desired of the attribute 

list 

The result of Query 25 is: none 

B. ANALYSIS 

In the previous section, we observed how SQL, QBE, and DFQL specify all of the 

query examples which are composed in categories. Queries range from simple ones to 

queries which involve existential or universal quantifications, and complex ncsted queries 

in SQL. Some of the querIes are stand-alone, but some others specified are logical 

extensions in complexity from one query to the next. By examining these queries the 

relative strengths and weaknesses related to ease..Qf-use, especially in expressing universal 

quantification, specifying the complex nested queries. and flexibility and consistency in 

formulating the queries with respect to data retrieval for ROBMS' s are investigated. 

1. Ease-of~use 

Ease-of-use of query languages is part of the human factor aspect In this research 

we emphasize the learning and writing of the query, as well as attempting to retrieve the 

output result. However, we have to keep in mind that query languages are high level 

languages that are also intended to be used by non programmers. Related to Ease-of-use, 

some researchers described that 

• The SQL language bas been designed and intended to be easily learned and used by 
inexperienced user without specialized computer training [Reis75J. 

• The result of various psychological studies of language (QBE) show that it requires 
less than three hours of instruction for non programmers to acquire the skill to make 
fairly complicated queries [ZIoo77J. People will write queries in QBE between two or 
three times faster than in SQL [ReisS)]. 
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• DFQL is proPJsed and implemented to mitigate problems that are encountered by the 
current query languages, SQL in particular. It requires about halfan hour in a database 
class at NPS to acquire the coneeptand make more correct queries than SQL [Cku91]. 

According to our research through the previous Section "A." of this chaplcr, the 

above comments and results are absolutely valid for QBE and DFQL but not for SQL. 

Consider the representative sets of queries that we have in each category or from one 

category to the other categories. Here ease-of-use of each language can be PJinted out 

clearly, where "once we learn a general construct from a sample query, if the way of 

thinking can be applied in a new query" we can say that there is certain degree of ease-of

use. For example, when we learn the technique to drive a car for 500 yards, then we could 

most likely can drive for another 1000 yards. Now, let's take a look at some of the queries 

that we have. 

a. Queries iTivolvillg existelltial or uniJ1enai quantification 

In the following discussions we covers several queries that are comPJsed in 

single-value, set-value, and set-wunt value categories. Consider the queries below: 

• Query 4: Retrieve the department number where all of its employees have salaries of 
more than $40,000. 

• Query 5; For each department retrieve the first name and the last name of employees 
who have no dependents. 

• Query 6: Retrieve the first name, last name and department names where all of its 
employees have salaries of more than $40,000 and have no dependents. 

By looking at these three queries we realize that Query 6 is virtually the 

combination of Query 4 and 5. Now let's consider how do SQL, QBE, and DFQL construct 

all of these queries. 

(1) SQL. See the construct of the structure of Query 4 and Query 5, where 

both queries contain ]\'OT EXISTS ()perd\Or~ that interpret the queries in a negative logic 

approach. Generally, these kind of query structures are not easy to understand, especially 
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Query 4. Assume, we underslmld the construct of both queries. however we cannot apply 

this similar thinking to specify the structure of Query 6. In this case, we do have to think 

very carefully since we have to specify a new query that may be very different in tbe 

structure. Therefore, these types of queries are difficult to specify even for the experienced 

(2) QBE. QBE lacks universal quantification expressions. Therefore we 

cannot express these types of queries. 

(3) DFQL. By learning the construct of Query 4 and Query 5, we can use 

the similar thinking of Query 4 and Query 5 in order to fonn a new Query 6. Once we know 

the construct of Query 4 and Query 5 we can use them in the other new query easily. Notice 

in Query 6 that the "X" part retrieves the tuples of employees who have salaries of more 

than $40,000, as Query 4, and that the "y" part retrieves employees who do not have 

dependents. We can logically combine these two constructs by using the intersect operator 

that combines union compatible tuples so that we have the tuples of ali employees who 

have salaries of more than $40,000 and have no dependents. Since we are interested in the 

department name also, we can easily join the tuples result above as new relation (r3) with 

the DEPARTMENT relation (r4) which match according to lhe key and foreign key of both 

relations, r3, Dno = r4, Dnumber. Finally, by employing the project operator we retrieve 

from the tuples the first name, last name, and department names of those employees. 

By investigating the above queries, once we learn how to specify 

Query 4 and Query 5, we can genernlize them in a straight forward manner to specify Query 

6. We can say that this language is easy to learn (and thus easy to use), Consider the 

following queries that are similar to lhe above discussions: 

• See Query 9, 10, which are difficult to specify in SQL, cannot be specified in QBE 
(see QBEdescription in Chapter II.C.I.c.), but are very easy in DFQL since we can 
apply the construct concept of Query 4, 

• Query 20 also shows that in SQL it is not easy to learn or understand the structure, and 
in QBE it cannot be expressed, (See QBE description in Chapter II.C.Lc.). But in 
DFQL the data flows from one part to another are easy to follow and one can 
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undcrntand what's going on. 

b. Queries inrolring nested queries 

In this section. we analyze queries which involve the IN operator in the nested 

query. In addition, we also examine several queries which contain the universal quantifier 

in the nested queries. Consider the following queries in the set-count value category: 

• Query 21: Retrieve the total number of employees with salaries more than $40,CXXl 
who worked in each depanment, but only for those departments where more than four 
employees work. 

However, before going into any detail in Query 21, see first Query 19 in the 

set-value category. By examining these two queries we realize that Query)9 is expanded 

to Query 21. 

• Query 19: For each department retrieve the department name and the total number of 
employees who arc paid more than $4O,CXXl. 

Similar to the above description "l.a" we attempt to learn the construct from 

one sample query and extend it to create another new query. Consider how SQL, QBE and 

DFQL construct both queries: 

(I) SQL When we Jearn Query 19 and understand the construct, we are 

sti ll not confidcnt of how to specify the structure for Query 21 (or an incorrect query can 

be specified. see SQL query below Query 21). In other words. in SQL we cannot use the 

construct of a sample query to build a new query in a straight forward manner. 

(2) QBE. In QBE we realize that the same thinking of the construct in 

Query 19 can also be used to specify Query 21 . QBE in this case presents a simple and very 

intuitive extension. 

(3) DFQL. When we learn the cunstruct of Query 19, it is easy to 

understand Query 21. Here, the construct of Query 19 can be used as a part of Query 21. 

To build Query 21 we know Ihat we need two parts; first the employees with salaries more 
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than $40,000 and second, tuples of those department with more than four employees. See 

Query 21 of DFQL for details. 

We also look at several queries which are similar 10 the above 

discussion. These types of queries are composed in the set-value, statistical-result, and set

counl categories. Consider the queries below: 

• Query 7 is extended to Query 8. 

• Query 16 is extended to Query 18. 

• Query 22 is modified to Query 23. 

• Query 23 is extended to QUery 23. 

• Query 24 is extended to Query 25. 

In addition to discussion in "l.a" and "l.b" above, see Query 1 in the single-

value category. If we are interested in the distinct value, in SQL we have to use the keyword 

"DISTINcr" in the SELECT-clause, and in QBE the prefix "UNQ .... On the contrary, 

DFQL implements the primitive operatof8 which have a similar capabilities 10 the 

relational algebm operators, so the duplicate tuples in the query result are eliminated. In this 

case, we consider that DFQL is easy to use, since we do not need to worry when and where 

we have to eliminate the duplicate tuples. For detailed problems concerning the duplicate 

tuples see [Codd90]. 

Next we examine the query that involves select-project-join with two-join 

conditions. See Query 3. In SQLit is not easy to comprehend what is going on in the query. 

QBE in this case presents a simple construct in which it is easy to follow the joining 

between relations and we know what's going on. Furthermore, in DFQL we can easily 

follow how the data flows from one part to the other part. It is understandable. 



2. Flexibility 

The flexibility which is offered by each. language, is considered vcry useful in 

specifying queries. Therefore, we feel free to chOClse the techniques which are most 

comfortable and confident in order to specify the correct query. However, by having 

numerous ways of specifying the single query, it may mtroduce confusion about which 

technique to use to specify particular types of queries [Elma89]. 

a. SQL 

SQL support<;join conditions thai can be used to specify many queries or use 

nested queries with or without the IN operator in it. Scc Query 9. Instead of using the 

CONTAINS operator we can use NOT EXISTS and the IN operator with a nested query. 

Also Query 11 that uses IN and OR operators can be specified using the UNION operator. 

Sometimcs, queries in which are involved NOT EXISTS may be specified using the IN 

operator with nested query or vice versa Query 8 is an example. It can be specified without 

the IN operator. Generally speaking, there are numerous ways to specify the same query in 

SQL [Elma891. However, in some cases we have no confidcnce that our query writing is 

well specified or correct. 

b, QBE 

QBE provides less syntax than SQLand DFQL, therefore it does not have the 

flexibility like SQL does. However, the tuples result that are existed in several relations can 

be formed in one result relation. This flexibility makes the query result more meaningful. 

See Queries 11 and 18. 
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c. DFQL 

DFQL provides primitive operators as described in Chapter II and also we 

have been demonstrated. in Section" A" of this chapter. DFQL in this case, offers the 

flexibility to the user to use the combination or stand alone of the primitive operators with 

respect to the query concern. In queries which involved. universal quantifier. like Query 4, 

instead of using the groupAlISatisfy operator we can apply the select and groupCrIl 

operators. In Query 5, instead ofusing the groupNoneSalisfy operator we can also apply the 

dijfoperator in the main part of the query. In addition, DFQLallows the user to define their 

own user-dejined operator such as the selproj operator of Queries 9, 10, 22, and 25. 

Furthermore, the output of one query can be used as an input or as a part of another new 

query. In fact, once we know the concept of each operator, we can use it in query 

construction easily. In DFQL, we feel more confident that our query is correct, since we 

can trace or check the flow 10 the result part by part. 

3. Consisteney 

As described before, our investigation here is focused. on the structure of queries 

specified in each language. If a mental model that we have for one sample query can be 

built or continued to another new query, where the new query keeps the same mental model 

of structure with the prior query, we can say that the language is consistent in structure. 

Consider the queries in the single-value, set-value. statistical-result, and set-count value 

categories: 

• Query 6 is extended or combined from Query 4 and 5. All of these queries involve 
universal quantification. 

• Query 7 and 8 involve explicit set 

• Queries 12, 13,14, 15 relate toAVG function. 

• Queries 16. 17. and 18 relate to MAX function . 
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• Query 19 is extended to Query 21. 

• Query 22 is mocllfied to Query 23, then Query 23 is extended to Query 24. Fmally 
Query 24 IS extended to Query 25. 

By USing the \ minus ljuery cxamples above, we can examine the stfw.:lurc of 

SQL, QBE, and DFQL. For detail, see and compare the structure of each query. ConsIder 

the followmg brief explanation: 

a. SQL 

SQL is not consistent in structure. If we attempt to extcnd the queries 

(complexity increases) as the queries above, so far we cannot apply our mental model of 

one construct of query structure to the next new query. In fact, we havc to rewrite a new 

query from thc bcgmrung, which will often be very different in structure (incon~)stent) with 

the prior qucncs. Therefore, Inconsistency in specifying queries in SQL, exist" and l~ 

confusing to the user. 

h. QBE 

QBE is very intuitive. In specifying the queries which are presented abo\c 

QBE is very consistent III ~tructure. The mental models that are fOmled in one qucry can Ix: 

continued to other new queries easily, except for queries that involve universal 

quantification. Since QBE lacks existential and universal quantification expressions, thiS 

kind of query cannot be expressed. 

c. DFQL 

DFQL exhIbits consistency in structure. If the queries arc extended, we can 

usc the output of a query result, whether a portion or the whole of a previous query, to be 

a pan of other new qucries. This flexibility )s not exhibited in SQL, nor in Q8E. Even 

though the ljucnc" arc extended (complexity increases), DFQL remains consistent III Its 

structure of query. 
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4. Relative Strengths and \Veaknesses 

In this section we present the relatlve strengths and weakness of these three 

languages. The following result is presented by referring to our previous discussion plus 

some geneml descnpnons of each language. The relative strengths and \veakncsses of SQL, 

QBE, and DFQL are summarized in Table 3, 1. 
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TABLE 3.1: RELATIVE STRENGmS AND WEAKNESSES OF SQL, QBE, AND DFQL. 

Criteria SQL QBE DFQL 

(1). Expressive I' It is approved as ANSI and I' It is commonly used in I' It is implemented in academic 
Power ISO standard and commonly commercial systems. research. 

used in commercial systems . 

. It is re1anonally complete. In • QBB was proposed by ZJoof • It is relationally complete. In fact 
fact it bas all the relational as relationally complete. it has an of the relational algebra 
algebra operations. and also However QBE under QMF as operators, and extends the 
based on a relational calcu1us discussed above is not capabilities of first order predicate 
structure. In addition, it relationally complete. It logic including set, grouping and 
provides the capabilities for includes the grouping function, built-in functions for statistical 
Statistical result based on the built-in function for statistical results. 
built-in function, also the result and has condition box 
GROUP BY, HAVING and which is the same as the 
ORDER clauses. However, HAVING-clause in SQL. 
several type of queries are still 
somewhat difficult to specify 
and comprehend . 

• Allows duplicate tuples to I' Allows duplicate tuples to I' Duplicate tuples are automatically 
exist in the query result. see exist in query result, see Query eliminated from the query result. 
Query L L 
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TABLE 3.1: (Continued). 

Criteria SQL QBE - T DFQL J 
(1). Expressive • It is somewhat difficult to Queries which involve. It can express an existentially or 
Power express the queries that universal quantification cannot universally quantified query 
(continued) involve existential or universal be specified. See Queries 4, 6, easily. See Queries 4, 6, 9, 10,20, 

quantification. The use of 9, 10,20,21,24, and 25. 21,24, and 25. 
negative predicate logic 
(NOT EXISTS) is hard to 
comprehend, see Queries 4, 6, 
9,10.20.21,24, and 25 . 

• It can be embedded within a,' The embedment within a,' The embedment within a general 
general purpose programming general purpose programming propose programming language is 
language (host language), such language is not implemented. not implemented. 
as COBOL, C, PUI, and 
Pascal. 
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TABLE 3.1: (Continued). 

II --- Criteri; SQL QBE II - DFQL 

(2). Extensibility I . The capability for extending ,. The ,capability tor extending 
the existing operators does the eXisting operators does not 
not exist. exist. 

• DFQL provides the user-defined 
operator, so the user may extend 
the query language by defining his! 
her own-defined operators from the 
existing set of primitive operators 
and/or from his/her own previously 
defined user-defined operators (Le. 
the selproj operator). This 
flexibility is gained without a loss 
of the power of orthogonality. By 
thIng user-defined operators, 
common operations for any given 
user can be provided at whatever 
level of abstraction is needed. To 
illustrate the above description see 
Queries 9, 12, 17, 18, 22, and 25. 

L-______ ~ ______________ ~______________ ~ ._____ _ __ _ 
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TABLE 3.1: (Continued). 

SQL -QiiE ==r=. ------oFQi --I! 
Text input is not a user Has a very user friendly ,Even complex problems can be 

friendly interface. interface, more intuitive than specified in an intuitive manner. 
DFQL and SQL . 

• It has rigid rules and syntax, I , It uses less rigid syntax. 
Must understand exactly Requires user to place an actual 
when and where we have to value, an example variable, 
use a particular syntax. and/or commands in the proper 

. It requires longer time in 
order to acquire the concept 
than QBE and DFQL. Once 
we leam general construct of a 
sample query. we cannot apply 
the same thinking in a straight 
forward manner to specify 
other new queries. To illustrate 
the above mentioned. see 
Queries 4-5-6, 7-8,16-18,19-
21, and 22-23-24-25. 

place (columns) in the table 
(relation). 

• As previously mentioned, it 
requires three hours of 
instruction for a non 
progranuner to acquire the skill 
to use QBE. Once we learn the 
construct of a sample query, we 
can use the same thinking in a 
sttaight forward manner for 
specifying the new query. To 
illustrate the above mentioned 
see Queries 7-8. 12-13-14-15, 
16-17-18, and 22-23. 

• Once the construct is learned, it is 
easy to remember and to 
implement. The dataflow style 
query graph, flowing from one 
operator to the other, is easy to 
comprehend. 

• As previously mentioned, 
requires about a half hour for data 
base class to acquire the concept 
and construct more correct quires 
than SQL. Once we learn the 
construct of a sample query, we 
can, in a straight forward manner, 
apply it for specifying a new query. 
More than that, in DFQL we can 
use the output of one query (or part 
of it) directly as an input or part of 
another new query. To illustrate the 
above mentioned see Queries 4-5-
6,7-8. 16-18,19-21,and22-23-24-
25. 
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TABLE 3.1: (Continued). 

Criteria C· -SQL ~ QBE DFQL 
r T _ •• 

(3). Ease-of-use I_ Somenmes we are nO! 
(continued) confident while specifying the 

queries. This occurs when the 
complexity increases., 
particularly in queries that 
involve universal 
quantification. In other words. 
the use of negative predicate 
logic in the queries is not 
completely intuitive, see 
Queries 4. 5, 6. 8, 9, to. The 
nested queries that involve the 
IN operator are also diffkult to 
specify and comprehend. and 
easily lead us to be mixed-up 
and in specifying incorrect 
queries. Furthermore, some of 
the nested queries that are 
presented may not be pennited 
in the implementation of SQL. 
See Queries 21, 23, 24.25. 

• We feel more confident in 
specifying correct queries than 
in SQL. It is faster than SQL for 
all kinds of queries. and faster 
than DFQL (for simple queries 
only). See Queries 3, 5, 12, 13, 
14, 16, 17, 18, 19, 23 But, if 
complexity increases it 
becomes less and less useful. 
See Queries 7, 8, 21, 22. 

• We feel more confident in 
specifying queries (especially 
when the comple~ity of query 
increases) more correctly in DFQL 
than in SQL or QBE. For example, 
if the query involves universal 
quantification. as the main part we 
can use Just one primitive operator 
such as groupAIlSati~fy, 

groupContain. groupNoneSatisfy. 
See Queries 4, 6, 9, 10.24.25. For 
nested query with IN 0pclator in 
SQL; see Queries 1 e. 24, 25 in 
DFQL. both queries present a 
simple way and easy to grasp how 
the data How from one part of the 
query to another part. 



11 

TABLE 3.1: (Continued). 

Criteria SQL II QUE II DFQL 

(3). Ease-or-use 
(continued) 

. _ I . i 
. This language lacks 
orthogonality, i.e. SQL allows 
only a single DISTINCT 
keyword in a SELECT 
statement at any level of 
nesting. 

• 1bis language is orthogonal, 
and is both syntactically and 
semantically easier to use. It 
provides consistency in 
structure. It can be realized by 
examining all the QBE queries 
that are presented in Section 
"A.". 

• We can not reuse the result of I . We can not reuse the result of 
one query in another new 
query. SQL just returns or 
passes the result of one part to 
the other, occurs in nesting 
queries. 

one query in another new query. 
In QBE we are allowed to make 
a new relation as result desired 
from other relation in the same 
query, then we can specify the 
other connnands in order to get 
the other new relation, but it is 
usually applied in order to 
obtain a unique result. To 
illustrate, see the Queries 11, 
18. 

• This language is orthogonal. and 
is syntactically and semantically 
easier to use. It provides 
consistency and naturalness in 
using the operators. Since it 
possesses relational functional 
closure, we can use the result of 
any operator as a new relation that 
can be used as an input to other 
operators. It can be realized by 
examining all the queries that are 
presented in Soction "A.". 

. Incremental queries is another 
feature that makes DFQL distinct 
from SQL and QBE. We can 
increase or modify queries easily. 
and obtain the intermediate resuit 
of certain operators as desired. 
Then, the output of an operator is a 
relation that can be combined with 
another operator to form more a 
complex query. A subquery can be 
defined as a user-defined operator 
if desired to encapsulate. and use it 
as an input to the other new query. 
To illustrate, see Queries 6, 14, 15, 
17.18.21,24,25. 
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TABLE 3.1: (Continued). 

Criteria SQL QDE DFQL 

(4). Flexibility I. See the above description in I' See the above description in I' See the above description in 
"A.2.". "A.2.... "A.2.". 

(5). Consistency 1 • See the above description in I' See the above description in I' See the above description in 
"A.3.". "A.3.". "A.3.". 

(6). Visual I' It is not provided in text· I' Visual interface is the feature I' Visual interface is the one feature 
Interlace based query language. that can perronn all the that can perfonn all the strengths 

strengths of QDE. of the DFQL . 

• This feature grants the user to I' This feature grants the user to 
obtain the relation tables, and interactively manipulate the DFQL 
place all the example variables, query on the computer screen. 
actual constants, and 
commands in order to fannulate 
the query. 
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TABLE 3.1: (Continued). 

Criteria SQL 

(7). Interface I' Since it is not equipped with 
problem visual interface, SQL has no 

problem with it 

QBE 

• This is the common problem 
that generally faces the visual 
interface applications. If the 
complexity increases, and we 
need several relations at once, 
then it becomes inconvenient, 
since it is hard to specify the 
connection between or know 
what is going on in the query. 

DFQL 

• This is the common problem that 
is encountered by the visual 
interface applications. If the 
complexity of the queries 
increases, then the objects in the 
field of drawing become cluttered. 
We use the scroll bar, but we can 
not see the whole query at once. 

• One way that DFQL can reduce 
this problem, is encapsulate some 
portions of the query into user
defined operators and combine 
with the other portions. so it will 
be more readable. 



5 

TABLE 3.1: (Continued). 

Cd .. d, II --S()L - J QBE DFQL - J 
(8). Language. Has no problem embedded . QDE stands alone. It can not • DFQL queries can be compiled 
problem with host language (as be embedded in a host language and inserted into textual programs 

mentioned above). like SQL. as functions, however we can not 

• Since SQL has several 
dialects, the same query will 
be specified in different way 
and different structure 
(inconsistent) . 

see the DFQI. code in the context 
of the query program. It will still 
be a problem since the host 
language is purely proceduraL 
while DFQL is dataflow oriented. 

. Has it's own dam definitions I' Has it's own data definition I' The current implemenwtion does 
language (DDL). language (DDL). not have it's own data definition 

language (DOL) but relie'i on the 
Underlying relational DBMS. 



IV. HU~FACTORSEXPER~ENT 

A. HUMAN F ACTORS ANALYSIS OF QUERY LANGUAGES 

There are several query languages commercially available, and there is a need to 

examine a variety of different query languages in order to measure the notion of "ease-af

use" of query languages. The most common approach in capturing what is the query 

writing, in which subjects are given questions in English and asked to write the 

corresponding query language statement [ReisS1). 

B. EXPERIMENTAL COMPARISON OF SQL, QBE, AND DFQL 

In this section, we review a very simple human factors experiment for comparing 

SQL, QBE. and DFQL. A general assessment of the experiment is provided. Since we 

know that QBE cannot express universal quantification (see Chapter II. C. L c), the tasks 

are divided into two parts: 

• FIrst part consists of five queries which can be specified in SQL and DFQL. In this 
group wriversal quantification is required. 

• Second part consists three queries which can be specified by all three languages 
SQL,QBE. and DFQL. Universal quantification is not includoo. 

TIlls experiment is not intended to be a rigorous comparison of SQL. QBE. and DFQL. 

1. Assessment of the Experiment 

In this experiment 15 subjects were given five tasks of query in English on the 

relational database schema of Appendix A. The subjects coded or specified each of the 

query task. Three query tasks were applied to all three query languages. and two query tasks 

just applied to SQL and DFQL. Each response was then graded as either correct or 

incorrect. 

111 



a. Subjects 

The experiment was conducted on 15 students enrolled in "Advance 

Database" and "Database Seminar" courses at the Naval Postgraduate School (NPS) in 

Monterey, California. The students at NPS are primarily U.S. military officers; foreign 

military officers and Deparnnent of Defense civilian employees are also represented. The 

composition of the student are recorded based on their academic backgrounds, which are 

broken down based on their bachelor degree which is classified as "technical" or "non

te1:hnical". In addition, subjects are also characterized by their programming experience. 

For analysis purposes, subjects with programming experience more than 1 year are 

classified as "experienced". 

b. Teaching Method 

All the subjects have already taken the introductory database system course 

for one quarter, so all of them have a background in relational algebra, relational calculus. 

SQL and QBE. A 30 minute presentation ofDFQL concept was given at the beginning of 

the experiment. A handout describing the DFQL operators was giveu to the subjects. 

c. Test Querie6 

The five test queries were based on the relational database schema in 

Appendix A. They are; 

• Query Ql: "List the name and location of the projects whose member (at least one) 
eams more than $40,000." The first query (Ql) involved only selection, projection, 
and joining to achieve the correct answer. 

• Query Q2: "For each project, list the number of employees working on that project." 
The second query required grouping and counting. Here the comprehension is 
somewhat more complex than Q1. 

• Query Q3: "Retrieve the total number of employees who worked more than or equal 
to 20 hours in each project, with more than two employees working." The third query, 
in addition to grouping and counting operations, also required ,>pecial condition that 
needed another grouping and counting; in SQL, it is specified by HA VL"lG-c1ause. 



• Query 04: "Retrieve the name of each employee who works on all projects that are 
located in Houston." The fourth query required the DIVISION operation of relational 
algebra, in SQL it could be specified wether using CONTAINS comparison or NOT 
EXITS operators. In DFQL. it can be specified using groupContain operator. 
However, since QBE lacks universal quantifier, this type of query can not be 
expressed . 

• The question Q5: "List the fIrst name and last name of all employees who have only 
female dependents." The fIfth query required the use of the universal quantifIer and 
was subjectively viewed more difficult than the first three queries, but almost the same 
with query Q4. Here, SQL applied NOT EXISTS operator in the WHERE-clause, and 
in DFQL specified by the groupAllSatisfy operator. Similar to the fourth query. it 
cannot be expressed by QBE. 

By providing five queries which were of increasing complexity. it was 

intended to see if DFQL perfonn better than SQL and QBE in more difficult queries. 

Subjects were given one week to complete the experiment. 

d. Evaluation Method 

The tests were collected and hand-graded by the researcher. The criterion 

evaluated by this experiment was graded as either correct or incorrect queries. Correct 

included responses that were either completely correct or contained a minor language or 

minor operand error. The following taxonomy of minor language error and minor operand 

error were given by Welty and Stemple [WeltS1}. A minor language error is a basically 

correct solution with a small error that would be found by a reasonably good translator. A 

minor operand error is a solution with a minor error in its data specification, such as a 

misspelled column name. However. a transposition of colunm names (or simple use of the 

wrong column name) was classified as an incorrect answer because there is no way for the 

grader. or computer to determine the subject's intent. 
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2. Experiment Results 

In this section we present a general discussion of the results derived from the data 

taken. The primary measurements of this experiment were made based on the entire sample 

population. The primary metric used was the number of questions answered correctly. This 

was calculated for each individual question and also for each language as a whole, the result 

are summarized in Table 4.1. In addition we also provided the results based on subject 

backgrounds (tcchnicaVnon-technical and programming experience). However, since the 

percentage differences between SQL, QBE, and DFQL for all queries were nearly similar 

and the number of subjects in individual classification was small (due to small overall 

population size), the detailed statistical analysis was performed only on the total sample, 

see Table 4.2 and Table 4.3. 

From Table 4.1., for the easiest query (Q 1), subjects wrote a greater percentage of 

correct answers in SQL than in QBE (7%) or in DFQL (20%). But, in Q2 there was a 

difference of 53% for correct answer in DFQL compared to SQL and 40% compared to 

QBE. In Q3, there was only 7% more correct answers in DFQL compared to SQL and 0% 

compared to QBE. For Q4 the difference was 7% between DFQL and SQL. In Q5 there was 

a difference of 33% for correct answers in of DFQL compared to SQL. In the above 

analysis. we always subtract the SQL and QBE percentages of com:c:t answers from DFQL; 

a difference of 20% means that DFQL produced 20% more correct answers than SQL or 

QBE. 

Table 4.2. swnmarit.es the percentage of correct queries for SQL, QBE, and 

DFQL for Q1, Q2, and Q3 broken down by technicaVnon-technical as well as experienced! 

non-experienced. We see that the subjects with a non-technical background got a slightly 

greater percentage of queries correct in all three languages than those with a technical 

background. Thedifference was 3% more correct for SQL, 2% for QBE, and 9% for DFQL. 
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In classification by experience, there was no difference in percentage of queries correct for 

SQL, while the less experienced subjects got 8% more correct for QBE queries, _and the 

more experienced got 3% more correct for DFQL. 

Table 4.3. summarizes the percentage of correct queries for SQL and DFQL for 

QI through Q5 broken down by technical/non-technical as well as experienced/non

experienced. We see that the non-technical got a slightly higher percentage correct for both 

(3% for SQL and 1% for DFQL). The experienced subjects got 7% more cormct than the 

less experienced for SQL and 8% more correct for DFQL. 

, 
! 

TABLE 4.1: EXPERIMENT RESULT 

% of Correct 
Task 

SQL QBE DFQL 

Ql 87 80 67 

Q2 40 53 93 

Q3 6 13 13 

Q4 33 NotlComparable 40 

Q5 0 Not Compamble 33 

Overa11oftbe 33 49 50 
firstZ part which 

contains 
Ql tbruugh Q5. 

OveraU of the 44 49 58 
second3 part 

which 
contains 

Ql, Q2, and Q3. 

1. Not ComJ)lllllble. smce QBE lacks of uruven;ai quantifier. 
2. Overall fust pan is calculaled for aU the three languages 
SQL, QBE and DFQL. 
3. Overall second pan is caJculaled just for SQL and DFQL. 
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TAHLE 4.2: PERCENT CORRECT OF SUBJECT CLASSIF1CATION FOR 
Qt, Q2, AND Q3 

Subject Number % Of Correct 

Classification of Subjects SQL QBE DFQL 

Technical 43 48 53 

Non-Technical 46 50 62 

Experience> 1 Yr. 12 44 47 59 

Experience $ 1 Yr. 44 55 56 

Total Sample 15 44 49 58 

TABLE 4.3: PERCENT CORRECf OF SUBJECT CLASSll'ICATION FOR 
Qt THROUGH Q5 

Subject Number % Of Correct 

Classification of SUbjects SQL DFQL 

Technical 31 51 

Non-Technical 34 52 

Experience> 1 Yr. 12 32 45 

Experience S. 1 Yr. 39 53 

Total Sample 15 33 50 
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3. Experiment Condusions 

Generally speaking, since this human factors experiment was conducted on only 

15 subjects, the result is not a rigorous statistical comparison of SQL, QBE, and DFQL. 

However, we still can mab: the following observations: 

a. Qa61Y(QI) 

SQL is better than QBE and DFQL for a simple query which involves only 

selection, projection. andjoining, that is a query in thesingle-value category. Once the user 

learns and knows the concept of this type of query, it is easy for the user to build another 

query in a single-value category as long as the query requires only project, select, and join 

operations. See a representative query (Query 3) in Ompter m. A.1.c., which requires a 

simple selection and projection without a need of nesting. As long as nesting is not 

required, SQL seem1 to provide a simple and logical quCl')' construct. 

b. Q...,(QZ) 

DFQL is bettec than SQL and QBE for queries requiring grouping and 

counting operations. This kind of query composes statistical result. In DFQL. the idea of 

grouping and counting is easy to understand since it requires just one operator (groupCnt). 

See Query 14 as one similar to Q2. In SQL, some of the subjects misunderstood how the 

COUNT operator works, and they specified GROUP BY followed by an attribute name but 

did not specified this attribute in the SELECT -clause. In QBE, some of the subjects mixed

up the CNT and CNT.ALL operators. 

~ Q...,(Q3) 

In this query all three languages had an approximately equal pen;entage of 

comet answers. Query (Q3) requires grouping. counting functions and special condition. 

In SQL the special condition is known as HAVING COUNT (*), and in QBB it is nOIIllally 
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~pecilied using condition box. In DFQL. it is formulated by using f?rollpCllt followed by 

select operators. A representative of this kind of quer)' is illustrated by Query 21 which is 

composed in set-count value, Olapter m. A. 4. b. Since Q3 increases in complexity 

compared to Q2, logically Q3 is more difficult. If ~ubjects did not have a good 

understanding of the concept of this type of query, nonnally they come up with incorrect 

query. For instance in SQL, this query requires nesting. with GROUP BY and HAVING 

COUNT (*) operators in the nested part and another GROUP BY is needed for the whole 

query. Therefore, we can say this type of query was more difficult to formulate in SQL 

compared to QBE and DFQL. 

d. Query (Q4) 

Query (Q4) exhibited no significant difference in percentage of correct 

answer~ between SQL and DFQL. This type of query requires the DIVISION operation of 

relational algebra, whlchis similar to Query 9 (set·value category, see Chapter lILA. 2. d.). 

For SQL. this query is easy if the subject understand~ the relational division and the SQL 

implementation supports the CONTAINS operation. In cases where the CONTAINS 

operation is not available, it would be much more difficult because either: 

• User has to translate relational division into equivalent relational operations, and then 
write the SQL corresponding to the translated relational operations, or 

• User has to re-think: in SQL using operations such as the NOT EXISTS operator. [n 

this case, user has to change his/her mental model to negative logic while fonnulating 
tbequery. 

e. Query (QS) 

Query (Q5) involves existential or universal quantification. In SQL the NOT 

EXISTS and EXISTS operators with two nested queries are required to specify the query. 

This kind of query is similar to Query 10 which is composed in set-value, Chapter m. A. 

2. e. Since the NOT EXISTS is used the user must think in the negative logic, which is more 
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difficult to fonnulate even for the experienced users. Not one of the subjects formulated a 

correctanswerin SQLforthis query (QS). However, in DFQL, universal. quantifica~ can 

be formulated just by using the groupAllSatiify operator. Therefme, for queries which 

involve universal quantification, DFQL offers a mOle understandable approach than SQL. 

By examining these five tasks. for a simple query which requires selection 

and projection without nesting. SQL seems a simple and logical construct However, for 

queries which require grouping. counting and universal quantification, DFQL seems better 

in specifying the query than QBE and SQL. 
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V. CONCLUSIONS 

There are some known problems with a widely used query language such as SQL and 

QBE. Some of the problems are the lack of expressing universal quantification. specifying 

complex nested queries. and flexibility and consistency in specifying queries with respect 

to data retrieval. To alleviate these problems, a new query language called "DFQL" was 

proposed. We conducted a comparison of three languages: SQL, QBE. and DFQL. 

Numerous queries were grouped into four categories: Single-value, sel-value, 

statistical result, and set-coullt value; specified in SQL, QBE, and DFQL, and compared in 

each category. In the queries comparison, queries ranged from the simple ones to queries 

which are involved existential or universal quantification and complex nested queries. 

Some of the queries are stand-alone, while some others specified are logical extensions of 

one query to the next, with the complexity increasing (refer to Query 1 through 25 in 

Chapter m). These representative sets of queries were chosen in order to investigate the 

relative strengths and weaknesses of each language related to ease-of-use issues, especially 

in e)(pressing universal quantification, nested queries, and flexibility and consistency in 

specifying the queries with respect to data retrieval for RDBMS's. 

In this research, based on the above queries mentioned, and the analysis which are 

summarized in Table 3.1., we conclude that DFQL eliminates the problems which are 

encountered by SQL and QBE mentioned above. The relative strengths of DFQL comes 

mainly from its strict adherence to relational algebra and dataflow-based visuality. Strict 

adherence to relational algebra allowed users not to worry about e)(ceptions as was the case 

with SQL. Dataflow-based visuality required users only to master a very simple and 

intuitive dataflow paradigm to write queries. A simple paradigm of dataflow suffices even 

for a very complex query, because the complexity of the query is handled by high-level, 

user-defined operations, not by e)(tending the language construct as is the case with the 
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other two languages. Although the number of subjects in our experiment is too small to 

conclude affirmatively that DFQL is better than the other two. the result of the experiment 

showed that DFQL's ease of query writing resulted in a greater percentage of cot:rect 

queries, especially queries which involved count, grouping functions and universal 

quantification (complex queries), than in either SQL or QBE. 
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APPENDIX· A 

EXAMPLE DATABASE 

Through out this thesis all the query examples are matched the relational schema 

database which is called COMPANY database [Ehna89). 
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I EMPLOYEE 

731F<!IIdreft.ik<u...,q.TX M 

M 

nu Cu&.Spring. IX F 

291 Beny. BollU",. IX 

97SRreOok,HIllllIU IX 

'5631Rico.~TX 

9S0Daibs.HrulllOn.TX 

I DEP_LOCATIONS IllillMBl!R. ~ 

H<,,,u,, 
Stafford 
Bellaire 

Su arland 
Hoo""", 

I DEPARTMENT I DNAMB I Dl:i!.!MIW& I MGRSSN I MGRSTAlITDATE 

Resean:b , 333445555 22-Mav-78 

981654321 Ol-JUI-1I5 

HeadquBtfn 19-1un_71 

I PROJRCT PNAME "'""""" PLQCATION DNUM I 
Pm_ Bellaire , 
ProductY Sugarland -C~ 
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I DEPENDENT 

11344~5555 

3334455555 

333445555 10 100 

333445555 20 100 

10 ,5.0 

5.0 

987654321 30 

DSPENDENT NAME 

05-A r-76 DAUGHTER 

2.'5-Od_73 SON 
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