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ABSTRACT 

This thesis proposes a new Gallium Arsenide (GaAs) Dynamic Random Access 

Memory (DRAM) storage cell design based on an n-type, depletion mode diode and 

evaluates an Emitter-Coupled Logic (ECL) based test platform. The depletion mode diode 

storage cell exhibits improved charge storage and maintenance characteristics when 

compared with a previously designed capacitor-based storage cell. Power requirements of 

the diode-based cell are marginally increased. The modularity of the new diode-based 

design produces impressive improvements in Very Large Scale Integration (VLSI) layout. 

The smaller design promises a higher degree of memory cell integration for future GaAs 

DRAM applications. The ECL test platform provides DATA, READ, WRITE, REFRESH 

and CLOCK signals as well as power and ground requirements for a GaAs DRAM chip in 

a 132-pin package. All testbench systems are tested and prove functional but CLOCK and 

REFRESH signal integrity suffer from noise and connector losses above 100 MHz. 

Ultimately, the ECL test platform failed to test the existing GaAs DRAM due to pin-out 

incompatibility. Recommendations for future test platforms are discussed along with 

suggestions for incorporation of the diode-based memory cell in new DRAM designs. 
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I. INTRODUCTION 

This thesis follows a series of four theses concerning a Gallium Arsenide (GaAs) 

based Dynamic Random Access Memory chip (DRAM). Christopher Vagts [Ref. 1] 

developed a single bit, 8 address, capacitor-based storage cell and dynamic memory 

architecture. Michael Morris [Ref. 2] incorporated four of the above cells for a 32 bit array 

and developed the support structure to enable the reading and writing of data to the memory 

cell. Requirements for refresh, synchronization and command conflicts were addressed as 

well as the requirement for the cell to interface with a silicon based test structure. The 

following two theses developed this test structure. Michael Butler [Ref. 3] first designed a 

6-layer emitter-coupled logic (ECL) based testbench around the requirement to read and 

write to each of the of the 32 bits. Later, Byron Ginter [Ref. 4] continued the work of Butler 

by refining the design and fabricating the testbench. 

An introduction to the 32 bit DRAM is presented with a summary of subsystem 

characteristics. Basic operation of the capacitor-based storage cell follows. The 

fundamental operation and characteristics of the testbench are explained as well as the 

methodology for system verification. Results show that although functional, the testbench 

fails to meet criteria for DRAM testing leaving the current DRAM chip unverified. 

Recommendations are given for future testbench design and fabrication. The later chapters 

focus on design improvements to the DRAM storage cell. Specifically, a n-type, depletion 

mode diode proves to be a viable storage device offering superior charge storage and 

maintenance characteristics when compared to similarly sized capacitors. An emphasis on 

modularity shows a greater level of circuit integration in the Very Large Scale Integration 

(VLSI) layout. Finally, recommendations are given for future integration of the diode- 

based storage cell. 





II. GALLIUM ARSENIDE DYNAMIC RANDOM ACCESS MEMORY 

A.   BACKGROUND 

Memory is a critical element in most computers and is becoming more and more 

significant as software memory requirements grow. Historically, memory has been 

implemented with semiconductor, magnetic and optical devices. Memory associated with 

semiconductor circuits is referred to as a random-access read/write memory or RAM. Data 

stored in RAM is not permanent; the user has the capability of changing values in the 

memory. RAM is also volatile. That is, if power is removed, any data in the RAM is lost. 

RAM comes in two basic varieties, Static RAM (SRAM) and Dynamic RAM (DRAM). 

Static RAM as the name suggests is memory that remains valid until the value is changed 

or power is removed. Dynamic RAM however, requires that the memory be periodically 

rewritten. The underlying reason is that the memory cell is basically a charge storage 

device, like a capacitor, and will slowly lose its charge. If these storage devices are not 

recharged, the charge will slowly drain off the device and the data will be lost. This 

rewriting procedure is referred to as a refresh. Most Dynamic RAMs are manufactured 

using Metal Oxide Semiconductor (MOS) technologies whereas Static RAMs incorporate 

Complementary Metal Oxide Semiconductor (CMOS). Not only are Dynamic RAMs less 

expensive to fabricate than Static RAMs, they offer considerable savings in the number of 

transistors required to build a memory element. SRAMs on average require five to six 

transistors to complete a memory cell where DRAMs require only one transistor and a 

capacitive element. The low cost and high level of integration make the DRAM the 

predominate memory device with today's microprocessor. Unfortunately, the speed 

advances in Silicon (Si) Dynamic RAMs has not been as great as Silicon SRAMs. Therein 

lies the motivation to find new fabrication methods and materials for Dynamic RAMs that 

achieve or exceed the speed characteristics found in SRAM components. The incorporation 

of Gallium Arsenide (GaAs) into transistor fabrication attempts to build the fast, low cost, 

low power DRAM circuit. [Ref. 5] 



B.        GALLIUM ARSENIDE TECHNOLOGY 

Gallium Arsenide (GaAs) is a compound semiconductor consisting of valence 3, 

gallium, and valence 5, arsenic, elements. This combination of the elements yields a high 

electron drift mobility and improved transconductance. GaAs transistors are classified as 

Metal Semiconductor Field Effect Transistors (MESFET) and distinguish themselves from 

Si Metal Oxide Semiconductor Field Effect Transistors (MOSFET) from the construction 

of the transistor. In GaAs transistor fabrication, the gate metal is deposited directly on the 

n-channel GaAs active implant. The gate-semiconductor junction creates a Schottky- 

barrier diode which becomes the basis for all GaAs transistor operation. [Ref. 6] 

GaAs transistors have been in use for digital integrated circuits (IC) since the 

1960's. They came into fashion as an answer to applications requiring very high speed logic 

without the delay and power requirements of silicon CMOS or bipolar integrated circuits. 

Other advantages enjoyed by GaAs implementation include short gate propagation delays, 

a five to one advantage over Si in Power-Delay Product (power dissipated x propagation 

delay) and a higher resistance to radiation (lower single event upset occurrence). The main 

disadvantage in using GaAs transistors is the high ratio between input/output delays and 

logic propagation delays, which must be taken into account when designing GaAs ICs and 

systems. Another disadvantage to GaAs fabrication is its relatively low circuit integration. 

Although GaAs designs have followed MOS like circuit design topologies and silicon like 

process techniques, their level of integration and complexity lag behind the levels of 

today's silicon circuit technology. Nevertheless, GaAs circuit integration has progressed to 

the point where it is now becoming a viable solution to DRAM improvements. GaAs 

technology, like Si, has evolved from circuits using mostly n-type enhancement/depletion 

mode transistors to circuits using complementary transistors. When GaAs DRAM research 

was initiated at NPS, the use of p-type GaAs transistors was precluded because of the low 

mobility of holes (250 cm2/(V-s)) and low barrier height (0.45 eV) of most metals on p- 

type GaAs. Today however, complementary GaAs fabrication has improved mobility and 

increased barrier heights to allow integration into some circuits. [Ref. 7] 



C. GALLIUM ARSENIDE LOGIC FAMILIES 

Like silicon-based circuits, GaAs circuits can be designed using enhancement mode 

transistors, depletion mode transistors or a mixture of the two. The main property that 

distinguishes the high-speed GaAs FET from NMOS and CMOS circuits is the forward- 

bias gate conduction resulting from the use of a Schottky barrier formed by the GaAs gate 

over the n-channel. The n-channel FETs also have an inherent high transconductance 

relative to p-channel GaAs FETs due to the higher electron mobility and electron drift 

velocity. Depletion mode (normally-on) GaAs FETs are characterized by having a Vj less 

than zero. Logic circuits using these depletion FETs exhibit characteristics of having 

unequal input and output voltage levels. VQS must be negative to turn off the transistor, 

while VDS must remain positive. These circuits offer characteristics of higher noise 

margins and higher fan-out but suffer from higher power dissipation and current levels. 

Circuits using Enhancement/Depletion mode GaAs FETs, on the other hand, carry smaller 

current levels since the enhancement FET requires only one power source. The small logic 

swing from 0 V to 0.7 V provides high speed when combined with high intrinsic 

transconductance. [Ref. 7] 

The depletion mode logic families incorporated in the design include Unbuffered 

FET Logic (UBFL), Buffered FET Logic (BFL), and Schottky Diode FET Logic (SDFL). 

Enhancement mode logic families incorporated include Direct-Coupled FET Logic 

(DCFL) and Superbuffer FET Logic (SBFL). Choice of a particular logic family is based 

on the logic operation, noise margin requirement, fanout, power consumption and size. 

Specific detail pertaining to the logic families can be found in the work presented by 

Morris. [Ref. 2] 

D. GALLIUM ARSENIDE ONE-TRANSISTOR RAM CELL 

The basis for research on the GaAs DRAM is a one-transistor RAM cell 

incorporating a capacitor for mamtaining charge. This particular cell was chosen as the 

result of the research by Christopher Vagts. [Ref. 1] This study compared various three and 

one cell arrangements and compared charge storage and maintenance, sensitivity, refresh, 

timing, simulation and layout. Charge storage and maintenance in GaAs transistor 



structures are adversely affected by secondary effects of subthreshold current and substrate 

leakage currents. Subthreshold current is the residual leakage current that flows from 

source to drain when VGS is biased more negatively than VT. Substrate leakage current is 

leakage through the substrate which occurs due to injection of a charge from a forward 

biased contact. [Ref. 7] The advantages of the one-transistor cell over other designs include 

less power consumption due to fewer transistors, smaller second-order effects, a simpler 

refresh circuit and higher scale integration. A diagram of this model can be seen in Figure 

2.1. 

A 

Vdd 

1 

D 

GND 

Figure 2.1. One Transistor RAM Cell with a Capacitor. 

To complete the cell, pull-up and pull-down transistors are added to support the 

logic criteria for read and write operations. Transistor 1 and the capacitor act together as 



the memory cell. Transistors 2 and 3 support logic to read or write to the cell, as seen in 

Figure 2.2. 

Hf 
ililpi 

Mi 

GND — 

Vdd 

BIT I/O Line 

Figure 2.2. Single Cell with Read/Write Support. 

To Write a ONE (high), the gates at nodes B and A are simultaneously pulsed, 

which turn on transistors 2 and 1. This opens a circuit from VDD through transistors 2 and 

1 to charge the capacitor at node D. To Write a ZERO (low), the gates at nodes C and A are 

pulsed, which turn on transistors 3 and 1, creating a circuit from GND through transistors 

3 and 1 to the capacitor at node D. The open path to GND discharges the capacitor. 

To Read the charge at node D requires that both the pull-up transistor (transistor 2) 

and the pull-down transistor (transistor 3) are off. The Bit Input Output (BIO) line must also 

be at a low potential. Transistor 1 is then turned on by pulsing the gate at node A so that the 

voltage potential at D is connected to the Bit Input Output line. It is significant to note that 

the BIO line need not be fully discharged prior to reading. A small drop or increase in 

potential is sufficient to indicate a ZERO or ONE respectively. 

E. SENSE AMPLIFIER 

As previously mentioned, a read is accomplished by sensing the potential drop or 

increase on the BIO line. The sense amplifier accomplishes this task. The design 

incorporated in the memory follows standards from Si architecture using n-channel metal 

oxide semiconductor (NMOS) technology and enhancement-depletion mode transistors. 

Using five transistors, the sense amplifier measures changes on the BIO lines and quickly 



pulls the BIO line to the respective level. The sense amplifier plays a critical role in the 

speed of the memory circuit. Because the transistors inside the cell are small and the 

capacitance of the BIO line large, pulling down the line takes a significant amount of time. 

The sense amplifier speeds up the read operation by amplifying the change in potential. The 

sense amplifier used in the DRAM is illustrated in Figure 2.3. [Ref. 2] 

Vdd 

Odd Bit I/O 
*# 

Even Bit I/O 

GND 

Figure 2.3. Sense Amplifier After Ref. [2]. 

The timing of the circuit is very important. Ideally, the sense amplifier will operate if 

the cell and sense transistors come on at the same time. This scheme, however, does not 

allow the BIO lines to be unbalanced strictly by the stored charge. The problem that results 

may include a fictitious read. To solve this problem, various high-level circuits to include 

a two-phase non-overlapping clock are required to allow for the delayed clock to the sense 

transistors. The drawback to the high-level support structures is a dramatic increase in 

power consumption. The following section outlines the high-level circuits. 

F. GaAs DRAM HIGH-LEVEL CIRCUITS 

The DRAM incorporates 12 high-level circuits used to facilitate read, write and 

refresh operations as well as to establish precedence in commands and perform the 

necessary conversion from ECL to GaAs logic levels. The high-level circuits include a 



CLOCK, DECODER, DECODDRVR, DREFRESH, WRTIEP, COUNTER, OUTPUT, 

WLOGIC, and pad drivers/receivers. Each high-level circuit is briefly described in this 

section. Block diagrams are contained in Appendix A. Complete descriptions, schematic, 

transient analysis, power dissipation and general comments can be found in the work by 

Morris. [Ref. 2] 

1. Two-Phase Non-Overlapping Clock (CLOCK) 

The development of the two-phase non-overlapping clock was a result of the need 

to equalize bit-lines and pre-charge dummy cells and bit-lines, as well as to activate sense 

transistors for read and write operations. The clock also required a level shifting operation 

due to the use of depletion mode transistors in the memory cell and other high-level 

circuits. The circuit accepts a single square wave input, 50% duty cycle signal of 0.06V to 

0.63V. The specific outputs of the CLOCK circuit include the original signal phase one 

(PHI), a phase one level shifted from -1.2V to 0V (PHIL), an inverted signal phase two 

(PH2), a time delayed phase two (PH2D), and a time delayed and level shifted phase two 

signal (PH2LD). [Ref. 2] 

2. One-Of-Eight Decoder (DECODER) 

The one-of-eight decoder is a support circuit to decode address lines. The circuit is 

purely combinatorial. Inputs include the three address lines and three enable lines. Outputs 

include the separate control lines for each address as well as a single enable line. [Ref. 2] 

3. Eight Stage Counter (COUNTER) 

The counter performs the sequential selection of address lines in the refresh 

operation and is incorporated in another high-level circuit DREFRESH. The counter begins 

with logic 000 and cycles up to 111 to complete the cycle. The overall speed of the refresh 

cycle is in part limited by the speed of this COUNTER which is dependent on the DCFL 

glue logic gates used in the design. Inputs include the external clock and an enable. Outputs 

include counter values Q0 through Q2. [Ref. 2] 



4. DRAM Refresh Circuitry (DREFRESH) 

This circuit monitors the external refresh signal. The overall DRAM itself does not 

monitor the status of the charge in the individual memory cells, nor does it initiate a refresh 

cycle on its own. The circuit as previously mentioned, incorporates the COUNTER and by 

sequentially activating each memory address performs a successive READ operation to 

each bit. Each of the four bits at a particular address are refreshed simultaneously, allowing 

for a complete refresh to occur in as little as eight clock cycles. Inputs include phase one 

clock PHI, address lines (AO, A!, A2) and the external refresh signal (REFRESH). Outputs 

include refresh address lines (A00, A01, A02) and internal refresh signal (MREFRESH). 

[Ref. 2] 

5. Decoder Driver Circuit (DECODDRVER) 

This circuit provides synchronized signals to the memory cell to accomplish Read 

and Write Operations. Among the required signals control signals for Even and Odd Bit 

line Dummy Cells, (EDUM, EDUMD and ODUM, ODUMD) as well as the control lines 

to the memory cell sense transistors (DXO to DX7) respectfully. Obviously, each bit 

requires its own decoder driver for a total of four in the design. Inputs include three address 

lines (A0,A1,A2), and internal read, write and refresh commands (MREAD, MWRITE, 

and MREFRESH). [Ref. 2] 

6. Output Logic Circuitry (OUTPUT) 

The OUTPUT circuit accomplishes the read of the appropriate bit-line in the 

memory cell. Inputs include an internal read command (MREAD), (EDUM and ODUM) 

dummy cell signals as well as odd and even bit-line control signals (ODDBIO and 

EVENBIO) respectfully. The output includes the data out bit-line and its complement 

(DOX,/DOX). [Ref.2] 

7. Operation Priority Logic Circuitry (WRITEP) 

This circuit establishes command priority to the external refresh signal, REFRESH, 

followed by the external write signal, WRITE. The external read command, READ, has 

10 



lowest precedence. Inputs include REFRESH, WRITE and READ. Outputs include 

internal refresh, write and read commands (MREFRESH, MWRITE, and MREAD) 

respectively. [Ref. 2] 

8. Memory Busy Circuitry (MBSY) 

This circuit sends a MBSY signal to the output pad during any refresh, write or read 

operation. Inputs include MREFRESH, MWRITE and MREAD and outputs include 

memory busy signal (MBSY). [Ref. 2] 

9. Data Ready Circuitry (DRDY) 

This circuit provides a (DRDY) signal for data availability. The signal becomes de- 

asserted only during read operations. Inputs include even and odd dummy control signals 

(EDUM and ODUM) as well as an internal read command (MREAD). Output is DRDY. 

[Ref. 2] 

10. Write Logic Circuitry (WLOGIC) 

WLOGIC provides the control signals to pull-up and pull-down transistors at the 

appropriate address to enable the write of a one or a zero to the appropriate bit. Inputs 

include all Data bit lines (DX), data strobe (DAS), given address line (AX), internal write 

command (MWRITE) and inverted clock signal (PH2). Outputs include the appropriate bit 

pull-up and pull-down control signals (EXPU, EXPD, OXPU, OXPD). [Ref. 2] 

11. Pad Receiver Circuit (PADRCVR) 

Provided by S. Long and D. Fouts, this circuit receives an external ECL signal and 

converts it to DCFL logic levels for the internal circuits. [Ref. 2] 

12. Driver Pad Circuit (DRVRPAD) 

Complementary to the Pad Receiver, the Driver Pad accepts a DCFL logic signal 

and converts it to ECL logic levels. Again, this design the work of S. Long and D. Fouts. 

[Ref. 2] 
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The next chapter will discuss the test bench designed for the GaAs DRAM and 

address its functionality. 
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III. PRINTED CIRCUIT BOARD TEST BENCH 

A.        TEST METHODS FOR GaAs DRAM 

With the development of the GaAs DRAM came the need to functionally test the 

memory array. The DRAM pads were designed to accept Emitter-Coupled Logic, ECL, 

signals. ECL is the fastest silicon-based, commercially available and economically feasible 

technology. Local test devices lacked the capability of generating command, data, clock 

and refresh ECL signals up to a required 250 MHz. To meet the requirement for functional 

testing, Michael Butler and Byron Ginter developed a test platform based on design 

attributes of the GaAs DRAM incorporating ECL components [Ref. 6]. The major guiding 

issues to the testbench included: 

•The physical characteristics of the GaAs DRAM including: a 32-bit memory con- 

sisting of eight address locations with four bits at each address; individual input 

pads for Data Address Strobe, Read/Write commands, Receiver Reference Volt- 

age (RVREF), Bitline Reference Voltage (VREFB), Dummy Cell Reference 

Voltage (VREFD), Substrate Reference Voltage (SUB) and Input Clock 

(INCLK); individual output pads for Data Ready (DRDY) and Memory Busy 

(MBSY) control lines as well as multiple input pads for DRAM power (-2.0V) 
and Ground (GND). 

•All pads on the DRAM interface to external logic by means of emitter-coupled 
logic. 

•, All lines are required to be terminated utilizing transmission line interconnect 

techniques due to the signal edge rates and speed. The standard used for ECL ter- 
mination is 50 ohm termination to -2.0 volts 

•The testbench is required to test each data bit storage cell by writing data to a 
given address and then reading the data bit back out of the DRAM. 

•The testbench should be a printed circuit board of minimal size utilizing surface 

mount technology (SMT) capable of achieving signal speeds up to 250 MHz. 
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•To achieve the clock speed necessary to adequately test the DRAM, the fixture 

must contain dedicated signal planes for high speed interconnect. These imped- 

ance controlled signal planes must be bounded on the top and bottom by either 

power (AC ground) or ground planes to reduce crosstalk and reflections. [Ref. 4] 

To better understand the testbench platform, a brief description of ECL devices is 

in order. 

B.        EMHTTER-COUPLED LOGIC 

Emitter-Coupled Logic (ECL) is the fastest silicon-based logic circuit family. The 

technology essentially incorporates a bipolar junction transistor (BJT) differential pair 

current switch. The switch operates in the ohmic region keeping logic swings to about 0.8 

volts and reduces the time required to charge and discharge load and parasitic capacitances. 

A popular form of ECL circuits is produced by National Semiconductor in their F100K 300 

series. The 300 series meet the performance standards set by 100 and 200 series but also 

reduce power dissipation up to 50%. They operate with a supply voltage of (-4.2V to -5.7V) 

and have electrostatic discharge protection. The F100K features gate delays that are 

typically 0.75 ns and dissipate only 19mW/gate. [Ref. 8] The basic configuration of the 

ECL switch is given in Figure 3.1. 

V, cc 

Vcl 

'IN O- 

Ro 

Vc2 

-O  VBB 

'EE 

Figure 3.1. Basic ECL Switch After Ref. [8]. 
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The switch operation begins with both base voltages VM and VBB equal. In this 

case current flows equally between Ql and Q2. An increase in voltage at V^ by 0.125 mV 

causes all the current to flow through Ql. A decrease in voltage at V^ causes all the current 

to flow through Q2. Therefore, a voltage swing of 250 mV enables the switching function. 

An additional voltage swing increase to 700 mV provides added noise margin. The series 

300 components use negative voltages for the logic levels (-0.9 V = LOGIC '1') and (-1.6 

V = LOGIC '0'). Power supplies to the components include 0V as Vcc and -4.5 to -5.2 V 

as VEE. Since the switch works at speeds up to 250 MHz, secondary effects consisting of 

crosstalk and transmission line effects play a critical part in design. The following 

paragraph briefly describes the nature of the problem and solution. 

C.        TRANSMISSION LINE EFFECTS 

The combination of short signal rise times and relatively long signal propagation 

times cause the phenomenon known as transmission line effects. When utilizing F100K 

Series 300 ECL components, signals have characteristic rise times of 0.2 ns. The signal in 

the printed circuit board however only travels about half the speed of light or 15 cm/ns. For 

this environment, problems occur because energy that reaches the end of the transmission 

line is not absorbed but is reflected to the transmitting end. The result is a 'ringing' or 

damped oscillatory signal about the final signal value. Given a 0.2ns rise time and assuming 

a 15 cm/ns signal propagation, a signal can travel six cm before encountering interfering 

oscillatory reflections. Therefore, the maximum distance between components would be 3 

cm [Ref. 6]. Printed circuit board properties prohibit a 3 cm placement between all 

components and require that the signals be absorbed at the receiver components to prevent 

reflection. To achieve absorption, the transmission lines must be 'terminated' at the 

receiving end in a resistance equal to the line's characteristic impedance. The terminating 

resistor of matching impedance preserves the ratio of voltage to current and therefore 

retains the original signal and does not produce reflections. The following paragraph 

further illustrates the importance and reasons for maintaining the voltage to current ratio in 

the circuit. 
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Within the circuit board, signal lines and ground lines are used to connect various 

ECL components and the GaAs DRAM. The lines are basically two conductors that each 

have a characteristic impedance and capacitance and constitute a transmission line. The 

impedance is defined as the ratio of the transient signal voltage to the transient signal 

current and is expressed by equation (3.1). 

v       7 
7=Zo (3.1) 

LQ = inductance per unit length in Henries, CQ = capacitance per unit length in 

Farads, and Z0 = is impedance in Ohms. [Ref. 8] The following model helps to further 

illustrate the phenomenon Figure 3.2. 

Figure 3.2. Termination and Reflection From Ref. [8]. 

The initial current is determined by Vj, the voltage step in the signal, and ZQ, the 

characteristic impedance of the transmission line, but the final steady state current is 

determined by Vj and Rj, transmission line termination resistance. If the ratio of voltage to 

current in the initial wave is not equal to the ratio of voltage to current demanded by RT, a 

reflected wave will be generated to satisfy Ohm's law. A nodal analysis shows only one 

voltage can exist. Equation (3.2) defines the voltage at the terminating resistor. 

vl + vR = v7 

therefore current through the terminating resistor is 

/    -V-l VI + VR 

RT 

(3.2) 

(3.3) 
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while the original and reflected currents are respectively 

vi vR 

solving for VR the reflected voltage signal 

v,v,_v1 + vÄ n    n fin     (3.5) 
Z0    Z0 i?r '    U0    RT) R    U0    % 

7?r - Z0 

Values for the terminating resistor, RT, may range from zero (shorted line) to 

infinity (open line). Equation (3.6) illustrates that when RT is equal to Z0 the matched 

impedances cancel any reflecting current, IR, since VR goes to zero. [Ref. 8] The 

characteristic impedance derived by Butler [Ref. 3] was dependent on the board material, 

trace width and thickness, and interground plane distance and calculated out to 50 ohms. 

Surface mount hardware availability forced the use of type 1206, 51 ohm terminating 

resistors. [Ref. 4] The small difference in impedance between design criteria and actual 

hardware had no significant effect on operation or transmission line effects. 

D.        EMMISSIONS 

Other major concerns with high speed signals are emission losses and signal 

interference. At a speed of 250 MHz the signal conductors can essentially become if 

emitters. The solution to emission losses and possible interference to and from external 

signals is to bound the signal lines by power and ground planes. This type of architecture 

17 



is known as stripling. A cross section of the test platform, six layer PCB is shown in Figure 

3.3. 

^^*VS*^>50V>V^*^^VZ>V%%'7 

Signal Traces (8 mils) 

TOP (low speed signals) 
VTT Power (-2.0 V) 

MIDI (high speed signals) 
VEE Power (-4.5 to-5.2 V) 

MID2 (high speed signals) 

BOTTOM (GND) 

Figure 3.3. Printed Circuit Board Layer Construction After Ref. [4]. 

E PRINTED CIRCUIT BOARD SYSTEMS 

To achieve the test goals previously mentioned, the printed circuit board 

incorporated four basic systems: register, clock, control and refresh circuits. The register 

system was divided into three major components consisting of address registers, input data 

registers and output data registers. The system generated the required signals to the DRAM 

data and address input pads and momentarily stored a signal address data bit value. The 

clock system served two purposes. First, to generate clocking pulses for the synchronous 

operation of the ECL components. Second, to send a synchronous, 50.0% duty cycle, ECL 

clocking pulse to the GaAs DRAM. The clock circuit also had the capability of running 

without interruption in the automatic mode or could be manually switched by use of a 

debounced switch. The control system initiated read, write and load commands, resolved 

command conflicts, and ensured the memory chip was in a ready mode. The refresh system 

restored bit voltage levels in the individual cells on a periodic basis and could be 

synchronized with the clock pulse. The synchronized refresh signal was also selectable to 

predetermined values of refresh rate. Additionally, an external refresh port was available 

for an independent, unsynchronized refresh signal. All of the systems were built from six 

basic ECL components including a Quint 2-Input OR/NOR Gate 100302, Quint AND/ 

NAND Gate 100304, Low Power Quad Driver 100313, Low Power 4-Stage Counter/Shift 
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Register 100336 and aLow Power 8-Bit ShiftRegister 100341. Details of the six individual 

components are detailed in Appendix B. Input ports were available for a reference clock, 

external refresh, ground GND/VCC, power VEE, terminating voltage VTT, receiver 

reference voltage VRVREF, dummy cell pre-charge input VREFD, bitline pre-charge input 

VREFB, and negative supply for DRAM logic level shifting VSS. Figure 3.4, page 20 

indicates the various system placement on the printed circuit board. A detailed schematic 

is also included in Appendix B. 
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Figure 3.4. PCB System Placement. 
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1.        Register Systems 

As previously mentioned, the register system included an address group, data input 

group and data output group. The data input and address groups were designed in a similar 

fashion using two 8-Bit Shift Registers in series. Address and data bits were selectable by 

Dual In-Line Position, DIP, switches. By using two cascaded shift registers, all eight 

addresses could be selectively written to and then read from in one test sequence. 

Clock DDDDDDDD 

8 Bit 
Shift 
Register 

SI I 
SO 

DDDDDDDD 

8 Bit 
Shift 
Register 

Busline 

Figure 3.5. Register System. 

The control of the shift registers was enabled by two signal inputs So and Si which 

were generated from control system components Data Ready, DRDY, Data Address 

Strobe, DAS, and Read/Write commands. A partial truth table for the shift register 

operation is given in Table 3.1. The output registers received data inputs directly from the 

DRAM chip but operated on the same control inputs SI and SO. 

TABLE 3.1. Control Inputs for ECL Shift Register. 

Function SI SO Clock 
Pulse 

Load L L lead edge 

Shift Left L H lead edge 

Shift Right H L lead edge 

Hold H H X 
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2.        Clock System 

The clock system was divided into two modes, automatic and manual. The 

automatic mode used an external 50% duty cycle clock input at ECL logic levels (-1.6 V 

LOW, -0.9V HIGH). The manual mode was controlled by a synchronized, debounced 

clocking switch. Selection of the applicable mode was done with a similar synchronized, 

debounced switch. The signal was divided into four lines, one to drive the clock signal to 

all ECL components, a feed signal to the control group, an input to the refresh system and 

a clock input to the DRAM. As with the other systems, drivers were required with the clock 

signals since the ECL components have a fanout of 2. 

External Mode 
^ Driver Refresh 

System -? i Quad . r-v 
^       ' 

L 

i ^ Driver Register 
System 

1     1 

Manual Control 
System 

DRAM —^ 

Figure 3.6. Clock System. 

3.        Control System 

The control system provided three functions. First, it enabled READ and WRITE 

commands through an architecture similar to the register system. Commands were asserted 

HIGH and were loaded through 8 pin DIP switches to two cascaded shift registers. Second, 

it resolved simultaneous READ and WRITE commands and provided a Data Address 

Strobe DAS to the DRAM. Simultaneous commands caused register systems to revert to a 

hold status (SI, SO both HIGH). Once the system entered a hold status, the only way to 

continue operation was to reset the entire system and reload the data. The operator had to 

ensure no conflicts existed between READ and WRITE commands to execute a complete 

cycle through all 16 command inputs. Third, the system enabled the operator to execute a 

load operation which initialized all registers on the circuit board. The load operation also 
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reset control inputs to all registers to shift right once the load function was deselected. A 

load operation was executed by setting the DIP switches to the desired position, selecting 

the load switch and then either cycling the clock mode switch to automatic or cycling the 

manual clock switch while in manual mode. Completion of the load function and automatic 

reset of control signals SI and SO were accomplished by deselecting the load switch. The 

clock mode switch had to be in the manual mode before deselecting the load switch if 

individual signals were to be observed. Figure 3.7 illustrates a block diagram of the control 

system. 

Clock DDODDDDD 

SI 
5Ü" 

DOODDDDD Clock 

Busline 

DODDDDDD 

3=^ 
WRITE Commands 

SI 
57T 

DDDDDDDD 

a 
Busline 

WRITE 

READ, 

DRDY , 

T 

READ Commands 

SO   Function for Address 
and Data Registers 

SO   Function for Output 
———   Registers 

CLOCK 

LOAD Switch ̂  

D DAS 

SI Function for All Registers 

Figure 3.7. Control System. 

4.        Refresh System 

The refresh system periodically generated REFRESH signals to the DRAM. The 

system had two modes, synchronous using a clock system signal and asynchronous using 

23 



an external signal. The synchronous mode generated REFRESH signals by super-scaling 

the clock input through the use of five cascaded 4-bit counters. The resulting 4-bit outputs 

were multiples of the input signal divided by 165. Each of the sealer outputs and the 

external, asynchronous REFRESH signal were routed to an 8-pin DIP switch. The outputs 

of the DIP were connected to a single termination resistor which allowed the selection of 

only one REFRESH signal at a time as shown in Figure 3.8. 

Clock 
System Counter Counter 

4-Bit    H 4-Bit     J4 4"Bit    Li4-Bit     1-4-Bit 
Counter Counter Counter 

External Refresh 

1 
DDDODDDD 

"T REFRESH 

Figure 3.8. Refresh System. 

F.        TROUBLESHOOTING 

The testing began with logic verification and basic operation of the PCB. Prior to 

starting two design flaws previously mentioned by Ginter [Ref. 4] were addressed. 

Specifically, the input pads for the system clock and external refresh signal were not 

equipped to handle any wire connector. Any attempt to drill holes for connectors risked the 

chance of damaging the connection to actual signal lines in the middle layers of the board. 

A coaxial wire was soldered directly to the surface of the pad and grounded to the ground 

plane via a jumper to the ground input pad. A SMA connector was attached to the coaxial 

wire and connected to a high speed signal generator. The results proved satisfactory for the 

clock inputs up to 100 Mhz. Clocking rates higher than 100 MHz suffered from noise and 

distortion due to the properties of the solder contact. 

Once a working clock circuit was operating, power V^, ground Vcc, and 

termination voltage VTT connections were applied but only limited parts of each system 
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functioned correctly. The subsequent action was a methodical step by step test for 

conductivity. Use of a detailed schematic was required and the only guide to the component 

placement on the board was the board silk screen. The approach was to correct one system 

at a time, first addressing power, ground, termination and clock connections and then the 

higher order functions. The operation of the manual clocking circuitry proved vital to the 

troubleshooting of the entire PCB particularly in diagnosing bad components. Pin by pin 

current and voltage measurements were required to track down some of the bad 

components and connections. Of the 1800 plus surface mount contacts over 80 pins were 

still unconnected due to bad solder contacts. The similarity of the ECL packages (F100K 

28 pin PCC) and the similarity of the resistor/capacitor packages (RC1206 and CC1206) 

contributed to instances of the wrong component being soldered in place. The procedure to 

correctly remove a 28 pin surface mount device requires specialized equipment which the 

U.S. Naval Postgraduate school lacks. With the correct tool, all 28 pins are heated 

simultaneously allowing the chip to be lifted directly off the board. Lacking the specialized 

equipment, the approach used was to heat each pin one by one and vacuuming off the 

solder. The procedure was repeated on each contact moving around the package until the 

package could be lifted off from the PCB. Although all damaged and incorrect components 

were successfully removed and replaced, the probability for compound failures was high. 

The pads on the surface of the PCB become volatile at 425 degrees F. The soldering iron 

used operated at 700 degrees F. Although great care was taken to apply the iron to the solder 

connections, the heat conducted down to the pads. Specifically, during the removal process, 

some of the pads were inadvertently lifted off. Fortunately the pads that lifted off were 'no 

contact' pads and had no effect on the board operation. Had those pad been signal pads, 

signal integrity and board operation could have been jeopardized. The last verification was 

to ensure all signal lines were terminated with the proper resistor. There were only a couple 

of instances of resistors/capacitors missing or incorrectly installed. 

G.        FUNCTIONALITY 

The total power consumption of the PCB components was high as expected. With 

34 ECL components and over 150 terminating resistors and coupling capacitors I^E current 
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required was 5 amps. In continual testing, the heat dissipation of the components was 

satisfactory and did not cause any system degradation. System logic was tested by loading 

address registers with each address twice and commanding read and write commands to 

each address. The test was conducted two times to verify both logic ZERO and logic ONE 

signals to the input data registers. Simultaneous commands were also tested to verify 

control signals for the shift registers would revert to a hold status. As for the output register 

group, the clock, power, termination and ground connections were functional and required 

a DRAM input to complete verification. 

In preparation for testing the actual DRAM, the package leads were found to be on 

the side of the heat sink. If placed as constructed on the PCB, the heat sink would not have 

dissipated heat correctly and could jeopardize operation. To correct this error and retain 

proper pin out sequence for the chip, the leads were bent prior to cutting the leads to fit the 

board. Another mounting problem existed with the chip holder device designed by Ginter. 

The device failed to hold the leads firmly to the pads because the bracket surface contacted 

with the surrounding terminating resistors and coupling capacitors. A second piece of 

plastic had to be used to hold the leads to the board pads as shown in Figure 3.9. 

Heat sink- 

Mounting Bracket 5 DRAM 

Adjusted Leads 
Surface Mount Resistor Additional Bracket 

Figure 3.9. DRAM Chip Pin and Mounting Bracket Adjustment. 

Once the holder was corrected the chip could be placed on the PCB. It was then that 

the fatal design flaw of the board was discovered. 
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Both Butler [Ref. 3] and Ginter [Ref. 4] documented the proper pin out of the 

DRAM and both included pin out orientation by Vitesse indicating pin 1 at the corner of 

the package as shown in Figure 3.10. 

132 Pin Ceramic LDCC 

Heat 
Sink Side 

Package is 
Cavity Down 

T- 

G 

ü- 

E      D 

T T 

Item mm (Min/Max) In (Min/Max) Item mm (Min/Max) In (Min/Max) 
A 23.75/24.51 0.935/0.965 F 0.09/0.24 0.004/0.008 
B 18.67/19.43 0.750 TYP G 5.08/7.62 0.200/0.250 
c* 0.64 TYP 0.025 TYP H 0.15/0.26 0.006/0.010 
D 0.38/0.63 0.015/0.025 r 1.91 TYP 0.075 TYP 
E 2.16/2.52 0.085/0.115 J* 20.32 TYP 0.800 TYP 

' At package body. 

Figure 3.10. Vitesse Semiconductor 132-Pin PLCC Package From Ref. [9]. 
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The actual pin out orientation was that of the National Semiconductor F100K 300 

series 28 pin PLCC with pin 1 centered in the package as shown in Figure 3.11.. The fault 

is attributed to the default pin orientation used by the TANGO PCB DESIGN software. To 

compensate for custom pin orientation, the pin out numbering must be specified. The only 

visible indication of the error is the small pin 1 identification mark in the TOP layer silk 

screen. 

-D 0.448-0.456 
[1 1.38-1 1.58] 

(LEAD  1  I0ENT) 

nn 
J1 26 
nnr-in 

C 
C 
C 
c 
c 

4 12" 
UUUUUJ 
0.050 TYP -i 

Tii 

0.026-0.032 
[0.66-0.81] 

D25 
3 
3 
3 
3   0.013-0.021 
]    [0.33-0.53] 

Ü19 

.450  0.045 
[1.14] 

TYP-! 

TYP- 

lA-^-J 0.165-0.180 
[4.19-4.57] 

TYP ■ 

T . LZ 
{ 

1 
T 

3 

0.390-0.430 r 

[9.91-10.92] 

0.020 
'[0.51] 

UIN T 

0.485-0.495 
[12.32-12.57] 

TYP- 

Figure 3.11. National Semiconductor 28-Pin PCC Package. 

The actual PCB pin assignment is detailed in Table 3.2 page 29. 
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TABLE 3.2. DRAM Pin Assignment On PCB. 

PIN FUNCnOX PIN FUNCTION PIN R-NCTION PIN Fuxcnox 
1 NC 34 NC 67 NC 100 NC 
2 GND 35 NC |f| GND W: D2(0) 

3 DRDY(O) 36 GND 69 DAS(I) 102 NC 
4 NC :§§ill NC 70 NC !!°!I NC 

5 MBSY(0) 38 NC 71 NC 104 D3(0) 

6 GND 39 GND !l72'i|;| GND 105 NC 

7 GND 40 NC 73 GND 106 NC 

■ill -2.0V mij NC WMW\ -2.0V 107 NC 

9 NC 42 GND 75 NC 108 NC 

wmm GND 43 NC 76 NC 109 NC 

li NC 44 GND 77 NC 110 GND 

llllll GND 45 -2.0V 78 GND 111 -2.0V 

13 -2.0V 46 GND 79 NC 112 GND 

llllll ̂ ;imc0m i;47:;t NC llDcv! NC i:;':/.iis;-;\ NC 

15 GND 48 A1(I) 81 GND 114 NC 
llllll: -2.0V 49 NC llllll NC UMi NC 

17 NC 50 GND 83 NC 116 GND 

18 HiKPIII wu§ INCLK wmU: ■ ;;;:/; r'NC-...;!! 117 NC 

19 GND 52 NC 85 GND 118 NC 

20 GND 53 GND 1IRI1 GND Ail GND 

21 -2.0V 54 D0(I) 87 -2.0V 120 VSS 

iiilli NC 55 NC 88 NC All NC 

23 WRTTEOD 56 D1(I) 89 NC 122 VREFB 

IAH READ© -;^M§ GND 90 -2.0V 123 GND 

25 NC 58 GND 91 NC 124 GND 

26 NC IP9-!! -2.0V 92 NC 125 -2.0V 

27 REFRESHd) 60 NC 93 D0(O) 126 NC 
28 NC 61 D2<I) 94 NC t;WM VREFD 

29 NC 62 NC 95 NC 128 NC 

30 A2(I) 63 GND myi D1(0) !|129§! GND 

31 NC 64 D3(I) 97 NC 130 NC 
32 GND ll^'H NC ::|I98|| GND 131 NC 

33 SUB 66 A0(I) 99 -2.0V 132 NC 
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IV. PCB IMPROVEMENT RECOMMENDATIONS 

Although the PCB ultimately proved to be unusable, many lessons were learned 

during the testing that will contribute to future designs. Specifically, this chapter addresses 

recommendations that will improve the ease of assembly, repair, testing and functionality 

of new designs. 

The first recommendation is to use the Cadence CAD suite in future PCB designs. 

The Cadence PCB application 'Allegro' is an industry standard and is compatible with all 

PCB manufacturers. Butler [Ref. 3] and Ginter [Ref. 4] utilized TANGO. Although fairly 

robust, the program lacked the ability to support multiple ground planes and lacked 

significant design rule checking. Errors in pad design were detected by the PCB 

manufacturer and corrected. Additionally, the newer versions of TANGO could not 

interpret older versions of PCB designs. Any redesign was forced to start at square one. The 

PCB designer, Allegro, within the Cadence CAD suite is available at the Naval 

Postgraduate School. The associated schematic editor, Concept, allows for circuit layout 

and offers a robust library of components of various package types. The accompanying 

tutorial makes Concept fairly easy to use. The Rapid Part Designer within Concept can be 

implemented for custom packages as in the DRAM or future chips. There is no requirement 

during the circuit layout phase for exact package dimensions, only package pin numbering 

is required. Net lists generated by the schematic editor can be imported to the PCB 

application to facilitate signal line connections and verify logic. The PCB designer allows 

for custom design of pads and stacks as well as footprints for SMT components. The PCB 

designer however, requires the exact dimensions of components as well as fabrication 

house requirements for pad swell, thermal relief sizes and anti-pad sizes. 

The second recommendation is to verify the availability of components and 

minimum order size prior to fabricating the PCB. Ginter [Ref. 4] was not able to order some 

of the required components because of the order size and was forced to substitute 

components. The DIP switches used did not fit the pad footprint designed in the PCB. The 
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adjustment of the leads resulted in several bad and shorted connections. Designing with 

future high speed PCBs with exact component dimensions will ensure signal integrity. 

The components used in future designs should be in a DIP package and mounted to 

the board with a DIP connector. National Semiconductor offers its F100K series 300 in a 

24 pin DIP package. Since the Naval Postgraduate School lacked the ability to individually 

test 28 pin PCC components, each 28-pin component was soldered to the test platform 

without being tested. Using DIP packages, components could be easily plugged into the 

DIP connector easily and would facilitate the removal of bad components. Although there 

is a slight increase in package footprint and design rule distances for through-board vias, 

the ease of exact placement of the component, assured electrical connection as well as 

easier removal/replacement process make DP components a better package in prototype 

designs. The space savings of SMT components are good for commercial sized production 

but are not conducive to the test and evaluation environment. 

Additional refresh signal inputs are recommended to allow for a wider range of 

refresh values. Instead of porting just the last scaled signals to the refresh selector, signals 

from each of the three preceding sealers could be ported to a DIP switch allowing selection 

of a faster refresh rate. The faster refresh rates will allow testing of DRAMs with lower 

charge maintenance characteristics. 

All high speed inputs to the PCB should incorporate SMA connector padstacks. As 

previously mentioned, the clock and refresh pads lacked integrated wire connectors and 

therefore suffered interference from the solder connection. The SMA coaxial wire 

connectors produce low noise/interference and generate minimal signal losses. 

Future designs should continue the incorporation of a manual clock. Without 

control of individual clocking pulses, the operator has limited to no ability to troubleshoot 

circuits or verify functionality of the test equipment. Use of the debounced SPDT toggle 

was adequate and should also be incorporated in new designs. 

The incorporation of some type of light emitting diode, LED, would have greatly 

facilitated reading logic levels on the data and address busses. Incorporating seven segment 

diodes for large memory array test platforms would enable quick reading of the address and 
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data buses as well as for the output data registers. The LEDs would require a separate power 

source on the PCB and would increase the size of the board. Granted, the individual will 

not be able to read the diodes when working with the automatic clock, but LEDs will 

greatly help in recording logic levels when using the manual clock. 

Care should be taken when placing terminating resistors, capacitors and other 

components to allow for the use of a clamp or mount to hold the chip and its leads to the 

PCB. Allegro allows for the use of "keep-outs" which protect board area from signal line 

and component placement. 

At this point of the research came the question to continue with testing and develop 

a completely new PCB or follow the initial research outline and design a follow-on memory 

cell. The decision was to continue memory cell design and verify whether using a diode as 

a memory storage device was a viable alternative to capacitor-based cells. The following 

chapters describe the design, simulation, layout and integration of the diode-based storage 

device. 
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V. DRAM MEMORY CELL IMPROVEMENT 

The approach to cell improvement considered four aspects of the memory cell, 

charge storage, power consumption, speed and chip area. Previous work in the 

development of the cell lacked the use of HSPICE in the initial selection of storage cell 

types .The many benefits of using HSPICE in modeling GaAs circuits include superior 

convergence and more accurate modeling due to better approximations of GaAs secondary 

effects namely substrate voltage and leakage voltage. [Ref. 10] Vagts [Ref. 1] realized late 

in his work that the diode could be a possible contender for the premier storage device but 

did not pursue the analysis. This chapter investigates this possibility with comparisons to 

the present memory cell. 

A.        CAPACITTVE STORAGE CELL 

Recall that the current memory cell is a single transistor cell that uses a capacitor as 

the charge storage device as seen in Figure 5.1. 

Figure 5.1.   One Transistor RAM Cell with Capacitor. 

Chip capacitors have an unfortunate property of occupying large areas in the VLSI design. 

For the present design, the capacitor was constructed using parallel plates that occupy a 

52^lm by 52^lm area (2704 |im2). Using GaAs, the designer has the ability to use up to 

four different layers of metal as well as gate metal. In the Vagts cell, three layers of metal 
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in addition to gate metal were incorporated. A cross sectional illustration of the capacitor 

cell is depicted in Figure 5.2. 
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Figure 5.2.  Capacitor Layout After Ref. [7]. 

An accurate evaluation of this multilevel metal configuration is not trivial. 

However, because of the large amount of multilevel metal layering in VLSI designs a 

simple closed-form solution is required. By applying an approach of 'primitive' structures, 

designers can achieve accurate estimations. The three capacitive components to any 

multilevel metal structure include line-to-ground, line-to-line and crossover capacitances. 

[Ref. 11] A simple evaluation of the capacitance for VLSI capacitors, treats the metal layers 

as infinitesimally thin parallel plates where the width of the plate is much greater than the 

distance above the ground plane given by Equation (5.1). [Ref. 12] 

c = — * L1+^ x I1+10<—DJ- *>'        (51) 

The result is a capacitance that accounts for just parallel plate and fringing 

capacitances. The approach underestimates the capacitance because it does not take into 

account the thickness of the plates. However, the error for the approximate formula is less 

than 5%. Calculation of the total capacitance is done by adding the parallel plate 
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capacitances using the following values in TABLE 5.1 for interlayer parallel and fringing 

capacitances. 

TABLE 5.1. Vitesse Interlayer Capacitances After Ref. [10]. 

Top Layer Bottom Layer 
Parallel Plate 
Capacitance 
(fF/micron2) 

Fringing 
Capacitance 
(fF/micron) 

Metal 3 Metal 3 0.051 0.048 

Metal 3 Metal 3 0.033 0.035 

Metal 3 Metal 3 0.028 0.030 

Metal 3 Ohmic Metal 0.028 0.030 

Metal 3 Substrate 0.022 0.035 

Metal 2 Metal 1 0.073 0.049 

Metal 2 Gate Metal 0.050 0.045 

Metal 2 Ohmic Metal 0.050 0.045 

Metal 2 Substrate 0.32 0.042 

Metal 1 Gate Metal 0.127 0.051 

Metal 1 Ohmic Metal 0.127 0.051 

Metall Substrate 0.052 0.044 

Gate Metal Substrate 0.076 0.045 

A quick expression to evaluate capacitance C based on the fabrication structure 

previously illustrated together with Vitesse values is: 

C = 0.675 XL2 + 1.06 xL (5.2) 

Measuring the parallel plates as 52jim square structures yields a total capacitance 

of 1880fF per cell. 

B. DIODE STORAGE CELL 

Unlike a silicon based MOSFET, the gate electrode in a GaAs MESFET is formed 

by depositing a metal, refractory metal suicide, or refractory metal nitride, directly on an 
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n-type GaAs channel. This pn junction however is quite different from silicon pn junctions. 

In GaAs, the majority carriers (electrons) provide the conduction current and reverse 

saturation current. The relative absence of minority carriers give the diode a low diffusion 

capacitance and provide for fast charge and discharge. Using the diode in a reversed-biased 

application of a pn junction yields a capacitive effect with nonlinear properties with respect 

to applied voltages. The nonlinearity suggests that a smaller diode may be used to provide 

the same capacitive effect of a larger capacitor. 

Using the geometric size of a 1880fF capacitor as a constraint, enhancement and 

depletion type diodes were first evaluated and compared to the original capacitor. A diode 

is constructed simply by connecting the source and drain regions of the transistor to the 

sense transistor and connecting the gate of the transistor to ground. This creates a reversed 

biased Schottky diode. The diode and sense transistor pair create the basic one transistor 

memory cell as depicted in Figure 5.3. 

Bit Line 

Sense 

I 

i .Diode 

 GND 

Figure 5.3.   One Transistor RAM Cell with Diode. 
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The first simulations compared charge storage abilities of similarly sized 

enhancement and depletion n-type diodes. The enhancement diode exhibited unsatisfactory 

charge storage capabilities as shown in Figure 5.4. 

GAflS DIOOE CHARGE STORAGE COMPARISONS 

~.     COMPflREl.TRO 
3  DEPLETION 

500.OP 1.0N 1.50N 
TIME   CLIND 

Figure 5.4.   Diode Type Comparisons. 

As expected, the enhancement diode charged faster and higher than the depletion 

diode but then rapidly lost its charge. The depletion diode charged at a comparable rate to 

the capacitor but failed to retain as high a charge as the capacitor. Specifically, once the 

charging voltage was discontinued, both diodes leaked a large portion of the original charge 

back through the sense transistor as it was turning off. The efficacy of the diode cell 

depends on as much charge as possible be maintained in the cell. To prevent or limit this 

discharge phenomenon, the approach was to lengthen the gates of the sense amplifier to 

reduce the transistor's transconductance. The next series of experiments tested this 

approach. Starting with an arbitrary depletion diode cell (gate length 10|im and a gate width 
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of 50|!m), the sense transistor gate lengths were varied from minimum length (0.8^im) to 

an arbitrary value of 30|im. Results of the tests indicated a trade-off between the initial 

charge of the diode and the charge maintenance. Converse to expectations, the reduced 

transconductance of the sense transistor did not mitigate the initial charge drain and 

adversely affected the charging of the diode as shown in Figure 5.5. 

SENSE TRANSISTOR EFFECTS ON 6AAS DIODE CHARGE RETENTION 
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Figure 5.5.   Sense Transistor Effects on Initial Charge. 

However, the sense transistor did play a significant role in the charge retention of 

the diode. Specifically, the gate length was proportional to quality of charge maintenance. 

The sense transistor with a gate length of 1.2(im made our diode comparable to the 
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capacitor. The sense transistor with a gate length of 2jim clearly became a superior 

configuration for duration times exceeding l(is seen in Figure 5.6. 

SENSE TRANSISTOR EFFECTS ON GflflS DIODE CHARGE RETENTION 
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Figure 5.6.   Sense Transistor Effect on Charge Retention. 

The next approach was to vary the depletion diode gate lengths to improve charge 

maintenance. Using a sense transistor previously developed, simulations were performed 

on memory cells with depletion diode gate lengths varied from minimum size 0.8|J,m to 

42jim. 42^lm was chosen as a limit to the geometric size of the diode. Although the 

capacitor in the cell designed by Vagts was 52pm square, the maximum size of the diode 

was limited to 42|im to take into account minimum design rule sizing. Specifically, gate 

metal overlap must be 0.8jim, minimum active area is 2.0|im and minimum ohmic metal 

width 2.4(im are some of the constraints. Using a 42^lm diode the storage cell final size 

equaled the capacitor size of 52 square microns. The simulations on the different gate 

lengths presented a trade off between read/write times and initial charge levels in the 
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memory cells. Since read/write times remain fixed, the initial charge values were inversely 

proportional with gate length. Figure 5.7 indicates that diode gate lengths less than 34jim 

exhibited better initial charging than the capacitor storage cell. 

Figure 5.7.  Diode Gate Length Effects on Initial Charge. 

The next simulation compared the diode gate length charge maintenance 

characteristics. The results indicate that the diode storage devices tend to have a flat 

discharge slope compared the exponential decay of the capacitive cell. The quick charge 

and relatively flat discharge slope suggest that the GaAs diode used in a reversed biased 

application display nonlinear capacitive characteristics. The charge maintenance 

characteristics increased dramatically for gate lengths up to 30|im. After 30pm, the cost- 

benefit of charge maintenance starts to be outweighed by the size of the component. A 

comparison to the original capacitor cell illustrates the benefits of the diode cell approach 
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shown in Figure 5.8. Based on the results, a 30|i.m diode was selected as the storage device 

and was used in the development of memory cell support. 

GflflS DIODE SIZE EFFECTS ON CHARGE MAINTENANCE 
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Figure 5.8.  Diode Gate Length Effects on Charge Maintenance. 

C.        SUPPORTING CIRCUITS 

Support circuitry is required to enable read and write operations as well as improve 

the speed. Like the original cell, this cell incorporates a structure based on circuits 

presented by Foss and Harland. [Ref. 13] In this arrangement, pull up and pull-down 

transistors provide for the read and write of a logic value ONE and ZERO respectively. But, 

in addition to read and write support, a sense amplifier is needed to reduce the time for the 
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read/write operations and pre-charge support is needed to preserve memory cell voltages 

and prolong refresh cycles. 

Pull-up Vdd 

.BITI/O Line 

Storage cell 

Figure 5.9.   Memory Cell with Read Write Support. 

1.        Sense Amplifier 

The goal was to reduce the size of the sense amplifier without affecting the speed 

of operation. The development of a clamped-bit-line sense amplifier proved effective in 

achieving sub-nanosecond response times in silicon circuits. The key to this approach was 

to isolate the bitline capacitance to a node that had minimal effect on the speed of the 

circuit. [Ref. 13] This approach was not suitable for a design upgrade since the number of 

transistors grew from 5 to 11. The next approach was to investigate relationships between 

size of the sense transistors and pull-up transistors in the sense amplifier. Gate sizes of the 

transistors were reduced to 0.8jim and simulations proved smaller transistors were faster 

although power consumption increased slightly. Further simulations found the ideal 
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dimensions for the individual transistors. Figure 5.10 illustrates the sense amplifier 

construction. 

Odd Bit I/O Even Bit I/O 

Transistor Dimensions 

1 & 2 L=0.8tim 

W=10.4nm 

3 & 4 L=0.8nm 
W=100.8|lm 

5 L=0.8nm 
W=17.6^lm 

Figure 5.10.   Sense Amplifier. 

In Figure 5.11 on page 46, a logic ONE has previously been stored in a memory 

cell and is now read. The sense amplifier detects the small difference in voltage levels 

between the memory cell and its associated dummy cell and pulls the bitline associated 

with the memory cell to the full logic ONE level while the compliment bitline is pulled to 

the opposite level or ZERO logic. The simulation, using a 666MHz clock, requires 4mW 
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of power during the READ operation. Simulations were conducted at both 25 and 85 

degrees Centigrade with negligible differences in power and time readings. 
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Figure 5.11.   Sense Amplifier Operation and Power Requirement. 

2.        Dummy Cells and Pre-Charge Support 

The sense amplifier requires a dummy cell to compare with the storage cell. 

Dummy cells were also redesigned to eliminate any need for capacitors. The new dummy 

cells used depletion fets as diode capacitors and were sized to achieve similar properties to 

the 70pF capacitors used in previous designs. The result was a small dfet with a gate length 

of 2.0^lm and width of 4.0|im. The last support structures to be added included sense 

transistors for the pre-charge of both bit-lines and dummy cells. Pre-charge voltages were 

designed for a maximum of 700 mV for the bitline pre-charge and 260 mV for the dummy 

cell. Based on these maximums, existing precharged sense transistors were resized to a 
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minimum gate length of 0.8|im while gate width was kept at 3.0|im. Speed was not at issue 

since pre-charge values were relatively low. Power consumption on the pre-charge sense 

signal lines was negligible. Redesign of pull-up and pull-down transistors followed a 

similar approach, reducing the gate lengths to 0.8(lm but this time enlarging gate width to 

150.0jim and 20.0^lm respectively. With the structure defined, preliminary simulations 

were conducted by read and write operations for both logic ONE and logic ZERO values. 

Simulations were based on a 666 MHz signal (3|im period) with equal signal rise and fall 

times of lOOps. The WRITE ONE operation required the most power with a peak of 11.9 

mW and average power of 5.4 mw. The WRITE ZERO operation power requirements were 

negligible. In both cases, the peak power requirement for the cell sense transistor was 1.1 

mW. Figure 5.12 shows the write simulation for logic ONE while Figure 5.13 on page 48 

shows the write simulation for logic ZERO. 
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Figure 5.12.   WRITE ONE Voltage and Power Requirements. 
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WRITE ZERO TO CELL VOLTAGE AND POWER REQUIREMENTS 
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Figure 5.13.  WRITE ZERO Voltage and Power Requirements. 

Further simulations of READ operations indicated power requirements were 

proportional with the length of time following the previous WRITE or REFRESH 

operation. A 3 ms power requirements measured a peak power of 7.5 mW and average 

power of 4.5 mW. Following successful simulations, design sizes for memory cell and 

support VLSI layout were established. The final memory cell architecture is depicted in 

Figure 5.14 on page 49. The following chapter will discuss the VLSI layout of the memory 

cell. 
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Figure 5.14.   Complete Memory Architecture. 
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VI. DRAM VLSI LAYOUT 

A goal of the VLSI layout of the diode-based memory cell was increased 

modularity. That is, to design layout in a way to reduce wiring interconnect between the 

individual cells and the support structures. Vagts previously designed a single bit/ 8- 

address cell with no common connections to build larger arrays. Morris used 4 separate 

implementations of the cell to build a 32-bit array and required a considerable amount of 

interconnect routing. Following Manhattan design, the new storage and support structures 

were built using horizontally oriented metal to route common signal and control lines. The 

requirement of the sense amplifier for closely balanced bitline capacitance promoted 

symmetry in the design. The storage cells were stacked vertically above and below the 

support cell and connected to the support cell through vertically oriented bitlines. Figure 

6.1 illustrates the vertical bitline and horizontal signal line orientation of the storage cell. 

GND! GND! 
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Sense Transistor 
Control line 

Common 
Bitline 

Figure 6.1. Diode-Based Storage Cell Layout. 
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The approach to building the supporting structures of pull-up, pull-down, sense 

amplifier and dummy cells was also based on a symmetric approach with common 

connections vertically to accomodate bitline and horizontal connections to connect support 

structures of other memory bits. Figure 6.2 illustrates the design of the support structure. 
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Figure 6.2. Support Cell Layout. 
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Real space savings are realized when building large arrays of memory components. 

To accomodate the current chip structure, a 32-bit array was constructed. A space savings 

of over 25% was realized in the memory footprint alone. Additional space savings comes 

from the absence of external intercell wiring. The array is depicted in Figure 6.3 with a size 

comparison made to the capacitor-based 8-bit array. 

/ 

Footprint of 
Capacitor-based 
8-bit memory cell 

Figure 6.3. 32-Bit Memory Array Layout. 
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A critical factor in the design of the layout as well as the signal routing to 

incorporate the new cell into the design was the maximum current limit for the respective 

metal lines. The following table depicts foundry design guide. 

TABLE 6.1. Maximum Current Limits for Metal Lines From Ref. [10]. 

Layer Rs 
Maximum Current Limit Icl (mA/fjm) 

DC AC Peak AW(nm) 

Gate Metal 0.5 - 1.5 5.0 5.0 25.0 0.4 

Ohmic 
Implant 

180 - 220 

Ohmic Metal <10 0.3 0.3 0.6 0.0 

Metall <0.07 1.0 1.0 5.0 0.2 

Metal 2 <0.05 1.4 1.4 7.0 0.0 

Metal 3 <0.025 2.8. 2.8 14.0 0.0 

The maximum current in a metal line is calculated using Equation (6.1). 

= I,x(W-AW) (6.1) 

Where W is the drawn line width and AW is the process control factor. Maximum 

current limits in Table 6.1 are valid for a maximum operating temperature of 85 degrees 

Centigrade. Based on the maximum current limits, Vdd interconnect width was increased 

to supply the required current. The increased interconnect requirement was accomplished 

by distributing Vdd interconnect vertically on both sides of the support structure. A similar 

configuration was performed for Ground. All other interconnect exceeded size 

requirements for maximum power. Future designs could optimize cell integration by 

reducing interconnect to absolute rninimum widths to meet maximum current limits. 

Appendix D contains a complete interconnect diagram of the cell incorporated into the 

GaAs chip. 
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VII. CONCLUSIONS 

This thesis presented three separate but related issues. It reviewed a GaAs DRAM 

design incorporating a single transistor, capacitor-based storage cell. Following the review, 

an evaluation and functional testing of an ECL testbench for the GaAs DRAM was 

performed. Last, a new storage cell design incorporating a diode-based storage cell was 

developed. 

The failure of the ECL testbench, due to pin-out orientation, leaves the DRAM still 

untested. However, the ECL based testbench proved fully functional and could be used to 

test new chip designs if the chip pin-out orientation matches the pin-out of the testbench. 

In order to test the existing DRAM, a completely new PCB will have to be designed. Future 

designs of a PCB testbench based on the work of Butler [Ref. 3] and Ginter [Ref. 4] can be 

assured of success. Designers are advised to utilized an industry standard PCB design 

application like 'Allegro' from Cadence. All high speed inputs to the PCB should be ported 

through SMA connectors. Refresh inputs should allow for a wide range of refresh rates. It 

is essential to determine the exact component dimensions as well as to ensure component 

availability prior to submitting final designs. The signal lines from the chip pads as well as 

support components should be placed to accommodate a clamp or similar device used to 

secure the chip to the testbench. The importance of the use of a manual clock integrated 

into the design can not be overemphasized. And finally, extreme care must be given when 

final checking netlists and pin-out orientations in the PCB. 

The follow-on design of the GaAs single-transistor memory cell proved the 

depletion diode to be a viable alternate as a capacitive storage element. The nonlinear 

capacitive characteristics of the reversed biased Schottky diode allowed for a smaller 

dimensioned element. The design simulations demonstrated that the physical dimensions 

of the sense transistor in the memory cell had substantial effects on charge storage and 

maintenance. A balanced memory cell was achieved through an iterative, trial and error 

process ultimately succeeding in improvement over the capacitor-based cell. Improvement 
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of charge retention increased from an average of 3 ms to 3.4 ms allowing for reduced 

refresh rates and additional power savings. The greater charge retention and flatter charge 

dissipation slope also afforded an opportunity to use lower pre-charge voltages also 

increasing the power savings. However, there was a trade off in transistor size and power 

required for READ, WRITE and REFRESH operations. The shorter gate lengths and 

widths increased power requirements in the bitline pull-up and sense amplifier transistors 

but allowed simulations up to 666 MHz. Temperature continues to adversely affect the 

charge retention of the diode-based storage device. The compact design and modular layout 

approach afforded a size savings of over 25% for a 32-bit array. The 32-bit array was 

integrated in with the existing GaAs DRAM high-level circuits however, the interconnect 

proved to be substantial and voided most of the space savings enjoyed by the new modular 

memory array. Future GaAs DRAMs should continue a modular, hierarchal approach to 

redesigning high-level circuits. The modularity will reduce interconnect and provide room 

for larger memory arrays. With high-level redesign, the space savings should accommodate 

a memory array of at least 128 bits. The larger memory array would require a modification 

of the counter within the refresh circuit. Counters would now count from 00000 to 11111, 

addresses 0 to 31. The decoder circuit would also require redesign to handle 5-bit logic. The 

speed performance of the GaAs DRAM memory cell is very impressive and warrants 

continued research and development. As new applications and fabrication techniques are 

developed, GaAs will grow to be more prevalent in electronic designs. 
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APPENDIX A. GaAs DRAM HIGH LEVEL CIRCUITS 

This appendix contains block diagrams of the DRAM high level circuits developed in 

earlier research. The high level circuits include: Two-Phase Non-Overlapping Clock, One- 

Of-Eight Decoder, Eight Stage Counter, DRAM Refresh, Decoder Driver, Output Logic, 

Operation Priority Logic, Memory Busy, Data Ready, Write Logic, Pad Receiver, and 

Driver Pad Circuits.The new diode-based storage cell was designed to accommodate 

signals generated by the existing circuitry. 
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Figure A.l. CLOCK Circuit From Ref. [4]. 
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Figure A. 10. WLOGIC Circuit From Ref. [4]. 
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APPENDIX B. PRINTED CIRCUIT BOARD COMPONENTS 

This appendix contains National Semiconductor F100K series 300 ECL components 

used in the fabrication of the six layer printed circuit board test bench. All components were 

packaged using a 28 Lead Plastic Chip Carrier, PCC. The surface mount device provides 

for a smaller device footprint and the symmetry reduces the effects of skew. The 28 pins 

allow for additional Vcc pins which also reduce skew by providing extra paths for output 

signal return currents to ground. Layout dimensions are illustrated in Figure B.l. 

-a 0.448-0.456 
(1 1.38-1 1.58] 

(LEAD  1   I0ENT) 

I—11—I 
1 26 nnnn 
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[1.27] 
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TYP ~l 0.165-0.180 
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0.390-0.430 r 

[9.91-10.92] 

k-0-020 MINT 
[0.51 

0.485-0.495 
[12.32-12.57] 

TYP- 

Figure B.l. 28-Pin PCC Package From Ref. [8]. 

The following figures contain general descriptions, features, logic symbols, truth table 

and connection diagrams for the six basic components used in the PCB design. The 

67 



components include: 100302 2-Input OR/NOR Gate, 100304 AND/NAND Gate, 100313 

Quad Driver, 100331 Triple D Flip-Flop, 100336 4-Stage Counter/Shift Register and 

100341 8-Bit Shift Register. Complete voltage information can be found in the F100K ECL 

Series 300 Databook. [Ref. 8] 

Low Power Quint 2-lnput OR/NOR Gate 
General Description Features 
The 100302 is a monolithic quint 2-input OR/NOR gate with 
common enable. All inputs have 50 kfi pull-down resistors 
and all outputs are buffered. 

■ 43% power reduction of the 100102 
■ 2000V ESD protection 
■ Pin/function compatible with 100102 
■ Voltage compensated operating range = 

-4.2V to -5.7V 
■ Available to MIL-STD-883 
■ Available to industrial grade temperature range 

Ordering Code: see section 6 

Logic Symbol Pin Names Description 

Ona-L"W 
E 

Oa-Oe 
Öa-Ö"e 

Data Inputs 
Enable Input 
Data Outputs 
Complementary Data Outputs 

Truth Table 

TL/F/10580-1 

Dix °2X E Ox 5x 
L L L L H 
L L H H L 
L H L H L 
L H H H L 
H L L H L 
H L H H L 
H H L H L 
H H H H L 

H " HIGH Voltage Level 
L = LOW Voltage Level 

Connection Diagrams 
24-Pin DIP/SOIC 

<h.~ 1 
w 

24 -°1. 
o.- 2 23 -«2d 

°d~ 
°d" 

vcc- 

3 

4 
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6 

22 

21 

20 

19 

"Did 

-°2c 

"Die 
-E 

o,b El 

VitS 

vca- 7 

8 

18 

17 -D2b 

°l«0 
i>2CEsl 

°c- 9 16 -Dlb 

°b- 10 15 -"2. 

°b- 11 14 -°L 
o«- 12 13 -o. 

_. 

28-Pin PCC 

D2tB1«°.vBsÖ. °b°b 

ED E H H CD H EU 

24-Pin Quad Cerpak 

D,CD,,   E  V-D,hD. 

»2d- 

D..- 

°. 
Ö. 

1319 0 
0iaD2<iD,.VE53C)2. °.  Ö, 

u2c u1c 
[       I 

E£ü2bu1b 
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24 23  22  21  20  19 
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2 17 

3 16 

4 15 

5 14 

6 13 
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I     I     I     I 

-"2. 

Ho. 
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TL/F/10580-4 TUF/,0580-3 

Figure B.2. 100302 2-Input OR/NOR Gate From Ref. [8]. 
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i 100304 
I Low Power Quint AND/NAND Gate 

j General Description 
| The 100304 is monolithic quint AND/NAND gate. The Func- 
. tion output is the wire-NOR of all five AND gate outputs. All 
; inputs have 50 kfl pull-down resistors. 

Features 
■ Low Power Operation 
■ 2000V ESD protection 
■ Pin/function compatible with 100104 
■ Voltage  compensated  operating  range   =   -4.2V to 

-5.7V 
■ Available to industrial grade temperature range 
■ Available to MIL-STD-883 

Ordering Code: see section 6 

Logic Symbol Logic Equation 

TL/F/10581-1 

Connection Diagrams 

F = (D1a • D2a) + (D1b • D2b) + D,c • D2c) + (D1d • D2d) + (D1e • D2e). 

Pin Names Description 

Dr,a-Dne 

F 

Oa-Oe 

Oa-Oe 

Data Inputs 
Function Output 
Data Outputs 
Complementary Data Outputs 

24-Pin DIP 

°." 1 
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°d~ 4 21 -"2d 
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oh- 11 14 -°1« 
°a~ 12 13 -°. 
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D2.D1«0«vEEsÖ.0bÖb 
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Figure B.3. 100304 AND/NAND Gate From Ref. [8]. 
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100313 
Low Power Quad Driver 
General Description 
The 100313 is a monolithic quad driver with two OR and two 
NOR outputs and common enable. The common input is 
buffered to minimize input loading. If the D inputs are not 
used the Enable can be used to drive sixteen 50n lines. AH 
inputs have 50 kn pull-down resistors and all outputs are 
buffered. 

Ordering Code: see section 6 

Logic Symbol 

—A_«£>—^—o„ 
5,. 

3^= 
Oib 
Oa, 
Ott 
5» 

Connection Diagrams 

TL/F/10249-3 

Features 
■ 50% power reduction of the 100113 
■ 2000V ESD protection 
■ Pin/function compatible with 100113 and 100112 
■ Voltage compensated operating range = -4.2V to 

-5.7V 
■ Available to MIL-STD-883 

■ Available to industrial grade temperature range 

Pin Names Description 

Da-Dd 
E 

Ona-Ond 

Öna-Önd 

Data Inputs 
Enable Input 
Data Outputs 
Complementary Data Outputs 

24-Pin DIP/SOIC 

TIT 
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°l.°2.5l.v£S!Ö^Ö2bÖ,b 

Ei m s tu m EI ra 

°. EH 3 ^0»j, 
o,E3fi ^fflo,. 

Vtr Hi ^ElVca 
EEsfÜia ^Qvcc 
£@ a K§V 

o« 03 a ^63o,t 
»a El 3 K,0°2« 

m @ EI @ n 0 n 

24-Pin Flatpak 
"a  °=   E  VEE %  0. 

I    I 

I    I    I    I    I    I 
°2c°l. VCCVCCA°|»°2» 

Figure B.4. 100313 Quad Driver From Ref. [8]. 
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100331 
Low Power Triple D Flip-Flop 
General Description 
The 100331 contains three D-type, edge-triggered master/ 
slave flip-flops with true and complement outputs, a Com- 
mon Clock (CPc), and Master Set (MS) and Master Reset 
(MR) inputs. Each flip-flop has individual Clock (CP„), Direct 
Set (SDn) and Direct Clear (CDn) inputs. Data enters a mas- 
ter when both CPn and CPc are LOW and transfers to a 
slave when CPn or CPC (or both) go HIGH. The Master Set, 
Master Reset and individual CDn and SDn inputs override 
the Clock inputs. All inputs have 50 kfl pull-down resistors. 

Ordering Code: see section 6 

Logic Symbol 

Features 
■ 35% power reduction of the 100131 
■ 2O00V ESD protection 
■ Pin/function compatible with 100131 
■ Voltage compensated operating  range   =    -4.2V to 

-5.7V 
■ Available to industrial grade temperature range 
■ Available to MIL-STD-883 

rTTTTTT 

Pin Names Description 

CP0-CP2 •   Individual Clock Inputs 
CPC Common Clock Input 
D0-D2 Data Inputs 
CD0-CD2 Individual Direct Clear Inputs 
SD„ Individual Direct Set Inputs 
MR Master Reset Input 
MS Master Set Input 
Q0-Q2 Data Outputs 
Ö0-Ö2 Complementary Data Outputs 

Connection Diagrams 

24-Pin DIP/SOIC 
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u -SO 

CPj- 2 23 -CO 
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Figure B.5. 100331 Triple-D FHp-Flop From Ref. [8]. 
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100336 
Low Power 4-Stage Counter/Shift Register 
General Description 
The 100336 operates as either a modulo-16 up/down coun- 
ter or as a 4-bit bidirectional shift register. Three Select (Sn) 
inputs determine the mode of operation, as shown in the 
Function Select table. Two Count Enable (CEP, CET) inputs 
are provided for ease of cascading in multistage counters. 
One Count Enable (CET) input also doubles as a Serial Data 
(D0) input for shift-up operation. For shift-down operation, 
D3 is the Serial Data input In counting operations the Termi- 
nal Count (TC) output goes LOW when the counter reaches 
15 in the count/up mode or 0 (zero) in the count/down 
mode. In the shift modes, the TC output repeats the Q3 

output. The dual nature of this TÜ/Q3 output and the Do/ 
CET input means that one interconnection from one stage 
to the next higher stage serves as the link for multistage 
counting or shift-up operation. The individual Preset (Pn) in- 
puts are used to enter data in parallel or to preset the coun- 

ter in programmable counter applications. A HIGH signal on 
the Master Reset (MR) input overrides all other inputs and 
asynchronously clears the flip-flops. In addition, a synchro- 
nous clear is provided, as well as a complement function 
which synchronously inverts the contents of the flip-flops. 
All inputs have 50 kfl pull-down resistors. 

Features 
■ 40% power reduction of the 100136 
■ 2000V ESD protection 
■ Pin/function compatible with 100136 
■ Voltage compensated operating range = 

-4.2V to -5.7V 
■ Available to industrial grade temperature range 
■ Available to MIL-STD-883 

Ordering Code: see section 6 

Logic Symbol 

o    °    IIM 

t   It   It   It 
TL/F/10584-1 

Pin Names Description 

CP Clock Pulse Input 
CEP Count Enable Parallel Input (Active LOW) 
DQ/CET Serial Data Input/Count Enable 

Trickle Input (Active LOW) 
So-Sg Select Inputs 
MR Master Reset Input 
P0-P3 Preset Inputs 
D3 Serial Data Input 
TC Terminal Count Output 
Q0-Q3 Data Outputs 
5o-53 Complementary Data Outputs 

Connection Diagrams 
24-Pin C HP/SO c 28-Pin PCC 
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Figure B.6. 100336 4-Stage Counter/Shift Register From Ref. [8]. 
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100341 
Low Power 8-Bit Shift Register 

General Description 
The 100341 contains eight edge-triggered, D-type flip-flops 
with individual inputs (Pn) and outputs (Qn) for parallel oper- 
ation, and with serial inputs (Dn) and steering logic for bidi- 
rectional shifting. The flip-flops accept input data a setup 
time before the positive-going transition of the clock pulse 
and their outputs respond a propagation delay after this ris- 
ing clock edge. 

The circuit operating mode is determined by the Select in- 
puts So and Si, which are internally decoded to select either 
"parallel entry", "hold", "shift left" or "shift right" as de- 
scribed in the Truth Table. All inputs have 50 kn pull-down 
resistors. 

Features 
■ 35% power reduction of the 100141 
■ 2000V ESD protection 
■ Pin/function compatible with 100141 
■ Voltage compensated operating range  =   -4.2V to 

-5.7V 
■ Available to industrial grade temperature range 

Ordering Code: see section 6 

Logic Symbol 

I I I MINI I 
CP 

30 Po  Pi P2    P3  P4   PS  P«    P? 07 

So 

s, 
Oo O, O2 Q3 Q4 O5 Qe QT 

Pin Names Description 

CP Clock Input 
So, Si Select Inputs 

Do, D7 Serial Inputs 

P0-P7 Parallel Inputs 

Q0-Q7 Data Outputs 

Connection Diagrams 
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Figure B.7. 100341 8-Bit Shift Register From Ref. [8]. 
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Figure B.8. Printed Circuit Board Schematic From Ref. [6]. 
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APPENDIX C. HSPICE FILES 

This appendix contains test files used to make comparisons and evaluations on 

various types and configurations of the GaAs One Transistor Memory Cell. Initially both 

enhancement and depletion type diodes were tested with depletion type being superior. The 

next set of tests contained comparisons of diodes with various gate lengths. A direct 

relationship between diode gate length and charge maintenance was achieved up to 30 

microns. Gate lengths longer than 30 microns displayed a poor return for the increase in 

size. 

A.        HSPICE FILE FOR DIODE TYPE COMPARISON 

******************************************************* 

* file: comparel.sp 
* HSPICE Simulation to compare charge storage 

capabilities in GaAs Enhancement and 
* Depletion Diodes J* = * * * dpi.31=2.8 w=52 
* 
********************************************;};:}::i;:j:#;j;;l::};:i;;J;!j; 

.protect 

.include 7tools3/cad/meta/h92/parts/vitesse/hgaas3 .models' 

.lib '/tools3/cad/meta/h92/parts/vitesse/hgaas3.corners' typical 

.unprotect 

* Controls signals for the One-Transistor Model with Diode 
******************************************4:**^^4:^^H.:I:^^H.^^4. 

* Ideal power signal to bitline 
******************************* 

Vbl 3 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 

VblO 30 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 

Vbll 33 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 

* vw* is the Read/Write Pulse for Diode models 
********************************************^^4:S:^^^^ 
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Vwl 4 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 

VwlO 31 0 PULSE(0 0.63 1000PS 100PS 100PS 400PS lOmS) 

* vw2 is the Read/Write Pulse for the capacitor model 
*&  ^U  *^^L* ^^^* "^  *& ^^ *fc *& •& »&*^*^* *&* »1* 4^«^  ■!* kl* «1* ^*^«*1* hf> hi* *£*• «!> »l*hl» «I« *1*«1# «I*  hi'  *f>hl*  kit« -1* *1* hi«  «i- »A» ml« hl»*l» hi* hi* »1*  hi» hi* hi* *Z* "T* ****** *J»*J**J* *j* «»J* »-j* -j* *js *j* «-jh^j^vj* •-£» *^ *j% *f**j« *j» *J*.*^*^ *J* ^« «^ *J* ^^ ****** ****** *1> *** *f* *J* ****** *** *J* *** <** JJh*f»*f* *|W5f* *J> *JV^f» i?f» 

Vwll 34 0 PULSE(-1.2 0 1000PS 100PS 100PS 500PS lOmS) 
* One Transistor Model with Diode 
*fc *&? ^^^^*l**l??fe?it**il*^*^l**jl**>I**l?*!l**A**lr*l* •A**!* «I» •!» »1» «l» -1» •!• «1*«1« »1» hi> »1* «1- «1* *** *I* *T* *** ******* *** **» *** *** *** *T* *^ *T* *** *** *^ ****** *T* "T* ^* ^* <fw^*^^ *jh*j*> if» *p» Jf» *f» ^***** *** 

* Note each group uses a different diode gate length 
* with gate width set to w = 52.0 

jl 3 4 5 0 dpl.3  1=2.8 w=150.0 
j2 5 0 5 0 dp 1.3  1=2.8 w=52.0 
c2 3 0 1000FF 

j 19 30 31 32 0 dpl.3   1=2.8 w=150.0 
j20 32  0 32 0 enh.2  1=8.0 w=152.0 
ell   0 1000FF 

* One Transistor Model with Capacitor 
*fc ^ *ä? *$r *i**il* *1* ^ *J» »4* rSf •b*l<>l< •&• •£• ■Z»*4*'4» «4> »I» «I* *l» »1**1**1* •!« •_> »1* «1» »1» •!• •!• «I* •**•!• *1» •!* •!■ ****** *l**j**j* ****** **> *J* *** *** *** *r* *J* *T* *J* *** ^**x»»7^ •»!* »x* r^*jh*j» «7* *J« *J» *1**^ ****^ ****^ ***' »I**^ 'I*^^ 

j21 33 34 35 0 dpl.l 1=1.2 w=150.0 
cl 35 0 1880FF 
cl2 33 0 1000FF 

* This is the Temperature Flag that sets simulation temp to 
* 85 degrees centigrade 
.temp 85.0 

* The .probe command ensures that only the listed siganls are saved 
* for evaluation 
.probe v(3)v(5)v(32)v(35) 

* The .tran command tells the simulation to run for 3000 nanoseconds 
* and save data recordings every 50000 picoseconds 
.tran lOOn 1ms 
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* The following line sets up the scale of devices to microns 
* enables HSPLOT interface 
* prints table of single plate nodal capacitances 
* and reduces output to just the probe variables 
.options scale=lE-06 post captab gmindc=lE-ll probe 
.end 

B. HSPICE FILE TO TEST GATE LENGTH CHARACTERISTICS 

************************************************************* 
* 

* file: diode.sp 
* HSPICE Simulation to Compare Variations of Diode Size in 
* One-Transistor Model with fixed sense transistor of 
* j* = * 4 * 0 dpl 31=2 8 w= 150 o to existing One-Transistor 
* Model with Capacitor. 
* 
*******************************^*^^***^^^:j;;i-H.^4:^^^^:|.H.:i.4.:j.4:;(.4.^^^ 

.protect 

.include Vtools3/cad/meta/h92/parts/vitesse/hgaas3 .models' 

.lib 7tools3/cad/meta/h92/parts/vitesse/hgaas3.corners' typical 

.unprotect 

Driving Control Signals 

* Controls signals for the One-Transistor Model with Diode 
*********************************************Mt!j<;{::};:i;;ieMS:i;:i:#:f:;I;;): 

* Ideal power signal to biüine 
******************************* 

Vbl 3 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb2 6 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb3 9 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb4 12 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb5 15 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb6 18 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb7 21 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb8 24 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
Vb9 27 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 
VblO 30 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 

77 



Vbll 33 0 PULSE(0 2 0 100PS 100PS 2000PS lOmS) 

* vw* is the Read/Write Pulse for Diode models 
**************************************************** 

Vwl 4 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw2 7 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw3 10 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw4 13 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw5 16 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw6 19 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw7 22 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw8 25 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
Vw9 28 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 
VwlO 31 0 PULSE(-1.2 0 1000PS 100PS 100PS 400PS lOmS) 

* vw2 is the Read/Write Pulse for the capacitor model 
***************************************************** 

Vwll 340 PULSE(-1.2 0 1000PS 100PS 100PS 500PS lOmS) 

* One Transistor Model with Diode 
*********************************** 

* Note each group uses a different diode gate length 
* with gate width set to w = 52.0 

jl 3 4 5 0 dpi.3   1=2.8 w=150.0 
j2 5 0 5 0 dpl.l   1=1.0 w=52.0 
c2 3 0 1000FF 

j3 6 7 8 0 dp 1.3   1=2.8 w=150.0 
j4 8 0 8 0 dpl.3   1=5.2 w=52.0 
c3 6 0 1000FF 

j5 9 10 11 0 dpl.3   1=2.8 w=150.0 
j6 11 0 11 0 dpl.3  1=12.0 w=52.0 
c4 9 0 1000FF 

j7 12 13 14 0 dpl.3   1=2.8 w=150.0 
j8 14 0 14 0 dpl.3  1=16.0 w=52.0 
c5 12 0 1000FF 
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j9 15 16 17 0 dpi.3 1=2.8 w=150.0 
10 17 0 17 0 dpi.3 1=20.0 w=52.0 
c6 15 0 1000FF 

11 18 19 20 0 dpi.3 1=2.8 w=150.0 
12 20 0 20 0 dpl.3 1=26.0 w=52.0 
c7 18 0 1000FF 

13 21 22 23 0 dpl.3 1=2.8 w=150.0 

14 23 0 23 0 dpl.3 1=30.0 w=52.0 
c8 21 0 1000FF 

15 24 25 26 0 dpl.3 1=2.8 w=150.0 
16 26 0 26 0 dpl.3 1=34.0 w=52.0 
c9 24 0 1000FF 

17 27 28 29 0 dpl.3 1=2.8 w=150.0 
18 29 0 29 0 dpl.3 1=38.0 w=52.0 
clO 27 0 1000FF 

19 30 31 32 0 dpl.3   1=2.8 w=150.0 
20 32 0 32 0 dpl.3   1=42.0 w=52.0 
ell    0 1000FF 

* One Transistor Model with Capacitor 
*************************************** 

j21   33 34 35 0 dpl.l 1=1.2 w=150.0 
cl   35   0  2400FF 
cl2  33  0   1000FF 

* This is the Temperature Flag that sets simulation temp to 
* 85 degrees centigrade 
.temp 85.0 

* The .probe command ensures that only the listed siganls are saved 
* for evaluation 
.probe v(3) v(5) v(8) v(ll) v(14) v(17) v(20) v(23) 
.probe v(26) v(29) v(32) v(35) 

* The .tran command tells the simulation to run for 3000 nanoseconds 
* and save data recordings every 50000 picoseconds 
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.trän lOOn 1ms 

* The following line sets up the scale of devices to microns 
* enables HSPLOT interface 
* prints table of single plate nodal capacitances 
* and reduces output to just the probe variables 
.options scale=lE-06 post captab gmindc=lE-ll probe 
.end 

^^«g^*******************************************:^:)::)::): 

C.        HPSICE FULL CELL CHARACTERISTICS 

* file: memfull.sp 
* HSPICE Simulation for preliminary tests to confirm 
* read ONE operation and power requirements 
* new GaAs DRAM cell design 
* 

******************************************************* 

.protect 

.include 7tools3/cad/meta/h92/parts/vitesse/hgaas3.models' 

.lib 7tools3/cad/meta/h92/parts/vitesse/hgaas3.corners' typical 

.unprotect 

* Power sources for sense transistor 
* Vdd is main power 
* Vrefb is pre-charge for bit-line 
* Vrefd is precharge for dummy cells 
* Ve is gate voltage to equalizer 
******************************:}::i:;i:;|c:j;:i: •};:}: :{;:};.};;£:(;# 

Vdd 1 0 2.0 
Vref 1 777 0 0.7    $ Bit-line precharge voltage 
Vref2 888 0 0.26  $ Dummy-cell precharge voltage 

*Vopu is the Odd BIT I/O Pull-up 
Vopu 2010-1.2V 

*Vepu is the Even BIT I/O Pull-up 
*Vepu 200 0-1.2V 

* Vopd is the Odd bit line pull down 
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Vopd 203 0 0.0V 

* Vepd is the Even bit line pull down 
Vedd 202 0 0.0V 

* Vsen is the sense amplifier sense signal 
*VrcX is the read/write signal to memory cell X 
* Vpre is the bitline/dummy-cell precharge & equalization signal 

Vsen 189 0-1.2V 
Vrcl 152 0 -1.2V $ Control signal for address 1 
Vrc2 153 0 -1.2V $ Control signal for address 2 
Vrc3 154 0 -1.2V $ Control signal for address 3 
Vrc4 155 0 -1.2V $ Control signal for address 4 
Vrc5 156 0 -1.2V $ Control signal for address 5 
Vrc6 157 0 -1.2V $ Control signal for address 6 
Vrc7 158 0 -1.2V $ Control signal for address 7 

*Vrc signals are Read/Write signals to memory cells 

Vpre 88 0 PULSE(-1.2 0 OPS 100PS 100PS 1300PS 1000ns) $precharges biflines 
Vepu 200 0 PULSE(-1.2 0 1500PS 100PS 100PS 1300PS 1000ns) $one enters even bitline 
VrcX 151 0 PULSE(-1.2 0 1500PS 100PS 100PS 1300PS 1000ns) $reads one into even 
mem-cell 

* The following transistors make up the memory array 

* The following transistors make up the sense amplifier 
************************************************************** 

jO 1   189 98 0 dpi.11=0.8 w=9.0  $ sense transistor 
jl 1   189 99 0 dp 1.11=0.8 w=9.0  $ sense transistor 
j2 98   88 99 0 dpl.l 1=0.8 w=20.0 $ equalizing transistor 
j3 98  99   0 0 enh.l 1=0.8 w=100.0$ switching transistor 
j4 99  98   0 0 enh.l 1=0.8 w=100.0$ switching transistor 

* The following transistors make up the memcell support 
**************************^**^^^^^^^^^^^^^^H.:i.^:it^^4.^^;!.^:is^^4.4.^:j:^ 

j5 1   201 99 0 dpl.l 1=0.8 w=150.0 $ odd bit I/O pull up transistor 
j6 1   200 98 0 dpl.l 1=0.8 w=150.0 $ even bit I/O pull up transistor 
j7 99 203  0 0 enh.l 1=0.8 w=20.0  $ odd bit I/O pull down transistor 
j8 98 202  0 0 enh.l 1=0.8 w=20.0  $ even bit I/O pull down transistor 
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j9 777 88 99 0 dpl.l 1=0.8 w=10.0  $ odd bit I/O precharge transistor 
j 10 777 88 98 0 dpl.l 1=0.8 w=10.0  $ odd bit I/O precharge transistor 
jll 888 88 53 0 dpl.l 1=0.8 w=3.0   $ odd dummy-cell precharge transistor 
j 12 888 88 52 0 dpl.l 1=0.8 w=3.0   $ even dummy-cell precharge transistor 
jl3 99 151 53 0 dpl.l 1=2.0 w=6.0   $ odd dummy-cell sense transistor 
J14 98 152 52 0 dpl.l 1=2.0 w=6.0   $ even dummy-cell sense transistor 
J15 53   0 53 0 dp 1.21=2.0 w=4.0   $ odd dummy-cell 
J16 52   0 52 0 dp 1.21=2.0 w=4.0   $ even dummy-cell 

* The following transistors make up the memory cell 
*************************************************************** 

J17 99 152 21 0 dpl.21=2.0w=100.0 $ odd memory cell sense transistor 
J18 98 151 20 0 dpl.21=2.0w=100.0 $ even memory cell sense transistor 
J19 21    0 21 0 dpi.3 1=30.0 w=52.0 $ odd memory cell 
j20 20   0 20 0 dpl.31=30.0 w=52.0 $ even memory cell 

J2199 154 23 0 dpi.21=2.0 w=100.0 $ odd memory ceU sense transistor 
J22 98 153 22 0 dp 1.21=2.0 w=100.0 $ even memory ceU sense transistor 
J23 23   0 23 0 dpl.31=30.0 w=52.0 $ odd memory cell 
J24 22   0 22 0 dpl.31=30.0 w=52.0 $ even memory cell 

J25 99 156 25 0 dpl.21=2.0w=100.0 $ odd memory cell sense transistor 
J26 98 155 24 0 dp 1.21=2.0 w=100.0 $ even memory cell sense transistor 
j27 25 0 25 0 dpl.31=30.0 w=52.0 $ odd memory cell 
j28 24 0 24 0 dpl.31=30.0 w=52.0 $ even memory cell 

J29 99 158 27 0 dp 1.21=2.0 w=100.0 $ odd memory cell sense transistor 
j'30 98 157 26 0 dp 1.21=2.0 w=100.0 $ even memory cell sense transistor 
j31 27 0 27 0 dpl.31=30.0 w=52.0 $ odd memory cell 
j'32 26 0 26 0 dpl.3 1=30.0 w=52.0 $ even memory ceU 

* This is the Temperature Flag that sets simulation temp to 
* 85 degrees centigrade 
.temp 85.0 
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* The .probe command ensures that only the listed signals are saved 
* for evaluation 
.probe v(88) v(200) v(151) v(98) v(99) v(20) v(21) v(52) v(53) 
.probe tran p(Vdd) p(Vpre) p(Vepu) p(VrcX) power 
.probe I(Vdd) I(Vpre) I(Vepu) I(Vrcx) current 

* The .tran command tells the simulation to run for 1000 nanoseconds 
* and save data recordings every 1 nanosecond 
.tran Ins 1000ns 

* The following line sets up the scale of devices to microns 
* enables HSPLOT interface 
* prints table of single plate nodal capacitances 
* and reduces output to just the probe variables 
.options scale=lE-06 post captab gmindc=lE-6 probe 
.end 
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APPENDIX D. MAGIC FILES 

This appendix contains a small depiction of the modified DRAM chip. Complete files 

are located in chip, storage, support, padring, clock drivrl, driver2, cm2, cm3, refresh, 

output and cell MAGIC files. 
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Figure D.I. Modified GaAs DRAM 
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