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ABSTRACT 

Modeling and simulation of crack initiation and 

propagation in solid rocket propellant materials were 

conducted using both the macromechanics approach and the 

micro/macromechanics approach. Due to their composition, 

the solid rocket propellant can be construed as particle 

reinforced composites. 

The macromechanics approach entailed a numerical 

simulation of a finite ·element model to predict the crack 

behavior based on the damage initiation, growth, and local 

·saturation. Its results were then compared to the 

experimental data. In the simulation, it was assumed that a 

crack.forms when a damage is saturated in a localized zone. 

The results from the simulation were quite comparable to the 

experimental results, validating the method of predicting 

crack initiation, growth, and arrest using the concept of 

damage growth and saturation. 

The second approach involved using a simplified 

micromechanical model and the damage mechanics being applied 

at the micromechanics level and the finite element analysis 

being done subsequently at the macromechanics level. In 

using this approach, the damage modes such as matrix 

cracking, interface debonding and particle cracking were 

explainable in an explicit, fundamental manner. Several 

simulations were conducted using this approach including the 

cases of non-uniform particle distribution. The predicted 

results comapred well with the experimental data. 
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I. INTRODUCTION 

Because of their light weight and stability, in the 

last few decades, solid propellants have replaced liquid 

fuel as the primary means of projecting rockets and 

missiles. Most missiles in use today such as the Tomahawk 

and the Harpoon employ solid propellants. Missiles like 

these, because of the nature of their use, require high 

level of accuracy and reliability. This means all systems 

onboard the missile are required to operate exactly to he 

designed specifications including the propulsion system. 

Solid propellants, despite their advantages, have few 

problem areas. One of these areas is the initiation of 

damage and cracks prior to and during operation. Microflaws 

over time tend to soften the mechanical behavior and 

increase the potential for the formation of a macroscopic 

crack. When this happens, the increased burning surface 

area as a result of the crack maybe enough to over­

pressurize and thereby cause failure in the motor casing 

[Cornwell & Schapery ( 1975)]. Even if failure in the 

casing may not occur, the formation of the crack can cause 

uneven burning of the propellant leading to decrease in 

range of the missile. 

The composition of solid propellants is such that it 

can be construed as a particle reinforced composite. More 

specifically, these composites are made up of a mixture of 

relatively soft, ductile matrix material, reinforced by 

randomly scattered, stiff particles. The advantages of 

these composites are increase in elastic modulus, increased 

strength, and/or increased toughness, all of which in 

varying degrees. [Ravichandran & Liu (1994)] The drawback 
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to these composites is that unlike the increase in stiffness 

or toughness, the benefit of the increase in strength is 

quite limited. [Johnson (1987)] As a result, it is 

critical to understand and to predict the failure mechanisms 

and the failure modes in the particle reinforced composites. 

To understand the failure modes however, the 

strengthening factors must first be considered. Extensive 

studies by Bretchet (1990) revealed that the strength of the 

combined, composite material depends not only on the 

inherent material properties of the reinforcing particles 

but also on the size and the aspect ratio of these 

particles. They've concluded that the degree of influence 

of these factors depend on the Weibull modulus of the 

particles and the influence of these factors are greater in 

ductile materials as opposed to brittle materials. Similar 

study done by Shen (1993) in the effects of particle 

reinforcements to the effective elastic modulus of the 

composite material, showed that the cross-sectional shape 

and the spatial distribution of the reinforcing phase 

greatly influenced the elastic.modulus. More specifically, 

it was found that in testing different shapes of reinforcing 

agents (of aspect ratio approximately equal to unity), the 

effective Young's modulus (at a fixed concentration of the 

phase) increased in the following order: double cone --> 

sphere --> Octagon --> unit cylinder. [Shen, Finot, 

Needleman, & Suresh (1993)] As for the distribution, it was 

found that an even distribution of the reinforcing agent 

throughout the composite material gave the greatest rise to 

the elastic modulus. 
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The objectives for this research were to develop a 

finite element model to accurately describe the experimental 

samples of particulate composites undergoing uniaxial 

loading and to develop simulation techniques to investigate 

damage, crack initiation, and growth in particulate 

composites. By providing an accurate method of predicting 

the crack initiation and propagation, the need for costly 

and time consuming experiments could be decreased. Also, 

parameters such as the loading condition and the material 

property can be changed easily for a computer simulation 

than for an actual experiment. Furthermore, these 

information help engineers and scientists understand the 

mechanisms of fracture in particle composites. 
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II. BACKGROUND LITERATURE REVIEW 

In this study, two methods are used to model the crack 

initiation and growth. Although the specific procedure and 

the methods used in this study are unique, there have been 

similar studies done in the past that agree in principle and 

approach. In determining the effective properties of 

heterogeneous materials, Hashin ( 1962) utilizes variation 

theorems of the theory of elasticity to achieve upper and 

lower bounds for the Young's modulus. In his work, Hashin 

summarizes that in determining the elastic moduli of 

heterogeneous materials, they can be described by an 

elastic, isotropic matrix whose moduli are known. These 

isotropic particles are embedded with known homogenous 

elastic properties. Assuming also, that the volume fraction 

of the particles are evenly distributed and as a result, be 

regarded as quasi-homogenous and quasi-isotropic, the 

problem becomes finding the elastic moduli of this combined 

material. Specifically, his method derives the effective 

moduli involving only the stresses or strains inside the 

inclusions. This is done by considering the change in 

strain energy in a loaded homogenous body due to the 

inclusion of nonhomoeneities. He begins his derivation by 

applying the Hooke's law to the strain energy equation for 

an elastic, homogenous, isotropic material and then 

splitting the stress and strain tensors into isotropic and 

deviatoric parts, as shown in Equation (1). 

( 

(0)2 (0) (O)J 

U (a)=_!_ J Q__+ Su Su dV 
0 2 (VJ 9K 2G 

m m 

( 1) 
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where 

(j (0) - (j (0) 
- kk , 

and Km is the bulk modulus, Gm is the shear modulus, cr !i is 

the stress tensor, and 3 ij is the Kronecker delta. Then, 

after including N particles into the material and applying 

surface tractions (tensile load in the vertical direction & 

compressive load in the horizontal direction), the strain 

energy stored in the composite body can be expressed by 

n=N 

u(cr) = Uo +oU(cr) = Uo + Loun (cr) ( 2) 
n=l 

where 

( 3) 

where 

e(O) = E (0) - _31 E (0)0 .. 
IJ IJ IJ 

The notations with subscript of "0" refers to the same given 

body but with no inclusions and under the same load. Eij 

denotes the strain tensor, Vn denotes the volume of the nth 

inclusion, and the subscript "p" denotes the particle 

material and the corresponding stresses and strains are 

written without superscripts. By the above equations 

therefore, if the stresses and strains in the inclusions are 

known, then u(cr) can be determined. Now, assuming the 
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tractions loaded on the boundary surface is derived from a 

uniform stress system, u<cr) can then be expressed by 

Equation (2} where the stresses are constant and the moduli 

K"' and G"' can be replaced by the effective moduli K" and 

G" . Therefore, 

u<cr) = _!_ !I__+ sij sij v 
( 

(0)
2 

(0) (0) J 
2 9K" 2G" 

( 4} 

where the explanation for various quantities are as 

previously given. Knowing u<cr) then, the above equation can 

then be expressed in terms of the effective moduli. [Hashin 

(1962}] 

The damage modes of a particle reinforced composite are 

particle-matrix debonding called dewetting, matrix damage 

such as cavity formation, and particle cracking. If the 

difference in strength is significantly large between the 

matrix material and the reinforcing particles, the mode of 

damage or failure is usually dewetting or cavity formation 

in the matrix or both. Studies done by Schapery( 1987}, 

Anderson and Farris (1988}, and Ravichandran and Liu (1995} 

have shown that these damages cause volume dilatation 

resulting in a nonlinear stress-strain behavior. In other 

words, they investigated the nonlinear constitutive response 

of the damaged particulate composite with the change in 

volume dilatation as a weighing factor. Micromechanical 

models were considered to describe the nonlinear stress-

strain behavior with damage evolution in particle reinforced 

composites. These studies also included the failure modes, 
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dewetting and matrix cracking. Graphic representation of 

these failure modes are included in Figure 1. 
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Figure 1. Various Failure Modes 
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The 

effective 

application of micromechanics 

properties and failure 

in predicting the 

characteristics of 

composite materials is not unique to the present study. 

There in fact, exists several well-known models that have 

been developed, and Christensen brings these models together 

in a critical evaluation in regard to their range of 

applicability and their accuracy. The three micromechanics 

models which he considers are the Differential Method 

[Roscoe (1952)], the Generalized Self Consistent Method 

[Christensen and Lo (1979)], and the Mori-Tanaka Method 

[Benveniste (1987)]. His evaluation of the above methods is 

on a material with poly-dispersed spherical inclusions whose 

limiting case is specified by those orientations that allow 

complete packing with v.f. --> 1. There are several 

advantages for considering models that permit v. f. --> 1. 

First is that they are well suited for theoretical 

processing. As a result, they are widely used in 

theoretical studies. Second is that they model the actual, 

poly-disperse particle composites quite accurately, and the 

third is that they are an excellent approximations to the 

mono-disperse case for concentrations that are not too 

large. Christensen begins his evaluation with the 

Differential Method. The concept behind this method is to 

view the whole composite as a sequence of dilute suspensions 

and applying the below equations for the effective shear and 

bulk moduli (of an isotropic composite with non-interacting 

spherical inclusions) as each inclusion is added one at a 

time. 
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15(1- V m {:: - ~ 
_E._=l+ c 
flm 7-5vm +2(4-5vm) fli 

(5) 

flm 

and 

(6) 

where subscripts i and m denote inclusion and matrix, v is 

the Poisson's ratio, ~ and k denote effective shear and bulk 

modulus respectively, and c denotes the volume fraction of 

the particles. Therefore, after calculating J1 and k with 

one inclusion, that suspension is considered as a homogenous 

material with those properties, to which the second 

inclusion is added, and the calculation is done again. The 

process continues until the condition of full packing of the 

inclusion is reached. The final result of this differential 

process is the set of governing equations: 

and 

dp + 15(1- v)(p- fli) 
0 

de (1- e{7- 5v+ 2(4- 5v)~] 

dk (k- ki) 0 - + ---=--.:.__--= 

de (1-e)[l+ kj ~k l 
k+-p 

3 

where effective Poisson's ratio v is equal to 

11 
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3k- 2j..L 
v =----'--

2(3k + !J.) 
( 9) 

The boundary conditions for the above equations are 

at c= 0: !J. = !J. m (10) 

k=k m 

at c=l: !J.=!J.; 

The second method Christensen describes is the Generalized 

Self Consistent Method. The concept behind this method is 

to solve the equations derived from the model where a 

spherical inclusion is placed concentrically inside a matrix 

material which in turn are embedded in an effective medium 

with the properties of interest, !J. and k. The model is 

mathematically represented by a quadratic equation, 

A(J:_) 
2 

+ 2B(J:_) + C = 0 
IJ.m IJ.m 

(11) 

where the coefficients A, B, and C are equal to complex and 

rather tedious equations involving Poisson's ratio of the 

matrix and shear moduli of the inclusions and the matrix. 

The final result of the above quadratic equation is a closed 

form solution for the effective modulus, 
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(12) 

The final micromechanics analysis Christensen presents is 

the Mori-Tanaka Method. The Mori-Tanaka Method is 

significantly different from the first two models in that 

where as the first two methods concede physical 

descriptions, the Mori-Tanaka Method relies on mathematical 

manipulation of the field variables along with special 

concepts of eigenstrain and backstress. For the development 

of this method, Christensen cites Benveniste ( 1987) who 

developed a simplified derivation of the method. (However, 

even the simplified method is fairly extensive.) Since the 

derivation is quite involved, just the final result will be 

presented. The manipulation of Mori-Tanaka Method yields, 

k. -k 
1+(1-c) I m 

k +,iJlm 
m 3 k 

m 

(13) 

Having presented the details of the three micromechanics 

models, Christensen then evaluates the three methods in 

terms of their compatibility to the experimental results. 

The conclusion he makes based on the evaluation is that the 

Generalized Self Consistent Method is the most accurate of 

the three methods in determining the effective properties of 

the composite material, especially in the limiting case of a 

concentrated, poly-disperse suspension of rigid particles. 
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The other two models gave 

behavior in the limiting case. 
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inaccurate and unrealistic 

[Christensen (1989)] 



III. PRE-ANALYSIS PROCEDURE AND MODELING 

A. PROCEDURE 

Initially, a 2-D Finite Element Model was developed 

using the IDEAS program produced by SDRC. Once the models 

were generated, the mesh and nodal connectivity information 

was converted to an "ASCII" universal file and extracted 

from IDEAS. This information was read into a locally 

developed, general purpose FORTRAN finite element analysis 

program which could be set up in various ways to provide 

desired information such as effective stress, displacement, 

principle stress, micro-stresses etc. In executing this 

step, however, some modifications had to be made to the 

input data. Specifically, the universal output file from 

the IDEAS program had to be fitted into a format which the 

FORTRAN program could understand. This was done using a 

simple FORTRAN code which discarded unnecessary information 

from the universal file and place the remaining data in a 

suitable form. Some problems that were encountered during 

this process included: ( 1) the local nodal mapping which 

IDEAS used was in the direction opposite to the FORTRAN FEA 

program and (2) the rotation constraints had to be left at a 

value of "0" (i.e. no constraint) for the FEA program to 

work. Identifying and solving these compatibility problems 

between the IDEAS program and the FORTRAN FEA program posed 

significant obstacles in the progress of the research. Once 

the mesh information was successfully entered into the 

FORTRAN program, the rest of the input data such as the 

boundary conditions, applied loads, and material properties 
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were entered. The details of determining these input 

conditions is discussed in the next section. 

B. FINITE ELEMENT MODELING 

The driving condition for the FEM models in terms of 

their physical description was the experimental samples. 

The dimensions of the experimental samples, and hence, the 

FEM models, are shown in Figures 2 and 3. As can be seen, 

two samples were experimented. One was a 3 in. by 2.5 in. 

sample with a .5 in. diameter hole, and the other was a 3 

in. by 2.5 in. sample with a .25 in. diameter hole. These 

samples were placed in an uniaxial loading machine and were 

loaded to . 2 in/ in strain. To model the experiment, a 

quarter section of the experimental samples was used, as can 

be seen in the figures. As for the finite element mesh, due 

to the constraints in the computer memory, there were 

limitations in number of nodes and elements that could be 

used. For both of the sample models, 750 elements and 806 

nodes were used. As was found later during the 

computational phase however, the degree of freedom of the 

mesh was still too large for the computer to handle. 

Therefore, further manipulation of the mesh was necessary. 

In the IDEAS program, there exists several functions which 

sequentialize the nodes in a way that decreases the 

bandwidth of the global matrix used in the calculations. 

After several different variations of nodal sequencing, it 

was found that sweeping the mesh through y, then x-axis and 

subsequently applying the Sloan profile reduction scheme was 

optimum. By doing this, the bandwidth decreased from 58 to 

27 which was within the capability of the computer. The 
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Figure 2. Finite Element Model of Larger Hole Sample 
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1. 25 in. 

,, 
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1. 38 in. 

Figure 3. Finite Element Model of Smaller Hole Sample 
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next step in the modeling process 

constrains and boundary conditions. 

was to apply proper 

Since the FEM model 

represented a quarter section of the actual experimental 

sample, in order to accurately describe the experimental 

conditions, the left vertical edge was constrained in the x­

direction, and the bottom horizontal edge was constrained in 

the y-direction, with the left corner point being 

constrained in both x and y-directions. The load was placed 

uniformly on the top vertical edge of the model. This is 

shown graphically in Figure 4. As for determining the 

behavior of the material, two conditions were considered, 

the geometric linear and the nonlinear. Initial studies 

indicated that the results from the nonlinear model was more 

realistic in terms of crack size for a given load and the 

shape of the damage zone near a stress concentration area. 
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Figure 4. FE Model with Constraints and Loads Shown 
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IV. MACROMECHANICS MODELING AND ANALYSIS 

A. MODELING AND APPROACH 

In order to simulate the experiment conducted for the 

study of damage/crack initiation and propagation of a 

particle reinforced composite material, the finite element 

method was used. The FEM used in the study was dictated by 

the nonlinear elastic behavior of the composite material. 

Figure 5 shows a typical stress-strain plot of a particle 

reinforced composite material having undergone a uniaxial, 

tensile test. The figure also shows the volume dilatation 

of the material as a function of strain. The figure shows 

that the stress-strain curve begins linearly, and as the 

volume dilatation begins to increase, it starts to behave 

nonlinearly. After the continuous nonlinear behavior, the 

stress-strain curve reaches the peak point and the failure 

of the specimen occurs. The graph also shows the monotonic 

increase in volume dilatation until the peak point of stress 

value. This increase in volume dilatation results from the 

formation of cavities in the composite material during its 

continuous deformation. Therefore, the nonlinear behavior 

of the stress-strain curve can be attributed to these micro­

damages in the material such as formation of cavities. In 

this regard therefore, the starting point on the stress­

strain curve where nonlinearity begins to take effect is the 

point at which the damage or crack initiates. On the same 

token, the peak stress point on the curve represents the 

damage saturation state. These two points are marked in 

Figure 5. 
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The nonlinear stress-strain curve is used in the finite 

element analysis in order to model the damage initiation, 

growth, and saturation in the composite material. The curve 

was discretized into a piecewise linear curve which was then 

applied to the finite element analysis. The actual stress­

strain curve used in the numerical analysis is shown in 

Figure 6. In extending the uniaxial stress information 

given by the stress-strain curve to the multiaxial state of 

stress, which is the case in the experiment, the von Mises 

equivalent stress is utilized as shown below. 

(14) 

When the equivalent stress reaches the peak stress value at 

a local area, the area is considered to have reached the 

damage saturation point. As a result, when this occurs, the 

damaged material cannot sustain any additional load. 

Therefore, majority of the load is transferred away from the 

damaged zone to the adjacent, undamaged or partially damaged 

zones. 

B. ANALYSIS OF THE EXPERIMENTAL DATA 

Figure 7 shows the X-ray images of the crack 

propagation in a particulate composite specimen under mode I 

condition, uniaxial, tensile load along the y-axis. In the 

image, the crack is represented by the black color where as 

the specimen irt the undamaged areas is shown in color white. 

The dark cluster of circular spots indicate the damage zone. 

The lighter cluster inside the cluster which is most 
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(a) (b) 

(c) 

Figure 7. X-ray Pictures of Progressive Crack Propagation 

25 



clear in the second image represent a more damaged zone. As 

is visible in Figure 7 (a), the damage zone develops and 

grows for the most part, in the direction of the crack. As 

the load increases, the damage zone grows and spreads in the 

vertical direction as seen in Figure 7 (b). Notice the 

concentrated damage zone just ahead of the crack tip 

indicated by a lighter shade as the crack tip becomes blunt. 

Once the damage becomes saturated in front of the blunt 

crack tip, the crack propagates further protruding its tip 

as sharply as before prior to the blunting. Therefore, as 

it is seen clearly from the images, when the damage becomes 

saturated in a local region, the crack forms in the area. 

This again can be attributed to the coalescing of the micro­

damages in the damage zone and forming a macro size crack. 

Hence, in the analysis of the FEM model, this reasoning was 

followed in determining the formation of the crack. In the 

analysis, the particle reinforced composite was assumed to 

behave elastically, In other words, the viscous effect was 

neglected, and the strain rate effect was not taken into 

account. Including these effects would be the logical next 

step in the follow on studies. 
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V. MICRO/MACROMECHANICS MODELING AND ANALYSIS 

A. SUMMARY OF METHOD 

The developed micro/macromechanical method utilizes a 

micro-level analysis in conjunction with a macro-level 

analysis, hence the name. The micro-level analysis includes 

computation of stresses and strains in the constituent 

materials, namely the reinforcing particulates and the 

binding matrix. The macro-level analysis involves 

structural analysis of the composite as a whole. As will be 

revealed, the two analyses were performed at different 

scales within the model but maintained interaction with one 

another. A graphical representation of the interaction 

between the two analyses is shown in Figure 8. The 

macromechanical analysis utilizes the finite element method 

for structural analysis of a composite in a way in which the 

composite structure can be analyzed generically. In other 

words, the analysis was conducted so that the solution can 

be in multiple forms depending on the information needed. 

In the micromechanical analysis, a simplified unit-cell 

model [Aboudi ( 1987,1989); Kwon ( 1993): Kwon and Berner 

(1994,1995)] is used. Also, on the unit-cell model, a 

damage mechanics [Kachanov (9172,1980); Krajcinovic (1983); 

Talreja (1985)] is applied. The simplified unit-cell model 

calculates stresses and strains at the constituent 

materials, and the damage mechanics is applied to the 

micromechanical model based on the found, micro-level 

stresses and strains. One advantage of this approach is 

that the damage modes and mechanisms can be described 

discriminately, in terms of the constituent materials. As a 
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result, the damage modes can be specified as matrix 

cracking, particle cracking, or particle/matrix debonding. 

For the sake of emphasizing its exactness and the degree to 

which the analysis goes in depth, it is of interest to 

describe the interaction between the micromechanical and 

macromechanical analyses in detail. The micromechanical 

analysis computes the smeared composite material properties 

based on the constituent material properties and their 

damage states. This computation is conducted at every 

integration points of the macro-level, finite element model. 

Therefore, the finite element analysis can be undertaken as 

usual using the smeared composite material properties at the 

given integration points. After the macromechanical 

analysis is performed, the smeared stresses and strains at 

the composite level are then applied to the micromechanical 

model so that micro-level stresses and strains can be 

computed. This computation is performed at the same 

integration points as before. Therefore, as a result of 

fixing the points at which the numerical calculations are 

conducted, the interaction between the micro-level analysis 

and the macro-level analysis occurs at the integration 

points of the finite element model. And, the 

macromechanical model represents the material around each 

integration point. These domains around the integration 

points are dependent of the size of the finite element. 

Therefore, the damage state computed from the 

micromechanical analysis also indicates average damage of 

the area surrounding each integration point. 

It should be apparent by now then, that by using the 

micromchanical approach, a particle reinforced composite 

with non-uniform distribution can easily be modeled. 
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B. UNIT-CELL MICROMECHANICAL MODEL 

The micromechanical model is based on a unit cell 

structure. A unit cell consisting of a particle and the 

surrounding matrix material is modeled as shown in Figure 9. 

The figure shows a two-dimensional model. This is an 

adoption of the three-dimensional model which was studied by 

Kwon and Berner. ( 1994,1995) Due to symmetry, a quarter 

section of the full unit-cell model is considered, and 

that's what is shown in the figure. The quarter section of 

the unit-cell consists of four subcells of which the bottom 

left cell represents the particle inclusion and the rest of 

the surrounding three subcells represent the matrix 

material. By this model, it is assumed that the average 

deformation of the unit cell represents that of the 

particulate composite at each location. 

The micromechanical model has two objectives: One is 

to compute the smeared composite material properties from 

particle and matrix material properties under an intact or a 

damaged state. The other is to describe damage modes and 

states at the specific, constituent material level. The 

development of the micromechanical model is described below. 

As stated before, this two-dimensional model is derived from 

the three-dimensional model which was developed previously. 

Each subcell has a constitutive equation expressed as 

CL ECL CL 

(j ij = ijkl 8 kl 
(15) 

where i,j,k,l = 1,2 and a = a,b,c,d Here, 1 and 2 denote 

coordinate axes while a,b,c and d indicate subcells. 
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Subcell a represents the particle inclusion and the others 

represent the surrounding matrix material. a d a cr iJ an E ki are 

the average stresses and strains of the subcell a. The 

unit cell stresses and strains are obtained from the volume 

average of the subcell stresses and strains. That is, 

(16) 

(17) 

where cr iJ and E iJ are the unit cell stresses and strains 

which eventually represent the smeared stresses and strains 

of the particulate composite. If there is no void present, 

the subcell volume fractions can be computed from the 

particle volume fraction bases on Figure 8. 

vb = vc = JVPc1- JVP) 

vd = (1- JVP)2 

in which VP is the particle volume fraction. 

(18) 

One of the objectives of the micromechanical model is 

to find the relation between the unit cell stresses and 

strains (i.e. the constitutive relation at the composite 

level) using the material information at the subcell level. 

To this end, stress and strain compatibility equations are 

applied. First of all, the stress compatibility is 

considered at the subcell interfaces as given below. 
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a b 
O'u=O'u (19) 

c d 
O'u=O'u 

a c 
0' 22 = 0' 22 

a b c b 
0' 12 = 0' 12 = 0' 12 = 0' 12 

Strain compatibility is assumed to be 

(20) 

Substitution of Equation ( 15) into the equations in ( 19) 

yields the stress compatibility equations in terms of 

subcell strains. Therefore, the equations in (19) become 

E
a a Eb b 
ukls kl = 11kls kl 

E
c c Ed d 
ukls kl = nkls kl 

Ea a Ec c 
22kl s kl = 22kl s kl 

E
b b Ed d 
22kls kl = 22kls kl 

E
a a Eb b Ec c Ed d 
12kls kl = 12kls kl = 12kls kl = 12kls kl 

(21) 

These equations along with Equations (17) and (20) can 

relate the subcell strains to unit cell strains. That is, 

[A]{s} = {s} ( 2 2 ) 
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in which {E} is a vector consisting of subcell strains E~ 

while {E} is a vector consisting of the unit cell strains Eu 

and zeros. Solving Equation (22) results in the expression 

for the unit cell strains in terms of subcell strains. That 

is, 

(23) 

Equation ( 23) gives the explicit relationship between the 

subcell and the unit cell strains (i.e. strains at the 

constituent level, the particle and the matrix, and strains 

at the composite level.) Equation (23} is very useful for 

damage and failure evaluation at the constituent level as 

will be discussed in the later chapter. Finally, in order 

to determine the constitutive relation between the unit cell 

stresses and strains, Equation (15) is substituted into 

Equation (16). This operation yields the expression for the 

unit cell stresses in terms of the subcell strains. The 

subcell strains are replaced by unit cell strains using 

Equation (23). AS a result, the unit cell stresses become 

directly related to the unit cell strains. The relating 

constitutive expression is given in terms of subcell 

material properties E~,k and subcell volume fractions va.. 

In other words, the composite level constitutive equation is 

expressed in terms of the particle and matrix properties as 

given below. 

(24} 
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where E~ is the constitutive relation of the composite. 

C. DAMAGE MECHANICS 

Application of the damage mechanics to the constituent 

materials, the matrix and the particle inclusions, is 

necessary in order to predict the damage initiation and 

evolution until the point of failure. By this application, 

the damage modes can be prescribed fundamentally and 

discriminately as matrix cracking, particle cracking or 

particle/matrix interface debonding. The present study 

considers matrix cracking with particle inclusions that are 

almost rigid. 

For the development of the damage mechanics theory, the 

matrix material is considered. In the development, for the 

sake of simplicity, vector and matrix notations will be 

adopted instead of tensor notations. Therefore, stresses 

and strains are expressed in vector form, and the strain 

increment in the material may be written as, 

(25) 

where {dE} is the total strain increment, and the subscripts 

v and d denote the natural and damaged states, respectively. 

In short, the total strain increment consists of the strain 

increment without damage · and the strain increment as a 

result of damage. The constitutive equation for the 

undamaged material is as follows: 

{ dcr} = [ EL {dE}. (26) 
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while the incremental strain due to the damage is assumed to 

be expressed as 

' . ' .. a;_. 
{a&Jd =aA---

o{o-} 
(27) 

in which Fd is the damage potential function. The damage 

potential function varies depending on the amount of damage 

state. Thus, it can be assumed that 

(28) 

If the damage potential function is also used for the damage 

criteria, the damage state must satisfy Fd = 0. As a result, 

the Equation (28) can be written as 

dFd = { a;d } r {dcr} + { tFd } {ds} = 0 
o{v} o{s} 

(:29) 

Using Equations (25), (26) and (29), one can solve for dA as 

follows: 

where 

and 

d).,= {Q}T[EJv {de} 
{R} T (Q} + {Q} T [E]v {Q} 

{Q}= { tFd} 
8{cr} 
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{R} = {oFd} 
8{8} 

(32) 

Substitution of Equation (30) into Equation (27) and 

combining the resultant equation with Equations ( 25) and 

(26) gives 

(33) 

in which the constitutive matrix for the damaged material is 

(34) 

The damage potential function is dependent on the 

constituent material and can be rewritten as 

(35) 

in which f and g are assumed to be 

(36) 

and 

(37) 

Here, crd is the damage initiation strength of the material, 

(sd)e is the effective damage strain, and a 1 and a 2 are the 
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material constants. The material properties are determined 

from the uniaxial stress-strain curve, and the function g 

denotes the damage evolution. 
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VI. MACROMECHANICS RESULTS AND DISCUSSION 

Damage initiation, growth, and saturation were observed 

from the analysis as the load increased. Again, Figure 6 

shows the stress-strain curve of the material used in the 

study and the finite element mesh is shown in Figure 3. In 

order to simulate the experimental condition, a continuous, 

uniform strain was applied to the specimen in the modeling. 

In examining the circular hole, it was noted that the 

saturated damage zone at a lower value of the applied load 

was an elliptical shape with the major axis parallel to the 

load axis. Initially, the major diameter was much greater 

than the minor diameter. As the damage evolved, however, 

the minor diameter grew faster than the major diameter and 

the damage zone spread both in the load and crack 

directions. Figures 10, 11 and 12 shows this effect 

graphically. Figure 10 denotes the two regions in which the 

contour lines of the crack initiation and propagation are 

plotted. As can be seen from the figure, Region I denotes 

the area up to the eighth element in the x and y-directions 

which is 0.162 inches measured from the center of the hole. 

Region II denotes the area up to the twelfth element in the 

x and y-directions which is 0.308 inches from the center of 

the hole. Figure 11 is the magnified area of the Region I 

with section A denoting the area in which the crack has 

initiated. From the shape of section A, it seems as though 

the major axis of the crack is in the y-direction as opposed 

to in the x-direction which is contrary to the statement 

earlier. However, in looking at the initial crack area in 

relation to the area of the entire model, it is a very 

minute section. Therefore, Section A in Figure 11 is simply 
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showing the location of the crack formation. It is not 

intended to show the shape of the crack propagation. To 

view the actual shape and the effect of the crack 

propagating in both vertical and horizontal direction, 

Figure 12 is provided. Figure 12 is the magnified area of 

Region II, and it shows section A whose area represent the 

propagation of the crack, and as can be seen, it is in both 

the horizontal and the vertical directions. From the 

information obtained through the numerical analysis 

concerning the final crack size at the load of . 2 in/ in 

strain, the experimental crack size was compared. As seen 

in Figure 13, the specimen compared well between the 

experimental and the numerical results. The experiment 

showed cracks of .795 em (.313 in.) and .953 em (.375 in.) 

at the two sides of the hole while the numerical simulation 

resulted in crack of .820 em ( .323 in.). The predicted 

crack was between the two experimental crack sizes. In the 

simulation, a quarter of the specimen was modeled as shown 

in Figure 3 due to symmetry. However, as shown by the 

slight difference in the crack sizes between the two sides, 

the actual specimen was not quite symmetric. There are many 

possible reasons for this asymmetry such as the location of 

the hole within the nonuniform material, the shape of the 

hole, and the nonunifrom surface roughness of the hole edge. 

A nonuniform particle distribution could be another factor 

causing such an asymmetry. 

Figure 14 illustrates the simulated crack propagation 

as a function of the applied load for a specimen with an 

1.27 em (.5 in.) diameter hole. The simulation indicated 
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Figure 13. 0.25 in. Diameter Hole. Experimental with 

Predicted Results 
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that the resultant crack size increased with the increased 

applied load. Until the crack size became about 10 percent 

of the hole radius, which will be referred to as the 

critical crack size in the following discussions, the 

relationship between the applied load and the crack size was 

bilinear. At the critical cracks size, however, the 

increased loading propagated and accumulated the damage zone 

in the direction other than the crack orientation, mostly in 

the direction normal to the crack. Once there was a 

substantial increase in the load, the crack resumed 

propagation beyond the critical size in the direction of the 

crack orientation. Throughout the region, the crack 

propagation was linearly proportional to the applied load. 

The slope of the load verses the cracks size was less after 

the critical crack than the slope prior to the critical 

crack. The temporary halt of the crack propagation, shown 

as the vertical line segment in the graph, was an indication 

of the crack tip blunting process. As mentioned in the 

earlier section, this phenomena was also observed in the 

experimental study. (Refer to the second figure in Figure 

5.) Recall how the damage zone concentrated around the 

crack tip causing the crack to become blunt as shown in the 

figure by a gray, circular patch of dots at the end of the 

crack tip. 

Figure 15 is the tensile test coupon that was used to 

generate the stress-strain curve in Figure 6. The figure 

shows that the strain experienced is not uniform within the 

specimen. As shown, the specimen is divided into 

subsections A through E, positioned arbitrarily along the 

length of the coupon. The specimen was then stretched up to 

the strain value of .2 in/in. Figure 15 shows couple of 
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representative pictures of how the specimen looked as the 

specimen under went loading. The next figure, Figure 16 

shows the strain verses time at each of the subsections 

profiled against the strain of the whole length. As can be 

seen, the deformations at the various regions differed 

significantly. One of the major causes of the nonuniform 

deformations is the nonuniform particle distribution in the 

composite. The largest deformation occurs in the section CD 

where the curve is the steepest and the highest. The lowest 

position of the curve DE in the graph indicate the least 

amount of deformation. This can be interpreted as the 

region having most amount of particle inclusions. The 

overall deformation is indicated by the curve AE. As 

expected, the overall curve is nested between the subsection 

curves. Finally, all the curves in the graph follows a 

linear path in the deformation process except curve CD. 

Curve CD initially follows a path that has a slope similar 

to those of other curves until about two seconds into the 

deformation process. All of a sudden, the slope sharply 

increases indicating a greater amount of deformation per 

given time. As can be seen in Figure 11 , section CD 

represents the small section in the middle of the sample. 

When the load is applied, this is the section where damage 

usually occurs. As a result, after a point in which the 

damage develops, the deformation of the material becomes 

more rapid and greater in magnitude. 

Clearly, due to the behavior observed in the sample 

material, 

modeling. 

a nonuniform property should be assumed in the 

Therefore, for the specimen with a .635 ern (.25 

in.) diameter hole, this was the case. In the next phase of 

the study, it was hypothesized that although the overall 
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stress-strain curve remains the same, there can exist many, 

different variations of particle distribution all having the 

same overall stress-strain curve. In the modeling, two 

different variations of 65 percent particle volume fraction 

(PVF} were used. The subdivisions of the model consisted of 

two regions divided along the line parallel to the 

horizontal axis whose areas are approximately the same. 

Specifically, the first variation consisted of .55 particle 

volume fraction in the lower half (the half where the hole 

resides} with . 7 5 particle volume fraction in the upper 

half. In the second variation, the . 75 particle volume 

fraction was placed in the lower half. The overall particle 

volume fraction for both of these variations were .65 PVF. 

The overall stress-strain curve for each PVF was estimated 

using a micromechanical model and the graphs are shown in 

Figures 17 and 18. The crack growth as a function of 

applied load for a perforated specimen was compared between 

the two cases. This is shown in Figure 19. In the figure, 

11 low" denotes the lower half of the domain including the 

hole while 11 high" denotes the upper half of the domain, the 

half where the load is applied. The results indicated that 

the crack behavior around the notch tip strongly depended on 

the material property around the notch, more specifically, 

the particle distribution. Moreover, the graph shows that 

for the case where the lower half is . 7 5 PVF, the strain 

(load} reaches up to the maximum value of .2 in/in, and the 

crack has advanced as far as it will go at a crack size/hole 

radius value of .75. The lower graph, the one with .55 PVF 

in the lower half, shows that the crack has propagated 

further along than the upper graph under much less load. 

For the purpose of looking at the initial crack propagation, 
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the graph was terminated at around the point where the crack 

reached 14 elements along the bottom edge of the model. If 

we were to look at the whole model, however, the second 

graph extends all the way across indicating complete failure 

in the model before reaching the maximum load of . 2 in/ in 

strain. In Figure 20, the crack propagation for the two 

volume fractions .55 and .75 are graphed. Instead of having 

mixed volume fractions, these are the cases when the entire 

model was homogeneously at .55 PVF and .75 PVF. As can be 

seen, the two curves terminate before reaching the maximum 

load of .2 in/in strain. If the curves are extended, just 

as in the mixed case where .55 PVF was in the lower half, 

the model undergoes a complete failure. Why is it then that 

when the volume fraction is homogenous at .55 PVF or .75 PVF 

the model fails completely but when they are mixed together, 

(specifically, .75 PVF in the lower half and .55 PVF in the 

upper half) crack only propagates to a point significantly 

before the complete failure? This is because two competing 

factors are at work. In the case of .55 PVF, the material 

is relatively soft, so it experiences less stress for the 

same deformation, but the strength of the material is low as 

well. Therefore, the load overcomes the strength and 

failure occurs. Similarly, in the case of .75 PVF, since 

the material is stiffer, for the same amount of load the 

stress experienced is much higher. However, the strength of 

the material is higher as well but not enough to overcome 

the load, and so, the failure occurs. When the volume 

fractions are mixed in the combination of . 7 5 PVF in the 

lower half and . 55 PVF in the upper half, the stress it 

experiences is greater than that of the homogenous case with 

volume fraction of .55 but lower than that of .75 PVF which 
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is as expected. 

enough so that 

But this time, the stress has decreased 

the strengthening effect of the .75 PVF 

overcomes the load. This results in the crack propagation 

being arrested before reaching complete failure. 

The next study investigated the interaction of a notch 

tip and a pre-existing local defect such as a local cluster 

of particles or an inclusion of a void. Therefore, a local 

zone ahead of the notch tip was assumed to have a much 

higher stiffness or a much lower stiffness that the 

composite material depending on the type of inclusion. They 

are represented by the shaped regions in the figure. 

Specifically, this was modeled with the stiffness being 

greater or lesser by a factor of 106
• These effects were 

examined on the initiation and growth of a crack from the 

notch tip. Figure 21 shows the locations of the inclusion. 

Specifically, they were placed at .183 em (.072 in.), .411 

em (.162 in.), and .953 em (.375 in.) from the edge of the 

hole. Figure 22 is a plot of the crack growth with a void 

at two different locations. When the void was located at 

the distance of 2. 7 5 times the hole radius (i.e. void at 

.345 in.), the void did not affect the crack initiation and 

growth at the early stage because of the distance being too 

far from the place of crack initiation. However, as the 

crack propagated toward the void and became closer, the void 

affected the crack growth more significantly. On the other 

hand, when the void was placed at a distance much closer to 

the hole edge, at a distance of .183 em (. 072 in.), the 

crack initiation developed at a much smaller load (i.e. 

applied strain), and the crack propagated at a load lower 

than that of the case where there was no void. The study 

indicated that for the present particulate composite 
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Figure 21. Locations of Void or Particle Cluster 

Inclusions 
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material, an inclusion of a void at a distance about the 

size of the hole diameter from the edge made almost no 

difference in the initial crack. Figure 23 compares the 

crack growth between the cases with a void and a particle 

cluster, respectively, at the same distance from the hole 

edge. As expected, a particle cluster prevented the crack 

initiation and its growth compared to the no inclusion case. 

On the other hand, the presence of a void assisted in the 

crack initiation and growth. 

The final study compared the damage and crack between 

two cases for a model with a hole diameter of 1.27 ern (.5 

in.). The first case involved applying the load with a 

uniform traction which will be called traction control, and 

the second case involved applying the load with a uniform 

displacement load which will be called displacement control. 

The two cases, although different in form, had the same 

amount of total applied load. Figure 24 shows the 

comparison of the boundary edge traction between the 

traction control and the displacement control cases. The 

displacement control begins with a stress value lower than 

that of the traction control case but then increases as the 

distance along the x-axis increases. The traction control 

in the mean while stays constant. In Figure 25, the 

comparison of boundary edge displacement is shown. Here, 

the displacement for the traction control begins above the 

displacement control then decreases to a final value under 

the constant displacement control curve. These two figures 

collectively show that the traction control resulted in a 

larger load at the hole location, and also, the boundary 

edge displacement was greater as well. As a result, the 
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traction control yielded a greater damage zone and a longer 

crack size in the vicinity of the hole. 
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VII. MICRO/MACROMECHANICS RESULTS AND DISCUSSION 

The analysis used in this approach simulated the matrix 

damage initiation and damage propagation using the 

micromechanical model and the damage mechanics as described 

in Chapter IV. When the damage was saturated in a local 

zone, the location could not sustain any additional loading. 

Therefore, it was assumed that a crack occurred within the 

saturated damage zone. In other words, the crack length was 

deemed to be equal to the size of the saturated damage zone. 

Again, the stress-strain curve for the material used in the 

study is provided in Figure 26. This curve represents the 

macro-level, smeared material property. The micromechanical 

model requires the material properties of the constituent 

materials and their volume fractions. However, initially, 

this information is not known. Therefore, it is necessary 

to back calculate the micro-level material properties from 

the macro-level material properties using the proposed 

micromechanical model and the damage mechanics. The 

computed micro-level material properties were as follows: 

• particle elastic modulus (10 x 106 psi) 

• matrix elastic modulus (335 psi) 

• volume fraction (. 65) 

In addition, the damage initiation strength of the matrix 

material calculated using equation (37) in Chapter IV was 70 

psi, with damage material constants being a 1=92 psi and 

a 2 =12 psi. The reproduced stress-strain curve using the 

micromechanical model and the damage mechanics is 
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superimposed on the experimental stress-strain curve in 

Figure 26. As can be seen, the experimental curve and the 

predicted curve corresponded well to one another. By this 

comparison, the micro-level material values were deemed to 

be reasonably accurate. 

The composite material was now tested with a hole in 

the center. Tensile loads were applied to the specimens 

with constant crosshead speed of .2 in/min. Cracks 

initiated from stress concentration at the edges of the 

holes. Figures 27 through 29 show the cracks in the 

specimens at strain of .2 in/in. Two of the specimens had 

. 25 in. diameter holes while the third specimen had a . 50 

in. diameter hole. The first two specimens with the same 

diameter hole show two very different crack lengths under 

the same load as shown in Figures 27 and 28. In the third 

specimen (the one with . 50 in. diameter hole) , the crack 

lengths on the two sides of the hole carne out to be quite 

asymmetric, as shown in Figure 29. These test results can 

be explained from the nonhornogeneity of particle 

distribution in the matrix material. As observed from the 

tensile test of a dogbane shaped specimen (without a hole), 

the local strain was very different from location to 

location within the specimen under the same, constant load. 

(Refer to Figure 16) The experimental stress-strain curve 

in Figure 26 is an average strain between the gauge length 

of 2. 7 in. Therefore, when a hole is drilled into a 

specimen, the hole may be drilled into a particle-dense 

zone or into a particle-sparse zone without affecting the 

overall stress-strain curve. Because the specimen was under 

strain control, the local strain and stress around the hole 

varied depending on what type of topography {particle-dense 
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Figure 27. Comparison of Experimental and Theoretical Crack 

Sizes for a 0.25 in. Diameter Hole Sample 
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Figure 28. Comparison of the Experimental and Theoretical 

Crack Sizes for Another 0.25 in Diameter Hole Sample 
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Figure 29. Comparison of Experimental and Theoretical Crack 

Sizes for a 0.5 in. Diameter Hole Sample 
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or particle-sparse) the hole was placed. Therefore, it was 

quite possible to have two different crack sizes for the 

same material, under similar conditions which was the case 

in our experiment. Similarly, the asymmetric cracks 

observed in the third specimen can be explained by the same 

reasoning as well as other factors such as asymmetric hole 

shape, location, and misaligned loading. 

Computer simulation was conducted next to examine if 

similar results can be obtained and thereby, test the 

accuracy of the micro/macromechanics method in predicting 

the crack initiation and propagation. Initially, it was 

assumed that the specimen had a uniform material property 

(i.e. uniform particle distribution). The specimen with a 

.25 in. diameter hole was considered first. A quarter of 

the specimen was modeled as illustrated in Figure 3. The 

predicted crack size obtained from the computer simulation 

is shown in Figure 27 along with the actual cracks obtained 

from the experiment. The predicted crack length came out to 

be .340 in. while the experimental crack lengths were .375 

in. and .313 in. The predicted crack length corresponded 

well to the experimental values for this sample. 

In the simulation for the second specimen, a mixture of 

particle volume fractions was used. Figure 30 shows the 

division of the model. Two cases were considered. The 

first case considered the lower half of the specimen at a 

PVF of . 55 and the upper half at a PVF of . 75. In the 

second case, the particle volume fractions were switched so 

that the lower half had a PVF of .75 while the upper half 

had a .55 PVF. However, in both cases, the average PVF of 

.65 was maintained. The particle volume fraction (PVF} 
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Figure 30. Shows the Division of the Model Between the Upper 

Half and the Lower Half 

72 



represent the degree of particle inclusion in the matrix 

material such that greater the PVF, greater the amount of 

particle inclusion. So, in the first case where the hole 

lied in the particle-sparse zone, the predicted crack size 

came out to be . 063 in. which exactly matched one of the 

experimental crack lengths. The other experimental crack 

length was . 036 in. On the other hand, the second case 

yielded a predicted crack length of . 4 6 0 in. which was 

significantly higher than either of the experimental values. 

This indicates that the cracks produced in the experiment 

was due to the hole being drilled into a particle-sparse 

zone. 

Some other related studies were undertaken next to 

investigate the crack initiation and propagation under 

different conditions. This time, different particle volume 

fractions were considered. The particle distribution was 

assumed to be uniform across the specimen with a .25 in. 

diameter hole at various PVF' s. These models were then 

placed under the same loading conditions as before, and the 

results were obtained. The crack size verses applied strain 

is plotted in Figure 31. As expected, the graphs shows that 

the higher the PVF, the larger the crack size under the 

sample applied strain. One thing to be noted here is that 

when the PVF was . 7 or higher, the crack size increased 

continuously without a halt as the specimen was stretched. 

On the other hand, when the PVF was .65 or lower, there was 

a temporary halt in the crack propagation as the specimen 

was stretched. Specifically, the crack did not propagate at 

certain lengths until there was a significant jump in the 

applied load. This phenomena was interpreted to indicate a 

crack blunting process. Also, when the PVF was .55, a large 
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increase in the applied strain was needed to initiate a 

crack. 

The next study conducted was the response due to stress 

control. Uniform traction was applied at the top edge of 

the specimen and was increased continuously. The crack 

growth with different PVF's is given in Figure 32. The 

results indicated that the crack size increased continuously 

at almost the same rate as the applied load regardless of 

PVF. Under this type of loading, the stress state was 

similar that there was not much difference in the crack size 

among the various PVF' s. A higher PVF yielded a lower 

stress in the matrix, because the particles supported a 

larger portion of the load. Hence, the higher PVF, the 

smaller the crack size. But again, the difference was 

hardly noticeable and was much less than that of the 

displacement control models. This outcome was as predicted. 

Since the load was in the form of a uniform stress, the 

stress experienced throughout the material was uniform 

although the deformation changed from point to point. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

Modeling of crack initiation and propagation in a 

particulate composite (solid rocket propellant) material was 

conducted using macromechanical and micro/macromechanical 

theories. The macromechanical studies showed that the crack 

behavior obtained from the experiment could be reproduced 

using finite element methods and a smeared, homogenous 

material property representing the particulate composite. 

Also, the interpretation of damage growth and saturation 

observed in the model as being the initiation and 

propagation of a crack was accurate. In the 

micro/macromechanical model and the damage mechanics, it was 

shown that the micro/macromechanical approach in predicting 

matrix cracking in particulate composites was appropriate 

and accurate. Furthermore, this approach was able to easily 

model the nonuniformity in particle distribution in the 

composite material. The predication of the crack size in a 

nonuniformly distributed composite was in good 

correspondence with the experimental results. Further 

analysis indicated that the displacement control of tensile 

specimens resulted in a smaller crack size for a smaller PVF 

subjected to the same global strain. On the other hand, the 

load controlled specimens yielded quite the opposite 

results. However, the displacement controlled specimens 

produced a much larger difference among the different PVF's 

than the load controlled specimens. 

Recommendations for further study are as follows: 

Incorporate time depnedent effects such as strain rate 

effect and viscous effects, include more complex load 

conditions such as biaxial and shear loading, and conduct 
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analysis on an actual, operational propellant material. The 

composite used in this study was an inert material with a 

similar composite, material structure. 
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APPENDIX 

SAMPLE INPUT FOR TRACTION LOAD (MICROMECHANICS) 

806 1 17 2 0 2 10 0 0 
0.0 19. 1. 1. 1.0e-4 1.0e-4 1.0 
0 0 0 0 0 0 
0 0 0 0 
0 750 0 0 
0 0 
0 0 
1 6 
1. 10000000. 335. 0.2 0.5 2000. 70. 5000. 7000. 0.65 
1. 1. 90.0 12.0 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
1 5 0 0.125000E+OO 
2 5 0 0.134329E+OO 
3 5 0 0.145435E+OO 
4 5 0 0.159176E+OO 

-0.426851E-17 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

803 
804 
805 
806 

1 
2 
3 
4 
5 

6 0 
6 0 
6 0 
6 0 

1 806 
1 805 
1 804 
1 803 
1 802 

-0.905402E-17 
-0.627097E-17 
-0.325488E-17 
-0.213426E-15 
780 779 805 
779 778 804 
778 777 803 
777 776 802 
776 775 801 

746 760 786 787 761 
747 761 787 788 762 
748 762 788 789 763 
749 763 789 790 764 
750 764 790 791 765 
390 2 
0. 0. 
20.9.375 
416 2 
0.0 
20. 18.75 
4422 
0. 0. 
20. 18.75 
4682 
0. 0. 

20. 18.75 
780 2 
0. 0 
20. 18.75 
806 2 
0. 0. 
20.9.375 

0.1 04009E+01 
0.114304E+01 
0.125460E+01 
0.137500E+01 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
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SAMPLE INPUT FOR DISPLACEMENT LOAD WITH MULITPLE MATERIAL 

806 2 17 2 0 1 1 0 0 0 
0.0 10. 1. 1. 1.0e-3 1.0e-3 1.0 
0 0 0 0 0 0 
0 0 0 0 
0 750 0 0 
0 0 
0 0 
1 4 
1700. 7. 0.5 1.0 0. 0. 0. 1003.54 1026.59 928.38 
803.25 683.72 515.17 311.65 108.37 6. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
2 4 
1700. 7. 0.5 1.0 0. 0. 0. 1893.04 1941.36 1765. 
1321.98 802.28 324.42 51.63 57.32 6. 0. 0. 0. 0. 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
1 5 0 0.250000E+OO -0.426851 E-17 O.OOOOOOE+OO 

2 5 0 0.262500E+OO O.OOOOOOE+OO O.OOOOOOE+OO 

3 5 0 0.275000E+OO O.OOOOOOE+OO O.OOOOOOE+OO 

4 5 0 0.287500E+OO O.OOOOOOE+OO O.OOOOOOE+OO 
5 5 0 0.300000E+OO O.OOOOOOE+OO O.OOOOOOE+OO 

6 5 0 0.312500E+OO O.OOOOOOE+OO O.OOOOOOE+OO 

7 5 0 0.325000E+OO O.OOOOOOE+OO O.OOOOOOE+OO 

803 6 0 0.157596E-16 0.104009E+01 
804 6 0 0.1 09154E-16 0.114304E+01 
805 6 0 0.566550E-17 0.125460E+01 
806 6 0 -0.213426E-15 0.137500E+01 

1 1 806 780 779 805 
2 1 805 779 778 804 
3 1 804 778 777 803 
4 1 803 777 776 802 
5 1 802 776 775 801 
6 1 801 775 774 800 

748 
749 
750 
390 2 
0. 0. 
10.2.948 
416 2 
0. 0. 
10.5.896 
0. 0. 

780 2 
0.0 
10.5.896 
806 2 
0. 0. 
10.2.948 

762 788 789 763 
763 789 790 764 
764 790 791 765 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
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SAMPLE INPUT FOR DISPLACEMENT LOAD (MICROMECHANICS) 

806 1 0 0 0 0 1 0 17 
0.0 100. 1. 1. 1.0e-4 1.0e-4 1.0 
0 0 0 0 0 0 
0 0 0 0 
0 750 0 0 
0 0 
0 0 
1 6 
1. 10000000. 335. 0.2 0.5 2000. 70. 5000. 7000. 0.65 
1. 1. 90.0 12.0 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
1 5 0 0.250000E+OO 
2 5 0 0.262500E+OO 
3 5 0 0.275000E+OO 
4 5 0 0.287500E+OO 
5 5 0 0.300000E+OO 
6 5 0 0.312500E+OO 
7 5 0 0.325000E+OO 

801 6 0 0.242738E-16 
802 6 0 0.202087E-16 
803 6 0 0.157596E-16 
804 6 0 0.109154E-16 
805 6 0 0.566550E-17 
806 7 0 -0.213426E-15 

1 806 780 779 805 
2 805 779 778 804 
3 804 778 777 803 
1 803 777 776 802 
5 802 776 775 801 
6 801 775 774 800 

-0.426851E-17 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.859152E+OO 
0.945540E+OO 
0.104009E+01 
0.114304E+01 
0.125460E+01 
0.137500E+01 

747 761 787 788 762 
748 
749 
750 1 
390 2.25 
416 2 .25 
442 2.25 

754 2.25 
780 2.25 
806 2.25 

762 
763 
764 

788 789 763 
789 790 764 
790 791 765 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
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SAMPLE INPUT FOR DISPLACEMENT LOAD (MACROMECHANICS CASE) 

806 2 0 0 0 2 1 0 17 
0.0 100. 1. 1. 1.0e-3 1.0e-3 1.0 
0 0 0 0 0 0 
0 0 0 0 
0 750 0 0 
0 0 
0 0 
1 4 
1700. 13. 0.5 1.0 0. 0. 0. 1294. 110. 1142.9 
130. 930.2 150. 689.7 170. 512.8 180. 220.2 192. 6. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
2 1 
1000. 12940000. 0.5 1.0 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
1 5 0 0.125000E+OO 
2 5 0 0.134329E+OO 
3 5 0 0.145435E+OO 
4 5 0 0.159176E+OO 
5 5 0 0.176205E+OO 
6 5 0 0.197077E+OO 

803 
804 
805 
806 

1 
2 
3 
1 
5 
6 
7 

6 0 
6 0 
6 0 
7 0 

1 806 
1 805 
1 804 
1 803 
1 802 
1 801 
1 800 

-0.905402E-17 
-0.627097E-17 
-0.325488E-17 
-0.213426E-15 
780 779 805 
779 778 804 
778 777 803 
777 776 802 
776 775 801 
775 774 800 
774 773 799 

-0.426851 E-17 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0. OOOOOOE +00 

0.104009E+01 
0.114304E+01 
0.125460E+01 
0.137500E+01 

748 762 788 789 763 
749 763 789 790 764 
750 1 764 790 791 765 
390 2.2751 
416 2 .2751 
442 2.2751 

754 2.2751 
780 2 .2751 
806 2.2751 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
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SAMPLE INPUT FOR TRACTION LOAD (MACROMECHANICS CASE) 

806 1 17 2 0 2 10 0 0 
0.0 10. 1. 1. 1.0e-4 1.0e-4 1.0 
0 0 0 0 0 0 
0 0 0 0 
0 750 0 0 
0 0 
0 0 
1 6 
1. 10000000. 335. 0.2 0.5 2000. 70. 5000. 7000. 0.65 
1. 1. 90.0 12.0 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
1 5 0 0.125000E+OO 
2 5 0 0.134329E+OO 
3 5 0 0.145435E+OO 
4 5 0 0.159176E+OO 
5 5 0 0.176205E+OO 
6 5 0 0.197077E+OO 
7 5 0 0.222285E+OO 
8 5 0 0.252279E+OO 
9 5 0 0.287474E+OO 

798 6 0 -0.196987E-16 
799 6 0 -0.179823E-16 
800 6 0 -0.160672E-16 
801 6 0 -0.139455E-16 
802 6 0 -0.116101E-16 
803 6 0 -0.905402E-17 
804 6 0 -0.627097E-17 
805 6 0 -0.325488E-17 
806 6 0 -0.213426E-15 

1 806 780 779 805 
2 805 779 778 804 
3 804 778 777 803 
4 803 777 776 802 
5 802 776 775 801 
6 801 775 774 800 
7 800 774 773 799 

-0.426851E-17 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.646339E+OO 
0.709830E+OO 
0. 780671 E+OO 
0.859152E+OO 
0.945540E+OO 
0.1 04009E+01 
0.114304E+01 
0.125460E+01 
0.137500E+01 

746 
747 
748 
749 
750 
390 2 

1 760 
1 761 
1 762 
1 763 
1 764 

786 787 
787 788 
788 789 
789 790 
790 791 

761 
762 
763 
764 
765 

0. 0. 
10.3.9315 
416 2 
0.0 
10. 7.863 

780 2 
0.0 
10. 7.863 
806 2 
0. b. 
10. 3.9315 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
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