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PREFACE

This paper constitutes the eighth report upon a project which
I have undertaken, under the sponsorship of the Antenna Design Section
of the Bureau of Ships, for conducting mathematical studies pertaining
to the distribution of current along the legs of a rhombic antenna. under
varying conditional. While it may seem that I have initiated this paper
at too low a level, I consider it essential in justifying the engineering
approximations made herein to start with the simple classical theory of
transmission lines and show the relation between this theory, the general-
ized circuit theory, and the Hallen integral equation theory.

In connection with my formulation of the* integraiJ equation for the
current along wire Ofie of the rhombic antenna, I wish to thank Professor
Klamm of this department and Professor Bleick of the department of Mathe-
matics for some helpful suggestions. In fact, Professor Klamm has a some-

what similar formulation in Cartesian coordinates of a pair of simultane-
ous integral equations for the current along the entire rhombus. However,
at the time of this writing, it seems to us that so many approximations
are required in a process of iteration for even a first order solution,

that the most practical approach to the problem of obtaining an engineer-

ing approximation for the current along a rhombic antenna is that of the

nonuniform line theory as proposed in this paper.

J. 6. C.

27942
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ABSTRACT

From Maxwell's equations, the differential equations are derived
for an open wire line. The resulting classical transmission line theory
is correlated with the generalized circuit theory. In fact, it is shown

that the radiation impedance of a rhombic antenna may be derived from the
classical theory, and the concept of radiation impedance is clarified. It
is further shown that the customary usage of the difference in scalar po-
tential for the driving point voltage is equivalent to replacing the drop
across the terminal reactance, for a circuit assumed to be in a self sus-

tained steady state oscillation, with the generator voltage. Methods for

approximating the driving point impedance of a rhombic antenna are dis-

ussed. For determining the current distribution in a rhombic antenna, the

Halle'n integral equation technique is briefly considered and, because of
its complexity, is discarded in favor of the nonuniform transmission line
technnque. The current distribution is found by dividing the rhombus into

four intervals, namely, 0<x<h/2, k/2<x<L, l<x<2l-k/2, 2i-\j2<x<2t, and
applying the nonuniform line theory. Graphs for the radiation impedance
of a rhombic antenna are presented. Also, curves for the current distri-

bution along a single wire rhombic antenna are given.





NOMENCLATURE m
B magnetic flux density vector

E electric displacement vector

B magnetic field vector

t current density vector

A vector Potential

4> scalar potential

a conductivity

e = l0~ 9 /36n fd./m. Permd&ivityy */ free space

14)'' = 4tt(10~
7
) h./m- permeability of free space

T) — 120n ohms intrinsic impedance of free space

k — 2v/\ - wt/^'eo' 7 free space wave number

oi - 2-nf angular frequency

I length of transmiss ion line, length of one leg of rhombic antenna

a radius of wire

p spacing of line

2dh vertex angle at driving point of rhombic antenna

s arc length coordinate along a wire

x line length coordinate

I current

V voltage

R resistance pet unit length of line

G conductance per unit length of line

L inductance per unit length of line

C capacitance per unit length of line

F form factor for line, contribution to generalized voltage by

vector potential

f normalized current function

fn spatial root mean square of normalized current function

/o normalized current in terminal impedance

Zi internal impedance per unit length of line

Z r radiation impedance

Zo characteristic impedance of line

a attenuation constant

y propagation constant

B difference between actual scalar Potential and the value given by

integrating the charge density over the wires of a line





C. end capacitance

V generalized voltage

L inductance Per unit length for generalized voltage

C capacitance Per unit length for generalized voltage

Kav average characteristic impedance of nonuniform transmission line

M,N parameters in nonuniform line theory

j =(-i) 2" time phasor operator

Z difference between actual series impedance Per unit length and

nominal series impedance Per unit length

y difference between actual shunt admittance and nominal or average

shunt admittance per unit length

log common logarithm

In natural logarithm to base e-2. 71828

S closed line integral

^ ~ 2r $j + ^$7 "*"

**%W vector operator del
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CURRENT DISTRIBUTION AND

DRIVING POINT IMPEDANCE FOR

A RHOMBIC ANTENNA

I. INTRODUCTION

Since the radiation impedance » of a rhombic antenna has been
derived from an application of the generalized circuit theory2

, it is
desirable to enter into a detail analysis of the relation between the
generalized circuit theory as applied to open wire transmission lines 1

and the customary classical theory of such lines. Such an analysis tends
to clarify the significance of the term radiation reactance , brings out
the types of approximations involved, and suggests apjnethod for relating
the radiation impedance of a line to the driving ppint impedance of the
line. Afterwards, the radiation impedance of a rhombic antenna may be used
in connection with Schelkunof f

' s nonuniform transmission line theory »

for approximately determining the current distribution and driving point
impedance of the rhombic antenna.

II. DIFFERENTIAL EQUATIONS

Since the generalized circuit theory
2

is derived from the complex
form of Maxwell's equations, it seems necessary to review the derivation
of the differential equations for the transmission line as denived direct-
ly from Maxwell's equations, and to point out certain relationships, even

though such derivations are well known 9 The derivations will be from the

instantaneous form of Maxwell's equations, namely,

V-B = VX£ = _ || D = eE H = Vxl

V-Z) = p VX/? = T + $f B = /I E = (W- +k
2
)A/jcoe

Suppose the transmission line consists of two parallel wires each

of radius a and of length I, the wires having an axial spacing /*. Consider
an incremental length As of one wire (Fig.l). Now take the surface inte-

Fig. 1. Path for line integral of magnetic field vector.





gral
8 of curlH over this length, that is,

kvxH-dS = fH-dr = fs (T + $£)'dS (1)

Since the longitudinal portion of the path for the line integral is tra-
versed in each sense,

or

/[#(s+As) - H(s)]-d? = (cr+e%j)£En dS

- 7(s+As) + I(s) = Asia+e^tf^Ennadt

(2)

(3)

where Enn is the mean value of the normal component of the electric field
vecfcpr over the interval to be evaluated at the boundary, and where 9 and
e are for the medium surrounding the wire. The remaining integral in equa-
tion (3) is proportional to the voltage V and is a function of the radius
and spacing of the wires. It may be expressed as

L Enn ad$ = f(a,/))
J

F (4)

where F{a,p) is known as the form factor for the line,. Hence, upon pass-
ing to the limit,

or
%= - (G+ cfc)V

(5)

(0)

where G and C are the customary line parameters, that is, the conductance
per unit length and the capacitance per unit length, respectively.

Perhaps equation (4) constitutes the weakest link in the derivation,
This could be made stronger by retaining the electric displacement vector
in equation (2), converting to the surface charge density, and then defin-

ing the capacitance per unit length. However, equation (5) serves to ill-

ustrate that the same form factor may be used for finding both G and C.

Equation (6) may also be derived by integrating the equation of continu-

ity of chatge over the volume of the element*.

For the second differential equation 9
, curl E will be integrated

over the surface between the two segments of wires forming the elementary
length of line {Fig, 2) . Firstly, the integration yields Faraday's law,

4 -

y

A

-»E
-0

t—+
I *
if 2

</r*-

= +og
4 "

c F
*4ib

5 4~ +I

Fig. 21. Path for line integral of electric field vector.
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$E'dr = - fa(bx L
e

I) (7)

where L
g

is the external inductance per unit length, defined as the mag-
netic flux linkage per ampere per unit length of line. Secondly,

SE'dr = - /(Ac/) + fjL §f ) = -M ft^'dr (S)

In carrying out the integration for A, the conventional path se-
lection? are made. Thus, path one and path two are chosen on the surfaces
while paths three and four are chosen on the axes (Fig. 2).

The spacing p of the wires now will be assumed to be sufficiently
small electrically for retardation to become negligible within the incre-
mental interval. This also implies that the fields produced by the curr-
ents and charges at the more remote potsitions outside the interval arrive
essentially in phase opposition.

In other words, the retardation in the vector magnetic potential
causes a cancellation of those components of the potential produced
at distances large in comparison with the spacing. If, furthermore, there
exists an interval containing Ax such that its length is quite large com-
pared to p and yet sufficiently small for the effects of retardation to

be negligible within the interval, then the inductance per unit length
may be derived from equations (7) and (8) as

K = # '» « <0

Hence, the form factor for the open wire line is

F=t,lnfi (10)

It should be pointed out that if the potential A is determined by
integration of the current over the entire line neglecting retardation
altogether, then the form factor for positions near the ends of the line

drops rapidly to one half the value given by equation (10)'.

The fact that the form factor for the capacitance per unit length
is equivalent to that for the inductance per unit length may be verified
after the completion of the derivations. However, such a verification is

not an objective of this paper.
Returning to equation (8) and considering the integration interval-

wise, upon assuming the internal impedance per unit length of line to be

Zi where operationally,

it is found that

or since

Zi = Ri + Li fa ( 12 )

JiE-ds = ^As Zil (12)

Sb
e
(C4> + /#)<** = 4te) ~ <t>(b)-4&sL

e% ( 13 )





then
4>(e) - 4>(b) = lAsiZt + i^)l

= £Mfl + L §i)l (14)

where L is the sum of the internal and external inductance per unit len-

gth . A sinnilar integration holds for the interval (c,d).

In other words, there is a drop in scalar potential on each wire
determined by the sum of the internal impedance of the wire and one half
the external inductive reactance. This shows that the external inductive
reactance does actually appear in series with the internal impedance as

far as the scalar potential drop along the interval is concerned.
Also, since the vector A is parallel with the wires,

fb
E'dr = -/

6
(V</> + ti%)-dr = <fi(b) - 4>(b) (15)

and similarly for the interval (d,eh Hence, the voltage across the line
is likewise a drop in scalar potential and there is no contribution to

this voltage by the vector magnetic potential. Now, since

(fb + f
e

d )~E>d-r
= [S - (f

b

e
+ f

d

c
)]E-dr (16)

iitfollows from equations (7), (14), (15), (16), and the corresponding
equations for the intervals (c,d) and (d,e) that

[<l>(b) - <p(c)] - [<t>(e) - <£(d)] = - As (R + L g^) I (17)

Hence

V(x + Ax) - V(x) = -Ax(i?+L^)l (18)

or

= - 0? + L fj) I (19)

Equations (6) and (19) constitute Kirchoff s circuit equations as

customarily applied to the transmission line. Since the line voltages

are all differences in scalar potential, and since the sum of the scalar

voltage drops around the loop is given by

SVcP'dTr = (20)

even though the line integral of the electric field vector around the

loop for the generalized voltage does not vanish, it follows t L i..t

that the conventional application of Kirchoff' s voltage law is vadidJ Thus,

it is incorrect reasoning to state, as it is sometimes done, that the ex-

ternal inductance is arbitrarily assumed to be in series with the inter-

nal impedance so that the line integral of the electric field vector around

the loop will vanish.





III. DRIVING POINT IMPEDANCE

For comparison with the generalized circuit technique2
, the driv-

ing point impedance of a uniform line, terminated in its characteristic
impedance and balanced to ground, will be found by considering the drop
in complex power per unit length along the wires (Fig. 3).

-o £

+ +/

Fig. 3. Balanced line showing arc length coordinate.

Since the line is balanced and is symmetrically fed, for the arc
length coordinate s satisfying -l<s<¥l,

lis) = l(-s), 4>(<s) - <0(-s)

and
Vis) = 4>is) - <p(-s) = 2<t>is) i2l)

Hence, the steady sta te form for equations (19) and (6) may be written as9

.
= 4-(R + J<oL)y (22)

t

= 4lG + jcoC)V (23)

Denoting the complex conjugate with an asterisk, multiplying equation (22)

by^the con/jugate of the current, and multiplying the conjugate of equa-

tion (23) by the potential,

_ ir*grfL= i(£+ jaL )\i\*- (24)

-h$* = UG - ju£)\v\* (25)

Integrating equation (24) by parts

' - & l

l{s)*%£&d S = UR^jo£)S
l

l
\lis)\

2 ds (26)

U<t>i+0)-4(-O)]li0)* = }-.[<£( I) -4- 1)] I (l)* + ±liR+ja£)ti

where fm is the spatial root mean square of the time peak value of the
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normalized spatial current distribution function.
Substituting from equation (25) and defining the characteristic im-

pedance Z of the line as the ratioof the voltage to the current in the
positively travelling wave,

£V(0)I(0)* = tf(l)l(l)* + Ufll(R+Jo>L) + (G-ja£)\Z I

2
] (28)

or letting

fy= \I(1)/I(0)\

upon multiplying equation (28) by 2/\l(o)\ z
,

Zin = Z tf + lf*[(R+jcoL) + (G-ja£)\Z \

2
] (29)

The above procedure is exactly equivalent to adding equations (24)

and (25) for the power drop per unit length of wire, and then integrating
for the total power drop in the line. It is regarding the energy as cir-
culating from the generator to the load along one wire, and back to the
generator from the load along the other wire, rather than regarding it as
being guided back and forth between the load and the generator by the

parallel wire wave guide.
It now will be assumed that equations (6) and (19) have been solved

for the steady state phasor voltage and current along the line, and that
the customary values of the characteristic impedance Z^' — R tjX and
y - a+jfi are known , The attenuation constant a is customarily taken as
one half the ratio of the time average power drop per unit length to the

time average of the power being transmitted^ . Perhaps it is not popularly
realized that a is also given by one half the ratio in the drop per unit
length of the complex power to the complex power being transmitted. That
is, the ratio is the same whether or not the real parts are taken. In

other words,

a — -
2R \£]?I*) 2 (1-vi*) ' 2(&I*)

(30)

Equations (30!) may be verified either by substituting the exponen-
tial solutions and differentiating, or by taking the arithmetic mean of
the propagationA and itScompilex con/jugate. Thus,

O=^
o
[(«+i«i) + <G-i«C)l*.l«] = 4r„

[ *+GlZo|2] (31)

Now, since the current is given by,

I = IoeJ"*-?^ = Iof( s ) e
jcot

( 32 )

it follows that the mean square of the time peak normalized spatial dis-

tribution function is

Thus, using the ratio of the complex powers for a,

Zin = V(0)/I(0) = Z (34)
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and using the ratio of the real powers for ax,

hfiO)l(0)*/= y%Z + alfi\l(0)\*Ro + i.lfi\l(0)\
2
ja>(L-C\Zo-\

s
) (33)

V(o)/l(o) = R + jifSlb + lfZM-C\Z \

2
)] (<•)

or
Zin =

Ro + jifUo + fnlr) (Sf)
where

X r = a>l(L-C\X9 \

2
) (38)

is the radiation reactance of the line, or the reactive component of the
radiation impedance. In this connection, the radiation reactance of a cir-
cuit may be defined as the ratio of that portion of the reactance produced
by the external fields, as seen at the driving point, to the mean square
of the time peak normalized spatial distribution function.

Of course, in the case under consideration, the spacing p has been
selected such that retardation is negligible and the induced field has no
component in time phase opposition to the current. Hence, the radiation
resistance has been assumed to be negligible. Thus,

Z r = jcoXr (39)

and from equation (35)

,

£.\l<0)\
2Z

r
= jco[llL\l(0)\

2 - IIC\V(0)\
2

]
=

i«(|jfc| _
\

I) fr40a )

where U„ and U
£

are the energies stored in the magnetic and electric
fields, respectively. Hence,

j \jm\ 2^^ ~ ^eI) (40b)

or the radiation reactance is determined by the difference between the

time peak energy stored in the magnetic and electric fields, assuming an

unattenuated travelling wave of current to exist. This should tend to

clarify the relation between the radiation reactance of a circuit and
the driving point impedance.

Also, from equations (34), (37), and (40b), it follows that if
there is no attenuation of the current, the radiation reactance vanishes,

and the time peak energy stored in the magnetic field is equal to that

stored in the electric field.

IV. RADIATING LINE

If it is assumed that the spacing of the line is not electrically
negligible, the effects of retardation must be taken into consideration.
To do this, the line equations will be written in terms of the retarded
potentials. For, simplicity, it will be assumed that the shunt conductive
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current is negligible, so that the current equation may be written in

terms of the charge per unit length q simply by integrating the equation
of continuity of charge over the incremental volume.

Now let path one lie along the surface of either wire and let path
two lie along the axis of either wire. The differential equations then

become

,

^budsx) = _ [*Z,T(»i) + ia>MoIi2--ai 2 .] (41)

i**) = - 70x7(5,) (42)

where

fsT^ ~ ~ JW*i

-0. J.
A12 = 1

]r(f°+£ l
)e(r12 ) l(s2 )ds 2 (43)

#77 -I +6

4\z - - 1/jcoeo Vj.-4i.2- (^)

e(r12 ) = r12
~ 1 exp(-jkr12 ) (45)

k - ccn/pceo = ooe T) (46)

r)
- 120-n ohms (47)

It is a pertinent fact that the scalar potential d\ 2 ., as given by

equations (43) and (44), differs from the potential d>>'\ 2 . which is obtained

by integrating the charge per unit Length over the wires. For

<fei2- =
j
L-(f-°+Jt L )e(r12 )q(s 2 )ds2 (48)

477£o
: -I +0

and upon integrating equation (44) by parts,

* =
- jzio^ (^

0+
^o

)/(s2 -)52 '' Vie(ri2)dS2 (49)

= 34{l(l)[e(r1+L )-e(r1 -
l
)} - S(o) [e( r1+0 ) -e( n -0)

- ji^^r+/̂ (ri2) si. dsz)
(5i)

<h 2 .
= </bi 2 .+ 5(s x ) (52)

or

where

*(»i) = jf(l(l)[e(rj-e(r^] - l(0) [e( r1+ )-#l n _<£]) (55)
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with

B(-Sl ) =-B(s x ) (54)

Defining the line parameters L(x) and C(x) by,

L(x) = 2^ Ala .' at/lid) (55)

1/C(x) = 2<^ 2 /q (56)

the voltage and current equations become

|| = - (Z± + jaL)l (57)

%- - Jo£V (58)

It should be pointed out that the capacitance per unit length, as

defined above, includes the distributed capacitance between the ends of
the wires and a given position on the line, as well as the distributed
capacitance between the various elements of the line. That is, it provides
for the accumulation of charges at the ends of the wires.

Thus, not only are the inductance and capacitance per unit length
variable, but each is complex. The imaginary part of the inductance per
unit length gives an additional drop in the voltage per unit length.

Likewise, the imaginary part of the capacitance per unit length gives
an equivalent conductive drop in the current per unit length. This indi-
cates that, although the resulting radiation is not uniformly distributed,
the radiation impedance is distributed and does introduce attenuation.

Returning to equations (41) and (42), the apparent drop in complex
power per unit length becomes,

- ^(fcal*) = lZi \I\* + io*fAi*--lt ~ hkMl (59)

Equation (59) is analogous with the sum of equations (24) and (25)
for the nonretarded case. Substituting from equations (43) and (51),

-^fei(^ 2 J*) =iZi\l\* - %B( Sl )
d
&
li^l*

+
ff/J e (rl2)(|L^. - *

2
a-1 .a2 )l(s2 )j(s 1 )*ds2

*
areIntegrating equation (60) and recalling that both B(si) and Sfe^

5 "

1 '

odd functions,

M*«-*.«)T(0)* - «*k -i.
t
)j(j)* = I izt \i(o)l*fi

Equation (61) provides an interesting problem in interpretation.





. 1
For l»p ,

- JoB(sx ) ll[
s*)*dsx =60(Cinkp+jSikp)\l(0)\'*f% (62)

where

Cinx + jSix - Jo t~
x
[l - exj>(jt)] dt (63)

For kp£<l ,

~ foB(s 1)^il*ds1 = [I5tkp) 2 + j60(kp)]\l(0)\ 2
fl (64)

In deriving equation (62), the current was approximated by assuming it to
be an unattenuated travelling wave. It was then assumed that the radiated
power was given approximately by using the spatial root mean square of
the time peak value for an exponentially attenuated travelling wave. Under
the same approximation, the double integral term in equation (61) vanishes.
Thus, there remains,

$1(0) *(4\ 02 -4>-o2-) = hl(l)*^<kk-dx- iz ) + |iyg|l(0)l*&

+ \T(0)\
2f*[l5(kp) 2 +j60kp]

{65)

The question now arising is how to define the driving point voltage.
There is a temptation to define it as the difference in scalar potential,

from equation (65) , this would lead to a radiation impedance ViZ r given by

4zr
= 30(kp) 2 +jl20kp (66)

But the value of the radiation resistance given in equation (66) is one
half that given by integrating the real part of the Poynting vector over
a surface enclosing the wires. It is also one half that found by the gen-
eralized circuit method?" as well as one half the Xplue given by Storer
and King8 . Therefore, it appears that the difference in retarded scalar
potential can not in general be taken as the applied voltage. This is not
surprising, because of the functional relationship existing between the

scalar potential and the current distribution.
Upon substituting from equation (52) into equation (65) and carry-

ing out the integrations of the scalar potentials, it is found that the

components due to the distributed charge, as given by equation (48) , com-

bine to double the radiated power term in equation (65). Also, the compon-
ents produced by B(si), as given by equation (53), give the reactive power
through the end capacitances of the wires »

2
'
3

»
4

'. That is,

$l(l)*(<f>+l2- - 4>-p) - £i"(0)*(<ko2- - «Lo2 )
*

-j30[js - c-%f^P+j(l - s-i$*£>m\l(l)\* - \K0)\
2

] (67)

+ \l(0)\ 2 &{l5(kp) z + j60kp]

Assuming kp is relatively small such that the the following approximations
are sufficiently accurate,
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s-j$k£> * 1 , coskp* 1 , (68)

substitution into equation (65) with subsequent multiplication by the
quantity 2/\l(o)\ 2

yields,

(i + ^jhr + Lf% Zi + fnlM(kp) + j240kp] = (69)

with Cg being the end capacitance2 given by

The preceding analysis has taken into consideration neither the
generator nor the load impedance. In reality, it has assumed the line to

be in a steady state condition with the current being forced to flow
around the wires through the end capacitances with no outside source of
power. Equation (69) constitutes a generalization of Kirchoff's voltage
law. However, it does not represent the true physical nature of the prob-
lem.

. If the reactive power through the driving end capacitance is replac-

ed.the negative of the power from the generator, that is, if it is recog-
nized that the generator is in shunt with the end capacitance, and if the

terminal impedance &> is likewise considered to be in shunt with the term-

inal end capacitance, equation (69) becomes

Zin = fgZ + fZ(lZi + Zr) (71)

For determining the attenuation, the radiation resistance will be assumed
to be roughly uniformly distributive. The driving point impedance will

then be given by equation (37) along with the approximation for Zo

,

Zo = [(R+R r/l) + jcoL)(jo£)]
l/2

(72)

If exponential attenuation is assumed, and if a is taken from trans-

mission theory as

a = (R+R r)/(2lRb ) (73)

equation (71) becomes

Ztn = tfo + j[f%(lXi+X r ) + flXQ ] (74)

The difference between Xb
! and ffi( lXi+X rJ+fo'Xo' may serve as a

check upon the degree of the approximations involved.
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V. RHOMBIC ANTENNA

The rhombic antenna (Fig. 4) is a nonuniform open wire transmission
line. It is terminated in an impedance Z which yields a current distri-
bution that is as near to a travelling wave as it is physically possible
to obtain. Each leg of the rhombus is assumed to be of length Land the
vertex angle at the generator end is assumed to be 2<fr . The spacings of
the terminals at ±0 and±2l are assumed to be such that their widths are
electrically negligible.

-/

d.
c

+2t

Fig. 4. Rhombic antenna.

In comparing the rhombic line with the parallel line, some inter-
esting distinctions may be observed. Perhaps the two most pertinent ones
pertain to the scalar and vector potentials, respectively.

For the parallel line, it was necessary to consider the accumulation
of charges at the end of the wires while finding the scalar potential. In
fact, it might be said that half the radiated power was found to be due to

these charges and their retardation effects. The other half was found to

be due to the sum of the retardation effects due to the distributed char-
ges as these effects appeared at each end. Thus, when the spacings of the
terminals were made electrically negligible, the radiated power became
negligible.

For the rhombic antenna, since the terminad spacings are electrical-
ly small, the component B(s-l) vanishes in equation (52), and the scalar
potential is given by equation (48) with appropriate limits of integration.
That is, the scalar potential is given by only integrating the charge per
unit length around the line. Also, because of the smallness of the term-

inal spacings, an integration of the distributed charge density for the

potential drop across the terminals turns out to be the drop due to the

end capacitances with no radiatuon terms remaining.
Furthermore, for the parallel line, the vector potential was found

to be parallel with each wire, so thav the double integral term

in equation (61) vanished for the postulated current distribution. But
for the rhombic line, the vector potential is parallel with neither wire.
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It thus appears that the amount of power radiated by the rhombic line
should be determinable from equation (61) by using just the opposite
terms from thbfee used for the parallel line. This is also logical from a
physical consideration. For starting with the parallel line closely
spaced, radiation occurs only as the line is distorted into the rhombus.
However, a more detailed analysis should be made before a definite con-
clusion is reached. For the rhombic line, the voltage drop across the
line is no longer only a drop in scalar potential, as it was for the
parallel line, but is given by the line integral of the electric field
vector. The generalized voltage V between the wires will be defined as

V = -.fit-dr = V + F (75)

where
V = 4>(e) - 4>(d) (76)

F = -jco^A-d? (77)

and the path of integration is taken along the circular arc in the plane
of the rhombus (Fig. 4).

As in the preceding analyses, aec length coordinate s will be used
for integrations along individual wires, and x will be used when consider-

ing both sides of the line simultaneously. Thus, integrating the electric

field vector around the closed path (bcde) ,

£E-d? = ?(x+Ax) - V(x) + Ax Zil(x) (78)

But also,

SE-dr =[F(x+&x) - F(x)]- ^(Asi.-IiB+Ass-Ij,,*) (79)

where Alm and A2m are the mean values of the vector potential within the

intervals (cd) and (eb) respectively. Hence, the external inductance per

unit length is given by

'LAx)l(x) = [- 4 0£ + mUi+V-)] (80)

Thus, if the equation of continuity of charge,

V-I=-^

is again integrated over the volume of an incremental cell, the rhombic

line equations become,

g-F(x) =-[/?+ jU(x)]l(x) (81)

^l(x) = - ja£(x) V(x) (82)

in which the capacitance per unit length is defined by

C(x) = q(x)/i(x) (83)





*4
Multiplying equation (81) by the complex con/jugate of the current,

and multiplying the complex conjugate of equation (82) by the voltage,
the power equation becomes

- 1 d-m*) = i (#^r)i/i 2 - iia£*\v\ 2
(84)

ox
or upon assuming the internal impedance per unit length to be constant,

mo)l(O)* = 11(21)1(21)* + lZi.fi
l

\l(x)\ 2 dx

+ 3 ffQ [Z
e
(x)\l(x)\* - C(x)*\V(xYldx

Since the current, and hence the vector potential, is assumed to be

continuous across the terminals, the terminal spacings may b^ taken suf-

ficiently small for

h F-(0)l(0)* = (86)

and

\ F(l)l(l)* = {87)

Thus,

m0)l(0)* = hV(2l)l(2l)* + lZif%\l \

2

Substituting from equations (80) and K82D. into equation (88),

IV(0)I(0)* = fr(2 1)1(21)* + lZifl\ J I

2 - h£%x (Fl*)dx
21 21 ow ^* (89)

+ $-ja>«£l(x)*(Ax +A*)dx - \fQ
l

y( x)%Sz¥dx

The first integral on the right becomes negligible because of eq-

uations (86) and (87). In fact, had the above substitution been made in

equation (84), the ^.(fl*) terms would have cancelled. Thus, due to the

spacings of the terminal* equation (84) could be derived directly by eq-

uating the tangential component of the electric field at the boundary to

the internal drop in voltage, multiplying by %!*, and integrating around
the circuit.

Again recalling that the integrations for the potential drops V(0)

and F(2j),determined DY the distributed charge density, contribute nothing

to the radiation intensity, but merely give the drop due to the end ca-

pacitances, and recalling that the physical circuit requires the genera-

tor and the terminal impedance to be in shunt with these capacitances,

respectively, the driving point impedance becomes,

Zin = Z fS + 2lflZi - J^
l

V^I*dx - jcofjg
l

I*(A1 +A2 )dx (90)

Equation(90) can be converted into the form used in deriving the

radiation impedance ,4 of the rhombic antenna by using the arc length
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coordinate s, substituting the intregal forms of the potentials, recall-
ing that the current and vector potential are even functions while the
scalar potential is an odd function, and replacing q from equations (82)

and (83) . Consequently,

Zi n
= %ofo " 2lZifn:

+ 34&Jl «(fi.) [/V- - k
2ax -a 2 ] f( Sl Ms2 ) ds± ds2 (tf)

or since the axial and surface paths are interchangeable,

Zin ~ Zofo + ZlZifm

+ ¥&&&l

L «(ri 2 )[r^r- " k
2
a^ 'a2 ]Re[f(s i yf(s 2 )]ds1 ds 2 (92)

OSxOSz

The radiation impedance ^.was found3
' by assuming to a first approx-

imation, the current to be an unattenuated wave. Under this approximation,
the parallel paths contribute nothing in equation (92). Then, since the
parallel paths along a given wire are not considered, it follows that the

radiation impedance should be tnoxe uniformly distributed in the case of
the rhombic line than it is in the rase of the parallel line. Thus, referr-

ing the radiation impedance to the spatial root mean square of the expo-
nentially attenuated wave and approximately uniformly distributing the
radiation impedance,

Zin = Z fl + fU2lZi+Z r ) (93)

or finding a as in equation (73) with I replaced bv 21
t

Zin = Ro + j[fm(2lIi+X r) + fiX ] (94)

VI. TERMINAL IMPEDANCE FOR RHOMBUS

It would be very difficult, if not impossible, to obtain a mathe-
matical^ rigorous solution for that terminal impedance Zq which would
most nearl> give only a travelling wave of current on the rhombic line.
Of course, because of the nature of equations (81) and (82), it is im-
possible to have an exact travelling wave, even if the effects of radi-
ation are ignored.

However, since the impedance at the terminals is formally given by
the ratio in the drop in scaj.Br potential to the current at the terminals,
an approximate value of Z may be found by considering only the scalar
voltage and applying Schelkunof f ' s nonuniform transmission line theory 7,9.

Accordingly, if a revised inductance per unit Length L(x) is defined
as

L(x) = MUi+4-)//(*; (95)
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and a revised capacitance per unit Length C(x) is defined as

C(x) = q(x)Mx) (96)

upon substituting from equations (7$, (80) , and (95) into equation (81)

,

and upon substituting from equations (82) and (96) into equation (82),

the differential equations bee one,

or

||k)=- [R-rjaL(x)]l(x) (97)

}|kk _ jcX(x)Mx) (98)

*> = -Z(x) I(x) (99)

$f*)
= -Y(x) V(x) (100)

where Z(x) and Y(x) are the series impedance and shunt admittance per unit

length of line, respectively. Equations (99) and (100) are in the form con-
sidered by Schelkunoff 7

'
9

.

Since only the scalar voltage, that is, the drop in scalar poten-
tial across the wires, appears in the equations instead of the general*
ized voltage, the wave front may be considered to be a plane front. Thus,

ignoring retardation, the nominal line parameters may be taken for the

principal wave to be

L( x ) = % In 2x_li"^> (101)

C(x) = -ne/dn 2x sim<p
) (l 2)

where a is the radius of the wires.
The nominal characteristic impedance becomes,

K(x) = 120 In
2JLMn<t>o (1 03 )

Neglecting the internal impedance, the first order solution of
equations (99) and (10D) is given by Schelkunoff ', s theory 9

for the first

Vee as

V(x) = fM [Kav+M(x))cos/3x - N(x)sinjSx)
n av v

- jI {[Ka..-M(x)]sinfix - fi(x)cosj3x)

(104)

!(*) = -j-&-{N(x)cos/5x + [Kav+M(x)]sin£x}Kav (105)

+ &-{N(x)siri/3x + [Kav
-M(x)]cosftx]Kav

where Vo and Jo are the driving point voltage and current, respectively.
Also,
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Kav
= 120(ln 2l

a
sin4>o _ 1) (l 06)

Mix) = 60(Cin2fa - 2ln^ sin*fix) Uo7)

Nix) = 60iSi2/3x - In&t sin2/3x) (108)

e = 2.71828... (109)

and for the lossless case, the propagation constant '{$ is the same as the
free space constant k.

Assuming a match to exist at the /junction of the Vee's, the solu-
tion for the second Vee should be the image of that for the first Vee.

Schelkunoff and Friis ° consider the best termination to be that
which is obtained by solving for the driving point impedance of an in-
finite Vee. Considering the greatest variation in the vaqltage and current
to be over the first half wave, they determine Zo to be °» 10

Z = 120 In k-JLin<£o - 72 - jl70 (UO)
2na

The value given in equation (110) differs from that obtained by
assuming the first Vee to be terminated in its nominal characteristic
impedance Kit) at I and solving for the ratio Fo/^o- The latter solution
gives the approximation

However, equation (110) certainly is simpler to evaluate than is equation
(111), and perhaps is more accurate.

VII . THE HALLEN METHOD

Since the scalar potential is given by the integration of the
charge density around the rhombus, equations (82) and (98) may be inte-
grated into equation (44), the equation of continuity of potential. Then,

substituting for the scalar potential in either equation (81) or (97) and
converting to arc length coordinates, the differential equations for the

rhombus reduce to

I£ V (W-J + k
2
A) = % Zfl (112)

Equation (112) is the basic equation for the Hallen method of iteration5 .

Theoretically, the solution af equation (112) should give a more
accurate expression for the current than that given by equation (105).

This follows from the fact that even though the solution of equation (112)

is also a solution of equations (99) and (10D) , the Hallen method of iter-

ation alter converting into an integral equation, does not neglect the
effects of radiation. But in the Schelkunoff method, the effects of
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radiation are neglected in the line parameters given by equations (101),
(102), and (10:3). These parameters are actually compiiex and are functions
of the current and charge distributions. However, from a practical point
of view, it hardly seems worthwhile to carry through the solution by the
Hallen method because of its complexity.

For example, after neglecting the internal impedance, equation (113
along wire one becomes.

4tt(~- +k 2
) (Alt -A12 <cos2(t) -Als+A 14 cos2(fo) =

as
s s^n 22^al(a)[^lr^^- Lin*)] da

+ cos2d^[f l(a)e"(r12 )da - J l(a)e"( ri A ) da]
—& L

+ (s+l)sin 22&fJ(o+l)l(a)[^Jki-±) - elLr^)] da
I

where the subscripts on A indicate the tangential components at wire one
due to the various wires, the subscripts on r indicate the distances be-

tween positions on wire one and positions on the various wires, and tne

primes indicate differentiations with respect to the arguement.
Hence, even though from physical symmetry, the four equations

should be reducible to two equations, one for the first Vee and one for

the second Vee, the resulting pair of simultaneous integral equations are

still quite unwieldy. Thus, the most accurate solution for the current
distribution that seems practical is that given by Schelkunof

f
' s theory.

VIII. CURRENT ALONG LEGS OF RHOMBUS

The integral equations corresponding to equations (99) and (100)

are given by Schelkunof f as ,

V(x) = Vo(x) - f&ig)l{{)coshy{x?g)d£ + J^/oT^f )F(£)stnA(*-£)7 %
U)

m

I(x) = I (x) + jlSoZ^i^li^sxnhyix-^dZ - gYX
(^)v(^)coshy(x-^)d^ (115)

where Z(x) , Y(x) , K(x) and ^(x) are determined from equations (101),

(102), (10:3) and (106), respectively, and where

fix) = Z(x)-Znn ,
(116)av

av

with

Y\x) = Y(x)-Ynn (H7)

* = ^U„£JUiM> _i] (us)av tt a

Y = Z /K 2 (H9)av av' ^av v
'

y
2 = Y Z (120)

'
l av^av v '
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The voltage and current V (x) and Io(x) represent the solution of

the uniform line whose line parameters are the average values indicated
above. That is,

Vo(x) = Vocoshyx - KayI sinhyx (12l)

Io(x) = - jk sinhyx + I coshyx (122)
aav

by
The first order solution is given substituting from equations

(121) and ( 122) into equations (114) and (115). The accuracy of the re-

sulting solution depends upon the degree of nonunifoMRty of the line. In
equations (10:4), (105), and (111), the average line was taken for the en-

tire Vee. However, more accurate results are obtained by breaking the

rhombic line into intervals. Hence, equation (110!) is obtained by con-

sidering only the first half wave length, and by assuming the ratio of
the voltage to the current at x— k/2 to be given by the nominal charact-

eristic impedance K±. s K(k/2) of equation (103).

Within the interval < x < k/2 , the first order solution for the

current is,

l(x)/l ~ [coshyx - £o

—

sinhyx] - ft
(*) [coshyx + jM-sinhyx]

Aiav Ai-av £iov

_ j tklA[ZQ_coshyx + sinhyx] (123)

"
}

Z = 120 ln k p n(h - 292 - jl70 (124)

Kav = 120 ln ksa
tn& - 120 (125)

M1 (x)/60 = j2£S
x lnZj£sinh2y€d£ (126)

Nx (x)/eo = - 2fi&ln2££ eosh2ygd£ (127)
k

Substituting a + 776 = y into equations (126) and (127), expand-

ing and noting that

sinh2&£ * 0, cosh2ag * 1 (128)

the coefficients Mi (x) and Ni(x) become approximately

M+(x) = Cin2fe - 2ln2-j* sin2 ySx (129)

60

*(*) = SiZfe - ln
2-^ sinZfix (130)

60 k

The significance of the various terms in equation (123) may be ob-

tained by permitting ^iav to become very nearly equal to Z . fhus, in such
a case,
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l(x)/l Q * e-y* - hk*)+jN\{x) eyx ( 131 )

and it is seen that the first bracket represents the outward travelling
wave, and that the remaining terms represent a reflected wave of varying
phase which is continuously being generated by the voltage because of the
nonuniformity of the line, or because of the variable Characteristic im-
pedance of the line.

Within the second interval, k/2 < x < I , equations (121) and (122)
become,

V (x) = V(\/&)coshy(x-k/2) - K^v l(k/2)sinhy(x-k/2) (132)

Io(x) = - V(k/2)/K2av sinhy(x-k/2) + l(k/2) coshy(x-k/2) (133)
with

K*av
= 120(ln2lsa

in(fo - l) + 120 -^— In 2l/k (134)
21 —k

and with similar expressions for the series impedance per unit length,
that is,

Z(x) — jco/jl/tt ln(2xsin4> /a) (135)

Zov(x) = jco/x/Aln 2lsin<t> /a - l) + 120 ^L_ In 21 /k (136)
2 I —k

Recalling that the ratio of the voltage to the current at x-k/2
was taken to be approximately equivalent to the norminal characteristic
impedance Ki at that point, upon substituting into equations (114) and

(1,15), expanding and carrying out the integrations, the equation for the

current within the second interval becomes,

l(x)/l(k/2) = [cosb.y(x-k/2) - K±/K2 .av sxnhy(x-k/2)}

_ lkisl[ coshy (x^2) +. Jk.
sinh (x _k/2 )} (137)

K*av "2 bv

_ j tLJjL)[JjL-cos hy(x-k/2) + sinhy(x-k/2)]
K*av K*av

M2 (x) = M1 (x) - Mx ,(k/2) - 120 sin*£x (-f- In 2l/k) (138)
21 —k

N2 .(x) = N± (x) - N± .(k/2) - 60 sin2£x (•-£— In 2l/k) (139)
21 —k

with

Since
M2 (k/2) = N2 .(k/2) = (140)

equation (137) yields the required continuity in the current from the

first interval to the second interval.

The preceding procedure may be repeated for the second Vee. How-

ever, the coefficients become somewhat more complicated.
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Again dividing the Vee into two intervals with the point of division hie-

ing a half wave length from the terminals, and assuming that the ratio of
the voltage to the current is approximately equal to the nominal charact-
eristic impedance at the junction of the Vee' s and at 21-K/9 , and taking

'av

with

V (x) = V(l)coshy(x-l) - K3avl(l)sinhy(x-l) {141)

Io(x) = - ILL) sinhy(x-L) + l(l) coshy(x-L ) (142)

'

K*av ~ Kzav' %2 ~ I 20 l" 2lsin<t>o/a (143)

substituting into equations (114) and (115), one obtains for the interval
I < x < k/2 ,

I(x)/I(l) = [coshy(x-l) - K2 /K2av stnhy(x-l)]

- Ms (x)/K2av [coshy(x-l) + K2 /K2av sinhy(x-l)) (144)

- jN3 (x)/K2av [K2 /K2ay coshy(x-l) + stnhy(x-l)]

wi th

M3 (x) =60{sin2pl [Si2(il - Si2fi(2l-x)] + cos2@l [am— Ci2B((2l-x))]

+ cos2fi(x-l) ln
2-±=* - J±- ln

2
-\ sin 2p(x-l)} (143)

I 21 —\ \

NQ (x) = 60{cos2{5l[Si2/Sl - Si2[i(2l-x)] - sin2/3l[Ci2lfil - Cx2f>(2l-X )'\

- sin2/3(x-l) Ln
2-^-* - /L Ln

2-L sin2/3(x-l)} (146)
I 21 —A. A.

As before,

Ms (l) = N 3 (L) = (147)

and the equations yield the continuity, of the current at the junction.

For the fourth interval, 21-K/2 < % < 21, choose
(149)

V (x) = V(2L-K/2) coshy(x-2l+\/2) - KAavl(2l-k/2) sinhy(x-2l+k/2)

Io ( x ) = _ V(2 L-*S2hinhy(xJ2l+k/2) + l(2l-k/2) coshy(2l-\/2) (149)

K*av

with

^av = hav K*
= ^ (150)

and substitute into the integral equations. The current for the fourth





interval becomes,

l(x)/l(2l-\/2) = [coshy(x-2-+k/2) - Kx /Kx ,n„ sinhy(x-2l+k/2)]

22

av

- £*&[coshy(x~2l+k/2) + Kx /KXav sinhy(x-2l*k/2)] (151)

- i %^[*l/Jfiov coshy(x-2l+k/2) + sinhy(x-2l+k/2)]
*1 XXV

with
MAx) = Mr(2l-X ) - Mxik/2) (152)

N 4 (x) = N± (2l-x) - N± (k/2) (153)

and a check shows it to be continuous at x - 21 -k/2 .

IX. CONCLUSION

In conclusion, a summary of the steps recommended for approximately
determining the driving point impedance and the current distribution for
a rhombic antenna will be given.

1. Assume an unattenuated travelling vave of current and compute the nominal radiation

impedance by the generalized circuit method. Curves for this impedance are given at

beginning of this paper.

2. Assume the radiation impedance is uniformly distributed around the rhombus. This is

equivalent to using the spatial root mean square value of an exponentially damped

travelling uave for the unattenuated uxive used in deriving the radiation impedance.

3. Compute the terminal impedance,

To • = % + jlo = 12 logj£ff& -202- jl70

4. Compute the attenuation constant

a=(^Rl+R
f
)/(4R l)

5. Compute the square of the normalized current amplitude through the terminal impedance

fl = e-k*

tf. Compute the mean square of the normalized current amplitude,

A=(l -f?)/4al

7. Compute the db loss in the terminal impedance,

T = 10 logLvV - fc)'
1

8 Compute the driving point impedance,

Zin =Ri'+ J Oflr + Jo% !

)
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9. For < x < \J2 , the current may be plotted from equation (123) with
the parameters given by equations (124), (125), (129), and (130).

10. For k/2 < x < I, the current may be plotted from equations(137) with
the parameters given by equations (103), (136), (138)^ and (139).

11. Tor I < x < 21 - X/2 , the current may be plotted from equation (144)
with the parameters given by equations (136), (143Y, (145)< andQ-46)

.

12. For 21 - \/2 < x £ 2l, the current may be plotted from equation (15lf)

with the parameters given by equations (103), (125), (129), (130),
(152), and (153).

A graph showing the currrnt distribution for a typical single wire
rhombic antenna is given at the beginning of thia paper. For a wave angle
of 10 , this antenna has a theoretical directivity of 17.25 db at a freq-
uency of 14.87 mcps. The termination loss is 2.66 db, and the power gain
over a half wave dipole in the same position is 12.39 db.

Curve A for the currrnt is for the hypothesis that the current may
be approximated sufficiently well by an exponentially damped travelling
wave, when the radiated power is being confuted. Curve B is for steps 10
to 13 above, assuming attenuation in the nonuniform transmission line
theory with the line broken into four intervals.

It is a remarkable coincidence that the current at the terminal im-

pedance along curve A is 0.6757l , whereas the current at the terminal

impedance along curve B is 0.675Hol-0°40
f

, an almost unbelievable coin-
cidence. However, the input power computed by using the current and nom-

inal characteristic impedance at a half wave length from the driving p tint

terminals, as suggested by Schelkunoff abd Friis for multiple wire rhom-

bic antennas, is 0.43 db above that computed at the driving point terminals.
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NOTES
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