
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1995-03

Design and implementation of a membership
server and its application interface

Kostrivas, John
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/31578

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

■- >

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC^
ELECTE

k MiY 3 0.1955

THESIS
-V«

DESIGN AND IMPLEMENTATION OF A
MEMBERSHIP SERVER AND ITS APPLICATION

INTERFACE

by

John Kostrivas

March 10, 1995

Thesis Advisor: Shridhar B. Shukla

Approved for public release; distribution is unlimited.

19950526 003 BEG QUALITY III SPEGTED 8

»übte reporting burden for tins collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing daia sources,
pftermg and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
jo^on of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
fcflerson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

i. TITLE AND SUBTITLE
DESIGN AND IMPLEMENTATION OF A MEMBERSHIP SERVER
AND ITS APPLICATION INTERFACE

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

5. AUTHOR(S)
John Kostrivas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy,
x>sition of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

None of the existing membership protocols have all the properties needed to be reliable and fault-tolerant Therefore the goal of
this work is to implement two major components of a group Membership Service protocol which will provide distributed
applications the necessary fault tolerance, reliable communications and consistent group views among all members These
protocols must operate on top of a usually unreliable and best effort network such as the Internet The first component implements
a multicast emulator, to emulate IP multicasting communication over a mixture of multicast-capable and unicast capable local
area networks (LANs). The second component implements a membership server that maintains the group memberships using the
Membership Service protocol. These components are implemented as programs and then verified to be faithful to the
specifications through extensive testing of all possible paths through the program (all combinations of scenarios)

14. SUBJECT TERMS

Group membership, multicast, decentralized, change protocols, network partitions.

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

74
16 PRICE CODE

20 LIMITATION OF ABSTRACT
UL

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A MEMBERSHIP SERVER
AND ITS APPLICATION INTERFACE

John Kostrivas
Lieutenant JG, Hellenic Navy

Hellenic Naval Academy, 1987

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and

MASTER OF SCIENCE IN COMPUTER SCIENCE

Author:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL
March, 1995

Shridhar B. Shukla, Thesis Advisor

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

m.
Avail and/or

Special

Gilbert M. Lundy, Second^eacier

Michael A. Morgan,Chairman
Department o/Electrical and Computer Engineering

Ted G. Lewis, Chairman
Department of Computer Science

in

IV

ABSTRACT

None of the existing membership protocols have all the properties needed to be

reliable and fault-tolerant. Therefore, the goal of this work is to implement two major

components of a group Membership Service protocol which will provide distributed ap-

plications the necessary fault tolerance, reliable communications and consistent group

views among all members. These protocols must operate on top of a usually unreliable

and best effort network such as the Internet. The first component implements a multicast

emulator, to emulate IP multicasting communication over a mixture of multicast-capable

and unicast capable local area networks (LANs). The second component implements a

membership server that maintains the group memberships using the Membership Service

protocol. These components are implemented as programs and then verified to be faithful

to the specifications through extensive testing of all possible paths through the program

(all combinations of scenarios).

VI

TABLE OF CONTENTS

I. INTRODUCTION l

H. THE ARCHITECTURE OF THE MEMBERSHIP SERVICE 3
A. COMPONENTS OF THE MS 3

1. Membership Servers And Member Interfaces 3

2. Failures, Partitions, And Dynamic Reformation 4

3. Change-Processing Core-Set 5

4. LanMserver Monitoring g

5. Forming The Hierarchy 6

B. SUPPORT FOR APPLICATION GROUPS 7

1. Consistency 7

2. Naming g

3. Membership Scope Control g

4. Member Interfaces 9

5. Application Group Change Processing 9

ffl. PROTOCOL DESCRIPTIONS 11
A. PROTOCOL FUNCTIONS ! j

1. Types Of Changes 12

a. Requests 22

b. Failures 12

c. Dynamic Reconfigurations j 3

2. Ordering And Priority Of Change Processing 13

B. CHANGE PROTOCOL]5

C. CHANGE PROTOCOL WHEN COORDINATOR FAILS 15

D. PARTITION RESOLUTION PROTOCOL 17

IV. IMPLEMENTATION 21
A. MULTICAST EMULATOR (MCASTER) 21

1. Algorithm Design 21

2. Code Description 25

a. Internal Group Lists 26

b. Mcaster Specific Messages 27

B. BASIC MESSAGE FUNCTIONS 28

1. Function Receive_Msg 28

2. Function Recv_Messg 29

3. Function Form_Messg 30

4. Function Send_Messg 31

C. MEMBERSHIP SERVER (MSERVER) 32

1. Algorithm Design 32

VII

A. New Member Joins Group ,.

B. Function Reliable Link ~,
~ Jo

2. Internal State ..
 37

A. Core Table

B. View
 37

3. Processing Messages - Function ProcessJrfsg 3g

4. Code Description

A. Initialization
 39

B. New Member Join Procedure
 40

C. Monitoring - Processing Messages 42

D. Function ProcessMsg

E. Processing Join Requests

F. Processing Coordinator's Failure 47

D. REMARKS .
 48

V. CONCLUSIONS AMD FUTURE WORK 51

A. CONCLUSIONS

B. FUTURE WORK

APPENDIX. COMPILE, RUN AMD TEST THE MS 53

A. COMPILING .
 53

B. RUNNING
 55

C. TESTING

LIST OF REFERENCES 59

INITIAL DISTRIBUTION LIST 63

VIII

ACKNOWLEDGMENT

This thesis is devoted to my father Dionisios Kostrivas for whom,
higher education has been his life drive.

It is also devoted to all my professors and especially to my advisor
Professor Shridhar Shukla, who helped me to materialize my dream.

IX

I. INTRODUCTION

Distributed applications require co-operation among their groups spread out in a

network. These groups sometimes change dynamically and the membership may be

based on voluntary, as well as involuntary, actions. As such applications proliferate on a

typical organization's wide area network (WAN), access to a Membership Service (MS)

to manage and administer the membership information of individual groups becomes

necessary.

The type of membership information required depends upon the nature of the

cooperation to be achieved by the members of the client groups. Examples of

membership-related information are group size, members' identities, their geographical

and organizational distribution, and a history of membership changes. This information

could be provided by the membership service through a series of functions that in turn

could be used to build distributed applications.

A lot of different approaches have been presented [13, 14, 15, 16, 17, 9, 18, 19,

12, 20, 5, 21, 22, 23] for a membership service. None of them includes all the necessary

features to provide total scalability over WANs. Typically, they do not provide a range of

membership services and, in many cases, assume network properties that are not repre-

sentative of today's WANs.

The MS described in [28] assumes a "best-effort" network such as the Internet, is

scalable with respect to the size/distribution/number of groups, uses network-level multi-

casting when available, employs a decentralized protocol with provably minimal number

of phases for committing changes, and offers different qualities-of-service(QoS).

This thesis presents the algorithms and actual code of the MS implementation

started in [28]. Two basic components of the MS, a multicast emulator {mcaster) and a

membership server (mserver) were implemented and tested. In this process some of the

membership protocols of [28] were refined. In Chapter II, a brief description of the MS

architecture described in [28, 29] is given. The protocol is described in Chapter III. In

Chapter IV, the implementation of the mcaster and mserver is explained. Chapter V gives

1

the conclusions and future work. Finally, the Appendix describes how to compile, run

and test the MS code written for this thesis.

II. THE ARCHITECTURE OF THE MEMBERSHIP SERVICE

The key to a scalable MS is a decentralized, hierarchical architecture, designed to

exploit the existing physical topology of subnetworks, networks, and internetworks upon

which the distributed application process groups that the MS supports will be running.

This chapter summarizes the structure and composition of the physical hierarchy of the

MS and how this architecture supports application process groups, as it is given in [28,

29],

A. COMPONENTS OF THE MS

1. Membership Servers And Member Interfaces

The MS is comprised of two primary entities: membership servers (mservers) or-

ganized in a physical tree hierarchy and member interfaces (MI) that represent the leaves

of the tree. The mservers are primarily responsible for processing changes and providing

information to the members of the physical hierarchy as well as the application process

groups using the MS. Application group processes interface with the MS through an MI

process running on each host computer. Each MI accepts requests for changes to or in-

formation about application groups from the individual application member processes

running on the particular host computer. The MI then reliably relays these requests to the

LAN mserver to access the MS. The MI receives responses from the LAN mserver and

reliably propagates these responses to the application member processes that it supports.

Each MI supports numerous application groups and numerous individual member pro-

cesses from each application group.

Figure 1 illustrates an example logical hierarchy of mservers, Mis, and applica-

tion group processes. The architecture shown is a representative configuration for a small

area encompassing a single institution, such as a campus or business. The logical hierar-

chy shown in Figure 1 corresponds to the physical topology of networks and computers.

It shows 11 departmental LANs served by as many mservers. The 11 mservers form 3

groups at the building level. At the next level (backbone) 3 mservers form a group to

serve the entire campus. This hierarchy of mserver groups forms the MS infrastructure.

Figure 2 shows the messages that are exchanged between LAN mservers, Member Inter-

faces and application group members.

The configuration of the mservers and Mis is expected to be semi-static, normal-

ly changing only when additions and deletions to the physical topology are made. The

system administrator will assign appropriate names for each set of mservers at each level.

If network-level multicasting is available, the administrator could join each set into a

multicast group for efficient communication.

Backbone

mserver Application fii\.. Application 1
Processes ■ I.. Application 2

Ml per host per host W... Application 3

Figure 1: Logical MS Hierarchy

2. Failures, Partitions, And Dynamic Reformation

Mserver failures and network partitions lead to a dynamic reconfiguration of the

physical structure of the MS, with the surviving mservers and Mis automatically reform-

ing into partitioned sets. Perceived mserver failures represent virtual partitioning of the

network into one or more subsets of the original set of mservers. Each partitioned subset

corresponds to the subtree of the physical hierarchy in a single piece of the partition. This

subtree corresponds to all of the mservers which are still able to communicate over the

non-partitioned network. Each partition of the MS reforms and continues to function,

providing service to all application process groups which have members still existing in

the partition. The application process groups which span the partitioned network will

experience a partition in their membership. This condition will continue until the physi-

cal network partition is repaired, at which time the physical hierarchy of mservers will ei-

ther administratively or automatically be reformed to the original configuration. Once the

physical hierarchy is restored, the surviving application groups will also be reformed, as

per the Quality-of-Service (QoS) related to partition resolution chosen by the MS user at

start up time. Partitions can be detected by mservers through monitoring, as described

later.

3. Change-Processing Core-Set

The group of mservers at each level in the hierarchy is called a change-processing

core-set with respect to a particular application group when it is designated to be respon-

sible for processing all membership change requests submitted by members ofthat appli-

cation group. Every such set is also responsible for enacting changes in the physical

hierarchy immediately below it. The change processing involves reaching agreement

amongst all mservers in the core-set about the change submitted and propagating this

change back to the application or physical hierarchy group members, who are then guar-

anteed to have a new view of the changed group membership.

LAN
mserver
T T

Submit / Reply Query \ Direct
application group / MI MI \ application group

change and information / monitoring monitoring \ change and information
messages/ messages messages \ messages

 L <L
MI

T
application group changes,

information, requests, monitoring
(within a host machine)

A.
application group member process

Figure 2: Messages sent by LAN Members and Member Interfaces

For each membership change request submitted to an mserver group, a coordina-

tor is chosen. The criteria for selecting the coordinator depends on the particular type of

change and how it was submitted to or detected by the mserver group. The fact that the

coordinator is not a fixed member of the mserver group, but instead varies from change

to change, is a powerful feature of the MS.

4. Lan Mserver Monitoring

Due to the high bandwidth, low latency, hardware multicast capability, and lim-

ited number of Ms to monitor, the mserver representing each LAN uses a simple polling

scheme to conduct status monitoring of the Mis on the LAN. Each MI on the LAN is

successively polled with a Query message by the LAN mserver. The MI responds with a

Reply message indicating normal status. Timeouts and retries are used to detect a non-

responding MI and announce the perceived failure. Note that this monitoring emphasizes

collection of status of individual Mi's on the LAN. This is to be distinguished from the

monitoring done by IGMP which detects if there exists a (any) member on the LAN [6].

5. Forming The Hierarchy

The final organization of mservers and Ms involves forming the hierarchy of the

sets of mservers that cooperate for monitoring and change processing, with the Ms at the

leaf level. As shown in Figure 1, each mserver in the hierarchy has either a set of children

mservers or Ms. All mservers and Ms also have a parent mserver, except the mservers

at the highest level of the hierarchy. Each mserver above the lowest level in the hierarchy

has a dual membership in the "child-set" as well as the original peer group of mservers.

Having the parent mserver as a member of the child-set has two primary advan-

tages. First, the parent mserver is part of monitoring the child set; thus, the child-set will

immediately learn of the failure of the parent mserver by monitoring. Second, the parent

mserver takes part in all change processing conducted by the child-set; therefore, it will

learn of any changes in the membership of the child-set directly. Together, these two

points ensure that "vertical monitoring" is conducted in the hierarchy. This provides the

means to ensure that a failure or partition between levels in the MS hierarchy will be de-

tected, allowing the MS to reform as necessary.

B. SUPPORT FOR APPLICATION GROUPS

The MS is responsible for managing the membership of the application groups

and providing services to the application groups with features as described below.

1. Consistency

The primary service that the MS provides application groups is a consistent view

of the group membership at all members, as well as a consistent ordering of changes to

the membership of the group at all members. These consistency guarantees ensure that a

group member either acquires the same consistent view as all other members of the group

eventually, or is excluded from the membership of the group. The term "eventually" re-

fers to the asynchronous nature of the environment, leading to delays at some sites. Using

this guarantee of consistent membership at all members, the application can expect that

members with the same group view number have seen the same sequence of membership

changes and have the same view of the membership of the group. Using this knowledge,

the application can decide to accept or reject messages from other application processes

depending on the included group view number [11, 27]. The guarantee of consistent

membership can be used as the foundation upon which to build many distributed

applications.

The MS provides consistent ordering of membership changes to application

groups by ensuring that only one change is ever processed at a time in the core-set ofthat

application group, and that all active member processes eventually receive this change.

The selected change is committed by all core-set mservers, then reliably propagated to

the Mis, and finally, to the distributed application member processes. The MS provides

the guarantee that an application member process either receives each revised group view

or is detected as failed, and excluded from the group. In this manner, all surviving appli-

cation member processes are guaranteed to have exactly the same ordering of member-

ship changes.

2. Naming

The MS manages the names of all application groups using the MS. Application

group names are guaranteed unique within a predetermined scope. When an application

group is created, the software call from the application to the MS includes as a parameter

a level in the MS physical hierarchy, under which the application group name will be

guaranteed unique. This name-scope parameter is either the actual name of the core-set

or a level number above the MI level in the physical hierarchy. For example, to guaran-

tee an application group name of "application 1" as unique under the scope of the back-

bone core-set from Figure 1, the name backbone or the level number 2 would be used as

the name-scope parameter. The name-scope level must be at or above the core-set level

for the application.

With the creation of each new application group, the name-scope parameter is

checked at each level in the mserver hierarchy up to and including the name-scope level.

If the name already exists, the creation of the new group is refused, and an error code is

returned to the calling application. If the name is not found, then it is registered at the

name-scope level of mservers and a successful group creation is reported to the calling

application. When new application members at distributed locations wish to join an ex-

isting application group, a join request is submitted via the resident MI, then propagated

up the hierarchy until either an mserver is located with the application name stored or the

highest level in the physical hierarchy is reached and the application name is not located.

If the desired application group name is located, the new member is joined into the appli-

cation group through the normal change-processing sequence, and a successful join is re-

ported back to the requesting process. If the name is not located, an unsuccessful join

attempt is reported back. Through judicious use of the name-scope parameter, applica-

tion names may be used freely with little concern about duplicate name usage.

3. Membership Scope Control

An additional feature provided by the MS is the ability for an application to de-

cide at what level in the MS physical hierarchy to limit the scope of the applicat.on

8

group. By providing a membership-scope parameter with the creation call for a new ap-

plication group, the application guarantees that the span of the application's membership

will not exceed that of the given core-set level in the physical hierarchy. In return, the

MS is able to provide more efficient service by limiting the scope of application group

name searches to the membership-scope level and below. Instead of propagating every

unsuccessful application group name search to the highest level of the MS hierarchy, the

name search will cease at the membership-scope level. Without use of the membership-

scope, it might be possible for a bottleneck to form at the "top" of the MS hierarchy.

4. Member Interfaces

The Mi's accept application membership change and information requests from

application processes and submit these changes to the mserver hierarchy for processing.

When the change or information data is returned, the MI passes the data to the requesting

member processes.

The MI, running on an individual host computer is capable of interfacing multi-

ple application groups, each with multiple members, with the LAN mserver and main-

tains a list of all application groups it is managing as well as all member processes from

these groups running on the host computer. Thus, the membership information for each

application group is maintained in a decentralized, scalable manner. When an applica-

tion member process needs to communicate with another application member process on

a different host, it submits a request for addressing information to the MI. The MI relays

this information request to the MS, which obtains the desired information from the MI

managing the desired member process, and relays the information back to the requesting

MI and application member process.

5. Application Group Change Processing

As previously discussed, application group change processing begins with the

submission of a change request to the host MI. This request is relayed to the core-set of

the application, which conducts the mserver change-processing procedure, resulting in all

core-set mservers committing the change. Each core-set mserver then reliably relays the

change directive down the h,erarchy to the MI, and then to the requesting application

process. Timeouts and retries are again used to detect failures and partitions.

In this chapter the architecture of the MS was briefly discussed and its compo-

nents („servers and Ms) along with the MS support for the applications were described.

The next chapter describes the MS protocol.

III. PROTOCOL DESCRIPTIONS

This chapter describes in brief the protocol used in MS. More detailed analysis of

the MS protocol along with correctness arguments can be found in [28,29].

A. PROTOCOL FUNCTIONS

As described in [28], the basic change-processing protocol uses a modified form

of the three-way handshake often seen in unreliable networks for reliable message deliv-

ery. The coordinator initiates the change processing with a multicast to all group mserv-

ers, collects acknowledgment (ACK) messages from all, then multicasts a final message

for all to commit the change. Timeouts and retries are used by mservers waiting to re-

ceive ACKs or Commit messages from other mservers to ensure that continual progress is

made toward completion of the change. As with the monitoring scheme, if the expected

reply is not received from an mserver after the timeout period and all successive retries,

then that mserver is declared failed and the failure is announced to all other mservers in

the group.

The use of timeouts and retries on change-processing messages creates a second-

ary but essential method of detecting mserver failures. Since mserver monitoring uses

unicast messages and change-processing uses multicasts, it is possible that a network

partition could occur that affected only multicast message delivery between one or more

mservers. The inability of mservers to communicate all necessary data creates a virtual

partition between the mservers. Without the use of this secondary detection method, it is

possible that one or more mservers could be functioning perfectly well, sending the re-

quired monitoring messages, but unable to respond to change-processing messages, thus

creating a deadlock situation. The timeout and retries on change-processing messages

ensures that an mserver unable to communicate will be detected failed, and the remain-

ing mservers will be able to complete the change in a timely manner. In the event of a

coordinator failure during the change processing, a distributed election is conducted and

a new coordinator is elected to continue the original change. This is described later.

11

1. Types Of Changes

There are three primary types of membership changes processed by a group of

mservers: requests, failures, and dynamic reconfigurations.

a. Requests

Requests are voluntary, planned membership changes, submitted to the

group for processing by an application process or system administrator. Change requests

for the MS physical hierarchy may be to Join to a mserver group, Leave a mserver group,

Split a mserver group to form two new ones, Merge two mserver groups to form one,

Add parent to add a parent mserver to the mserver group and Deljparent to remove a

parent from the mserver group. Physical change requests are multicast to a specific group

in the hierarchy by a system configuration call, usually invoked by a system administrator

during manual configuration of the MS hierarchy. Application group change requests are

submitted to the resident MI process on the host computer by the application user. The

MI then propagates the request to the group mserver above it in the hierarchy. The re-

ceiving group mserver queues the request to be processed when other higher priority

changes have completed processing.

b. Failures

The second primary type of membership changes are detected failures.

These detected failures may be the result of the actual failure of an mserver, MI, or appli-

cation process, or the host machines upon which they are running. Additionally, network

partitions will be perceived as failures of the partitioned mservers, and will lead to the

processing of failures and reformation of the partitioned subsets of mservers and sub-

groups of application processes. The partitioning of the MS physical hierarchy leads to a

partitioning of the application groups residing on th,s hierarchy. The MS automatically

reforms both the physical hierarchy and the supported application groups in the event of a

network partition. Failures detected or received by a group mserver are queued and pro-

cessed according to their priority. Multiple failures queued at a group mserver are

12

processed all at once, in a "batched" manner. This greatly reduces the time required to

reform physical mserver groups or application groups.

c. Dynamic Reconfigurations

The final type of changes are the result of automatic actions taken by

mserver groups. This type of dynamic reconfiguration occurs when new members join an

application group, causing the span of the application group to increase beyond that pres-

ently covered by the current application core-set. In this event, the application core-set

must be moved from the present level in the physical hierarchy to a higher level covering

the new span of the application. This new level must be at or below the name-scope and

membership-scope levels of the application group, if these levels were designated when

the application group was created. The MS automatically moves the application core-set

to the new level. In a similar manner, the departure of application member processes

may lead to a reduced span of the application. An application core-set must have at least

two mservers with application members in their subtrees; otherwise, there is no need to

have the application core-set at this level in the hierarchy. If the application core-set is

reduced to only one mserver supporting an application, the application core-set will auto-

matically move down to the child-set of this mserver.

The repositioning of an application core-set is initiated by the set of

mservers detecting the need to move the application core-set. Messages are exchanged

between the old and new core-sets and a change involving the join or departure of the in-

stigating application member is processed along with the change in application core-set

level by both core-sets. After committing the changes, the internal state of all mservers

in both core-sets is changed to reflect the new application core-set level.

2. Ordering And Priority Of Change Processing

A key issue associated with processing membership changes is the ordering of

changes committed by the mserver group. As previously described, to guarantee consis-

tent ordering of membership changes at all mservers in the group, only one change may

be committed at a time. However, it is possible that more than one membership change

13

may be submitted to or detected by the group at one time. Each receiving or detecting

mserver in the group will attempt to become the group coordinator and initiate the

change it received or detected. These multiple change initiation attempts are referred to

as "virtually simultaneous", since they have all been initiated before the group has

reached a consistent and uniform decision on the current change to process.

To resolve these virtually simultaneous changes and select only one change to be

processed, a priority scheme is used. This scheme uses the type of change and the unique

group id (rank) of the subject of the change to decide which change will be processed by

the group. The subject of a change refers to the member whose membership status has

changed. The highest priority is given to any current change being processed by the

group; that is, a change which is in progress at an mserver (i.e. an ack to the initiate has

been sent). It is essential that such a change progresses to completion at all group mserv-

ers; otherwise, the possibility of inconsistent membership views exists if some mservers

commit the change while others do not. The next lower priority is that physical hierarchy

changes always have priority over application group changes. This is because it is impor-

tant to ensure a complete and whole MS infrastructure before attempting to change the

membership of an application group using the MS. Once these decisions have been

made, the priority of the change is determined by the rank or age of the subject of the

change in the group. The only exceptions to this rule are for the failure of the coordina-

tor of the current change or a Jom. The failure of the coordinator of a change in prog-

ress, has priority over otherwise equal status changes. A newly joining mserver or

member will not have an associated rank until after the join is completed. For this rea-

son, the network address of the joining member is used instead of a rank number to de-

cide priority among Joins. The final rule used to determine the priority of virtually

simultaneous changes is applicable when changes are submitted to the core-set by differ-

ent application groups with identical subject rankings in each group. In this case, a tie-

breaker is needed, and the ranks of the coordinators in the group are used to decide which

14

change will be processed. Various scenarios with respect to virtually simultaneous

changes are described in [29].

B. CHANGE PROTOCOL

The basic change-processing protocol consists of two phases: the Initiate and

Commit phases. A timeline for this protocol is shown in Figure 3. In the Initiate phase,

the coordinator multicasts an Initiate message to all mservers in the group. The group

mservers respond with ACKs, acknowledging reception of the Initiate message. When the

coordinator has received all the acknowledgments, the second phase of the protocol be-

gins with the coordinator sending the Commit message. This message indicates to mem-

bers of the group that it is safe to commit the change. Phase I is achieved through a

reliable schema. The coordinator sends the Initiate message a predetermined number of

times if one or more group mservers do not reply. After that, it assumes that the mserv-

er(s) that did not reply has (have) failed.

Phase I Phase II
Initiate Commit

coordinator—fö r^\ >

core-set
mservers

Figure 3: Basic Two Phase Change Protocol

C. CHANGE PROTOCOL WHEN COORDINATOR FAILS

The two phase protocol is not sufficient in case coordinator of a change fails

while processing a change. As shown by Riccardi and Birman [9], a three phase protocol

is required. After the coordinator of the current change fails, and its failure is detected by

a member of the group, a three phase protocol is initiated, with the election of the new

coordinator as the first phase. Figure 4(a) illustrates the three phase election and change

processing protocol. In the election phase only those members that have finished phase

one of the original change protocol participate.

15

When the new coordinator is elected, it knows the status of each member with re-

spect to the change, due to a status broadcast during the election phase. If at least one

mserver has finished the change (committed) it means that the old (and detected failed)

coordinator had already collected all ACKs and had started the Commit phase. So the new

coordinator, knowing that phase one was completed, can continue with the final phase of

the change, instead of restarting phase one. This compressed three phase protocol is

shown in Figure 4(b).

Phase I Phasen Phase m Phase I
Election Initiale Commit Electing

detector ra JJjfa Q > detector _»«*"

(a) (b)

Figure 4: Three Phase (Election and Change) and Compressed Three Phase Protocol

A simplified algorithm for the two phase and three phase algorithm is shown in

Figure 5. Only the important arguments are shown. All sends and receives of messages

are done with timeouts. This way the protocol does not block and takes appropriate ac-

tions in case of no response. In line 5, the term "reliably" implies that a message is sent

and specific answers are expected from all members in a specific time interval. If some

or all of them do not reply, a number of retries are attempted. After the retries and the

last timeout expire, the sender assumes the non responding mservers to have failed. In

line 11, the same function is called recursively to process the failure(s) of the member(s)

that did not reply. In line 8, the second phase is executed by sending a commit message.

Then the coordinator has to make the change to its internal state. Lines 13 through 25 are

devoted to the non coordinator. Since this code is executed everywhere, it contains both

cases (coordinator, non-coordinator), and the if statement in line 3 decides which part of

the code should execute.

Lines 17 through 25 form the three phase protocol in case the coordinator of the

current change fails. Lines 17 through 21 refer to the member(s) that detected the failure

16

of the current coordinator. Lines 22 through 25 refer to the member(s) that have still not

detected the coordinator's failure but wait for a Commit message. Both sides triggered by

the coord Jail message, start collecting status of the rest of the members. Then in lines

20 and 24 an election of a new coordinator is done. The lowest rank among the survived

and responded mservers gets elected and all members go to process the new (and of high-

er priority) change. If the current coordinator does not fail, all members commit the

change, updating their internal state, in line 27.
1. fmembeship change protocol */
2. processchange (type of change, subject)
3. ifcoordhator
4. /* start phase IV
5. send agree to group relably
6. receive acte
7. put members IhatoW not reply, on fai ist
8. send commit message
9. comma the change

10. if fällst is not empty

11. process_change(fai, first ii fällst)
12.
13. else /*non -coordinator*/
14. receive agree msg
15. sendacktocoordrator
16. wait for commit
17. if commit is not received
18 send coord_fai msg broadcasting status
19- colect status from other members
20. determhenewcoordhator
21 • P«ocess_chan^(fai,oldcoordriatDr)
22. else if coord fal msg is received
23 broadcast own status and colect status from other members
24. determine new coordhator
25 process_change(fal,oldcooro5nator)
26. else Z'commit received V
27. commit change

Figure 5: The Membership Change Protocol (two phase - three phase)

D. PARTITION RESOLUTION PROTOCOL

After a network partition, it is possible that a group is partitioned into two or

more subsets. This should happen as some of the group members see at the others as

failed and proceed with the processing of these failures. Once the processing of the fail-

ures is completed these subgroups will attempt to rejoin once they learn about the exis-

tence of other subgroups. Since the subgroups still share the same multicast address, once

the network partition is mended, all subgroups receive all the messages from the other

subgroups. Upon learning of the existence of a subgroup from the original group, the

17

partitioned subsets of mservers reform into the original group automatically by sending

the appropriate reform messages. In addition to reforming the physical group, all appli-

cation groups which were partitioned and are still functioning are also reformed. The

reformation process for both physical subgroups and application groups merges the cur-

rently existing membership of each, taking the union of all subsets or subgroups, and

making the reformed group or application group membership the current view. In the

event that the network partition is not repaired in a predetermined period of time, the

partitioned subsets of mservers will abandon their attempts to reform the original group,

and will create a new multicast group with only the current group mserver included.

If the group partitions, the application groups that span the partition, also experi-

ence a virtual partition. These partitions are handled using the following two rules.

• Keep alive any partitioned subgroups that meet a certain condition specified by
the user. Any subgroups which do not meet the condition are terminated.

• Partitioned subgroups attempt to find and merge with other partitioned
subgroups that have a certain user-specified property.

By combining these two rules, every possible combination of partition handling

methods can be produced. The first rule determines who survives, and the second rule

determines who will attempt to merge. Each rule can also combine multiple parameters

to provide very specific and flexible methods of handling partitions. For example, all

subgroups larger than a size of three which contain a particular member type could be

permitted to survive and merge with subgroups larger than half of the original group size

and containing another particular member type. Note that all partitions of the group nec-

essarily survive network partitions.

In the event that the partitions of mservers are unable to restore communications,

the reformed subsets are converted to completely independent subgroups. Since all sub-

groups of mservers must have a unique name and multicast address, some method must

be used to automatically obtain these unique values. To obtain a unique name, each sub-

group appends a unique suffix to the original group name. This suffix value must be au-

tomatically derived by each partitioned subset of mservers independently, and with a

18

guaranteed unique value for all partitioned subsets. The most readily available attribute

that all subsets can use to obtain a guaranteed unique name is the original group identity

(gid) of a significant mserver remaining in each partition. The lowest mserver gid of the

mservers remaining in each partition is appended to the original group name. In this

manner, all partitioned subgroups are guaranteed a unique group name. However, all

partitioned subgroups are still easily identifiable as subsets of the original group, which

simplifies the task of manually re-configuring the physical hierarchy when the network is

repaired. Once a unique name is obtained, traffic on the same multicast address can be

easily filtered by the individual subgroups.

This chapter focused on the MS protocol and its various aspects. The next chapter

describes the implementation of two major MS components mcaster and mserver and

how some of the features of the MS protocol were embedded into the latter.

19

20

IV. IMPLEMENTATION

This chapter describes the actual implementation of some parts of the MS proto-

col. As mentioned in the two previous chapters, the MS uses multicast to send and re-

ceive group messages. Since IP multicasting [30] may not be available at all LANs

participating in the MS, there is a need for a multicast emulator that enables running the

MS protocol over unicast-capable as well as multicast-capable networks and hosts. So the

first step was the implementation of this multicast emulator, refered to hereafter as mcas-

ter. The next step is to implement an mserver capable at least of creating and maintain-

ing an mserver group to be used as a mserver group, handling monitoring and some basic

change requests. This is expected to enable the implemented) to start working on an ap-

plication interface and create initial test applications. Mcaster and mserver programs are

described next.

The terms "unicast-capable" and "multicast-capable" state the capability of a host

or LAN to propagate group messages by sending them point-to-point or multicasting

them respectively. The acronyms "uc" and "mc" will be used here.

A. MULTICAST EMULATOR (MCASTER)

1. Algorithm Design

IP multicasting requires that the IP multicast Extensions (1.2 Release) as speci-

fied in [30] are installed. Without these extensions, the MS cannot use multicasting to

propagate messages to specified groups. Mcaster is an underlying program that enables

the MS to virtually use the properties of multicasting in a uc environment with minimum

overhead. If all LANs in which the MS runs are mc, the mcaster is not needed.

Mcaster must be able to listen to all multicast messages in the network and decide

according to membership of groups which of them to propagate through the unicast chan-

nels. To achieve this, mcaster must be a member of all the mserver groups created. Since

some members of an mserver group may have multicast capability while others may not,

mcaster must maintain links for both unicast and multicast LANs. The administrator

21

must foresee if there is any possibility of a mc host to become a member of the mserver

group and place the mcaster process on the LAN that supports multicasting. This is an

easy decision since one mserver will run per LAN. A typical scenario that includes both

types of LANs is presented in Figure 6. If on the other hand, there are no mc LANs in-

volved, mcaster must be able to run, simulating fully the multicast capability by repeti-

tive unicast message transmissions. This is the first restriction that comes with the use of

mcaster. The second comes with the use of extended header that messages, propagated

through mcaster, have. As described by Neely [29], this is essential so that the final re-

ceiver of the message can extract the information about the original sender. Each time an

mserver receives a message with a sender's address the same as the matter's (which is

known to all mservers), it tries to extract an extended header from it. This fact prohibits

the MS from using the host that mcaster is running on, as the host that will run the mserv-

er routine for the LAN that it belongs to.

multicast LAN (CQ

Jl Jl 4L 4L T 'JJ-"\ r1-1-^ P-L-N. ,J-L^

^multicast sockets with
class D address port(s)

MI

unicast sockets
unicast LAN (ECE)

Figure 6: Typical mcaster communication diagram

Figure 7 describes the algorithm for mcaster, demonstrating its capability of de-

tecting the type of LAN it runs on. In case of multicast LAN, it initializes a second socket

to be used for multicasting to mc members. There are two types of messages that arrive at

mcaster. those that are going for other members of the group, and those that are for the

mcaster specifically. These messages can be either a JOIN_GROUP or a

22

LEAVEGROUP and must be transmitted from any mserver that needs to join or leave a

group. These two messages simply register and de-register the mserver with the mcaster.

A JOINGROUP must be sent before an mserver sends any messages to the mservers in

the group. These messages are the third restriction of using mcaster, and are essential for

the mcaster to be able to maintain its local group lists and memberships for these groups.

In summary, the restrictions placed by the use of mcaster in the MS are:

1. Multicast is simulated at on uc LANs by repetitive unicast transmissions by
mcaster. Therefore, mservers running on unicast LANs must have a unicast
socket to listen to "multicast" group messages.

2. Since every message delivered by IGMP carries the address of the host that
sent it, every message propagated by mcaster, has mcaster's address. To be
able to identify the original sender an additional header must be put on the
message containing the address. This is done by mcaster. Receivers must
identify if the message comes from mcaster, to extract this additional
header.

3. Each member of the group must register itself into mcaster's internal list of
groups. This is essential for the operation of mcaster. Therefore, each new
member must join mcaster's internal group, before attempting to join the
real mserver group. Leaving the mcaster's internal group after leaving the
real mserver group is not essential, unless the same host is going to be used
for a new copy of an mserver.

Every mserver that needs to join or create a group, sends initially a

JOINGROUP to mcaster. Lines 9 through 17 show how this message is used by mcaster

to maintain updated group lists. If the group needs to be created, mcaster does so, and

then if it runs on a mc LAN, it actually joins IP multicast group specified by the class D

address, even if the original sender is a uc mserver. This reserves the class D address

group in the mc LAN for future mc mservers.

Line 25 is the most vital to mcaster's functionality. It is shown here as a call to a

function, mcast. If a message is not sent for the mcaster specifically (i.e. JOINGROUP

or LEAVE_GROUP) then it is propagated to the group it was sent for. Figure 8 shows the

algorithm for function mcast. Mcaster extracts the group information from the message

header, uses this information to locate the group in its own internal list, then adds the

23

additional header that will enable the final receiver to extract the sender's information.

Finally, it sends out zero or more messages, according to the logic shown in Figure 8, so

that the message will reach every member ofthat group.

l.r MCASTER'/

5. use mc socket for multicast ccwnuricafion
6. else
7. mc socket is not used
8. for every message
9. ifmsg_type = JOIN_GROUP

10. if group exists
11- join member to group
12. else
13- create group
14- join member to group
15- ifmcasteronamcLAN
16- johmcasferto group
17. send reply to sender
18. else if msgjype = LEAVE.GROUP
19. if group exists and member of this group
2°- delete member from group
21 ■ if group becomes empty
~22- detetegroup
23- measterleaves class D address port
rr ebe /* must send message to members*/
23- mcast message to group members
26.endfor

Figure 7: Algorithm for Multicast Emulator (mcaster)

A group may have both uc and mc members. Also, the sender can be either uc or

mc. Since mc member communication is taken care of in the IP mulitcast level, if the

sender is mc, there is no need for mcaster to reroute the message to the same class D ad-

dress (address of a multicast group). That is why after line 15 in Figure 8 there is no if

statement for the mc members. For the same reason, if the sender is uc, and one member

is found to be mc, then mcflag ensures that only one message will be transmitted to this

class D address. For all uc members in a group, a per member peer-to-peer transmission

of the message must be used, so that the message arrives at all of them, as shown in lines
13 and 17.

24

1.r function MCAST 7
2. mcast (msg, sender)
3. extract sender and gjoup rfo from msg
4. form extended header
5. if group does not exist ii ist
6. exit
7. for each member h the ist maintained by mcaster
8. if sender is uc
9. if this is mc member and mcflag = 0

10. send msg to class D address for this mc member
11. setmc8ag=1 f no need to re send msg tome socket 7
12. else if this is uc member
13. send msg to uc member r through uc socket*/
14. go to next member in ist
15. else if sender is mc
16. if this is uc member
17. send msg to uc member /* through uc socket 7
18. go to next member in ist

Figure 8: Algorithm for the Message Propagation Function mcast.

2. Code Description

The mcaster code is very important for future work since the way it creates, main-

tains and updates internal state for the mserver groups is the same that will be used from

Mis to maintain information about the application groups. In Figure 9 the initialization

part of code for the mcaster is shown.
1. /* test_addr willbe used for testing the meport */
2. test_addr.s_addr - DxelOfOfOf;
3. / * Initialize sockets */
4. ms - init_socket [Ssin. MS_PORT); /* unicast socket */
5. print_sock_info (ms, sin);
6. mc - init_socket(&mcsin, MC_PORT), /* multicast socket */
7. / * join a class D address to test mc capability */
B. reply - join_mc_grp (mc, tsst_addr);
9. if (reply - - JOIN_ACK] {

10. Ian - 1;

11. print_sock_info (mc, mesin).
12. Ieave_mc_grp (mc, test_addr);

13. }

Figure 9: Initialization Code for Mcaster

In line 4 the unicast socket is initialized. To initialize a socket for multicast com-

munication, mcaster must run on an mc host. To test if the host it runs is mc, it picks an

arbitrary class D address in line 2 and tries to join a mc group for this address in line 8. If

it succeeds, then flag variable Ian is set to 1 in line 10 and mcaster leaves the class D ad-

dress group in line 12.

25

After initialization of mcaster is finished, it starts listening to the port(s) for possi-

ble messages. Figure 10 shows the loop of waiting, receiving and processing messages of

mcaster. Whenever it receives a message in line 2, it extracts the message type in line 3

and goes to appropriate actions according to line 4 switch statement. The first two cases

are the mcaster specific types of messages and are used to inform the mcaster about a

change in the group. This way mcaster keeps its lists updated. These two cases are ex-

plained later.

The default case is executed whenever an ordinary message is trying to propagate

to the group. Mcaster calls function mcast to retransmit the message as explained earlier

in the algorithm section.
f or (;; H / * wait for incoming messages */

2 if (tsent - receive_msg (ms, mc, &ws. &m. Sfrom, recv_timaout)) > 0] {

3. message_type - ntohs[m->msg_type); /- check ^ of received message */
4 switch (message_type) {
5- case J0IN_GR0UP.
6-
7 case LEAVE_GR0UP:
8-
9- default:

1 n
/* if sender is mc do not mcast tome members */

11- all - ws ? 0 : 1;
12 mcast (ms. mc.m. from, all);
13)/* switch*/)/*if*/)/*for*/

Figure 10: Main Waiting Loop of Mcaster

The operation of mcast function depends on whether mcaster runs on a mc LAN

or not and whether there are both types (mc and uc) of members in the specified by the

message group or not. When propagation of a message is finished, control is returned to

main loop and mcaster waits for the next message to process.

a. Internal Group Lists

As mentioned above, mcaster keeps an internal list of mserver groups and

lists of members for each group. These lists can change dynamically and are kept as

linked lists. Figure ll shows two structures defined in "msutil.h" header file, that are

26

used as elements for the group linked list and for the members' linked list. A graphical re-

presentation of these lists can be found in Chapter VI of [29].
1./* element in list of members */

2. struct member {

3. struct in_addr addr;
4' "-char lan; /'*Ian - [O itmember on a unicast. 1 ifon a multicast Ian] */
5. u_char loop;

6. struct member "next;

7):

B. / * element in list of groups */

9. struct group {

m char nametMAXGROUPNAMEl; /* name of the group'/
11. struct in_addr grp_addr; /* classDgrp address*/
12. struct group *nextr,

13. struct member "members; /* first member */

14. struct member »last, /'lastmember */
15.):

Figure 11: Structure Definitions for Members' and Groups' Internal Lists of Mcaster

A whole series of function calls was implemented to support proper

searching, adding and deleting members and groups from these lists. All these functions

are inlcuded in the "mcaster.c" file, with a comprehensive description of their arguments

and functionality.

b. Mcaster Specific Messages

As mentioned before, two messages that are specifically for the mcaster

are: JOIN_GROUP and LEAVE_GROUP. Both of them have the standard message for-

mat used throughout the MS code, with the latter carrying an empty data section.

JOINJjROUP, in its data section, has a copy of a short integer, showing whether the

sender of the message is mc or uc (as described in Figure 11 line 4). This is essential so

that mcaster maintains a complete image of each member. Also, function mcast uses this

field to avoid sending out unnecessary messages.

Mcaster replies to the above messages according to its internal state. Fig-

ure 12 summarizes the definitions of these types of messages as they are found in "msu-

til.h" header file.

27

Each of these messages, exchanged between mservers, who try to change

their membership to mserver groups and mcaster, does not use the extended header for-

mat. To receive such messages, function receivejnsg is used. All other messages, when

received by mservers, have the possibility that they were propagated through mcaster. In

such a case the message has an extended header and the receiver must check the sender's

address. If it is the same as the mcaster's, it extracts from the extended header the address

of the original sender. The function that makes such a discrimination is recvmessg. Both

these receiving functions along with basic forming and sending message functions have

their definitions in ,,msutil.h,' header file and the code in the "msutil.c" utility file. An

outline of these functions follows in the next section.
7- / * mcaster related message types */

2. #define J0INJ3R0UP 120 / * request to join a group list kept by mcaster V

3. «define LEAVE.GROUP 121 /* request to leave a group list kept by mcaster */

4. »define JOIN_ACK 130 /* master positive reply to JOIN GROUP */

5. #define DUP.MEMBER 131 /* mcaster negative reply to JOIN_GROUP; memberfound in list V

6. #def,ne NEG_JOIN 132 /* mcaster negative reply to JOIN.GROUP; problem with port V

7. «define LEAVE_ACK 140 /* mcaster positive reply to LEAVE_GROUP */

S «define N0J3R0UP 141 /* mcsater could not loacte the group in its list V
3. «define NO.MEMBER 142 /* mcaster could not locate the member in the group's list V

10. «define NEG_LEAVE 143 /<• master negative reply to LEAVE_GROUP V

7 7.#defineGROUP_EXISTS 150 /* mcasterfound the group requested in its list V

Figure 12: Definitions for Mcaster's Related Types of Message.

B. BASIC MESSAGE FUNCTIONS

1. Function ReceiveMsg

Function receive msg receives a message from the buffer of a port and stores it

into a variable. Since the multicast emulator and membership server (mserver) have at

most two sockets, one each for unicast and multicast, the first attribute of function re-

ceive msg is to be able to listen to both and receive from either of them whenever a mes-

sage appears. Information about who sent the message and, of course, the message itself

must be returned. Figure 13 lists the heart of the code for function receivemsg that actu-

ally monitors two ports for any incoming message and then uses the library function

recvfrom to receive it.

28

1. int receive_msg (ms, mc, w, msg, frm, timeout)
S. . . .

3. FD_ZERO [Sfdread]; / * Initialize for reception from multiple sockets */
4. FD_SET (ms, Sfdread); /* Unicast socket */

5. if (mc >- 0) FD_SET (mc, Sfdread); / * Multicast socket */

6. if ((ready - select (32, Sfdread, 0, 0, Stimeout)) < 0) { / * Wait until either socket is ready ■>/
7. perror ("Select error\n"); return-1;)
B. if (ready) {

9. if (FDJSSET (ms, Sfdread)) { /'Unicast socket receives */
10. *w - 0;
11- if ((sent - recvfrom (ms, buf. MAXMSGLEN, 0, frm, Slen)) < 0) {
1S- perror ("Error in UC message received\n");return -1;J
13.] else

14. if (mc >- 0)
15 'f (FDJSSET (mc, Sfdread)) { / * Multicast socket receives */
16. *w-1;
17 if ((sent - recvfrom (mc, buf, MAXMSGLEN, 0, frm, Slen)) < 0) {
1B- perror ("Error in MC message received\n"J; return-1;}
19.) ...

Figure 13: Function receive msg Receives Messages from Two Sockets.

The first two arguments are the two socket numbers. If the calling program needs

only one socket to read, it can set the second, mc, to -1. In line 5 this disables the second

socket. Argument w returns 0 or 1 in correspondence with the socket that the message

was read from. Argument msg returns a pointer to the message and argument frm a point-

er to sender's address structure. Finally, the calling program defines a period of time dur-

ing which a message maybe received using timeout. After time period expires and no

messages received, receivemsg returns a NULL pointer. This makes the function non-

blocking and gives the calling program the opportunity to regain control and decide what

to do next even if no messages were received. Normally, the function is called with a

small timeout, like one second, because messages are stacked in the ports, so that usually

when the socket is read, the message is already there. Receive msg is a blocking function

and will wait for a message if the buffer of the port is empty until the timeout expires.

2. Function RecvMessg

This function is similar to receive msg, except it checks the sender's address

against mcaster's. When a message is propagated through the mcaster, it arrives at the

destination with an extended header, including the address of the original sender. If the

29

receiver calls receive msg to read these messages, it will return with mcaster's address as

the sender's address, since the C library functions [31] read what IGMP puts as a sender

(and it is always the real sender - mcaster in this case).

Function recvjnessg, shown in Figure 14, solves this problem by comparing

mcaster's address with sender's address and if the same, reads the extended header of the

message and replaces the sender's address with the one in the header. It is obvious that

this function cannot be used with messages listed in Figure 12. These messages are used

to communicate between mcaster and mservers and do not contain an extended message

header. The extended message header and its description can be found in [29, pages 102 -

103, Figure 53]. Function mcast of mcaster constructs and puts the extension to the mes-

sage just before retransmitting it.

1. int recv_messg [ms. mc, w, mcstr, messg, from, timeout)
S. I ...

3. int len - sizeof[structsockaddr_in);
4.

5. / - check if sender is mcaster and if so. extract the original sender's address */

Ä ,f ((from->sin_addr).s_addr - - mcstr.s_addr) { /- message came from mcaster V
y bzero ([char *)from, len);

« bcopy (messgbuf, (char *)from. len); /- copy originalsender's address to 'from" V
* mp - messgbuf ♦ len; /. SBtptr tQ beginnj ofm e v

'" } else /-» ,
/ message not from mcaster */

1 '■ mp - messgbuf;
IS. ... }

Figure 14: Function recvjnessg Extracts Sender's Address from Extended Message.

Recv messg works as follows: it checks the sender's address against mcaster's,

which is passed as an argument, and if they match, it replaces the sender's address with

the one that it finds in the first len bytes of the message (where the extended header is

supposed to be). Since it uses the low level bcopy standard C function, if used to receive

mcaster generated (not propagated) messages, it may lead to unexpected results, without

necessarily showing an error like "core dumped".

3. Function FormMessg

This is a relatively simple function. It takes as arguments all the components of a

regular message, as described in [29, Chapter IV, Section B] and shown in F.gure 15 and

30

returns a pointer to a message structure. There is a deviation from the original message

format: after the groupname field there is another field of type in_addr to hold the class

D group address the message is going to. This was considered necessary as the tuple

{groupname, group_address} defines a multicast group completely.

checksum
groupname

group address
authentication

groupview

"»g frl*

»nder_gd

subject addr
subject gid

subject rank
exclude fist

exel list len

data len
subject fat

subj fist len

data

•"data sung'

struct message { /* to build and receive messages */
ushort vers;
hit checksum;

char group_name[MAXGROUPNAME];
struct m_addr grp_addr;
u_short groupview;
long authentication;
u_short sendergid;
ushort msg_type;
u_short subject_gid;
struct gidenrry "eidude list;
ushort exclfistjen;
struct gid_entry "subjectjist-,
u_short subjKstJen;
char 'data;
hit data Jen;

>;

Figure 15: MS General Message Format and the Corresponding Data Structure

Pointers to exclude list, subject list and data along with the length of each field

are also passed as arguments, so that the correct number of bytes is copied from each

one. Finally, function makechksum is called to evaluate the checksum field just before it

is entered to the message structure. At this time, makechksum is a dummy function, al-

ways returning a constant number.

4. Function SendMessg

Function sendmessg sends a message through a specified socket to the specified

address. Its code was originally written by Neely [29] and was slightly modified to meet

the changes described above. It copies the message, the exclude list, the subject list and

the data to sequential bytes of a buffer and then calls the library function sendto to send

that buffer to the socket port. The socket can be either a uc or an mc. The IP multicast

extensions, described in [30], overload the library function sendto, making no difference

wether the socket is uc or mc.

31

C. MEMBERSHIP SERVER (MSERVER)

1. Algorithm Design

The basic module in the MS is mserver. Each mserver process controls a whole

LAN or subset of hosts on a LAN. Mservers join into mserver groups, monitoring each

other and exchanging messages. Depending on the type of the LAN they run on, they use

the multicast capability, or try to send messages to the group by a single transmission, us-

ing the multicast emulator, mcaster. Messages can be msm^-group specific or just re-

ceived from the applications' Membership Interface processes, Mis.

Figure 16 shows the basic communication diagram of mservers through IP multi-

casting or through mcaster. Two cases are demonstrated: on the left, the sender is mc, on

the right the sender is uc. The types and related names (as defined in "msutil.h" header

file) of the sockets used are also shown in this figure. To send and receive group mes-

sages, uc mservers rely on the mcaster. Monitoring messages are sent and received

through the designated umcast sockets. Finally, as described m the previous section, com-

munication between mserver and mcaster is done through the umcast socket. In all cases,

the format of the message is the same. Destination of a group message is defined by the

tuple {group_address, group_name}. The group address is always a class D address. Al-

though the group address is sufficient to specify a group, the group name is reserved for

future features such as multiplexing of groups with different names on a single address.

The algorithm for mserver consists mainly of three phases: the initialization phase, the

new member jom phase and the basic monitor and process message loop phase. The first

two phases are executed once, when mserver comes to life. Mserver spends the rest of its

life in a loop, monitoring its clockwise mserver in the mserver group (if it exists) and

processing any messages read from its socket(s).

32

mserver
r

□ multicast socket

O unicast socket

group message
unicast retransimission of group message
multicast retransmission of group message mserver
monitor message
mcaster specific message

Figure 16: Communication Among Mservers

Figure 17 outlines the algorithm for mserver. As stated in line 3, some command

line arguments are provided. A command line call to mserver looks like:

%> mserver grpaddr, grpname, mcasterIP

where grpaddr is the mserver group class D address selected by the system administra-

tor, grpname1 is a name for this group and mcasterIP is the IP address of the host on

which the multicast emulator runs, provided in dot notation [31]. Next, sockets are ini-

tialized and finally mserver sends a message of type JOIN_GROUP to mcaster, whose

address is known from the command line argument. The message to mcaster informs it

about the mserver's intention to join a group. If no reply is received, mserver assumes that

there is no mcaster available on that address. If mserver runs on a multicast LAN it as-

sumes that the system administrator plans to create a group of mc mservers only and con-

tinues normally. If it runs on a uc LAN, then without mcaster the MS exits, as it needs

some form of multicasting. It also exits if a reply received from the mcaster, is other than

of type JOINACK, implying there is some kind of a problem.

1 Up to 32 characters long or as specified by variableMAXGROUPNAME, global defined in "msutilh"
header file. Grpname must be enclosed in double quotes if it contains special characters like '&' or space(s).

33

1.TMSERVER7
2. f Initialization phase V
3. Read command ine arguments
4. Iritiaize sockets)
5. sendjnsg (JOIN_GROUP, mcaster)
6. wait reply for a timeout rrterval
7.ifnoreplyisreceived /"mcaster is assumednotto be present'/
8. if mserver runs on a uc LAN

10 else eA rmmcas^3ndmlPmultkas6rig;protocdcannotgoon*/

13. exit
14./* New member join */
15.johjgroup /»creates the group, if it does not exist*/
16. /"basic monitor and process message loop V
17. resetjimer (monitor)
18. do loop

19. try to receive any msg from sockets) in fime period t_recv
20. if no msgs received
21. update internal state
22. if 1imer(monitor) expred
23 if there is a clockwise member in core table
• ™P=«*abfe.W<(QUERY,REPLY,cw_member,T R QUERY)
<s>- if no reply received
26 add cw member to fail list
~ ifreply=QUERY r someone tries to monitor me V
28 goto 31;
2s- reset_thner (monitor)
30. else if a msg was received
31. ifmsg = QUERY
32- send REPLY to sender
33. else

•^ process_msg (msg, sender)
35. end loop

Figure 17: Algorithm for Mserver

If everything goes normally in the initialization phase, mserver in lines 9 and 10

tries to join the mserver group, as specified by its command line arguments grpaddr and

grpname. If it succeeds, it enters the mam loop, where three basic operations are ex-

ecuted: 1) receive and process messages, 2) monitor and 3) update of the internal state.

Processing messages is done in function process^msg described later. To make the loop

faster, monitoring takes place only when no messages are heard from the other members.

If the mserver group is busy sending change messages, then one of the change protocols

will discover the failures, if any. Thus, additional monitoring is not required.

The procedure of a new member joining a group as well as function reliable link

are explained in the next subsections. A description of the internal state of the mserver,

part of which is the fail'list, is given in the next section.

34

a. New Member Joins Group

The procedure of joining the group is described in Figure 18. The logic is

simple: it tries to communicate with the other members of the mserver group, sending a

request for join. As given in the protocol description [29], normally the group will pro-

cess the change through a 2-phase protocol, resulting in the second phase of the multicast

of a COMMIT message. This message is received by the new member also. The proce-

dure of sending a message, waiting for a specific reply for a certain time and retrying all

over again in case of wrong or no reply, is done by the function reliable Jink, discussed

later.

After certain retries, reliable Jink returns the message (if any) it read. The

new member's actions depend on this answer, as described in lines 5 through 13. If no an-

swer was received, in line 5 mserver assumes there is no group yet and initializes its own

internal state in line 6. The internal state now contains the new group with the mserver as

the only member.

2. lime = T_M_JCNN_REQ; /• sef timeout variable 7
3. do loop
4. answer=refablejnk (M_JOIN_REQ, COMMIT, gronj, «me)
5. if no answer was received f mserver is alone in this group'/
6. WBaize internal state
7. exit
8. else if answer = COMMIT
9. ipdate internal state

10. exit
11- etee /"answer was not the expected COMMIT'/
12. fime=1ime*6; /"group members are busy; increase wa^ time by 6 (arbitrary)'/
13. end loop

Figure 18: New Member Join Algorithm

If a COMMIT answer is received, then in line 9 the new mserver updates

its internal state according to the contents of the COMMIT message. This message is

transmitted by the group coordinator of the join change and contains the internal state up-

dated to include the new member. The new member just copies this internal state to its

own.

There is also the possibility that the new mserver receives as an answer a

message other than COMMIT. In this case the group exists but probably other higher

35

priority changes are being executed. If this is the case, the new mserver goes back to line

3 for a new round of reliable communication, but decides to wait a little longer than its

previous attempt, as indicated in line 12.

b. Function ReliableJLink

This function is used to communicate by the sender that calls the function, with

the specified receiver (or group) through a series of retries and timeouts to ensure reliable

connection. The combination of sending a message to a specific member or group, wait-

ing for a specific reply for a certain period of time and then trying all over again, up to

specific number of retries, results in function reliable Jink. Its algorithm is shown in Fig-

ure 19. It needs the message to be sent, the expected reply, the recipient and amount of

time to wait for the reply (the number and specifications of arguments passed to the real

function must not be misunderstood with the simplified explanation given here at algo-

rithm level). The effect of this function is to make the sender attempt to establish a reli-

able connection or link with the receiver (member or group).

As shown in Figure 19, a message is received in line 6 using recvjnessg.

If it does not match the expected message type, it tries to receive a new message until

timeout expires as controlled by line 5. Then it sends the original message again and re-

sets the timer. The whole schema is repeated max retries times. If at any time the ex-

pected message is received, the function returns with the reply at line 8. After the retries

are exhausted, it returns with the last message read, at line 11. The return message can be

null indicating no messages were received at all.

Unexpected messages are ignored while in the timeout loop. When time-

out expires if an unexpected message is the last received, the function retries again by re-

setting the timer. This is repeated maxrethes times. When last timeout expires and still

the expected message is the not received, the last message received is returned. The cal-

ler has to check if this was the answer that it expected. If no message was received, a

NULL message may be returned.

36

1. refebfejWr(outmsg, expectedjnsg, recpient, timeout)

2. max_retries = MAX_RETRlES, reines = 0
3. whie retries != maxjetries
4. serai rnsg to recpient
5. whie timeout has not expired

6- reply = recv_messgO
7- if reply = expectedjnsg
8- return reply
9- reset timeout

10. retries = retries+ 1
11. retumreply

Figure 19: Algorithm for Function Reliable Jink

2. Internal State

Each mserver must keep internal information about its mserver group and real

state of itself and other members. This internal state must be kept updated to reflect the

most recent changes. The internal state of an mserver, at this level of implementation,

can be described as the core table, the fail list and the view. These components are de-

scribed here.

a. Core Table

Core table is an array of structures as shown in Figure 20. Under normal

conditions, each member has the same copy of information in its own table. Each mem-

ber is assigned a rank when joining and its information lies at the same line of the table.

It may seem that cw and ccw fields are redundant, but they are useful during the process-

ing of one or more changes, where ranks and the table itself are not updated yet.
1. struct table_entry { /* member's entry in set table */

S. ujong addr; /* IP address of member */

3. u_short rank; /'rank (or gid) of member */

4. u_short cw; /* gid of clockwise member (to "left") */

5. u_short ccw; /* gid of counterclockwise member */

6. u_char flag; /* status flag for each member'/
7).
8.

9. struct table_entry cs_tbl [MAXTBLSIZE];
10

Figure 20: Core Table Structure and Definition

b. View

View is an integer kept by each member of the group internally. When the

group is idling with no changes being processed, view is the same in every mserver

37

participating the group.View is incremented by one for every new change at the end of

the change (commit phase). In this way, every change is marked uniquely by a number

and can be identified with that number. View is used to put changes in sequence, give

them priority or simply discard them because they came out of order, according to the

state of the group and the members themselves. In normal conditions, view must be the

same in every member of the mserver group.

3. Processing Messages - Function ProcessJMsg

This function is used to process any message according to the state of the caller

and the type of the message. In mserver's main loop of operation, the incoming messages

get processed by process jnsg. This function actually implements both the two-phase and

the three-phase protocols. Moreover, it can be called recursively to handle more than one

change in the order specified by the priority and the phase of each change. Figure 21

shows a simplified algorithm of process jnsg.

The function is divided into two parts: The part that is executed by the coordina-

tor and the part that is executed by all other members. In phase I, the coordinator sends

the AGREE message through a reliable link similar to that provided by function re-

liablejmk. The new function, reljnlmk, establishes reliable links with all members in a

group. Then, a reply is expected by everybody. If a group member does not reply after

reljnlmk returns, it places the non-responding member(s) on the fail list to be processed
later

When AGREE is sent out by the coordinator, process jnsg gets activated in the

non-coordinators, resulting in their sending back the AGREE_ACK. The coordinator col-

lects all acks and begins phase U by sending the COMMIT message. This gets received

by the non-coordinators in line 20, committing the change in line 22. A timer is set at the

non-coordinators from phase I to phase II, to trap a possible failure of the coordinator. If

this is the case, lines 15 through 19 describe the actions of the detector of the failure,

while lines 24 through 28 describe the actions of the rest of the members in response.

38

1. process_msg (msg)
2. select coordnator
3. ifcoordhator
4. /* phase IV
5. rel_mink (AGREE, AGREE_ACK, group)
6. /'phase IIV
7. send COMMIT
8. update internal state

.j}- ebe /* noTHXxxtiinatorV
10. check ifAGREE is for same change and drop if so
11. sendAGREE_ACK
12. setlimerforCOMMrr
13. do loop

14. iftimerexpred /•currentcoordinator assumd to have fäledV
]"■ send CO_FAIL to group f process coordinator's failure V
16- send and receive status of members
17- elect new coordhator
18- prDcess_ms0(msg)
19 exit
20. try to receive any message
21. ifmsg = COMMIT
22- update htemal state to reflect change
23. exit
24. ifmsg = CO_FAIL
25. send and receive status of members
26- elect new coordhator
^ process_msg(msg)
28. exit
29. end loop

Figure 21: Algorithm for Function "process jnsg"

While this algorithm is simplified to hide the specific details of each different

change processed, it gives an idea on the implementation of the protocols. Lines 18 and

27 show how recursion is used, so that any number of subsequent changes (like coordina-

tors failing one after the other) get handled. The number of changes are limited only by

the system's available memory, since any new recursive call reserves new space for all

variables used. More detailed description is given at the code description section.

4. Code Description

a. Initialization

As in mcaster, it is vital to mserver to learn in its initialization phase if it

runs on a host with multicast capability. The technique used in mcaster applied here also.

After initializing the uc socket in line 2 of Figure 22, it tries to join an IGMP group on the

class D address provided by the command line arguments as shown in lines 4 to 10. If

this fails, no multicast is available and it is replaced by the mcaster in lines 12 to 16. As

shown in Figure 16, one unicast socket is devoted to monitoring. The other socket is

39

either multicast (multicasting is done in IP multicast extension layer) or unicast

(multicasting is simulated by mcaster), according to the capability of the host mserver

runs onto.

1. / * INITIALIZA TION PHASE */

2 uc - init_socket (Sucsin, PORT_UC); /* Initialize unicast socket */

3. /* Join multicast IGMP group; ifit cannot, then host is not MC capable */

4. mc - init.socket (Smcsin, MC_PORT); /'Initialize multicast socket V
5. reply - join_mc_grp (mc, grpaddr);
6. if [reply - - JOIN_ACK) {

7. setsockopt (mc, IPPROTOJP, IP_MULTICAST_LOOP, Sloop, sizeof (loop]]
8. Ian - 1;

S mcaddr • grpaddr;

10. mcport - MC_PORT;
11. }

12. else {

13. Ian - 0;

14. mcaddr - mcaster, / . mcastgr rgp/acgs mc /m v

15 mc - init_socket (Smcsin, MS_P0RTJ;

16. mcport ■ MS_P0RT; /* dirBct mc port to mcaster's V
17. }

Figure 22: Code for Initializing Sockets of Mserver

b. New Member Join Procedure

After initializing the sockets and updating the internal list of mcaster (as

described in Figure 17), mserver is about to send its first message to its mserver group.

Figure 23 shows the code for joining the group. The communication with the group is

done through a reliable link. New member is waiting for only one specific answer, a

COMMIT message and uses reliable Jink to send out its request and intercept the

answer.

One common problem when a new member tries to join the mserver group

is that the mserver group may be busy processing some other mserver group change of

higher priority. If the network is slow (or a member is slow), then the current change may

take some time to finish. Since this time is unpredictable, the solution of increasing the

timeout time of the new member in line 3 does not cover all possible scenarios. A more

intelligent code was implemented. The big loop between lines 9 and 34, suggests that the

reliable link communication is tried two more times (making it a total of three, with the

40

one of line 8). In between, any intercepted message is examined for its origin. If it comes

from the mserver group, this means that the group is alive. Then the new member goes

for another round, with a little longer waiting time, as suggested in line 32. This makes

the new member more patient. On the other hand if no messages are heard from the

mserver group, then as desceribed in lines 11 through 18, the new member creates its

own group and initializes its internal state. It then exits the new member join procedure.
1. / * NEW MEMBER JOIN PROCEDURE */

2. max_retries - 3; /* initialize retries and timeout */

3. tout - T_M_JOIN_REQ;

4. /* form M_JOIN_REQ message and socket address */

5. form_messg (Smsg, grpname, grpaddr, 0. 0,0. M_JOIN_REQ. 0. NULL, 0, NULL, 0, NULL, 0);

6. to.sin_family - AFJNET;

7. to.sin_port - mcport; to.sin_addr - mcaddr; /* eithermcormcaster */

B. mptr - reliablejink(Smsg, to, uc, mc, COMMIT, max_retries, tout, mcaster, Sfl;

9. for (i - 0; i < max_retries - 1; i + +) {

TO- / * no msgs received at all, or no group msgs were listened */

11. if (Imptr j | (mptr && (mptr->grp_addr).s_addr ! - grpaddr.s_addr
2 && strcmp (mptr->group_name, grpname))] {

13 myrank - 0; myrow - D; /* assign rank O to itself V
14 bzero [(char *)cs_tbl, tblen);/* put in core table itself */
15- cs_tbl[0].addr - myaddr.s_addr;
16 cs_tbl[0].rank - O; cs_tbl[0].cw - 0;
17 cs_tbl[0].ccw - 0; cs_tbl[0].flag - 1;
18. break;

19. }
20 else { / * some msg was received */

21 if'!fH /* it was the expected COMMIT */
22 / * extract core table from commit msg */
33 extract_init_state (mptr, &who, &n_req, cs_tbl);

24 myrank - mptr->subject_gid; /* find my rank and row of table I exist */
25 for(i - 0;i<MAXTBLSIZE;i + +)
26 if (cs_tbl[i].addr - - myaddr.s_addr)
2?- myrow - i;

28 viBW " mptr->group_viBw; /'adjust my view to change's view V
29. break;

30. }

31. else {

32 tout * - 6; /* wait a little longer */

33 mPtr " reliablejink (Smsg. to. uc, mc, COMMIT, max_retnes. tout, mcaster Sf)
34-)]/'8/s»V)/%'/

Figure 23: Code for New Member Join Procedure

Of course, if at any time the long awaited message of type COMMIT com-

es in, the new member is accepted into the group. The COMMIT message carries the

41

internal state of the coordinator updated to include the new member. Then the new mem-

ber extracts this internal state and copies it to its own. Thus the new member is fully syn-

chronized with the rest of the mserver group members.

c. Monitoring - Processing Messages

After an mserver becomes a member of an mserver group, the rest of its

code is a loop, doing two major tasks: Monitor its clockwise member and process any in-

coming messages. Figure 24 shows this portion of the code. The loop starts in line 2 and

ends in line 40. In line 4 mserver tries to read a message from the socket port. In lines 5

through 12 mserver processes any failed members recorded in the fail list. Monitoring is

done in lines 13 through 28. There is an associated timer and when it expires, the mem-

ber tries to monitor its clockwise member. Monitoring is not performed only when there

is only one member in the group: There is no need for an mserver to look after itself. This
is checked in line 14.

The incoming messages can be in one of three categories: 1) monitoring

messages, 2) group change messages, and 3) application messages. Monitoring messages

are part of the monitoring code. Group change messages are processed in the separate

function processjnsg. As shown in lines 35 and 37, application messages are also di-

rected to the processjnsg function which simply forwards them to the appropriate group.

There is also another important feature of the code in Figure 24: monitor-

ing is executed only when no messages arrive at the ports of the mserver. This is

achieved by inserting the monitor lines inside the while statement of line 4. If there are

messages, this means that group members are active sending messages to each other and

if there is any failure, it will be discovered through a reliable communication or a two-

phase protocol. Therefore, additional monitoring is not needed.

d. FunctionProcessMsg

This function is the heart of the MS protocol. It includes a complete im-

plementation of the two-phase protocol as well as the three-phase protocol to handle

regular changes Coins - failures) and coordinator's failures. A separate function called by

42

process msg (to avoid long sequential code and to enhance the recursion) is function

process_co Jail that handles the coordinator's failure. Both function declarations exist in

"message.h" header file and their definitions in "message.c" file.

1./* START MONITORING AND PROCESS OF INCOMING MSGS- '/
£.for(;;){ /'big loop*/

3. /' try to receive any msg and process it; otherwise do monitor */

4. while (recv_messg (uc, mc, &w, mcaster, Smptr, Sfrom, t) <- 0] {

5. while [failjistl { /'see if there are failed members '/
e form_messg (Smsg, grpname, grpaddr, 0. view, myrank. AGREE_L,
7 failJist»Q\A, NULL. 0, NULL. 0, NULL. 0]; /* form the AGREE_L msg '/

8- /* process the change (includes sending agree msg} */
9- from.sin_addr.s_addr - 0; /* deactivate from's address '/

10 process_msg[&msg,frorr\):

11- free f&msg);

12. }

13. if (timed_out (q.tout)] { /* see ifit:is time to txaauery */

14 if Imyank ! - cs_tbl[myrow].cw) { /* check if only one member in table */
15 form_messg (Smsg, grpname, grpaddr. 0, view, myrank, QUERY, 0. 0, 0, 0, 0, 0. 0);
16 to.sin_family - AFJNET; /* construct address of cw member '/
17 to.sin_port - htons (PORTJJC);

18 to.sin_addr.s_addr - tblsrh (cs_tbl, cs_tbl[myrow].cw, 0)->addr;
19- rnPtr " reliablejink (msg, to, uc, uc, REPLY, max_retries + myrank * 2,
20 T_R_QUERY, mcaster, &f);
21- free (&msg); / * free space reserved for query msg */
22 if (mPtr ? (mptr->msg_type - - QUERY): 0) / * sfie ifsomone is querying me '/
23. break;

if 'f' /'no REPL Y msg from cw member; fail it '/
25 add_gid_entry (S.fail_//st, cs_tbl[myrow] cw);

26 f r8e (mPtr'' / * free space allocated for reply msg '/
27.]

SB. set_timeout(&q_tout,T_QUERY); /* set query (monitor) timer '/
29.)

3D. }/* while*/

31. switch (mptr->msg_type) {

32. case QUERY:

33. / * reply to query '/

34. break;

35. default:

36. /* process the msg */

37. process_msg (mptr, from);

38.)/'switch'/

39. free (mptr);

40.}/'big loop '/

Figure 24: Code for the Mserver's Main Loop

43

The algorithm for process jnsg was presented in Figure 21. In that algo-

rithm, all changes were treated in the same way, i.e., there was only one AGREE mes-

sage for any kind of change. Each change has its own details that prohibit them from

being encoded the same way. For example, the COMMIT message for a join carries the

»server group table as its data, because the new member depends on this message to ex-

tract the table and synchronize with the rest of the group. The COMMIT message for a

fail does not have any data because the information for the failed member exists in the

other fields of the message which is received by all surviving members.

In the current level of implementation, there are three kinds of change

messages: a join, a fail (or leave) and a coordinator fail. Their initiate messages to start

the change protocol are AGREE_J, AGREEJL and CO_FAIL correspondingly. There is

only one AGREE_ACK to send as an acknowledgment for all of these types of initiate

messages. Also, there is only one COMMIT for all changes although it may carry differ-

ent data according to each case. To summarize the message descriptions (message fields

not described are filled out normally):

• AGREE_J is the message issued by the lowest in rank active member upon
reception of an M_JOIN_REQ group message as sent by a new member This
coordinator assigns a new rank to the new member, which copies to the
subjected field of the message. The address of the new member gets copied
to the data field and the datajen is adjusted. This message is sent out with the
current view number.

• AGREE_L is the message issued by any member detecting (or suspecting) the
iailure of another member. In this case, the detector is the coordinator So if
this message is originated from the mserver, this mserver is the coordinator If
the mserver received it, this mserver is a non-coordinator. No data is needed
for this message. This message is sent out with the current view number.

• CO_FAIL is the message sent originally by any member detecting (or
suspecting) the failure of the coordinator of the current change In the status
exchange phase that follows, each member sends a cojail to exchange its
status with the others. There is no data in this message but the data Jen field is
used to pass a 0 or 1 indicating that the status of the member sending the
message is either "finished change (commited)" or still "processing the
change" respectively.

44

• AGREE_ACK is the acknowledgment message sent at the end of phase I of
the two-phase protocol. No special syntax is needed and it is common for
every change. It is sent with the current view.

• COMMIT is the message sent always by the coordinator in the final phase of
the change protocol. Although the same msg type is used for all changes, there
are some differences according to each case. If the change is a Join, then the
current core-table of the coordinator (and of the group, since it is kept
consistently in every member) gets copied to the data field of the message. Of
course the data Jen field is adjusted properly. If the change is a Leave, there is
no need for any data. This message is always sent with a new view number
(the current incremented by one).

Figure 25 shows the difference between the messages needed for a. join

and a. fail change. In the first case, a two-phase protocol is initiated because an external

message (mjoinreq) gets received by the group. The decision for the coordinator is

made in all mservers of the group. In the second case, the detector of a change (fail) initi-

ates a two-phase protocol being itself a coordinator, which the other(s) accept.

P j? gWfti,. send commit fw/tehlpl Q 2 is coord.

iendagreej \wailforackf \ f send ack \waitfor commit f remove 1

1 / 0 is coord.

wait for agreeJ \ send ack I copy table ~f\ memeDer feik\

new I send mjoinreq ^ ^extract and
member

from table

■copy table 2 /2 is coord, wait for^ / remove 1
wait for commit found 1 failed ack send commit from table

send agree_l

Figure 25: The Two-phase Protocol Time-lines for a Join and a Fail.

If the phase of receiving the mjoinreq and deciding for the coordinator

is omitted, then the logic between the two changes is similar. Next, the code for process-

ing a Join is described pointing out the differences with the corresponding code for a

Fail.

e. Processing Join Requests

Function process msg has a "switch" as its first statement activating the

appropriate portion of code according to the message type (msg type field). As soon as

an mjoinreq is received by the group, all members execute the part of code shown in

45

Figure 26. The election of the coordinator is based on the rank. The lowest rank active

member gets elected. The function to elect the coordinator, elect coord, is also shown in

Figure 26. All mservers not elected as coordinator exit the case statement and return to

normal idling state. The elected coordinator continues and starts the two-phase protocol

by forming and broadcasting the AGREEJ message to the group. The non-coordinators

receive the message and process it. Figure 27(a) shows the code for the coordinator,

while Figure 27(b) shows the code for the non-coordinators.

1. case M_JOIN_REQ:

S. if (tblsrh [cs_tbl, 0, from.sin_addr.s_addr]) /* check if it is a duplicate */
3. break;

4. if (myrank ! - elect_coord (cs_tbl)) / * see if/ am coordinator: if not discard msg */
5. break:
6-

7. u_short elect_coord (tbl)

8. struct table_entry *tbl;

3.1
10. int i;

11. u_short lr - 65535;

12. for [i - 0; i < MAXTBLSIZE; i+ + J

13. if (tbl[i].addr)

14 if dr>tbl[i].rank&&tbl[i]flag) /* lowest rank active member in table is elected V
15- lr - tbl[i].rank;
16. return lr;
17.)

Figure 26: Receiving a New Mserver Request for Join and Electing Coordinator

It must be clear that a lot of error-checking code has been omitted here to

clarify the specific points of discussion. Also part of the code is slightly modified so that

it is presented in a more complete form.

The two-phase protocol code would work in all cases if we had a totally

fail-proof environment. Unfortunately, one or more mservers of the group may fail while

processing a change. If a non-coordinator member fails during phase I, then the coordina-

tor finds it out in line 7 of Figure 27(a). Since it is discovered by the end of phase I of the

current change, it is ensured that the failure of the member is of lower priority [28, 29].

The failed member is added to the failed list and processed later.

46

1./* COORDINATOR*/

2./ * find a new gid for new member */

3.nr - cs_tbl[myrow].ccw + 1;

4data - form_change_info (from.sin_addr.s_addr);

5form_messg (&msg, mptr->grciup_name, mptr->grp addr,
0, view, myrank, AGREE_J, nr. NULL, 0. NULL, 0, data,
sizeof tujong));

6./* send it to mserver group; phase I */

Zfailjist ■ rel_mlink (Smsg, group, uc, mc, AGREE ACK,
tries, csjbl. failjist, 3*SEC, mcasterj;

8/ * if acks received proceed to phase II */

Sfree (data); free (Smsg);

7Qadd_table_entry (cs_tbl, from.sin_addr.s_addr);

17.data - form_init_state (from.sin addr.s addr, 0 cs tbl
NULL.O); ~

12\en ' MAXTBLSIZE * sizeof (struct table_entry) + sizeof
tint) + sizeof [ujongl

7i3form_messg (&msg, mptr->group_name,
mptr->grp_addr, 0, + +view, myrank, COMMIT, nr, NULL
0, NULL, 0, data, len);

74send_messg [mc, Smsg, group);

75.free (data);

7Sfree (Smsg),

(a)

1./*NON-COORDINATOR */

Äcase AGREE_J:

3./* extract info about new member */

4extract_change_info [mptr. Smbr);

S./* ack the join */

fiform_messg (Smsg, mptr->group_name, mptr->grp_addr,
0, view, myrank, AGREE ACK, mptN>subject gid NULL 6
NULL, 0, NULL, 0);

Zfrom.sin_port - htons (PORT_UC);

fisend_messg (uc, Smsg, from);

9./* wait for commit */

10.\f (recv_messg (uc, mc, &w, mcaster, Sirmsq, Swho tr) >
0){

if trmsg>msg_type - - COMMIT &&

rmsg->group_view • - view + 1 &&

rmsg->subject_gid - « mptr->subject_gid) {

/* adjust view to last change */

view - rmsg->group_view;

/* extract new core table */

extract_init_state (rmsg, Smbr,

Snrq, cs_tbl);

break;/"exitcase */

}/* if commit */

11.

12

13.

14.

15.

16.

17.

18.

19.

2D.

21)/*if*/

(b)

Figure 27: Code for AGREE_J for the Coordinator and the Non-Coordinator.

/ Processing Coordinator's Failure

The coordinator can also fail during a change. First, the other members

must learn about the failure. This is done by timing out the waiting cycle for a commit

message. If the coordinator fails, then at least one non-coordinator member times out

while waiting for the commit and assumes that the coordinator failed. Then it forms and

sends out a co Jail message, which includes its status. Then it enters the process_co Jail

function which is decscribed in Figure 28. The other members may be in the same posi-

tion waiting for a commit or may have committed already (depending on how far into the

change protocol the original coordinator has gone). Upon receipt of the cojail message,

they also enter the process co Jail function.

In the function itself there are three sections. In the first section (lines 4

through 35), the exchange of cojail messages and collection of status for all members of

47

the group takes place. In the second (lines 37 through 46), a new coordinator is elected

and the members that did not reply are added to the fail list. The lowest rank member that

completed phase I of the original change (sending an ack) becomes the new coordinator.

The third section looks like an ordinary two-phase protocol, like the one for the join

shown in Figure 27. It is omitted from Figure 28 for compactness.

In the exchange of the status section, each member sends its status with

the broadcast of a cojail message as in line 23 and then tries to receive the same mes-

sage from every other member in the group. The cojail message uses the data Jen field

of the mesage to carry an integer showing the status of the member with respect to the

current change. All answers are placed into an array and they are processed later in the

election phase.

The lowest rank active member that has finished phase I of the current

change but not committed, is elected as the new coordinator. Then if at least one member

has committed the current change, it is marked at line 40. Depending on this, the new

coordinator will decide if it will go through a complete three-phase protocol if none of

the group members had commited, or will use the compressed three-phase protocol if at

least one of them had. After finishing with the original change the failure of the old coor-

dinator is being processed as usual with the same new coordinator starting a two-phase

change protocol.

The change described here in Figures 27 and 28 is a new member's Join.

Almost the same code can be used for a Leave, occuring when a member fails. The slight

differences are already described in subsection (d) of this section.

D. REMARKS

The current level of mserver implementation takes care of the Join, Leave and

Coordinator's (of a Join) failure changes. Implementation of a coordinator's failure while

processing a failure is expected to be similar. Additional changes may be added when the

implmentation will expand to include top-down hierarchy messages (parent-child rela-

tions). The code described here can be used as a guide to implement the processing of

48

any new messages. The compilation, running and testing of this code is described in the

Appendix.

49

1. void procass_co_fail (mptr, p_mptr)

2. struct message *mptr. *p_mptr
3. { . . .

4./* reset reply table and count active members in group */
5. n_mbrs - 0;

6. for(i - 0;i<MAXTBLSIZE;i+ +){
7 r[i]--1;

&■ if tcs_tbl[i].flag &S. cs_tbl[i].addr)
9- n_mbrs + +;

10. }

11./* subtract detector and mark its answer */
12. n_mbrs-- 1;

13. r[mptr->sender_gid] - mptr->data_len;

14. /* if other than detector, subtract me also */

15. if (myrank ! - mptr->sender_gidj {
18. n_mbrs-- 1;

17 r[myranlc] - p_mptr ? 1 : 0 ;
18. }

19. mptp->Sendar_gid ■ myrank;/* adjust sender's gid into msg to reflect me */
20. /«send' cojailmsg and collect answers; re-send maxtries times */
21. for (i - 0; i < MAXTRIES; i+ +) {

22. n_mbrs-- n_ans; n_ans - 0;

S3. send_messg (mc, *mptr, group);

24. if(!n_mbrs) break; /* if all answers received, stop */

28 while [n.ans < n_mbrs S& !timed_out [t]J /'receive until all reply or time expires
lf (recv_messg (uc, mc, &w, mcaster, Srmsg, Swho, tr) > 0] {

/ * see if must listen to received msg and if received msg is coord Jail */
if (tblsrh [cs_tbl, 0, who.sin addr s addrl &&

29 ~ ~
rmsg->group_view - - view &&

7/7
rmsg->msg_type - - C00RD_FAIL) {

31- n_ans + + ;

/ * update reply table */
'DO

r[rmsg->sender_gid] - rmsg->data_len;
34- J) /*if-if*/
35. set_timeout (fi.t, T_C0FAIL];
36.)/*for*/

37. /* elect new coordinator based on answers */

38. for [i - 0; i < MAXTBLSIZE S.S. cs_tbl[i].addr; i + +) {
39. /* mark if a member has commited */

40. if(!r[i]) commit-1;

41. /* new coord must have replied and been in agreB phase */

if(r[i]--1J /* member in agree phase */

43 if (e|ectBd > Cs_tbl[i].rank] elected - cs_tbl[i].rank; /* elect lowest rank V
44 if [r[i] T] /* put in fail list members that did not reply */
45 add_gid_entry [&.failjist, cs_tbl[i].rank)
46.)

47. ...

48.} /* process_co_fail */

Figure 28: Code for Function Process Co Fail.

50

27.

28.

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This thesis presented an implementation of two basic components of the MS, the

mcaster and the mserver. A set of useful MS-related utility functions was implemented

and each one tested independently. These functions were organized in different files, pro-

viding good modularity and portability of the code.

A complete working mcaster was implemented and tested to work in uc-mc

mixed as well as uc-only LANs, handling one or more groups. The present version of

mcaster is capable of propagating correctly any kind of group messages.

The mserver implemented is capable of creating and maintaining an mserver

group at one level. New member joins and failures are handled correctly and according to
the protocol.

B. FUTURE WORK

There are a lot of possible paths for follow-up work. First, to demonstrate that the

MS is truly scalable to global proportions, a parent-child model must be added to the

mserver, and tested on progressively larger scales. To achieve this, the basic mserver

model presented in this thesis must be enhanced to include handling of messages related

to the parent-child model. Also the internal state of the mserver must be enriched to sup-

port these relations. The functions developed for the current implementation can be used

as a basis for future development.

Second, the partition resolution protocol must be implemented and tested since it

is one of the strong advantages of the MS. A strategy to test partition handling without

failing the network will need to be designed.

Third, a complete performance analysis of the operation, overhead, network con-

straints, service latency and functionality of the MS must be accomplished. Also, an im-

plementation of an Ml is needed to provide the mserver group the necessary interface to

applications groups.

51

Fourth, an Application Programmer's Interface (API) as described in [28], must be

defined completely and implemented, to give a tool to programmers to use the MS. Using

this API, the next step is to create some test applications to take advantage of the MS use.

Finally, the MS architecture must be revisited in the future, to take advantage of

the reliable, high-speed networks, which are currently being deployed. Advances in net-

work technology, such as ATM (Asynchronous Transfer Mode) and Sonet (Synchronous

optical network), provide a different network model than the conventional IP -based mod-

el used for the design of this MS.

52

APPENDIX. COMPILE, RUN AND TEST THE MS

A. COMPILING

Table I provides the names of the files currently used in the MS implementation,

and a short description of the contents and the names of the functions defined in each

file.
Ffename

msutilc
Associated header

msuulh

Description

mcaster.c

msutil2.c

Definitions ofglobal
constants
Definitions of structures
Utilities collection

InckidedFiks

None

Functions

Multicast emulator
program

msutiO.h

reliable.c rehable.h

message.c

mserver.c

message.h

Utilities collection used
by mserver program only

leavejnc^rp, join_mc_grp, mil• socket, addrcmp,
formmessg, sendjnessg, recvmessg, receivemsg,
setjmeout, timed out, searchjpdjist, add^identry,
<x>py_gid_list, extractjidjst, deletejidjst,
printinaddr, printjockjiddr,
printjockinfo, print hostent, print messg,
print midlist, prinlnpsbgo, makechksum,
chk chksum

msuulh

msuulh

search_groupJist, searchjnemberjist, addjgroup,
addjnember,join_group, remouejgroup,
removemember, leavejgroup, mcast,
printjzroup_list,print_member_list

Inanitions and
declarations of reliable
link functions

Definitionsand
declarations of messa]
processing functioris

Mserver main program

msutiLh

msutiLh
msutiOi
reliable.h

msutiLh
msuul2.h
reliabfeJi
messageJi

tblsrh, add'tableentry, rm table entry, rmJail entry,
exctractinitstate.forminitstate,
extractjhatgejnfojormjhangejnfo,
print core table, elect coord

reliable link rel mlink

processjnsg, processcojai!

None

Table I: Description of the Files for the MS

To compile the above files, the ANSI C compiler (ace) was used over in CC de-

partment. There are a lot of different hosts in the CC network and not all of them have

the IP multicast extensions [30] installed. If these extensions are not installed then it is

not possible to compile the msutilc file (specifically the join_mc_grp function) and sub-

sequently, all the files that include it.

53

Table II gives some of the hosts on the NPS Computer Center LAN, their type and

their Internet address. If the compilation takes place on a specific type of machine (SUN

or SGI), then the programs can run only on the same type of machine.
Name

aliotiiccjipsjiavyjiii]

maak.ocjipsjiavy.mil

megrezccnpsjiavyjiiil

Type

SGI

acamar.ccjipsjiavyjnil

sp2S420x' .ccjipsjiavyjml

m502yf .ccjips.navyjril

SGI

SUN

SUN

SUN

Internet Address

131.120.53.2
IP Multicast

131.120.53.5

131.120.53.8

131.120.53.80

SUN

131.120.254.20x

131.120.5O.2yy

Yes

Yes

Yes

Yes

Yes

No

x=l,2,...,8

: yy=n, 12,..., 17

Table II: Host Machines on NPS Computer Center LAN

All files must be in the same directory at the compilation time. If a file is in a dif-

ferent directory, the path must be included in the include directive. To compile and link

successfully a file that includes other files, all those files must prev,ously be compiled

without problems. For example, if a change has been made to mserver.c file, the com-

mand line for the compilation should read:

%> acc-cmserver.o mserver.c
%> acc-o mservermserver.o msutil.o msutil2.o reliable.o message.o

If a change has occurred in the msutil.c file then the sequence of commands
should be:

ace-c msutil.o msutil.c
acc-c msutil2.o msutil2.c
ace -c reliable.o reliable.c
acc-c message.o message.c
acc-cmserver.o mserver.c
acc-o mserver mserver.o msutil.o msutil2.o reliable.o message.o

For this purpose, it is better to use a Makefile. A sample Makefile is in the -mser-

vice'cc directory. To debug the files using the debugger, the -g option switch must be

54

included in all lines of compiling, so that the compiler generates information for

debugging.

B. RUNNING

After successful compilation, it is time to run the mservers. As many command

tool windows as the mservers that are going to run plus one more for the mcaster are ne-

eded. The remaining procedure is as follows:

1. Remote login (rlogin) to a different host from each command tool window.

2. Run mcaster at one of these hosts and mark its IP address printed at the end
of the initialization of mcaster. The mcaster must run on a mc host, if there
are going to be servers running on mc hosts. If there are no hosts running on
uc hosts, then mcaster is not needed.

3. Start the first mserver as described on page 33. The creation of a new group
takes a couple of seconds, since the mserver tries to find out if other
members exist.

4. Start the rest of the mservers, delaying the second one 15 seconds after the
first one. The mservers should join sequentially and each one should print
its own core-set table, which should be the same at every place. At the same
time, the mcaster shows the traffic of the messages going through its
channels.

5. Mservers should monitor each other in a ring schema as described by the
monitor protocol. Monitoring query takes place every one minute for each
mserver.

C. TESTING

At this level of implementation, the following tests can be performed and their re-

sults can be observed:

1. Add a new member: Open a new command window, remote login to a host
not in use by other mservers or mcaster and start a new mserver program.
The join request shall appear in every member of the group. The lowest
rank member is the coordinator. It proceeds with the two-phase protocol
and finally the new mserver is accepted as seen in the core-table printed in
every member, that contains the information for the new member.

2. Leave (fail) a member: With a group running, go to a command window
and kill one of the mservers. Soon the mserver monitoring the failed one
will discover the failure and start a two-phase protocol, with itself being the

55

4.

6.

coordinator In the end, every member prints its own core-table m which the
mtormation for the failed member has been removed.

^eT%w!nber S,0W: fa a °0mmand ^"^ runnmS an ^rver, suspend
(CIRL-Z) the process. Wait until monitoring finds out. After the process of
the fail, recover the suspended member. After a while, it tries to monitor its
clockwise member (of the old group), which denies to accept the query and
does not respond. Then sequentially, the suspended and recovered member
fails all the members of the old group. In the end, it is alone in its own
group, while the other members run their own group. The problem of
naming the two different groups has not been solved yet.

Add a new member and fail another while in the process of join: Before
starting the join, kill a member and immediately (before monitoring finds
out about the fail) start a new mserver to join. The coordinator finds out
about the fail from the two-phase protocol for the join and adds the failed
member to the failed list. After completing the new member's join the
coordinator process the fail as usual.

More than one groups running at the same time: Start and setup two
different groups of one or more mservers each. The two groups should
differ in the class D address or the group name or both. After the setup both
groups function independently. All above scenarios can run in one or both
groups at the same time.

Failure of the coordinator of a join: To run this test case, a special version
of ani mserver program is needed. Make a faulty mserver (called fmserver)
that has some code lines that simply delay just before the second phase of
the join protocol. Since the protocols are described in file messages such
delay lines should be added there as shown in Figure 29. Set up a group as
usual, running the fmserver as the first (lowest rank) member. Then start a
new mserver. While the fmserver receives all responses from members and
delays (end of phase I) kill it. The other members timeout for the commit
message. The first that times out, starts a three phase protocol by
broadcasting a cojail message. After that, all members exchange status
through subsequent cojail messages. Then the join of the new member
gets processed. 'In the end the old coordinator (fmserver) gets failed and
removed from the group and core-table.

56

7./*fileMESSAGE.C */
5. ...

3. case M_JOIN_REQ:
4. ...
5- / * if acks received proceed to phase II; form COMMIT */
6. free (data);

7. free (Smsg);

8. /* - FAULTY SERVER GETS SLOW - */
9. sleep [3];

10. ...

11./* send COMMIT*/
12. ...

Figure 29: Delaying a Faulty Mserver (Fmserver) to Test Coordinator's Failure

57

58

LIST OF REFERENCES

1. K. P. Birman, "The process group approach to reliable distributed
computing," Communications of the ACM, no. 12, vol 36 pp 37-53
December 1993.

2. F. Cristian, R. Dancey, and J. Dehn, "Fault-tolerance in the advanced
automation system," The 20th International Symposium on Fault-tolerant
Computing, pp. 6-17, June 1990.

3. L. L. Peterson, N. Buchholz, and R. D. Schlichting, "Preserving and using
context information in interprocess communication," ACM Transactions on
Computer Systems, vol. 7, no. 3, pp. 217-246, August 1989.

4. D. Powell, M. Chereque, D. Drackley, "Fault-tolerance in Delta-4,"
Operating Systems Review, vol. 25, no. 2, pp. 122-125, April 1991.

5. F. Cristian, "Agreeing on who is present and who is absent in a synchronous
distributed system," Proceedings of the 18th International Conference on
Fault Tolerant Computing, Tokyo, Japan, pp. 206-211, 1988.

6. S. Deering, "Host extensions for IP Multicasting/Technical Report, Internet
Engineering Task Force, Network Working Group, RFC 1112, August 1989.

7. S. Deering, "Multicast routing in a Datagram Internetwork", PhD thesis,
Stanford University, December 1991.

8. S. Zabele and R. Braudes, "Requirements for multicast protocols,"
Technical Report, Internet Engineering Task Force, Network Working
Group, RFC 1458, May 1993.

9. A. M. Ricciardi and K. P. Birman, "Using process groups to implement
failure detection in asynchronous environments," ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada, pp.
341-353, August 1991. Also available as TR91-1188, Dept. of Computer
Science, Cornell University.

10. R. D. Schlichting and F. Schneider, "Fail-stop processors: an approach to
designing fault-tolerant computing systems," ACM Transactions on
Computer Systems, vol. 1, no. 3, pp. 222-238, August 1983.

11. K. P. Birman and T. A. Joseph, "Reliable communications in the presence
of failures," ACM Transactions on Computer Systems vol 5 no 1 pp
47-76, February 1987.

12. F. Jahanian and W. Moran Jr., "Strong, weak and hybrid group
membership," Proceedings of the Second Workshop on the Management of

59

13.

14.

Replicated Data, Monterey, California, pp. 34-38, November 1992 Also
available as Technical Report RC 18040 (79173) 5/28/92, IBM Research
Division, T. J. Watson Research Center, 1992.

J. M. Chang and N. F. Maxemchuk, "Reliable broadcast protocol" ACM
lransactwns on Computer Systems, vol. 2, no. 3, pp. 251-273, August 1984.

S. A. Bruso, "A failure detection and notification protocol for distributed
computing systems," Proceedings of the 5th International Conference on
Distributed Computing Systems, pp. 116-123, May 1985.

15. A El Abbadi, p. Skeen, and F. Cristian, "An efficient fault-tolerant
protocol for replicated data management," Proceedings of the 4th ACM
Symposium on Principles of Database Systems, pp. 215-229, 1985.

16. P. Verissimo and J. A. Marques, "Reliable broadcast for fault-tolerance on

M-63CoTober ^^ SymPosmm on Rdi^le Distributed Systems, pp.

17 b \Mofr' P M. Melliar-Smith, and V. Agrawala, "Membership
algorithm for asynchronous distributed systems," Proceedings of the 11th
International Conference on Distributed Computing Systems, pp. 480-488,

S. Mishra L. L. Peterson, and R. D. Schlichting, "Consul: A communication
substrate for fault-tolerant distributed programs," Technical Report TR
yi-32, Department of Computer Science, University of Arizona, 1991

J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten, "Multicast group
membership management in high speed wide area networks," Proceedings

pp 231-238 Ini
t

9
e^atl°nal Conference on Distributed Computing Systems,

R. A Goldmg and D. D. E. Long, "The performance of weak-consistency
replication protocols," Technical Report ucsc-crl-92-30, Department of
Computer Science, University of California at Santa Cruz, July 1992.

P. D Ezhilselvan and R. de Lemos, "A robust group membership algorithm
for distributed real-time systems," Proceedings of the Real-Time Systems
Symposium, pp. 173-179, 1990.

K H. Kim H. Kopetz, K. Mori, E. H. Shokri, and G. Gruensteidl "An
efficient decentralized approach to processor-group membership
maintenance m real-time LAN systems: The PRHB/ED scheme"
Symposium on Reliable Distributed Systems, pp. 74-83, 1992.

18.

19.

20.

21.

22.

60

23. L. Rodrigues, P. Verissimo, and J. Rufino, "A low-level processor group
membership protocol for LANs," Technical Report Oct. 1992, Technical
University of Lisbon, Portugal, INESC, 1992.

24. J. Misra and K. M. Chandy, Parallel Program Design - A Foundation,
Addison- Wesley, New York, New York, 1989.

25. G. Andrews, Concurrent Programming - Principles and Practice,
Benjamin/ Cummings, Redwood City, California, 1991.

26. D. Comer and D. Stevens, Internetworking with TCP/IP, Vol. I: Principles,
Protocols, and Architecture, 2nd edition, Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

27. K. Birman, A. Semper and P. Stephenson, "Lightweight Causal and Atomic
Group Multicast," ACM Transactions on Computer Systems nn 272-314
1991.

28. S. B. Shukla, D. S. Neely and J. Kostrivas, "Architecture and Protocols for a
Decentralized Group Membership Service for Wide-area Networks"
Technical Report NPS-EC-95-004, Department of Electrical and Computer
Engineering, Naval Postgraduate School, Monterey, CA. 93943 Februarv
1995. ' y

29. D. S. Neely, "A Scalable Decentralized Group Membership Service for an
Asynchronous Environment," MS thesis, Naval Postgraduate School June
1994.

30. S. Deering, "IP Multicast Extensions for 4.3 BSD UNIX and related
systems," Technical Report, Internet Engineering Task Force RFC 1054
June 1989.

31. R. Stevens, Unix Network Programming, Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

61

62

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Chairman, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5118

5. Professor Shridhar B. Shukla, Code EC/Sh
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. Professor Gilbert M. Lundy, Code CS/Lu
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5118

7. LTJG John Kostrivas
310, Hatten Rd.
Seaside, California 93955

63

