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ABSTRACT 

The aim of this thesis is to design and implement a highly-graphical, computer

based decision support system (DSS) to assist in the design of "optimum" network 

connectivity plans. The Web Spinner DSS is a "proof-of-concept" system which 

highlights how the marriage of basic decision methodologies with a modern computing 

environment can be used to create a robust decision support tool. 

The basic concepts of decision support systems and their practical value to today's 

information worker are discussed. The challenge in designing the best network plan is 

presented along with several examples illustrating the complexities and scale of the 

problem. The Web Spinner DSS is presented as a potential solution to at least part of the 

network design problem. The capabilities and design principles of the Web Spinner are 

provided along with a tutorial and a sample problem. Finally, some suggestions for 

improving the Web Spinner DSS are reviewed. It is shown that some of these 

improvements can greatly enhance the value of the Web Spinner in supporting decisions 

related to network connectivity. 
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I. INTRODUCTION 

A. BACKGROUND 

The virtual explosion of computer processing and software capabilities has made 

the computer as familiar as the telephone and copy machine in the modern office 

environment. Almost everyone who might need to make an educated decision in any 

major subject area has access to a computer. The marriage of decision support 

methodologies and modern information resources has produced some exciting 

opportunities to make the computer a true office assistant as foretold in many early 

generation science-fiction movies. 

The purpose of this thesis is to design and implement a computer-based, visual 

decision support tool for designing "optimum" network connectivity plans using several 

fundamental decision support methodologies. Most similar systems available today are 

text-based and require the user to mentally picture or manually draw out the resulting 

network design with each change or iteration. Since networks are inherently visual, an 

earnest attempt is made to incorporate graphical displays and mechanisms whenever 

possible to aid understanding and mental comprehension of subtle changes to the model. 

An emphasis is also placed on ease of use, intuitive methods, and ergonomic design. 

The "proof of concept" Decision Support System (DSS) developed as the central 

focus of this thesis is identified by the title of Web Spinner. It was created to assist a 

network designer in creating "optimum" network connectivity plans. A tutorial for Web 

Spinner is provided as Appendix B and a sample problem in Appendix C. A complete 

listing of the Delphi (Object-Pascal) code is included in Appendix D. 
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B. WHY DECISION SUPPORT? 

Making the best use of all available information to produce an optimum solution 

for any problem can sometimes be very difficult. This is especially true in the Information 

Age as the nature of many problems are becoming less structured and more technical in 

nature. In addition, the time between problem identification and required solution action is 

generally decreasing which leaves less time for problem analysis. It may also be a very 

challenging task to make the best decision when the data or equipment specifications are 

not directly comparable. This may necessitate a prolonged and involved process to 

determine value trade-offs between competing proposals to ensure that the "best value" 

decision is ultimately achieved. The expanding pace of technological change has made 

some of yesterday's relatively simple decisions into a doctoral thesis that raises more 

questions than it answers. 

There are generally four reasons why an optimum decision may not be made by the 

decision-maker: 

1. The decision-maker possesses incomplete expertise in the subject area. 
2. There is too much information for the decision-maker to assimilate and gain a 

reasonable comprehension of the system. 
3. The time between problem identification and required solution action leaves 

very little time for analysis. 
4. The nature of the subject makes it too difficult or computationally intensive to 

test all possible solutions. 

If any of these situations arise, the human decision-maker will still make the best 

decision he/she can, but it will rarely be optimum. The resulting decision will likely be 

inadequate, require revision, and be distorted by human mental models and biases. As the 

decision process becomes less ideal, objectivity and defensibility of the resulting decisions 

will likely decline. 
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C. DECISION SUPPORT SYSTEMS 

Systems can be designed to assist the decision-maker in confronting some of these 

problems that lead to non-optimum decisions. These systems are known as decision 

support systems (DSS). A DSS can be as simple as a sheet of paper and a pencil (to 

sketch out your problem), a calculator, or a mechanical model of your decision world. 

The key is to provide a mechanism which assists the individual in arriving at their optimum 

solution. A good DSS also provides analysis and "gaming" algorithms to allow the 

decision-maker to test different solutions and learn about fundamental relationships 

imbedded in the problem. 

Modem computing resources are increasingly being utilized to develop decision 

support tools that are very fast, contain knowledge relationships for particular subject 

areas, and employ graphical tools to display and aid user understanding when large 

amounts of data are involved. These computerized systems are known as automated 

decision support systems. 

An automated DSS, when properly applied, can be used to assist the decision

maker in over-coming the four identified conditions that may contribute to making non

optimum decisions. The very nature of modem computing systems facilitates the rapid 

execution of the decision-making process in a more objective and duplicatable manner. 

This gives the decision-maker the data and material necessary to defend any decision 

he/she makes and the ability to archive it for future reference. An example of such a 

system is the central focus of this thesis. 
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D. SCOPE OF RESEARCH 

This thesis and the Web Spinner DSS center on the problem of designing optimum 

network connectivity plans. Designing a network can be a very complex problem due to 

the remarkably large number of possible network configurations even for a relatively small 

number of network nodes. Some fundamental decision support methodologies are 

reviewed and adapted for this purpose. 

The author intends to demonstrate that several basic decision models can be 

combined to create an exceptionally powerful design tool. The Web Spinner DSS 

illustrates how this can be done using a modern programming environment. Web Spinner 

was designed with an interactive graphics interface due to the inherently graphical nature 

of networks. 

E. THESIS ORGANIZATION 

Chapter I presents a general discussion of some of the obstacles encountered in the 

modern decision-making environment. It also presents the application of automated 

decision support tools to aid the modern decision-maker in overcoming some of these 

impediments to optimum decision-making. Finally, it introduces an automated DSS which 

was produced as the central focus of this thesis research. 

Chapter II discusses some of the complexities encountered when designing a 

modern, dedicated-link network. Several examples are provided to illustrate the 

magnitude of the number of configurations available to connect a network. In addition, it 

shows how the size of the solution set dramatically increases as the number of nodes in the 

network increases. 
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Chapter ill presents the Web Spinner decision support system. It begins with a 

general system description and overview of system capabilities. System logic used to 

design the application is presented along with an explanation of the decision models used 

in the solution formula. Finally, some information on how the application was actually 

implemented is provided including primary data structures, design of the Web Spinner 

screens, and a general processing diagram. 

Chapter IV discusses some of the limitations present in the Web Spinner due to its 

conception as a "proof of concept" decision support tool. A number of additional features 

are recommended for inclusion in an improved version of the program. These are 

provided to assist the reader in looking beyond this particular decision support tool and 

envisioning how valuable a more complete system could be. 

Finally, Chapter V concludes with a retrospective on some of the ideas presented 

in this thesis and some of the lessons learned during the process. Finally, a discussion on 

the decision world of the future and how systems of tomorrow will be built upon the 

foundation blocks of today is presented. 

5 
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II. NETWORK DESIGN 

A. NETWORK CONNECTIVITY PLANNING-- TANGIBLE ISSUES 

Modem information networks are becoming larger and more complex as a greater 

number of systems (nodes) are added to networks each year. This is especially true for 

networks that bridge several buildings, metropolitan areas, states, or even countries. It 

becomes no longer possible to run a single cable between all nodes in your network and 

connect them in a simple daisy chain or bus configuration. Connections between nodes 

must be leased from a growing number of common carriers (communication vendors) 

offering a wide variety of link speeds (bandwidths), error rates, pricing structures, and 

other value-added enmities. 

The designer of a modem wide area network (y.l AN) is faced with determining the 

best way to connect an increasing number of network nodes in an affordable, reliable, and 

practical manner. The number of possible configurations dramatically rises as the number 

of nodes on the network increases. Figure 2.1 shows that there are four potential 

solutions for a three node network. Figure 2.2 shows that the potential solution set for a 

simple, four node network dramatically increases with the addition of a single node. In 

fact, the size of the solution set will grow at an even faster rate as more nodes are added 

to the network. A five node network has over 750 possible solutions and a six node 

network has over 20,000. 

~···················~ 

In a three node network, there are a total of 4 ways to 
design a network connecting all nodes with full-duplex 
links (redundant paths permitted): 

1 three link network (mesh structure) 
3 three link networks (tree structure) 
4 total options 

Figure 2.1 A Three Node Network. 
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In a four node network, there are a total of 40 ways to 
design a network connecting all nodes with full-duplex 
links (redundant paths permitted): 

1 six link network 
6 five link networks 

15 four link networks 

(mesh structure) 
(hybrid mesh) 

18 three link networks (tree structure) 
40 total options 

Figure 2.2 A Four Node Network. 

If the possible solution set becomes this large for a relatively simple five node 

network, imagine how large it can get when you attempt to design connectivity plans for a 

typical25-50 node (or larger) modern business network. At this point, an inexperienced 

network designer may begin to feel the pressures of some or all of the four conditions that 

may lead to non-optimum decisions. In this situation, an automated DSS intended to 

assist with such a problem could prove invaluable to the novice network designer. 

The above discussion has only involved the relatively straight-forward, geometric 

design of possible network configurations. The problem literally explodes when you 

consider that there may be ten or more vendors offering many different bandwidth links 

each with multiple variable attributes. In addition, common carriers are adding an 

increasing number of options such as line conditioning, connection guarantees, etc., that 

vary with each vendor considered. 

To further appreciate the difficulty of deciding how best to connect your network 

nodes, let us combine the elements of the preceding paragraphs. Using the three node 

network, 10 competing vendors, and considering just eight possible bandwidth options, 

the number of possible network configurations for just three nodes expands to 320: 
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4 configurations x 10 vendors x 8 bandwidths = 320 potential solutions 

If we use the same vendor and bandwidth options to connect our four node 

network, the potential solution set expands to 3,200: 

40 configurations x 10 vendors x 8 bandwidth = 3,200 potential solutions 

Using similar math, a five node network has over 60,000 solutions and a six node network 

grows to over 1.6 million. 

Unless the decision-maker is accustomed to designing systems involving such a 

large potential solution set, the task may seem a bit overwhelming at first. A seasoned 

network designer will draw upon past experience to eliminate many potential solutions as 

impractical or infeasible and focus on designs which he/she has successfully encountered in 

the past. An appropriate DSS can assist the inexperienced decision-maker in designing a 

better network plan than he/she may contrive alone. However, even a skilled network 

designer can benefit from an automated DSS which helps him/her quantify their mental 

weighting mechanisms and choose the optimum configuration from a number of closely 

competing designs. 

B. NETWORK CONNECTIVITY PLANNING --INTANGIBLE ISSUES 

So far the network connectivity planning discussion has only included the relatively 

sterile, physical attributes that outline the problem. The actual task may include a host of 

intangible (difficult to quantify), political, and "real world" conditions not defined in a 

structured, textbook assignment. However, this knowledge must be incorporated into any 

network design to be even relatively successful. 
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A relevant DSS must allow the user to include these intangible constraints into 

their network design. A flexible interface that permits the user to add/remove these 

constraints one-by-one or enmasse and identify how system performance changes may 

prove invaluable in deciding to accept one network design over another. It should also 

provide data necessary for the designer to defend any decision against principle managers 

imposing the constraints upon the designer. 

Almost all decision support tools offer a way to archive known facts and resulting 

decision data and provide "hard-copy," paper reports for future reference. This is a by

product of the process and usually requires no extra work by the user. However, this 

archived information can provide valuable insight into why a particular plan was accepted 

if it is questioned at a later date. The resulting design should be reproducible, defensible, 

archived for future reference, and incorporate a minimum of individual biases. 
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III. WEB SPINNER DSS 

A. WEB SPINNER OVERVIEW 

Web Spinner is a computer-based decision support system designed to assist in the 

formulation of a network connectivity plan. It permits the user to graphically represent a 

proposed network of nodes on the screen, input decision criteria information, enter the 

respective criteria weighting, and graphically define their respective utility curves with 

regard to the proposed network. Web Spinner then designs and displays the optimum 

network tree structure based on the information provided by the user. Tools are provided 

for the user to iteratively add and remove criteria from the decision model and Web 

Spinner instantly redesigns the proposed network upon each modification. This allows the 

user to promptly see various network options and identify how each link characteristic 

impacts the final network design. Finally, the user is provided with an analysis of over-all 

network performance and a link-by-link estimated activity table. 

The user is also permitted to override the displayed network recommendation by 

forcing specific links to exist or not exist in the network. This may be required to: 

1. Acknowledge political and "real world" factors not defined in the system. 
2. Incorporate intangible variables not easily quantified. 
3. Incorporate already established links into your design. 
4. Identify how system performance changes when incremental constraints are 

imposed upon it. 

This simple function can help the user "learn" more about the proposed network 

design and "play" with different options. As constraints (links) are applied and removed, 

Web Spinner redesigns the network to optimize the remaining discretionary design 

decisions. The user is permitted to focus on the problem while the computer makes all the 

necessary computations to incorporate various combinations of link data into the final 

design. 
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[Note: The reader may find it useful to become mare familiar with the Web Spinner DSS 
and its capabilities before reading further. Refer to Appendix A for minimum system 
requirements and loading the program onto your computer system. Appendix B is a Web 
Spinner tutorial and Appendix C provides a sample problem. Both Appendixes B and C 
may be read by themselves or while following along with the application.] 

B. SYSTEM DESIGN 

1. Graphics and Visual Displays 

An earnest attempt was made to use graphical and visually-based screens whenever 

possible during the design of the over-all Web Spinner presentation. Many users feel less 

intimidated by the complexities of a computer system when using simple and seemingly 

basic tools to input and manipulate data. 

Well-designed graphical tools also tend to be more intuitive to the user and allow 

for the representation of large amounts of data in an easy to understand, uncluttered 

format. The graphical illustration of data may further allow the user to see trends that may 

be hidden in reams of raw data. In addition, sometimes it may be a faster and more 

efficient process for the user to convey information to the computer through a graphical 

tool than requiring the user to manually input every data point. 

Hardware and software advances over the past decade have made the almost 

unrestricted use of graphical tools possible and easier to implement. Web Spinner takes 

advantage of some of these advances and graphically depicts the proposed network and 

how it changes as decision criteria are modified. Extensive use was made of standard 

Microsoft Windows® components to give it a familiar look and feel to most users. 

2. General Decision Models 

Web Spinner uses two primary decision models when designing the proposed 

network. The first is the equating of standard criteria data to a common utility value and 
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applying user-defined weights and utility scales. This provides a mechanism to directly 

compare criteria data that are not directly comparable in their original form. All decisions 

are then made based upon the combined utility values of each option vice the actual data 

values. The second decision model used by Web Spinner is the application of the 

minimum/maximum spanning tree model common to the introductory chapters of most 

Operations Analysis or Graph Theory books. 

a. Utility-Based Design 

The Web Spinner DSS uses three criteria to identify link attributes: Set-Up 

Cost; Monthly Cost; and Bit Error Rate (BER). (These three criteria were selected for the 

initial version of Web Spinner, but other link attributes could have been used and should 

be incorporated in a production quality system.) The user is expected to collect this data 

for each full-duplex link between every node pair. This data is then input by the user into 

data matrices provided on the Web Spinner Inputs screen. 

The user must identify the relative importance of each criteria with respect 

to each other in the design of the network. This is done in the form of weighting 

assignments. The user assigns a percentage value (or relative weighting) to each of the 

three criteria for a total of 100%. A possible assignment may be: Set-Up Cost= 50%; 

Monthly Cost= 30%; and BER = 20%. This assignment indicates that Set-Up cost is the 

most important criteria to the user and is as important as the other two criteria combined. 

Monthly Cost is less important, but should be considered above BER when designing the 

network. Web Spinner uses these values when computing the relative "goodness" of each 

link option. 

The user must also identify their respective utility curves for each of the 

criteria. These utility curves are independent of each other and instruct Web Spinner as to 
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the relative importance of different values of each criteria. Two example utility curves are 

shown in Figure 3.1. 

100 100 
90 90 
80 80 
70 70 

~ 
60 
50 

5 
40 

~ 
60 
50 

5 40 
30 30 
20 20 
10 10 
0 0 

0 200 400 600 800 1000 0 q> ~ ";- ~ '9 -r '? C)l ";-.,... 
Cost($) BER 

Figure 3.1 Example Utility Curves. 

These two graphs indicate that the user is generally more concerned with 

maintaining a lowBER than controlling Set-Up Cost for the proposed network design. 

The curve associated with Set-Up Cost begins with a gradual downward slope and does 

not decrease as fast from left to right as the BER curve. The user feels that the 

"goodness" (or utility) of increasing criteria values does not decrease as fast for Set-Up 

Cost as it does for BER. The user is willing to tolerate a higher link Set-Up Cost before 

he/she is willing to tolerate a higher BER value. 

To obtain the utility value of a specific criteria point, locate the criteria 

point on the X-axis and draw a vertical line until it intersects the data curve. Draw a 

horizontal line from this intersection to the Y -axis. The point of the Y -axis intersection is 

the respective utility value or worth for the specific criteria point. Figure 3.2 shows that 

the utility value of a $350 cost to establish a link is approximately 82. As the cost 
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increases, the respective utility value will decrease according to the defined utility trend 

curve. 

100 
Set-Up Cost Utility 

90 

80 
70 
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0 200 400 600 800 1000 
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Figure 3.2 Extracting a Specific Utility Value. 

Utility curves may not seem initially intuitive to those individuals not 

familiar with decision support tools. However, utility curves are an important technique in 

conveying user valuation of changing criteria values to many modem decision support 

systems. After the user has practiced creating utility trend curves and adopted them into 

their thought process, their value will soon become apparent. 

Once criteria weights and utility curves have been defined, Web Spinner 

uses the following formula to determine the total utility or "goodness" value of each linlc 

Link Utility= (Set-Up Cost Weight x Set-Up Cost Utility Value) + 
( Monthly Cost Weight x Monthly Cost Utility Value ) + 
( BER Weight x BER Utility Value ) 
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Web Spinner first computes the total utility value for each potential link in the network. 

These unitless values are then used with the minimum/maximum spanning tree models to 

design the recommended network. 

b. Minimum/Maximum Spanning Tree Model 

The minimum spanning tree model is a "greedy algorithm" used to create 

the "optimal" tree structure in a spatially-defined network. The minimum spanning tree is 

a tree structure that connects all nodes in a network so that the total branch (link) lengths 

are minimized. The resulting network is considered "optimal" in that it connects all the 

nodes in a network at a minimum total distance or link units. The solution method is 

simple and easy to follow. 

The first step is to select any node in the network as your starting point and 

draw a link between it and its nearest neighbor. This creates a spanning tree consisting of 

two nodes. (It does not matter which node you begin with as the result will always be the 

same.) The next step is to select the closest node not presently in the spanning tree. If 

there is a tie for the closest node, arbitrarily select one of them. Draw a line between this 

node and the nearest node in the growing tree structure. The process is repeated until all 

nodes are included in the spanning tree. The result is referred to as the minimum spanning 

tree. An example of this technique is shown in Figures 3.3 and 3.4. 

f2?'\ ..... ~ @)··.·.·· .. ·.· .. · .. · .•. · •.. ··.···.:.··.·.· .. ·:.·· ... ·· 
\.!./ ······ 2 

: ··.i·~ ?·. :> : 
:~.·· .. ··· ... :: .. -~ ::6 

8:\.2) ... ··. : .4 ~@ 
0.··'7 

In a five node network, there are (N2 
- N ) I 2 

possible full-duplex links that may exist in the 

network. In this case, (52
- 5) I 2 = 10 links. 

These potential links are represented by dashed 

lines. The length of each link is represented by 

the attached number. 

Figure 3.3 A Five Node Network. 
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Figure 3.4 Solving the Minimum Spanning Tree. 

This process can also be used to create a maximum spanning tree. The 

only difference is that you search for the node farthest away from your spanning tree 

structure and select it. The above five node network is solved using this technique and 

shown in Figure 3.5. 

Figure 3.5 Maximum Spanning Tree. 

3. Designing the Recommended Network 

Web Spinner uses the above decision methodologies to design the recommended 

network. When the user wants to design the network based on link lengths, Web Spinner 

uses the minimum spanning tree method and the screen distance between nodes to design 
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the network. This technique typically creates an aesthetically pleasing tree structure that 

makes sense to the network designer. 

However, when the user designs the network using the assigned decision criteria, 

weights, and utility scales, Web Spinner uses computed link utility values and the 

maximum spanning tree model. This process can sometimes produce a graphical tree 

structure with overlapping links and a form that seems illogical. Nevertheless, Web 

Spinner correctly designs the optimum tree structure based on the combined utility value 

of the input data. Many times the associated link data differs from the relative link lengths 

and our mental model of what a tree structure should look like may be challenged by the 

result. An example of what appears to be an illogical tree structure was shown in Figure 

3.5. By definition, the network shown is a tree structure but it does not seem to look 

quite right to the mental eye of most designers. 

Web Spinner continually designs and draws the recommended network 

configuration based on the current set of user-defined data. The relatively fast speed of 

the computer processor is used to do all of the required computations. In fact, it is so fast 

that it appears instantaneous to the user. Each time a single data point, criteria weight, 

utility value, or node position is modified by the user, Web Spinner recalculates each value 

and redraws the proposed network. 

4. "User Learning" 

An excellent DSS will also provide mechanisms to facilitate user learning about the 

fundamental relationships imbedded within their decision world. Web Spinner attempts to 

do this by allowing the user to decide which combination of decision criteria they wish the 

program to use to design their network. A checkbox mechanism is provided which allows 

the user to choose one, any two, or all three criteria. The user can quickly and efficiently 

check and uncheck the criteria checkboxes and Web Spinner immediately recalculates new 
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link utility values and redraws the network based on the selected criteria only. This allows 

the user to gain insight into how each criteria affects the proposed design. 

In addition, Web Spinner allows the user to require that particular links exist in the 

network. The application then redraws the network and recalculates all performance data 

by optimizing the remaining network options. This can be used by the user to immediately 

see how constraints imposed on the system affect the design and the resulting reduction in 

network performance. 

5. Network Performance Analysis 

Web Spinner generates a network performance analysis report every time a new 

network is designed. The information presented in this analysis includes: 

1. Total network set-up cost. 
2. Monthly network cost. 
3. A Physical Link table including average traffic loading and mean packet delay 

for each physical link. 
4. A Logical Link table including the physical route and expected route delay for 

each logical connection in the network. 
5. Expected network delay. 

Total network set-up cost and monthly network cost are self-explanatory. 

However, the remaining data requires a bit more analysis and calculations to generate. 

The following discussion will identify intermediate variables and show the logic used to 

arrive at this information. A brief description the network analysis techniques used by Web 

Spinner is presented below. [Ref. 1 & 2] 

Network traffic is measured in packets per second. Full-duplex links are used and 

a shorthand symbol, 0/D, is used to refer to each origin/destination pair or link. The 

variables used in this analysis are: 

1. N = Total number of links in the network 
2. C = Uniform link capacity (in bits per second) 
3. = Link identification number 
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4. 

5. 
6. 
7. 

y = 
1/J.L = 
'Ai = 
Pi = 

Total network traffic = La11 otDs (Traffic) 

Packet size (bits per packet) 
Average number of packets which travel on link i per second 
Ai I (J.LC) = Traffic intensity on link i 

A physical link is a link that physically exists in the proposed network. (i.e. you 

can visually see it drawn in the network design) The physical link data is the information 

provided for each physical link in the proposed network. To calculate the mean delay for 

an average packet, we must first determine the routes that make up each logical link. 

A logical link refers to each notional connection in the network. A logical link 

exists for each node pair combination. The route is determined by selecting the single path 

required to traverse the network between the two nodes and recording all the nodes 

encountered along the way. 

After all logical routes are determined, the amount of traffic (packets) required to 

travel between each node pair is added together by physical links. This way, we determine 

how many packets per second will be expected to traverse each physical link. This value is 

denoted by the variable Ai. 

The mean physical link delay in seconds, E{Td, is then calculated using the 

following formula: E[Td = 
Capacity(pkts I sec)- Average(pkts I sec) 

1 

or 

The logical link delay, or route delay, is then calculated by adding up all the mean physical 

link delays which form each route. 

Finally, the expected network delay is calculated using the following formula: 

20 



T ..:.:i=:..:..l ___ _ 

y 

Web Spinner computes all of these calculations each time the proposed network or 

the associated decision criteria are modified. Figure 3.6 shows our five node minimum 

spanning tree network and some required performance criteria. Figures 3.7, 3.8, and 3.9 

show the resulting analysis data for this network. 

Link Capacities = 9600 BPS 
1/)l = 128 bits per packet 

Trqffic Req.uirements 
Link Traffic 
1-2 5 
1-3 7 
1-4 4 
1-5 6 
2-3 8 
2-4 5 
2-5 7 
3-4 10 
3-5 4 
4-5 12 

Total (y) = 68 pkts/sec 

Figure 3.6 Five Node Network and Performance Requirements. 

Link 
1-2 
1-3 
3-4 
3-5 

A vg pkts/sec 
25 pkts (5+8+5+7) 

37 pkts 
31 pkts 
29 kts 

EfTd (delay) 
0.02 sec ( 11[9600/128 - 25) ) 

0.0263 sec 
0.0227 sec 
0.0217 sec 

Figure 3.7 Physical Link Data. 
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T .ncri~lll Links 

Link Route ExQ. Route Delay 
1-2 1-2 0.02 sec 
1-3 1-3 0.0263 sec 
1-4 1-3-4 0.049 sec (0.0263 + 0.0227) 

1-5 1-3-5 0.0481 sec 
2-3 2-1-3 0.0463 sec 
2-4 2-1-3-4 0.069 sec 
2-5 2-1-3-5 0.0681 sec 
3-4 3-4 0.0227 sec 
3-5 3-5 0.0217 sec 
4-5 4-3-5 0.0445 sec 

Figure 3.8 Logical Link Data. 

T .!.:i=:!.I ___ _ 

y 

T 25(0.02) + 37(0.0263) + 31(0.0227) + 29(0.0217) 

68pkts I sec 

T = 0.0413 seconds 

Figure 3.9 Expected Average Network Delay. 

C. PROGRAM IMPLEMENTATION LOGIC 

1. Web Spinner Menu Structure 

The user interface for Web Spinner is divided into five distinct modules: 

1. Web Spinner Desktop 
2. Data Input 
3. Criteria Weights 
4. Utility Curve Definition 
5. Performance Analysis 

All five of these modules are represented by individual screens and can be accessed by tabs 

displayed along the bottom of each screen. Figure 3.10 shows the Web Spinner graphical 

desktop and the five tabs present on the bottom of all module screens. 
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The desktop is a graphical panel which acts as the drawing canvas for the user to 

depict the relative locations of the prospective network nodes. It also is the surface upon 

which Web Spinner creates and displays proposed network links. Figure 3.10 shows a 

sample network or nodes and the links drawn by the Web Spinner application. Figure 

3.11 shows examples ofthe remaining four module screens. 

Figure 3.10. Web Spinner Desktop and Module Tabs. 

The data input module (Link Characteristics) is a screen tool that allows the user 

to enter traffic requirements data along with set-up cost, monthly cost, and BER data for 

each possible link in the network. It also displays computed distance and combined utility 

values for each potential network link in a read-only format. 

The weights and utilities modules provide simple tools that allow the user to 

graphically enter relative criteria weighting and utility curves. The analysis module 

presents the user with an analysis of the current network configuration using the logic 

presented in the previous section. 
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~~~'E]li 

n£iCT.§Jl'~ 

L !~~~7. 

H 0.02081!'8C 
l·J 0.0179sec 
1-5-4 0.176sec 
1-5 0167sec 
1-5-6 0.179sec 
1-'H 00292sec 
2+3 OD387aec 
2+5-~ O.T97sec 
2+5 0188sec 
2+5-6 02sec 
2-1-J-7 OOSOlsec 
~1-5-4 0.194sec 

Figure 3.11 Data Input, Weight, Utility, and Analysis Modules. 

2. Primary Data Structures 

A matrix is an ideal data structure for maintaining data on each possible link on the 

network. Each cell in the matrix can be used to represent a specific link and store specific 

data about that link. For example, a 5x5 matrix can be used to represent a five node 

network. The cell represented by row three and column two references the potential link 

between nodes two and three. This is shown graphically in Figure 3.12. 

If full-duplex links are used to design your network, then you only need half a 

matrix to represent the links. This is because the link represented by cell3,2 is the same as 
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1 
2 

3 
4 
5 

Figure 3.12 Matrix Cell Representing the Link 
Between Nodes 3 and 2 (Cell 3,2). 

the link represented by cell2,3. In addition, cells referenced by the same column and row 

number are unnecessary as it would be illogical to establish a link beginning and ending at 

the same node. Figure 3.13 represents the same 5x5 matrix with "half' of the matrix 

blacked out to represent the type of matrix used by the Web Spinner to store data. 

1 
2 
3 
4 
5 

1 2 3 4 5 

Figure 3.13. "Half Matrix" Showing Link 2,3 
(same as Link 3,2). 

This "half matrix" structure is the format used on the data input screen. The user 

is expected to fill in the lower left half of the matrix and Web Spinner simultaneously fills 
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in the upper right half to complete the matrix. This effectively halves the time required by 

the user to input data into the Web Spinner matrices. 

Web Spinner uses nine matrices to store and maintain data about the network. 

Four matrices are integer matrices that contain the Traffic Requirements, Set-Up Cost, 

Monthly Cost, and BER rating for each potential network link. Two additional integer 

matrices, Distance and Utility, are used to hold the computed distance between nodes 

(length) and total utility value of each link. A real number matrix is used to store the 

computed packet delay for each physical link. A character-based matrix is used to record 

the routes that constitute each logical link between every node pair. Finally, a specialized 

matrix is used to store the status of potential links as existing, non-existing, or locked in 

the recommended network. This matrix is used by the network drawing routine to 

graphically depict the proposed network on the Web Spinner desktop. 

These matrices are continuously manipulated by the user and the Web Spinner 

application during the design of the network. A number of smaller arrays and variables are 

used throughout the program, but offer little value-added information for the reader. 

3. General Web Spinner Decision Process 

Figure 3.14 is a graphical illustration of the Web Spinner decision process. The 

set-up cost, monthly cost, BER, and traffic requirements matrices are filled in by the user. 

The entire process is executed when modifications are made to the network or the input 

data. Each time the process is executed, the remaining five matrices are recomputed and 

included in the solution process. The relatively quick speed of the computer makes this 

complex process appear instantaneous. 
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Figure 3.14 Web Spinner General Process Diagram. 
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IV. WEB SPINNER LIMITATIONS & RECOMMENDATIONS 

A. PROGRAM LIMITATIONS 

Web Spinner was developed as a "proof of concept" decision support system to 

show the usefulness of such a network design tool. As a result of its prototype origin, 

there are some limitations in the application including: 

1. A single link speed (Uniform Link Bandwidth) for all network connections is 
not practical for a "real world" problem. 

2. Only one set of link data can be stored in the Web Spinner data matrices at a 
time. 

3. Ten network node limitation. 
4. Only three criteria are used which might not accurately depict the decision 

world of prospective users. 
5. The decision algorithm always creates an "optimum" tree structure. Additional 

configuration options should be available. 
6. Web Spinner can only be used on machines capable of running Microsoft 

Windows applications. 

Most of these deficiencies would be corrected in a production quality version of 

the system. In addition, a number of features should be added to make Web Spinner 

easier to use and a more complete decision support tool for the user. These additional 

features are covered in the next section (Section B, Recommendations). 

1. Uniform Link Bandwidths 

A true optimum network would utilize the best link bandwidth for each 

connection. Otherwise, some links will have a large percentage of unused bandwidth 

while others will be approaching their upper limit. If bandwidths are optimized at the link 

level instead of the network level, the total cost of establishing and operating a network 

should be considerably less. This network-level, uniform link bandwidth constraint 

decreases network throughput efficiency, produces uneven link loading rates, and 

generally creates a more expensive network. 
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2. Single Set of Link Data 

The Web Spinner matrices only provide for the input of data for a single potential 

link between each node pair. This was done for two reasons. The first is that the uniform 

link bandwidth constraint limits the amount of data required to that of a single link 

between each origin and destination node. However, when the user changes the uniform 

link bandwidth for the network, he/she must then input new data appropriate for the new 

link speed. 

The second reason is caused by the choice of implementation platform. Windows 

3.xx and the Borland Delphi 1.0 compiler enforce a 64 Kilobyte (KB) restriction on the 

amount of RAM (Random Access Memory) that can be used by the program stack and 

data segment of each application. (This restriction is advertised to have been corrected 

with Delphi 2.0 running with the Windows-95 operating system. See Appendix D for a 

description of the Delphi programming language and a listing of the program code.) 

Web Spinner uses nine matrices (discussed in Chapter Ill, Section C) plus a 

number of arrays to store and manipulate network data. As the number of nodes 

increases, the number of cells in each matrix increases with the square of the number of 

nodes (i.e. 2 nodes creates a 22 = 4 cell matrix and 3 nodes require a 32 = 9 cell matrix). 

Nine growing matrices can quickly consume a lot of computer memory. In addition, as 

the number of nodes increase, the size of the internal memory stack must grow to 

accommodate the recursive routines used to determine logical routes and network 

performance data. The highly graphical nature of the Web Spinner screens also consumes 

a large amount of memory as graphics are stored in a memory-intensive bitmap format 

(*.bmp). Therefore, memory size requirements for the application dictated that only a 

single set of matrices could be maintained for each link at one time. 
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3. Ten Node Limitation 

The size of each network is limited to ten nodes on account of the 64 KB memory 

restriction presented in the previous section. This limitation was not discovered until the 

analysis module was developed for Web Spinner. The analysis module uses two recursive 

procedures which dynamically expand and reduce the program memory stack as required 

to complete the routine. When more than ten nodes are used, the memory stack can 

exceed the available memory space causing an "Out of Memory" error to occur. Windows 

3.xx then terminates the Web Spinner application. 

4. Three Criteria 

Three criteria were chosen for the initial version of Web Spinner. These criteria 

are: Set-Up Cost; Monthly Cost; and Bit Error Rate (BER). They were chosen because 

they are considered to be common to the decision world of most system designers when 

designing a dedicated link network. However, it is probable that these are not the only 

quantifiable criteria that would be considered in the design process. A mechanism should 

be added which allows the user to define their own criteria and accompanying data in 

order to make Web Spinner a more useful and complete decision support tool. 

5. Exclusively Tree Structures 

The minimum spanning tree is the combination of links that connects all network 

nodes with a minimum total length (or other appropriate unit). Likewise, the maximum 

spanning tree is the tree structure which maximizes the total length using the minimum 

number of links. For most dedicated link network designs, the Minimum/Maximum 

Spanning Tree models creates the ideal network solution. However, if redundant routes 

are required between links, spanning tree models can no longer be used as dual routes 

between any two nodes violates the definition of a tree. 
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Additional configuration modeling techniques would be useful to a network 

designer. This would allow him/her a greater freedom of choice and more control of the 

process when determining their optimum network design. Whatever the reason, the 

minimum/maximum spanning tree structure may not always be optimum to the network 

designer. 

6. Windows® Environment Only 

Web Spinner was developed on a IBM-compatible computer system running 

Microsoft Windows for Workgroups 3.11. Standard Windows® components were used to 

enhance graphic effectiveness and give it a common look and feel to most users. As a 

result, Web Spinner requires a similar system to run effectively. The current 

implementation is not available to Apple Macintosh or UNIX system users. 

B. RECOMMENDATIONS 
It is recommended that the identified limitations be corrected in a production

quality version of the system. In addition, a number of new and expanded features are 

recommended for inclusion: 

1. Include network performance analysis into the design. 
2. Allow specification of several additional network criteria such as minimum 

network response time, maximum link loading rates, and logical link error 
rates. 

3. Allow for file storage and retrieval. 
4. Allow for import of link data directly from the service provider. 

This added functionality could dramatically increase the effectiveness of Web Spinner as a 

decision support tool. 

1. Network Performance Analysis 

The network analysis module was added to provide post-design information to the 

user. As a result, the computed network analysis information is not included in the 

32 



decision process. It would be very useful to the decision-maker if this data were 

incorporated into the solution formula along with a sensitivity analysis showing how final 

performance data will change as input data is modified. 

2. Additional Criteria Specification 

In addition to the provided network analysis information, a seasoned network 

designer may wish to specify that the resulting design meet several criteria specifications. 

Examples include specifying minimum network response time, maximum link loading 

rates, and logical link error rates. Pre-specification of final network performance 

characteristics is likely to be required by a "real-world" network designer and should be 

included in the decision process. 

3. File Operations 

Data input consumes a large amount of the users time during a Web Spinner 

session. In addition, when the user terminates his/her session, all input data is lost. It 

would be very useful for the network designer if he/she could input network data once and 

save it for later sessions. File storage of this data would be very useful if the network was 

frequently changing or new information becomes available at a later date. The addition of 

a relational database could provide a convenient way to store and retrieve this data. 

The only way the user can currently retain any session information is through a 

paper copy of the network analysis report or individual screen printouts. This may be 

adequate for archival purposes, but it does not allow the decision-maker to use the system 

to graphically show why this decision was the optimum solution for the conditions present 

at the time the decision was made. 
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4. Import of Vendor Data 

Another very useful feature would allow Web Spinner to import link data directly 

from the vendor. This could be done by loading data from a floppy disk or directly from 

the vendor's database via a computer modem. This could dramatically cut down on the 

amount of time consumed by data input and allow for the latest vendor information to be 

incorporated into your design. 

A number of problems would have to be overcome to implement this function 

including data incompatibility, differing vendor data, and data acquisition (not all vendors 

may have this information available electronically). However, a local relational database 

management system could be used to assist in the capture and retention of this data. 
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V. CONCLUSION 

A. RETROSPECTIVE 

The Web Spinner is not a state-of-the-art decision support tool, nor is it a system 

that could be used to completely solve a real-world problem. Web Spinner is, however, an 

excellent proof-of-concept system which underscores the usefulness of such tools both 

today and in the future. Web Spinner succeeds in providing an effective graphical 

environment and presentation appropriate for today's sophisticated information-worker. 

Simple decision models and graphical displays are combined to create a powerful, albeit 

limited, environment for designing network connectivity plans. 

The knowledge foundation gained by implementation of the Web Spinner DSS can 

be improved by incorporating many ideas contained within this thesis. Many lessons were 

learned along the way and the author hopes that they can be used to not only solve the 

current design issue at hand, but incorporated into the growing knowledge base for 

computer-aided solving of real world problems. 

B. MORE TO COME 

Decision Support Systems will play an increasing role in the aid of human decision

making in the future. They are not meant to replace the human decision-maker, but assist 

them in a synergistic way. The computer can be harnessed to take care of all the time

consuming and structured calculations of the decision while allowing the user to 

concentrate on the fundamentals of the decision. The electronic computer excels at pre

programmed, calculation-intensive problems-- something that can be time consuming and 

tedious to the human computer. The human mind is better at pattern recognition and 

incorporating non-quantifiable, complex insights into the decision process. 
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With the expansion of the business world to a global scale and the increasing 

decision complexities accompanying the emerging Information Age, many problems are 

becoming more technical and data intensive than every before. Many oftoday's decisions 

have far-reaching implications and recognize a diminishing tolerance for error. Most 

errors and fundamental design flaws can be caught long before they are implemented 

through the use of advanced decision support technologies and methods. Tomorrow's 

systems will be more robust and build upon the lessons learned today. 
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APPENDIX A. GETTING STARTED WITH WEB SPINNER 

A short guide is provided here to assist the user in loading and configuring their 
system to use the Web Spinner application. 

A. System Requirements 

Web Spinner was developed on an Intel80486DX2-66-based computer system 
running Microsoft Windows for Workgroups 3 .11. The following minimum system is 
required to properly run the Web Spinner application: 

1. Intel 80386DX processor with Math Co-Processor (80387) 
2. Windows 3.xx or Windows-95 Operating System 
3. 4MB RAM (8MB recommended) 
4. 64 KB available conventional memory 
5. 1MB available hard disk space 
6. 256 color VGA monitor with video card 
7. Mouse 
8. Printer (required for "hardcopy" reports) 

B. The Web Spinner Program Disk 

The Web Spinner program disk contains three files which must be properly loaded 
onto your system to execute the program. These three files are: 

1. Webspnr .exe - The Web Spinner executable file. 

2. Bivbx.dll - A Dynamic Link Library (DLL) source file which provides extended 
Microsoft Windows objects and methods used in the Web Spinner application. It assists 
the Web Spinner in drawing pictures and graphical components on the screen during 
program execution. Web Spinner will not load without this file present. 

3. Chart2fx.vbx- This is a Visual Basic Component (VBX) file which provides 
the visual methods and functionality for graphical charts in the Microsoft Windows 
operating environment. Web Spinner will not load without this file present. 
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C. Getting Started 

Loading the Web Spinner application is as simple as following steps 1-2-3: 

1. Step 1 - Using the File Manager in Windows 3.xx, the Explorer in Windows-
95, or simple DOS commands, load the webspnr.exe file onto the hard drive. It is 
recommended that the user create a separate directory on the hard drive and load 
webspnr.exe there. 

2. Step 2- Load the Bivbx.dll and Chart2fx.vbx files into the C:/windows/system 
directory on the boot drive. These files must be loaded here as the operating system will be 
looking for them as the Web Spinner program is executed. 

3. Step 3. Execute (Run) webspnr.exe from the hard drive and Web Spinner is 
ready to use. Figure A.l depicts the Web Spinner initial welcome page. Appendix B 
provides a tutorial designed to teach the fundamental capabilities of Web Spinner. For 
those who wish to learn more about using the application, Appendix C contains a real 
world sample problem and a step-by-step process of solving it using the Web Spinner. 

JVeb Spinner 
b\1: Jczffrcz\1 A. Ma-rsraf 
Thesis .A.d·visor: Prctessor Suresh Sno!·:e.r 
As soc .A.d·visor: Prolessor ~8me.n1.1( Bhergave. 

N.wal Pest Gra<>uotc Scheel 
Web Spinner Is an a/tempt to produce an 
graphical, inluitiw and user-friendly ~cision 
Support System {DSS) for designing Wide Area 
Network {WAN) connectivity plans. This Is 
being done as part of my graduate thesis. 

I ~Print j 

Figure A.l The Web Spinner Welcome Page. 
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APPENDIX B. WEB SPINNER TUTORIAL 

Web Spinner was designed to be a graphical, intuitive, and user-friendly Decision 
Support System (DSS). Extensive use was made of Microsoft Windows® standard visual 
components and data manipulation tools. A simple tutorial is provided here to highlight its 
graphical simplicity and to serve as an instructional mechanism for potential users. Web 
Spinner attempts to assist the user in defining the "optimum" tree-based network based on 
a number of selectable criteria: Set-Up Cost, Monthly Cost, and Bit Error Rates (BER). 

[Note: Unless otherwise noted, when reference is made to "click" on a menu item, the 
user is expected to position the on-screen pointer over the item and press the left mouse 
button.} 

A. Getting Started 

When the program is launched, the user is first greeted by a welcome screen 
(Figure B.l) which provides some basic information about the program. 

T¥eb Spinner 
b\i: Jeffre\i A. Marsrai 
Thes;s P..d-..~sor: Professor Suresh Sridhar 
Assn:: A.d\tisor: Professor Hernent K. 8hergava 

Naval Post GrMuate Scbocl 
Web Spinner is an aUempllo produce an 
graphical, tnJtJJJiw and user·frtendly Decision 
Support System {DSS) for designing Wuie Area 
NeNork {WAN) connectivity plans. This is 
betng done as par/ of my graduate thesis. 

Figure B .1 Web Spinner Welcome Page. 

The Web Spinner logo is depicted in the upper left of the screen and a picture of the 
Greek maiden Arachne is shown in the bottom right comer of the window. For an 
explanation of the presence of Arachne throughout the program and the motivation she 
provides, simply click with the mouse anywhere on her picture. 

Click on the "Go!" button to proceed. 
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B. The Web Spinner Desktop 

The first screen presented to the user is the Web Spinner desktop. The desktop is 
one of the five tabbed modules which make up the Web Spinner DSS. The five tabbed 
sections are: 

1. Main (The Web Spinner Desktop) 
2. Inputs (Data Input) 
3. Weights (Criteria Weighting Assignment) 
4. Utility (Utility Curve Definition) 
5. Analysis (Network Performance Analysis) 

Figure B.2 shows a blank desktop with the five tabbed sections displayed along the bottom 
of the window. Each section may be chosen by clicking on the appropriate tab with the left 
mouse button. 

Figure B.2 The Web Spinner Desktop. 

Initially, the desktop is configured as shown in Figure B.2 with the Node Pad, Link 
Info, and Solve Criteria tool boxes present. All visual components can be moved 
anywhere on the screen by pressing the left mouse button with the pointer over the 
component and dragging it to a new position. The move process is completed when the 
mouse button is released. In addition, almost all components can be hidden from view by 
clicking on the "x" button in the upper left comer of the component. All components may 
be restored to the desktop by selecting the appropriate menu item from the pull-down 
menus on the top of each screen. 
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C. Pull-Down Menus 

A number of standard pull-down menus are present at the top of most windows. 
They are used to either invoke a desired procedure (method) or to display hidden tool 
boxes. A description of each menu item and available short-cuts (shown in parenthesis) are 
provided here for clarification. 

Figure B.3 shows the File pull-down menu and the two methods available for 
selection. The Print Screen (CTRL + P) selection sends a copy of the currently displayed 

screen to the printer. The Close selection ends your Web Spinner session. 

File .···· .·.· Tools 

.frint Screen CTRL+P 
Close 

· ·· Analyze ··•···.. ..• .. About ... .. 

Figure B.3 File Pull-down Menu. 

I 

The Tools pull-down menu, shown in Figure B.4, is used to hide or unhide two tool 
boxes that are used with the Web Spinner Desktop. The Link Creator (CTRL + L) tool is 
used to force a link to exist between any two nodes in your proposed network. The Link 

Info Box (CTRL + I) displays the links chosen to connect your network for the given 
criteria. In addition, it also shows the calculated network set-up cost and total utility for 
the displayed network configuration. 

I File Tools Analyze 
.!,ink Creator CTRL+L 
Link Info Box CTRL+I 

About .. ···· 

Figure B.4 Tools Pull-down Menu. 

... .... I 

Figure B.5 depicts the Analyze menu. The Analyze menu contains two tools which 
are used to change basic information used by Web Spinner to design the proposed 
network. The Solve Criteria (CTRL + C) tool is a checkbox tool which determines which 
criteria (Distance, Set-Up Cost, Monthly Cost, BER) or combination of criteria should be 
used to plan the network. As criteria are selected and de-selected, Web Spinner 

automatically redraws the network based on the selected criteria only. This can give the 
user valuable insight into how each criteria affects the final outcome. 
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I File Tools Analyze About 
Solve .C.riteria CTRL+C 

Basic Data CTRL+D 

Figure B.5 Analyze Pull-down Menu. 

The Basic Data (CTRL + D) tool box is used to input two basic elements of the 
network: uniform link bandwidth (link speed in bits/second) and packet size (bits/packet). 
When either element is modified, Web Spinner recomputes all the network information 
found on the Analysis page. 

The final pull-down menu is the About menu and is shown in Figure B.6. The 
About menu contains two information tools: About and the Link Legend. The About 
(CTRL +A) selection returns the user to the initial Web Spinner screen showing basic 
information about the program. The Link Legend tool is a moveable panel which simply 
depicts the different colored links that can be displayed in the network and what they 
represent. 

L I··~Fi~le~~~-T~o~o~ls~~--~A~n~a~Jy~z_e __ ~~A_b_o_ut~~~·..~ 

I 
About WS CTRL+A 
Link Legend 

Figure B.6 About Pull-down Menu. 

D. Creating Your Network 

The first step in creating your proposed network is to define the network nodes. 
Node generation and spatial positioning are done on the Web Spinner desktop. Click on 
the magenta oval on the Node Pad to generate a new network node. Once the new node 
appears on the node pad, the user may drag it to any position on the desktop. The user 
should position the nodes on the screen so that they roughly approximate the geographic 
positions of the actual network. A maximum of 10 nodes may be defined in this version of 
Web Spinner. 

As each node is positioned on the screen, Web Spinner will begin drawing links to 
show the best network tree structure based on the scaled screen distance between nodes. 
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These links will also be identified in the Link Info Box on the left side of the screen. Figure 

B.7 shows a sample network of nodes displayed on the Web Spinner desktop. 

1,2 
1.3 
2.4 
2.5 
3,6 
4.7 

Figure B.7 Defining Network Nodes on the Desktop. 

A node may be repositioned at any time during your session by simply dragging it 

to a new desired position. Web Spinner will automatically re-draw the network based on 

this new screen position and the computed distances between nodes. 

If you wish to delete a node, simple click with the right mouse button on a node 

and Web Spinner will ask if you wish to delete the node (Figure B.8). If you delete the 

node, Web Spinner will re-number the nodes to ensure continuity, remove the respective 

node data from the criteria matrices, and redraw the network. If you regenerate the node 

at a later time, the respective node data will have to be re-entered into the criteria matrices. 

Figure B.8 Deleting a Node. 
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You may generate a node at any time during your session. New nodes will always 
be assigned the next number in the numerical sequence between one and ten. Remember, 
the maximum number of nodes that may exist at any time is ten. A dark cross pattern will 
appear in the oval on the Node Pad when the maximum number of nodes have been defined 
to indicate the inability to generate additional nodes. 

E. Network Data 

Once you are satisfied with the number of nodes in the network and their relative 
positions on the desktop, the next step is to define traffic requirements between network 
nodes as well as set -up costs, monthly costs, and bit error rates (BER) for potential links. 
Select the Inputs page to enter this data. An example of this screen is shown in Figure B.9. 

•taM,.nl . .;-:m•wtmm ~ 
t·atrmm+t®=• [] 

Monthly Costs to maintain 
each link. (Mex • $32766) 

Figure B.9 Defining Network/Link Data. 

Web Spinner maintains network and link data in a series of six matrices that may be 
accessed by the user. These matrices are expanded and contracted throughout your session 
based on the number of nodes currently defined on the desktop. Each link is represented 
by the convergence of the representative row and column. For example, the matrix cell 
represented by row two and column three represents the link between nodes two and three. 
All links are considered full duplex so only half the matrix needs to be defined-- Web 
Spinner fills in the second half. Therefore, the Inputs screen displays a matrix with the top
right half darkened and uneditable. 
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The first two matrices, Utility and Distance, are automatically computed by Web 
Spinner and are available on the Inputs screen as read-only information for user reference. 
These matrices may be displayed by simply clicking on the respective button on the left side 
of the screen. 

The four remaining matrices are: Traffic Requirements; Set-Up Costs; Monthly 
Costs; and BER. They may be accessed by the speed buttons shown on the left side of the 
screen. If you position the pointer over a speed button, Web Spinner will tell you what 
matrix the button activates after a short pause (about 1.5 seconds). As each button is 
pressed, the respective matrix is displayed on the screen along with a brief description of 
the data Web Spinner expects to be input into the matrix. 

F. Input of Network Data 

In order for Web Spinner to compute an accurate report of your complete network, 
it requires the estimated traffic requirements between nodes. Select the first speed button 
on the Inputs screen. The current traffic values will be displayed. Select the top white 
matrix box (row 2, column 1) and input the expected amount of packets that need to be 
transmitted between nodes one and two each second. Once the value is input, press the tab 
button on the keyboard to move to the next input box. Web Spinner will fill in the 
darkened half of the matrix as you input each value. You may change these values at any 
time during your session. 

Once you are satisfied with the Traffic Requirement matrix values, select the 
second speed button to activate the Set-Up cost matrix and input these values. Do the 
same for the Monthly Cost and BER matrices using the input guidance provided. 

G. Defining Criteria Weighting 

Web Spinner uses three basic criteria to assist the user in defining their "optimum" 
network: Set-Up Cost; Monthly Cost; and BER. In order for Web Spinner to determine 
the importance of each criteria to the user, he/she must define their relative importance 
with respect to each other. This is done on the Weights page shown in Figure B.lO. 

The Weights screen shows the three criteria and a pie chart which graphically 
represents their assigned weights. Use the spinbuttons to increase or decrease the assigned 
relative weighting for each criteria. The pie chart and the total box automatically update as 
criteria values are modified. 
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Figure B.lO Criteria Weighting. 

H. Defining Criteria Utility Curves 

40% 

Utility graphs are used to determine the value trade-offs of the user with respect to 
each of the selection criteria. Select the Utility page as shown in Figure B.ll. This screen 
displays three small charts along the left side of the screen identifying the current utility 
values for each of the three criteria. The larger chart is used to modify these utility charts. 

Figure B.ll Defming Utilities. 
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Initially, the Set-Up Cost utility graph is shown in the larger chart. To select either 
of the other curves, simply double click on the smaller graph and it will appear in the 
larger, modification chart. Any changes you made to the previous graph will be reflected in 

the respective, smaller chart. 

To change utility values, use the appropriate spinbuttons to increase or decrease the 
value for each data point. To reset a graph to a "risk-neutral," straight-line curve, select 

the Reset Graph button below the graph. To cancel this reset or any other changes, click 

on Cancel Reset to return the graph back to the initial modification point. 

To complete the modification, either select the OK button or double click on the 

next chart to transfer the modification graph curve to the smaller graph. 

I. Defining Required Links 

Many times specific network links may be required within the network. These 
reasons may be political, intangible, or to incorporating already established links in the 
proposed network design. Web Spinner allows you to force specific links to exist to reflect 

these unquantifiable realities. This method also allows the user to override the tree-based 

structure of the network by defining a series of locked links that form a non-tree structure. 

Return to the desktop. There are two ways to force specific links to exist. If the 
desired link is already shown on the desktop, simply click on the link and Web Spinner will 
ask if you wish to lock the link. (see Figure B.l2) If the OK button is selected, the link will 
change color from magenta to black and will always be included in the proposed network 
solution regardless of its respective utility. 

Figure B.12 Locking a Link. 

The second way to lock a link in place is used when the desired link is not currently 
depicted on the screen. Click on the Tools pull-down menu and select the Link Creator 

(CTRL + L). A box will appear on the screen which you may input the two nodes that you 
wish to create a locked link between. (see Figure B.13) The values must represent nodes 
currently depicted on the screen. Select OK to complete the operation. 
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Figure B.13 Using Link Creator to Lock a Link. 

To unlock a link, simply click on a locked link and the user will be asked if they 
wish to unlock it. (see Figure B .14) If the OK button is selected, the locked nature of the 
link will disappear and it will return to the magenta color. Web Spinner will then treat the 
proposed link as any other and use the selection criteria to determine the "optimum" 
network composition. 

.Confi!'m 

Figure B.14 Unlocking a Link. 

J. Analyzing the Proposed Network 

Web Spinner will now assist the user in designing the "optimum" network based on 
the data provided. On the desktop, the Solve Criteria box can be used to select which 
criteria you want Web Spinner to use to solve your proposed network design. Check the 
Set-Up Cost box and Web Spinner will re-draw the network using set-up cost as the sole 
selection criteria as shown in Figure B.l5. 
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Figure B.15 Network Based on Set-Up Cost Only. 

You may select any combination of criteria to design your proposed network. Web 

Spinner re-draws the network each time any modifications are made. The "optimum" tree

based network is generated by computing the respective utility values for each link and 
selecting the combination of links which create a tree structure with the highest over-all 
utility value. The following formula is used: 

Total Link Utility = [(Set-Up Cost Weight) x (Set-Up Utility) x (Check Value)] + 

[(Monthly Cost Weight) x (Monthly Utility) x (Check Value)]+ 

[(BER Weight) x (BER Utility) x (Check Value)] 

The check value is equal to a one if the respective box is checked or a zero if it is 
not checked. Figure B.16 shows the proposed network with Monthly Cost and BER 
criteria selected. 

The user can now gain insight into the proposed network behavior as different 
criteria are selected or as specific links are locked and unlocked. In addition, nodes can be 

added and removed from the network and link criteria values, weights, and utility curve 
values can be modified. Each time a modification is made, Web Spinner re-draws the 
network based on the current set of data and criteria selected. 
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Figure B.16 Proposed Network Using Two Criteria. 

K. Finishing Up -- the Final Network Report 

Once you have settled on your final network configuration, Web Spinner will 
generate a network analysis report containing essential network statistics. Select the 
Analysis page. 

As the page appears on the screen, the data on the screen is recomputed to ensure 
all recent network modifications are included. If the uniform link bandwidth selected at the 
beginning of the session is inadequate for the proposed network, a dialog box will appear 
with the minimum bandwidth required to implement your network. (see Figure B.l7) 

I.= I Information 

.0. .' .. ·.·.Cu. .• m~nt u.n. i.f.rom... link. bandWi·d· th··· i.ns(Jf .. ficient for··· aver .. age network loading_ Under current traffic pattern 
r.equirement~. a minimim bandwidth of18433 ~ required. 

Figure B .17 Warning, Link Speed Insufficient 
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After the user acknowledges the message, the Basic Data box appears to allow the 
user to input a new uniform link speed. (see Figure B.18) Input the new value and select 
OK. 

sec 
-0.0526 sec 
0.0225 sec 
-0.0145 sec 
0.111 sec 
0.0243 sec 
-ll.0897 sec 
-ll.0145 sec 
-0.0515 sec 
0.0735 sec 
-0.0127 sec 
-0.0301 sec 

Figure B.18 Changing Link Speed Using Basic Data Box. 

To recompute the report analysis based on the new link speed, select the Re-Solve 
button. Figure B.19 shows what a final, satisfactory report may look like. 

1-2 
1-3 
1-5 
3-7 
4-5 
5-6 

1-2 1-2 
1-3 1-3 
1-4 1-5-4 
1-5 1-5 
1-6 1-5-6 
1-7 1-3-7 
2-3 2-1-3 
2-4 2-1-5-4 
2-5 2-1-5 
2-6 2-1-5-6 
2-7 2-1-3-7 
3-4 3-1-5-4 

Figure B.19 Final Report. 
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To obtain a paper copy of this report as well as all of the criteria values used to 
create the network, select the Print Report button. 

Each time the user makes modifications to the network, Web Spinner recomputes 
this data which may be referred to at any time during the session. The final printed report 
can be used to justify and document the network design process for future reference. 

A sample problem is presented in Appendix B for those who wish to further explore 
the capabilities of the Web Spinner. 
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APPENDIX C. SAMPLE PROBLEM 

A sample problem is provided here to show how one might use the Web Spinner decision 
support system to solve a real world problem. It is designed so that the reader may either skim this 
section separately or follow along using the Web Spinner program. Web Spinner is a "proof of 
concept" system vice a production quality system, so some minor artificialities do exist within the 
exercise. 

A. The Problem 

You are assigned as the J-4 (Logistics) Systems Officer for the Joint U.S. Transportation 
Command (USTRANSCOM) at Scott AFB near Belleville, Illinois. You have been tasked to 
design a network connectivity plan for a new system designed to allow USTRANSCOM to 
coordinate critical logistics among a number of CONUS naval base supply centers during periods of 
crises or war. In addition, this network will be used by those supply centers to coordinate intra
Navy logistics plans among themselves. The ten nodes for the prospective network are listed below 
and shown graphically in Figure C.l: 

1. U.S. Transportation Command, Belleville, IL 
2. National Military Command Center, Washington D.C. (Joint Chiefs of Staff) 
3. Naval Base, Groton, CT 
4. Naval Base, Norfolk, VA (U.S. Atlantic Fleet) 
5. Naval Base, Charleston, SC 
6. Naval Base, Mayport, FL 
7. Naval Base, Bremerton, WA 
8. Naval Base, Oakland, CA 
9. Naval Base, San Diego, CA (U.S. Pacific Fleet) 
10. Naval Base, Gulfport, MS 

The network is to be designed with "wartime" or peak anticipated bandwidth requirements 
and utilize common communication links for simplicity. High reliability and low error rates are 
required as it will serve the critical logistics needs of a wartime fleet. The system administrator 
informs you that the proposed network will utilize a very small packet size of 16 characters per 
packet. You do some quick math and determine that the proposed network packet size will be 128 
bits. 

A link already exists between USTRANSCOM and the Command Center in Washington 
D.C. A logistics link is also in operation between the naval bases in Norfolk and San Diego. Both 
of these links have approximately 64 kilobits per second (KBPS) unused bandwidth that you have 
permission to use for the new network. 
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Figure C.l Prospective Nodes in the Network. 

Due to a high commitment rate of Operation and Maintenance (0 & M) Funds for this fiscal 
year, minimal funding is available to establish the network. However, the J-8 Budget Officer 
believes that additional funds will be approved for future year operations of the network. 

B. Using Web Spinner to Solve Your Problem 

You realize that the proposed network nodes are geographically dispersed so you will have 
to lease commercial links to provide the required connectivity. Since you have a tight network set
up budget and already have two 64 KBPS lines available, you decide to incorporate these links into 
your network. You also decide to make 64 KBPS the uniform link speed standard for the initial 
network. 

You launch the Web Spinner application and go directly to the desktop to enter this 
information. You pull down the Analyze Menu and select Basic Data (or press CTRL + D) to 
activate the Basic Data panel. You then select 64,000 bits per second as the uniform link speed. 
You also enter 128 bits as the network packet size as shown in Figure C.2. 

The next step in designing your network with Web Spinner is to create the ten network 
nodes on the desktop. You generate ten nodes with the Node Pad and position them on the screen 
so that they roughly approximate the relative geographic positions of the actual nodes. Web 
Spinner initially generates links on the screen that approximate the best geographic tree as you 
place new nodes on the desktop. This would be your "ideal" network if you were concerned only 
with the distances between the proposed nodes. Your initial network is shown in Figure C.3. 
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C. LinkData 
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Figure C.2 Defining Initial Network Data. 

Figure C.3 Defming Network Nodes. 

Fortunately, the system administrator has already determined the data transmission 
requirements in packets per second for the proposed network. You select the Inputs tab along the 
bottom of the screen to go to the Link Characteristics screen. Select the first speed button 
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on the left side of the screen to activate the Traffic Requirements matrix. You enter the data as 
shown in Figure C.4. 
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Figure C.4. Entering Traffic Requirement Data. 

You then collect commercial tariff rates for leasing 64 KBPS links between every two node 
pairs in the proposed network. After some initial analysis, you select the best link for each node 
pair and enter the respective data into the Set-Up Cost, Monthly Cost, and BER matrices as shown 
in Figures C.5, C.6, and C.7. 

s· Weights Utility Analysis : .. · 
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Figure C.5 Set-Up Cost Data. 
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Figure C.6 Monthly Cost Data. 
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Figure C.7 Bit Error Rate Data. 

D. Defining Criteria Weights 

You then select the Weights tab to go to the Weights screen. Since minimal money is 
available to set-up the network, you assign this criteria a weight of 50%. In your initial tasking, 
you were instructed that the network should have a low error rate as it would be serving the fleet in 
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time of crises. Therefore, you assign the BER criteria a weight of 30%. You then finish the weight 
assignments by entering 20% in the Monthly Cost input box as shown in Figure C.8. 
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Figure C.8 Assignment of Criteria Weights. 

E. Defining Criteria Utility Curves 

Finally, you must help Web Spinner determine how to make value trade-offs between 
different levels of "goodness" for the given criteria. This is done on the Web Spinner Utility page 
which can be selected from the appropriate tab. You are presented with all three criteria initially 
graphed in a "risk neutral," linear curve. However, you decide that this is not representative of the 
true value trade-offs of your decision world-- especially for the Set-Up Cost and BER curves. You 
modify these curves until you are satisfied that they approximate how important each criteria and its 
associated cost are to you. You decide that you are not really concerned with the Monthly Cost 
criteria and leave it in its initial, linear form. (see Figure C.9) 

F. Learning About Your Proposed Network 

It is now time to begin learning how each of these criteria affect the network design. 
Return to the Web Spinner desktop. Select the Solve Criteria panel from the Analysis menu if it is 
not already displayed on the desktop. Check the Set-Up Cost box and Web Spinner redraws the 
network using Set-Up Cost as the sole selection criteria. Figure C.lO depicts this possible network. 
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Figure C.9 Defining Utility Curves. 

Figure C.lO Network Using Set-Up Costs Only. 

You then look at the individual network designs using Monthly Cost and BER as the sole 
decision criteria by selecting the appropriate checkboxes. Since you believe that Set-Up Costs and 
BER are the most important criteria for deciding on the network design, you select both of these 
criteria and Web Spinner designs the network as depicted in Figure C.ll. You then observe how 
each two criteria combination affects the final network design. Finally, you decide that all three 
criteria really should be used and check all three boxes. (see Figure C.l2) 
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Figure C.ll Network Design Using Set-Up Costs and BER. 
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Figure C.12 Network Design Using All Three Criteria. 

You then remember that you have already decided to use the previously established links 
between USTRANSCOM-Washington D.C. and Norfolk-San Diego. Since the current network 
design already incorporates the USTRANSCOM-Washington D.C. link, you simply click on that 
link to lock it into place. You then use the Link Creator tool under the Tools menu to create and 
lock a link between nodes four (Norfolk) and nine (San Diego) as shown in Figure C.13. Web 
Spinner immediately redraws the network to incorporate this link. 
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Figure C.13 Incorporating Already Established Links. 

G. Incorporating New Data 

The Budget Officer calls to inform you that Congress has appropriated more money to the 
USTRANSCOM 0 & M budget to cover unanticipated transportation costs incurred early in the 
fiscal year. This means that more money is now available to establish the network. However, he 
warns that this does not equate to a blank check as other departments also have unfunded 
requirements and will be competing for these funds. In addition, he advises that he no longer 
anticipates any additional funding in next years budget for new information system operations. 

Armed with this new information, you decide to see how it affects the design of your 
network. You go to the Web Spinner Weights page and make some modifications. Since more 
money is now available to establish the network, you reduce the Set-Up Costs criteria to 15%. 
Concerned about minimizing future network costs, you increase the Monthly Cost criteria to 60%. 
Finally, you reduce the BER criteria weight to 25% to ensure the combined weights total 100% as 
seen in Figure C.14. 
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Figure C.l4 Changing Weights to Reflect New Information. 

You return to the Web Spinner desktop to see that the network has been redrawn to 
incorporate this new information. (see Figure C.l5) The change in criteria weighting caused 
several links to change in the proposed network design. 
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Figure C.15 Network Design Reflecting New Criteria Weighting. 
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Knowing that future year budgets are always subject to change, you decide to disregard the 
Monthly Cost criteria to see how this affects the network design. You deselect the Monthly Cost 
checkbox and two links change in the network as shown in Figure C.l6. 
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Figure C.16 New Network Disregarding Monthly Costs. 

You also notice that the cost of establishing this network increases by more than seven 
percent when monthly costs are disregarded ($2185 as opposed to $2045). Therefore, you decide 
tore-include the Monthly Cost criteria. You decide that this is your "optimum" network based on 
all defined criteria. Figure C.17 represents your final network design. 

1.2 
2.3 
2.4 
4.5 
4.6 
4.9 
4.10 
7.8 
8.9 

Figure C.17 Final Network Design. 
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H. Network Performance Analysis 

You click on the Analysis tab to see the performance characteristics of your network 
design. Figure C. IS depicts this information. 

I. Final Report 

1-2 
2-3 
2-4 
4-5 
4-6 
4-9 
4-10 
7-8 
8-9 

0.00455 sec 
0.00247 sec 
0.0143 sec 
0.0026 sec 
0.00241 sec 
0.00465 sec 
0.00238 sec 
0.0026 sec 
0.00308 sec 

link Routs 
1-2 1-2 
1-3 1-2-3 
H 1·2·4 
1-5 1-2-4-5 
1-6 1-2--4-6 
1-7 1-2-4-9-8-7 
1-8 1-2-4-9-8 
1-9 1-2-4-9 
1·10 1-2-4-10 
2-3 2-3 
2-4 2--4 
2-5 2-4-5 

Figure C.l8 Network Performance Characteristics. 

+ 

Pleased with your work, you click on the Print Report button to send a copy of your 
network design, performance analysis, and criteria information to the printer. Figures C.19 and 
C.20 show a copy of this report. (Note: Some printer drivers, particularly those associated with the 
Windows-95 operating system, are unable to print the two graphics at the top of the report and 
may leave those areas blank.) You make several copies of this report to present to the system 
administrator and your boss. You also archive a copy in the new systems file so that it can be 
referred to later to recreate and justify your motivations for selecting this particular network design. 
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Link 
1-2 
2-3 
2-4 
4-5 
4-9 
4-10 
5-6 
7-8 
8-9 

Network Analysis 

Number of Nodes: 10 
Net Set-Up Cost: $2000 
Monthly Net Cost: $1205 

Expected Net Delay: 0.0142 sec 
Link Capacities: 64,000 bps 
#Bits I Packet: 128 bits 

Phvsical Link Data 
~ 

Lagic.al Liuk. Data 
A vg Pkts/Sec Mean Pkt Delay Link Route ExQ Route Delay 

280 0.00455 sec 1-2 1-2 0.00455 sec 
95 0.00247 sec 1-3 1-2-3 0.00701 sec 
430 0.0143 sec 1-4 1-2-4 0.0188 sec 
190 0.00323 sec 1-5 1-2-4-5 0.0221 sec 
285 0.00465 sec 1-6 1-2-4-5-6 0.0245 sec 
80 0.00238 sec 1-7 1-2-4-9-8-7 0.0292 sec 
85 0.00241 sec 1-8 1-2-4-9-8 0.0266 sec 
115 0.0026 sec 1-9 1-2-4-9 0.0235 sec 
175 0.00308 sec 1-10 1-2-4-10 0.0212 sec 

2-3 2-3 0.00247 sec 
2-4 2-4 0.0143 sec 
2-5 2-4-5 0.0175 sec 
2-6 2-4-5-6 0.0199 sec 
2-7 2-4-9-8-7 0.0246 sec 
2-8 2-4-9-8 0.022 sec 
2-9 2-4-9 0.0189 sec 
2-10 2-4-10 0.0167 sec 
3-4 3-2-4 0.0168 sec 
3-5 3-2-4-5 0.02 sec 
3-6 3-2-4-5-6 0.0224 sec 
3-7 3-2-4-9-8-7 0.0271 sec 
3-8 3-2-4-9-8 0.0245 sec 
3-9 3-2-4-9 0.0214 sec 
3-10 3-2-4-10 0.0191 sec 
4-5 4-5 0.00323 sec 
4-6 4-5-6 0.00564 sec 
4-7 4-9-8-7 0.0103 sec 
4-8 4-9-8 0.00773 sec 
4-9 4-9 0.00465 sec 
4-10 4-10 0.00238 sec 
5-6 5-6 0.00241 sec 
5-7 5-4-9-8-7 0.0136 sec 
5-8 5-4-9-8 0. 011 sec 
5-9 5-4-9 0.00788 sec 
5-10 5-4-10 0.00561 sec 
6-7 6-5-4-9-8-7 0.016 sec 
6-8 6-5-4-9-8 0.0134 sec 
6-9 6-5-4-9 0.0103 sec 
6-10 6-5-4-10 0.00802 sec 
7-8 7-8 0.0026 sec 
7-9 7-8-9 0.00567 sec 
7-10 7-8-9-4-10 0.0127 sec 
8-9 8-9 0.00308 sec 
8-10 8-9-4-10 0.0101 sec 
9-10 9-4-10 0.00703 sec 

Figure C.19 Sample Report (page 1). 
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Traffic Data 
1 2 3 4 5 6 7 8 9 10 

75 

15 

50 
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60 

15 
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15 

10 

20 

10 

5 

50 

60 

20 

25 

20 

20 15 10 10 

15 10 5 10 

45 40 15 25 

15 20 5 15 

20 

15 

10 

25 

5 

25 

10 

5 

20 

5 

20 5 

5 5 

10 5 

5 5 

Link Set-Up Costs 

20 

15 

10 

10 

20 

5 

10 

20 

5 

15 

10 

5 

10 

5 

5 

10 

15 

5 

1 2 3 4 5 6 7 8 

45 15 

40 20 

15 5 

25 15 

10 5 

5 5 

20 

15 

5 

5 

5 

5 

9 10 

0 250 225 375 415 615 325 515 700 

0 215 135 285 510 635 405 495 560 

250 215 - 340 410 530 765 530 420 610 

225 135 340 - 185 285 615 605 0 585 

375 285 410 185 - 240 630 615 710 475 

415 510 530 285 240 - 820 640 665 490 

615 635 765 615 630 820 - 365 420 915 

325 405 530 605 615 640 365 - 275 756 

515 495 420 0 710 665 420 275 - 695 

700 560 610 585 475 490 915 765 695 -

Criteria Used for Network Generation 
Set-Up Cost Monthly Cost BER 

Set-Up Cost Weight = 15% 
Monthly Cost Weight = 60 % 
BER Cost Weight = 25 % 

Bit Error Rates 
1 2 3 4 5 6 7 8 9 10 

-10 -8 -10 -8 -8 -9 -10 -9 -7 

-10 - -10 -10 -9 -8 -9 -10 -8 -8 

-8 -10 - -10 -10 -9 -9 -9 -8 -8 

-10 -10 -10 - -10 -10 -8 -10 -9 -9 

-8 -9 -10 -10 - -9 -8 -8 -8 -8 

-8 -8 -9 -10 -9 -8 -9 -8 -8 

-9 -9 -9 -8 -8 -8 -9 -9 -7 

-10 -10 -9 -10 -8 -9 -9 -10 -8 

-9 -8 -8 -9 -8 -8 -9 -10 - -8 

-7 -8 -8 -9 -8 -8 -7 -8 -8 

Monthly Link Costs 
1 2 3 4 5 6 7 8 9 10 

100 170 120 190 210 290 220 240 265 

100 - 90 75 115 135 285 270 300 215 

170 90 185 140 190 285 290 310 245 

120 75 185 -

190 115 140 95 

95 200 325 265 280 170 

140 310 280 305 190 

210 135 190 200 140 - 320 230 340 185 

290 285 285 325 310 320 - 140 165 230 

220 270 290 265 280 230 140 - 115 210 

240 300 310 280 305 340 165 115 - 255 

265 215 245 170 190 185 230 210 255 -

Figure C.20 Sample Report (page 2). 
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APPENDIX D. DELPHI® AND PROGRAM CODE 

A description of the Borland Delphi 1.0 programming environment is provided along 

with a complete Web Spinner source code listing. These files are included on the Web 

Spinner Source Disk along with a copy of the Delphi TLineDraw component designed by 

Blain R. Southam of Brigham Young University. (The TLineDraw component is considered 

freeware and may be freely distributed provided due credit is given to the author.) 

A. DELPHI® 

Web Spinner was developed in the Borland Delphi 1.0 programming environment. It 

uses an object-oriented version of the Pascal programming language called Object Pascal. 

Delphi is a complex programming environment that incorporates standard Microsoft 

Windows component libraries, Borland Paradox database objects, enhanced graphic tool 

components, and a fast compiler into a fourth generation programming package. The 

compiler generates a stand-alone executable file (* .exe) which can be executed on any 

Microsoft Windows-supported system. 

Delphi was selected to implement the Web Spinner DSS on account of it object

oriented approach, incorporation of graphical components, and the author's familiarity with 

the basic Pascal language. 

B. Web Spinner Code Listing 

Web Spinner was implemented using three Object-Pascal code units: Web_Spnr.dpr; 

WSAbout.pas and Webl.pas. Web_Spnr.dpr is the main program module which uses the 

remaining two units during the execution of the program. A complete listing of the three 
modules is provided. 
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1. Web_Spnr.dpr 

{*********************************************************************** 
** Program: Webspnr.dpr ** 
** Author: Jeffrey A. Margraf ** 
** Updated: 02 August 1996 ** 
** Uses: WSAbout.pas ** 
** Web1.pas ** 
** 
** Description: This is the main program which launches the 
** Web Spinner decision support system. 
** 

** 
** 
** 
** 

***********************************************************************} 

program Webspnr; 

uses 
Forms, 
Wsabout in 'WSABOUT.PAS', 
Web1 in 'WEB1.PAS'; 

{$R *.RES} 

begin 

{About Information} 
{Web_Spinner DSS} 

Application.CreateForm(TAbout, About); 
Application.CreateForm(TWeb_Spinner, Web_Spinner); 
Application.Run 

end. 

2. WSAbout.pas 

{*********************************************************************** 
** ** 
** 
** 
** 
** 
** 
** 
** 
** 
** 

Module: 
Author: 
Updated: 
Used by: 
Uses: 

WSAbout.pas 
Jeffrey A. Margraf 
02 August 1996 
Webspnr.dpr 
Web1.pas 

Description: This module contains all the Web Spinner basic 
program information found on the "About" page. 

** 
** 
** 
** 
** 
** 
** 
** 
** 

***********************************************************************} 

unit WSAbout; 

interface 

uses 
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, 
Forms, Dialogs, StdCtrls, ExtCtrls, Buttons; 

type 
TAbout class(TForm) 
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BitBtnl: TBitBtn; 
BitBtn2: TBitBtn; 
BitBtn3: TBitBtn; 
Buttonl: TButton; 
Irnagel: Tirnage; 
Irnage2: Tirnage; 
Irnage3: Tirnage; 
Labell: TLabel; 
Label2: TLabel; 
Label3: TLabel; 
Label4: TLabel; 
Mernol: TMerno; 
Merno2: TMerno; 
Merno3: TMerno; 
Merno4: TMerno; 
Panell: TPanel; 
Shapel: TShape; 
Shape2: TShape; 
Shape3: TShape; 
Shape4: TShape; 
ShapeS: TShape; 

procedure ButtonlClick(Sender: TObject); 
procedure Irnage2Click(Sender: TObject); 
procedure BitBtnlClick(Sender: TObject); 
procedure BitBtn2Click(Sender: TObject); 
procedure BitBtn3Click(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
About: TAbout; 
Start: Boolean; 

implementation 
{$R *.DFM} 

uses Webl; 

procedure TAbout.ButtonlClick(Sender: TObject); 
begin 

Web_Spinner.Show 
end; 

procedure TAbout.Image2Click(Sender: TObject); 
begin 

BitBtn3.Visible := false; 
Panell.Visible .- true 

end; 

procedure TAbout.BitBtnlClick(Sender: TObject); 
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begin 
Panel1.Visible := false; 
BitBtn3.Visible .- true 

end; 

procedure TAbout.BitBtn2Click(Sender: TObject); 
begin 

BitBtn1.Visible := false; 
BitBtn2.Visible .- false; 
Print; 
BitBtn1.Visible .- true; 
BitBtn2.Visible .- true 

end; 

procedure TAbout.BitBtn3Click(Sender: TObject); 
begin 

BitBtn3.Visible .- false; 
Print; 
BitBtn3.Visible .- true 

end; 

end. 

3. Webl.pas 

{*********************************************************************** 
** ** 
** 

** 
** 
** 
** 
** 

Module: 
Author: 
Updated: 
Used by: 
Uses: 

Web1.pas 
Jeffrey A. Margraf 
02 August 1996 
Web_Spnr.dpr 
WSAbout.pas 

** Description: This module contains all the technical 
** functionality associated with the Web Spinner DSS. 
** 

** 
** 
** 
** 
** 
** 
** 
** 
** 

***********************************************************************} 

unit Web1; 

interface 

uses 
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, 
Forms, Dialogs, ExtCtrls, Tabs, StdCtrls, Buttons, VBXCtrl, Line, 
Menus, Bigauge, Grids, Chart2fx, ChartFX, Spin; 

canst 
Infinity 
NurnNodes 
Spacer 
Spacer2 

32767; 
10; 
#1; 
#2; 

{Artificial Infinity Value 
{Maximum Number of Nodes} 
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t:ype 
LinkType = (NoLink, Linked, LockLinked, Redundant, Testing, Checking, 

Used, LUsed); 
InputPanelType = (SetUpCost, MonthlyCost, BER, Traffic, Distance, 

Utility); 

LinkMatrixType 
InputMatrixType 
MasterMatrixType 
RouteMatrixType 

ExpDelayMatrixType 

NodeArrayType 
LinkArrayType 
UtilityGraphType 

Array[1 .. NumNodes, 1 .. NumNodes] 
Array[1 .. NumNodes, 1. . NumNodes] 
Array[1 .. NumNodes, 1 .. NumNodes] 
Array[1 .. NumNodes, 1 .. NumNodes J 
NurnNodes] ; 
Array[1 .. NumNodes, 1 .. NumNodes] 

Array[1 .. NumNodes] of TBitBtn; 
Array[1 .. NumNodes] of TLineDraw; 
Array[1 .. 10] of Integer; 

of LinkType; 
of TEdit; 
of Integer; 
of String[3 

of Real; 

* 

{******************************************************************** 
** These are the visual components (objects) available on the ** 
** Web Spinner screens. ** 
*********************************************************************} 

TWeb_Spinner = class(TForm) 
About1: TMenuitem; 
About2: TMenuitem; 
About3: TMenuitem; 
AboutS: TMenuitem; 
About6: TMenuitem; 
BasicData2: TMenuitem; 
Bevel1: TBevel; 
Bevel2: TBevel; 
Bevel3: TBevel; 
Bevel4: TBevel; 
BitBtn2: TBitBtn; 
BitBtn3: TBitBtn; 
BitBtn4: TBitBtn; 
BitBtnS: TBitBtn; 
BitBtn6: TBitBtn; 
BitBtn7: TBitBtn; 
BitBtn8: TBitBtn; 
BitBtn9: TBitBtn; 
BitBtn10: TBitBtn; 
BitBtn12: TBitBtn; 
BitBtn13: TBitBtn; 
BitBtn14: TBitBtn; 
BitBtn15: TBitBtn; 
Button1: TButton; 
ChartFX1: TChartFX; 
ChartFX2: TChartFX; 
ChartFX3: TChartFX; 
ChartFX4: TChartFX; 
ChartFX6: TChartFX; 
CheckBox1: TCheckBox; 
CheckBox2: TCheckBox; 
CheckBox3: TCheckBox; 
CheckBox4: TCheckBox; 
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Closel: TMenuitern; 
CornboBoxl: TCornboBox; 
Editl: TEdit; 
Edit2: TEdit; 
Edit3: TEdit; 
Edit4: TEdit; 
EditS: TEdit; 
Edit6: TEdit; 
Edit7: TEdit; 
EditS: TEdit; 
Edit9: TEdit; 
EditlO: TEdit; 
Editl1: TEdit; 
Editl2: TEdit; 
Edi t13: TEdi t; 
Edit14: TEdit; 
EditlS: TEdit; 
Edi tl6: TEdi t; 
Edit17: TEdit; 
Edit18: TEdit; 
Edit19: TEdit; 
Edit20: TEdit; 
Edit21: TEdit; 
Edit22: TEdit; 
Edit23: TEdit; 
Filel: TMenuitern; 
GroupBoxl: TGroupBox; 
Headerl: THeader; 
Header2: THeader; 
Irnagel: Tirnage; 
Irnage2: Tirnage; 
Irnage3: Tirnage; 
Irnage4: Tirnage; 
Labell: TLabel; 
Label2: TLabel; 
Label3 : TLabel; 
Label4: TLabel; 
LabelS: TLabel; 
Label6: TLabel; 
Label7: TLabel; 
LabelS: TLabel; 
Label9: TLabel; 
LabellO: TLabel; 
Labelll: TLabel; 
Labell2: TLabel; 
Label13: TLabel; 
Label14: TLabel; 
Label15: TLabel; 
Labell6: TLabel; 
Label17: TLabel; 
LabellS: TLabel; 
Label19: TLabel; 
Label20: TLabel; 
Label21: TLabel; 
Label22: TLabel; 
Label23: TLabel; 
Label27: TLabel; 
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Label29: TLabel; 
Label30: TLabel; 
La be 131 : TLabe 1 ; 
Label32: TLabel; 
Label33: TLabel; 
Label34: TLabel; 
Label35: TLabel; 
Label36: TLabel; 
Label37: TLabel; 
LineDrawl: TLineDraw; 
LineDraw3: TLineDraw; 
LineDraw4: TLineDraw; 
LineDrawS: TLineDraw; 
LineDraw6: TLineDraw; 
LineDraw7: TLineDraw; 
LineDraw8: TLineDraw; 
LineDraw9: TLineDraw; 
LinkinfoBoxl: TMenuitem; 
LinkLegendl: TMenuitem; 
ListBoxl: TListBox; 
ListBox2: TListBox; 
ListBox3: TListBox; 
ListBox4: TListBox; 
MainMenul: TMainMenu; 
N2: TMenuitem; 
N3: TMenuitem; 
Notebookl: TNotebook; 
Panell: TPanel; 
Panel2: TPanel; 
Panel3 : TPanel; 
Panel4: TPanel; 
PanelS: TPanel; 
Panel6: TPanel; 
Panel?: TPanel; 
PanelS: TPanel; 
Panel9: TPanel; 
PanellO: TPanel; 
Panelll: TPanel; 
Panell2: TPanel; 
Panel13: TPanel; 
Panel14: TPanel; 
PanellS: TPanel; 
Panel16: TPanel; 
Panel17: TPanel; 
Panel18: TPanel; 
Panel19: TPanel; 
Panel20: TPanel; 
Panel21: TPanel; 
Panel22: TPanel; 
Panel23: TPanel; 
Panel24: TPanel; 
Panel25: TPanel; 
Panel28: TPanel; 
Panel29: TPanel; 
Panel30: TPanel; 
Panel31: TPanel; 
Printl: TMenuitem; 
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Shapel: TShape; 
Shape2: TShape; 
Shape3: TShape; 
Solvel: TMenuitem; 
SpeedButtonl: TSpeedButton; 
SpeedButton2: TSpeedButton; 
SpeedButton3: TSpeed~utton; 
SpeedButton4: TSpeedButton; 
SpinButtonl: TSpinButton; 
SpinButton2: TSpinButton; 
SpinButton3: TSpinButton; 
SpinButton4: TSpinButton; 
SpinButtonS: TSpinButton; 
SpinButton6: TSpinButton; 
SpinButton7: TSpinButton; 
SpinButton8: TSpinButton; 
SpinButton9: TSpinButton; 
SpinButtonlO: TSpinButton; 
SpinEditl: TSpinEdit; 
SpinEdit2: TSpinEdit; 
SpinEdit3: TSpinEdit; 
SpinEdit4: TSpinEdit; 
StringGridl: TStringGrid; 
TabSetl: TTabSet; 

{********************************************************************** 
** These are the procedures (methods) that work with the Web ** 
** Spinner visual components. ** 
***********************************************************************} 

procedure TabSetlChange(Sender: TObject; NewTab: Integer; 
var AlloWChange: Boolean); 

procedure ForrnActivate(Sender: TObject); 
procedure GenericMouseDown(Sender: TObject; 

Button: TMouseButton; Shift: TShiftState; 
X, Y: Integer); 

procedure MovePanel(var Box: TPanel; X, Y: Integer); 
procedure MoveBitBtn(var Node: TBitBtn; X, Y: Integer); 
procedure GenericMouseMove(Sender: TObject; Shift: TShiftState; 

X, Y: Integer); 
procedure GenericMouseUp(Sender: TObject; Button: TMouseButton; 

Shift: TShiftState; X, Y: Integer); 
procedure InitializeLinks(var Connections: LinkMatrixType); 
procedure LockTheLink(Sender: TObject; Button: TMouseButton; 

Shift: TShiftState; X, Y: Integer); 
procedure InitializeMatrix(var DataMatrix: MasterMatrixType; 

Data : Integer; Start: Integer); 
procedure FillinputMatrix(DataMatrix: MasterMatrixType; 

var InputMatrix: InputMatrixType); 
function DistanceBetweenPoints(Pointl, Point2: TPoint): Longint; 
procedure DistanceisCost(var DistanceMatrix: MasterMatrixType; 

Nodes: NodeArrayType); 
procedure Extractinputs(var DataMatrix: MasterMatrixType; 

InputMatrix: InputMatrixType); 
function Interpolate(Input, XAxisLeft, XAxisRight, ValueLeft, 

ValueRight: Integer): Real; 
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function GetUtility{Input: Integer; InputType: InputPanelType): 
Integer; 

procedure FillUtilityMatrix{var UtilityMatrix: MasterMatrixType; 
SetUpCostMatrix, MonthlyCostMatrix, 
BERMatrix: MasterMatrixType; 
SetUpCostWt, MonthlyCostWt, 
BERWt: Integer); 

procedure SolveMinTree{var DataMatrix: MasterMatrixType; 
ExpenseMatrix: MasterMatrixType; 

var Connections: LinkMatrixType); 
procedure SolveMaxTree{var DataMatrix: MasterMatrixType; 

ExpenseMatrix: MasterMatrixType; 
var Connections: LinkMatrixType); 

procedure DrawLinks{Connections: LinkMatrixType; 
Nodes: NodeArrayType; 

var Links: LinkArrayType); 
function CornputeTotal{DataMatrix: MasterMatrixType; 

Connections: LinkMatrixType): Integer; 
procedure Main{Sender: TObject); 
procedure ShapelMouseDown{Sender: TObject; Button: TMouseButton; 

Shift: TShiftState; X, Y: Integer); 
procedure BitBtn2Click{Sender: TObject); 
procedure PrintlClick{Sender: TObject); 
procedure AboutlClick{Sender: TObject); 
procedure SpeedButtonlClick{Sender: TObject); 
procedure SpeedButton4Click{Sender: TObject); 
procedure SpeedButton2Click{Sender: TObject); 
procedure NotebooklPageChanged{Sender: TObject); 
procedure OnExitinputBox{Sender: TObject); 
procedure ButtonlClick{Sender: TObject); 
procedure TotalWeights{Sender: TObject); 
procedure ToolslClick{Sender: TObject); 
procedure BitBtn5Click{Sender: TObject); 
procedure BitBtn4Click{Sender: TObject); 
procedure SwitchGraphValues{var UtilArray: UtilityGraphType; 

var SrnallChart: TChartFX; 
MainChart: TChartFX); 

procedure ChartFX2LButtonDblClk{Sender: TObject; var X, Y, nSerie, 
nPoint, nRes: Integer); 

procedure ChartFX3LButtonDblClk{Sender: TObject; var X, Y, nSerie, 
nPoint, nRes: Integer); 

procedure ChartFX4LButtonDblClk{Sender: TObject; var X, Y, nSerie, 
nPoint, nRes: Integer); 

procedure GenericSBDownClick{var EditBox: TEdit); 
procedure GenericSBUpClick{var EditBox: TEdit); 
procedure SpinButtonlDownClick{Sender: TObject); 
procedure SpinButtonlUpClick{Sender: TObject); 
procedure ResetGraph(var Chart: TChartFX); 
procedure BitBtn6Click{Sender: TObject); 
procedure BitBtn7Click(Sender: TObject); 
procedure LinkinfoBoxlClick(Sender: TObject); 
procedure BitBtn3Click{Sender: TObject); 
procedure BitBtn8Click{Sender: TObject); 
procedure SpeedButton3Click{Sender: TObject); 
procedure BitBtn9Click{Sender: TObject); 
procedure CheckBox4Click{Sender: TObject); 
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procedure CheckBoxlClick(Sender: TObject); 
procedure BitBtnlOClick(Sender: TObject); 
procedure SolvelClick(Sender: TObject); 
procedure BasicData2Click(Sender: TObject); 
procedure BitBtn12Click(Sender: TObject); 
procedure LinkLegendlClick(Sender: TObject); 
procedure FindLoops(Nodel, Node2, Parent, SuperParent: Integer; 

var Route: String); 
procedure FillRouteMatrix; 
procedure ComputeAvgLinkActy; 
procedure FillExpectedDelayMatrix; 
procedure CloselClick(Sender: TObject); 
procedure BitBtn13Click(Sender: TObject); 
procedure ListBox3Drawitem(Control: TWinControl; Index: Integer; 

Rect: TRect; State: TOWnerDrawState); 
procedure HeaderlSizing(Sender: TObject; ASection, AWidth: Integer); 
procedure ListBox4Drawitem(Control: TWinControl; Index: Integer; 

Rect: TRect; State: TOWnerDrawState); 
procedure Header2Sizing(Sender: TObject; ASection, AWidth: Integer); 
procedure BitBtnl4Click(Sender: TObject); 
procedure BitBtnlSClick(Sender: TObject); 
procedure PrintLine(Items: TStringList); 
procedure PrintHeader; 
procedure PrintNetworkinfo; 
procedure PrintColNames; 
procedure PrintData; 
procedure PrintCriteria; 

private 
{ Private declarations } 

public 
{ Public declarations } 

end; 

{******************************************************************* 
** These are the Web Spinner global variables. ** 
*******************************************************************} 

var 
Web_Spinner: TWeb_Spinner; 
Connections: LinkMatrixType; 
InputMatrix: InputMatrixType; 
UtilityMatrix: MasterMatrixType; 
DistanceMatrix: MasterMatrixType; 
SetUpCostMatrix, MonthlyCostMatrix, BERMatrix: MasterMatrixType; 
TrafficMatrix: MasterMatrixType; 
Nodes: NodeArrayType; 
Links: LinkArrayType; 
UtilSetUpCostArray, UtilMonthlyCostArray, UtilBERArray: 

UtilityGraphType; 
UtilSetUpCostXAxis, UtilMonthlyCostXAxis, UtilBERXAxis: 

UtilityGraphType; 
InputPanel, UtilityGraph: InputPanelType; 
MouseOrigin: TPoint; 
Moving, DrawingLink, Found: Boolean; 
Path: String; 
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RouteMatrix : RouteMatrixType; 
AvgLinkActyMatrix: MasterMatrixType; 
ExpDelayMatrix: ExpDelayMatrixType; 
LinkSpeed, PacketSize: Longint; 
RedundantRoutes: Integer; 
NumUsedNodes, TotalUtil, TotalCost: Integer; 
SetUpCostUtil, MonthlyCostUtil, BERUtil: Integer; 
SetUpCostWt, MonthlyCostWt, BERWt: Integer; 
PixelsininchX, TenthsOfinchPixelsY, LineHeight, AmountPrinted: 

Integer; 

implementation 
{$R *.DFM} 

uses WSAbout, Printers; 

{*********************************************************************** 
** This procedure provides the "tabbed notebook" functionality ** 
** of the program. ** 
**********************************************************************} 

procedure TWeb_Spinner.TabSet1Change(Sender: TObject; NewTab: Integer; 
var AlloWChange: Boolean); 

NewTab; 
begin 

Notebook1.Pageindex .
If Notebook1.Pageindex 
If Notebook1.Pageindex 

1 then BitBtn9Click(Sender); 
= 4 then BitBtn14Click(Sender) 

end; 

{*********************************************************************** 
** This procedure is executed when the application is launched. ** 
** It establishes the initial conditions of many global variables, ** 
** creates background network nodes and links, and initializes ** 
** all of the Web Spinner data matrices and arrays. ** 
**********************************************************************} 

procedure TWeb_Spinner.FormActivate(Sender: TObject); 
var 

Loop, Count, Tab: Integer; 
begin 

Panel18.Parent := Web_Spinner; 
Panel18.Visible := false; 
LinkSpeed := 9600; 
PacketSize := 128; 

NumUsedNodes := 0; 
Edit2.Text .- IntToStr(NumNodes); 
Edit3.Text := IntToStr(NumUsedNodes); 
InputPanel := Distance; 
Panel6.Height := (NumNodes * 24) + 10; 
Panel6.Width .- (NumNodes * 48) + 8; 
UtilityGraph := SetUpCost; 

InitializeLinks(Connections); 
InitializeMatrix(SetUpCostMatrix, 0, 1); 
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InitializeMatrix(MonthlyCostMatrix, 0, 1); 
InitializeMatrix(BERMatrix, 0, 1); 
InitializeMatrix(TrafficMatrix, 0, 1); 
InitializeMatrix(UtilityMatrix, 0, 1); 
TotalWeights(Sender); 

for Loop := 1 to NumNodes do begin 

Nodes[Loop] .- TBitBtn.Create(self); 
with Nodes[Loop] do begin 

Parent := PanelS; 
Show; 
Visible := false; 
Top := Panel1.Top + 24; 
Left := Panel1.Left + 24; 
Height := 2S; 
Width := 2S; 
Caption:= IntToStr(Loop); 
Font.Color := clBlue; 
ShowHint := true; 
OnMouseDown := GenericMouseDown; 
OnMouseMove := GenericMouseMove; 
OnMouseUp := GenericMouseUp 

end; 

Links[Loop] := TLineDraw.Create(self); 
with Links[Loop] do begin 

Parent := PanelS; 
Show; 
Visible := false; 
Top:= Panel1.Top; 
Left:= Panel1.Left; 
Height := 2S; 
Width := 2S; 
Shape := stTopLine; 
Pen.Width := 2; 
Pen.Color := clFuchsia; 
OnMouseDown := LockTheLink; 
Hint := 'Link' + IntToStr(Loop); 
ShowHint .- false 

end; 

Tab := 0; 
for Count := 1 to NurnNodes do begin 

InputMatrix[Loop, Count] := TEdit.Create(self); 
with InputMatrix[Loop, Count] do begin 

Parent := Panel6; 
Show; 
Visible := true; 
Top:= 8 + ((Loop- 1) * 24); 
Left:= 8 + ((Count- 1) * 48); 
Height := 20; 
Width := 41; 
Font.Size := 9; 
Text := ' --'; 
OnExit := OnExitinputBox; 
Hint := 'Nodes ' + IntToStr(Loop) + ' & ' + IntToStr(Count); 
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ShowHint := true; 
if Loop <= Count then begin 

Color := clBlack; 
Font.Color := clWhite; 
ReadOnly := true; 
TabOrder := Tab; 
TabStop := true; 
Tab .- Tab + 1 

end 
end 

end 
end; 

for Loop := 1 to 10 do begin 
UtilSetUpCostXAxis[Loop] :=Loop * 100; 
UtilSetUpCostArray[Loop] := (11 - Loop) * 10; 
UtilMonthlyCostXAxis[Loop] :=Loop * 50; 
UtilMonthlyCostArray[Loop] :=(11 - Loop) * 10; 
UtilBERXAxis[Loop] .- ((11- Loop) + 2) * (-1); 
UtilBERArray[Loop] .- (11 - Loop) * 10 

end; 

ResetGraph(ChartFX2); 
ResetGraph(ChartFX3); 
ResetGraph(ChartFX4); 
ResetGraph(ChartFX6); 

ChartFX2.0penData[COD_VALUES] := MakeLong(1,10); 
ChartFX6.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX2.ThisSerie .- 0; 
ChartFX6.ThisSerie := 0; 
for Loop := 0 to 9 do begin 

ChartFX2.Value[Loop] := UtilSetUpCostArray[Loop + 1]; 
ChartFX6.Value[Loop] := UtilSetUpCostArray[Loop + 1]; 
StringGrid1.Cells[Loop, 0] := IntToStr(UtilSetUpCostXAxis[Loop + 1]) 

end; 
ChartFX2.CloseData[COD_VALUES] .- 0; 
ChartFX6.CloseData[COD_VALUES] := 0; 

ChartFX3.0penData[COD_VALUES] := MakeLong(1,10); 
ChartFX3.ThisSerie := 0; 
for Loop := 0 to 9 do 

ChartFX3.Value[Loop] := UtilBERArray[Loop + 1]; 
ChartFX3.CloseData[COD_VALUES] := 0; 

ChartFX4.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX4.ThisSerie := 0; 
for Loop := 0 to 9 do 

ChartFX4.Value[Loop] := UtilMonthlyCostArray[Loop + 1]; 
ChartFX4.CloseData[COD_VALUES] := 0; 

Edit4.Text .- IntToStr(UtilSetUpCostArray[1]); 
EditS.Text .- IntToStr(UtilSetUpCostArray[2]); 
Edit6.Text .- IntToStr(UtilSetUpCostArray[3]); 
Edit7.Text .- IntToStr(UtilSetUpCostArray[4]); 
Edit12.Text .- IntToStr(UtilSetUpCostArray[S]); 
Edit13.Text := IntToStr(UtilSetUpCostArray[6]); 
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Edit14.Text := IntToStr(UtilSetUpCostArray[7)); 
Edit15.Text .- IntToStr(UtilSetUpCostArray[8)); 
Edit16.Text := IntToStr(UtilSetUpCostArray[9)); 
Edit17.Text := IntToStr(UtilSetUpCostArray[10]); 

ChartFX2.RGB2DBk := clYellow; 
Panel5.Visible := true; 
Panel6.Visible := true; 
Notebook1.Pageindex .- 0 

end; 

{*********************************************************************** 
** The next five procedures are custom-designed, "generic" routines ** 
** that allow the user to move (drag) visual components around with ** 
** the mouse. The GenericMouseDown procedure also allows the user ** 
** to delete nodes and then compacts data matrices. ** 
**********************************************************************} 

procedure TWeb_Spinner.GenericMouseDown(Sender: TObject; 
Button: TMouseButton; Shift: TShiftState; X, Y: Integer); 

var 
Loop, ShiftLoop, Row, Column Integer; 

begin 
if Button = mbLeft then begin 

Mouseorigin := Point(X, Y); 
Moving := true 

end 
else if Button = mbRight then 

for Loop := 1 to NumUsedNodes do 
if Sender= Nodes[Loop] then begin 

if MessageDlg('Delete Node ' + Nodes[Loop] .Caption+ '?', 
mtConfirmation, mbOkCancel, 0) = mrOk then 
begin 

if Loop < NumUsedNodes then begin 
Nodes[Loop] .Top := Nodes[NumUsedNodes] .Top; 
Nodes[Loop] .Left := Nodes[NumUsedNodes] .Left; 

for ShiftLoop := 1 to NumUsedNodes do 
if ShiftLoop <> Loop then begin 

Connections[Loop, ShiftLoop] .
Connections[NumUsedNodes, ShiftLoop]; 

Connections[ShiftLoop, Loop] .
Connections[Loop, ShiftLoop]; 

Connections[NumUsedNodes, ShiftLoop] 
NoLink; 

Connections[ShiftLoop, NumUsedNodes] 
NoLink; 

SetUpCostMatrix[Loop, ShiftLoop] .
SetUpCostMatrix[NumUsedNodes, ShiftLoop]; 

SetUpCostMatrix[ShiftLoop, Loop] .
SetUpCostMatrix[Loop, ShiftLoop]; 

MonthlyCostMatrix[Loop, ShiftLoop] .
MonthlyCostMatrix[NumUsedNodes, ShiftLoop]; 
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end; 

MonthlyCostMatrix[ShiftLoop, Loop] := 
MonthlyCostMatrix[Loop, ShiftLoop]; 

BERMatrix[Loop, ShiftLoop] := 
BERMatrix[NumUsedNodes, ShiftLoop]; 

BERMatrix[ShiftLoop, Loop] := 
BERMatrix[Loop, ShiftLoop]; 

TrafficMatrix[Loop, ShiftLoop] := 
TrafficMatrix[NumUsedNodes, ShiftLoop]; 

TrafficMatrix[ShiftLoop, Loop] := 
TrafficMatrix[Loop, ShiftLoop] 

end; 
end; 

Nodes[NumUsedNodes] .Visible := false; 
Nodes[NumUsedNodes] .Top := Panell.Top + 24; 
Nodes[NumUsedNodes] .Left := Panell.Left + 24; 
NumUsedNodes := NumUsedNodes - 1; 
Shapel.Brush.Color := clFuchsia; 
Shapel.Brush.Style := bsSolid; 
Main(Sender) 

end; 
InputPanel .- Distance 

end 

procedure TWeb_Spinner.MovePanel(var Box: TPanel; X, Y: Integer); 
begin 

Box.Left := Box.Left + (X- MouseOrigin.X); 
Box.Top ·= Box.Top + (Y - MouseOrigin.Y) 

end; 

procedure TWeb_Spinner.MoveBitBtn(var Node: TBitBtn; X, Y: Integer); 
begin 

Node.Left := Node.Left + (X- MouseOrigin.X); 
Node.Top .- Node.Top + (Y- MouseOrigin.Y) 

end; 

procedure TWeb_Spinner.GenericMouseMove(Sender: TObject; Shift: 
TShiftState; 

X, Y: Integer); 
var Loop: integer; 
begin 

if Moving then begin 

if ((Sender= Panell) or (Sender= Label4)) then 
MovePanel(Panell, X, Y) 

else if (Sender= Panel2) then MovePanel(Panel2, X, Y) 
else if ((Sender= Panel14) or (Sender= Label19) 

or (Sender= Shape2)) then 
MovePanel(Panell4, X, Y) 

else if ((Sender= Panel18) or (Sender Panel23)) 
then MovePanel(Panell8, X, Y) 

else if ((Sender= Panel24) or (Sender Panel25)) 
then MovePanel(Panel24, X, Y) 

else if ((Sender= Panel28) or (Sender Panel29)) 
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then MovePanel(Panel28, X, Y); 

for Loop := 1 to NumNodes do 
if Sender Nodes[Loop] then MoveBitBtn(Nodes[loop], X, Y) 

end 
end; 

procedure TWeb_Spinner.GenericMouseUp(Sender: TObject; Button: 
TMouseButton; 

Shift: TShiftState; X, Y: Integer); 
var 

loop: integer; 
begin 

if Sender = Panel1 then begin 
for loop := 1 to NumNodes do begin 

if Nodes[loop] .Visible= false then begin 
Nodes[loop] .Top := Panel1.Top + 24; 
Nodes[loop] .Left := Panel1.Left + 24 

end 
end 

end 
else Main(Sender); 

if Moving then Moving .- false 
end; 

{********************************************************************** 
** This procedure initializes the network matrix that defines ** 
** the network structure. It is executed everytime a new network ** 
** is designed. ** 
**********************************************************************} 

procedure TWeb_Spinner.InitializeLinks(var Connections: LinkMatrixType); 
var 

Row, Column: Integer; 
begin 

for Row := 1 to NumNodes do 
for Column := 1 to NumNodes do 

if Connections[Row, Column] <> LockLinked then 
Connections[Row, Column] .- NoLink 

end; 

{********************************************************************* 
** This procedure allows the user to "lock" a link into place in ** 
** proposed network. ** 
**********************************************************************} 

procedure TWeb_Spinner.LockTheLink(Sender: TObject; Button: TMouseButton; 
Shift: TShiftState; X, Y: Integer); 

var 
Row, Column: Integer; 
NodesLinked: String; 
Nodel, Node2: Integer; 

82 



begin 
if Button = mbLeft then begin 

for Row := 1 to NumUsedNodes do begin 
if Sender= Links[Row] then begin 

if Links[Row] .Pen.Color = clFuchsia then begin 
if MessageDlg( 1 LOCK 1 + Links[Row] .Hint+ 1 ? 1

, rntConfirrnation, 
mbOkCancel, 0) = mrOk then 
begin 

Links[Row] .Pen.Color := clBlack; 
NodesLinked := Links[Row] .Hint; 
Nadel .- StrToint(NodesLinked[l]) * 10 

+ StrToint(NodesLinked[2]); 
Node2 .- StrToint(NodesLinked[4]) * 10 

+ StrToint(NodesLinked[5]); 
Connections[Nodel, Node2] := LockLinked; 
Connections[Node2, Nadel] .- LockLinked 

end 
end 
else if Links[Row] .Pen.Color = clBlack then begin 

if MessageDlg( 1 UNLOCK 1 + Links[Row] .Hint+ 1 ? 1
, 

rntConfirrnation, 
mbOkCancel, 0) = rnrOk then 
begin 

Links[Row] .Pen.Color := clFuchsia; 
NodesLinked := Links[Row].Hint; 
Nadel .- StrToint(NodesLinked[l]) * 10 

+ StrToint(NodesLinked[2]); 
Node2 .- StrToint(NodesLinked[4]) * 10 

+ StrToint(NodesLinked[5]); 
Connections[Nodel, Node2] .-Linked; 
Connections[Node2, Nadel] :=Linked 

end 
end 

end 
end 

end; 
Main(Sender) 

end; 

{********************************************************************* 
** This is a generic routine that is used to initialize all or ** 
** part of any data matrix that it receives. ** 
*********************************************************************} 

procedure TWeb_Spinner.InitializeMatrix(var DataMatrix: MasterMatrixType; 
Data : Integer; Start: 

Integer); 
var 

Row, Column: Integer; 
begin 

for Row := Start to NumNodes do 
for Column := 1 to NumNodes do 

DataMatrix[Row, Column] := Data; 

if Start > 1 then 
for Row := 1 to Start do 
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for Column := Start to NumNodes do 
DataMatrix[Row, Column] .- Data 

end; 

{********************************************************************* 
** This procedure is used to fill the input matrix on the link ** 
** characteristics screen with the data from any data matrix. ** 
*********************************************************************} 

procedure TWeb_Spinner.FillinputMatrix(DataMatrix: MasterMatrixType; 
var InputMatrix: InputMatrixType); 

var 
Row, Column: Integer; 

begin 

for Row := 1 to NumNodes do 
for Column := 1 to NumNodes do begin 

InputMatrix[Row, Column].Color := clBlack; 
InputMatrix[Row, Column] .Text := ' --'; 
InputMatrix[Row, Column].ShowHint :=false 

end; 

for Row := 1 to NumUsedNodes do 
for Column := 1 to NumUsedNodes do begin 

if Row > Column then InputMatrix[Row, Column] .Color .- clWhite 
else InputMatrix[Row, Column] .Color := clGray; 

end; 

for Row := 1 to NumUsedNodes do 
for Column := 1 to NumUsedNodes do begin 

InputMatrix[Row, Column].ShowHint :=true; 
if Row <> Column then 

InputMatrix[Row, Column] .Text := IntToStr(DataMatrix[Row, 
Column]) 

else 
InputMatrix[Row, Column] .Text .-

end 

end; 

{********************************************************************* 
** Computes Pathagorean distance between any two points. ** 
*********************************************************************} 

function TWeb_Spinner.DistanceBetweenPoints(Point1, Point2: TPoint): 
Longint; 
var 

Sidel, Side2, Length1, Length2: Longint; 
Answer: Real; 

begin 
Side1 := Abs(Pointl.X- Point2.X); 
Side2 := Abs(Point1.Y- Point2.Y); 
Length1 := Sqr(Side1); 
Length2 := Sqr(Side2); 
Answer:= Sqrt(Abs(Length1 + Length2)); 
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Result .- Trunc(Answer) 
end; 

{********************************************************************** 
** Computes screen distance between nodes and stores this data in ** 
** the Web Spinner Distance matrix. ** 
**********************************************************************} 

procedure TWeb_Spinner.DistanceisCost(var DistanceMatrix: 
MasterMatrixType; 

Nodes: NodeArrayType); 
var 

CurrentNode, OtherNode: Integer; 
CtrPoint1, CtrPoint2: TPoint; 

begin 
for CurrentNode := 1 to NumNodes do 

for OtherNode:= 1 to NumNodes do 
if CurrentNode < OtherNode then begin 

if (Nodes[CurrentNode] .Visible and Nodes[OtherNode] .Visible) then 
begin 

CtrPoint1 .- Point(Nodes[CurrentNode] .Left, 
Nodes[CurrentNode] .Top); 

CtrPoint2 .- Point(Nodes[OtherNode] .Left, 
Nodes[OtherNode] .Top); 

DistanceMatrix[CurrentNode, OtherNode] .
DistanceBetweenPoints(CtrPoint1, CtrPoint2); 

DistanceMatrix[OtherNode, CurrentNode] .
DistanceMatrix[CurrentNode, OtherNode] 

end 
end 

end; 

{************************************************************************ 
** Extracts user-input data from the Link Characteristics screen and ** 
** stores this data in the appropriate data matrix. ** 
************************************************************************} 

procedure TWeb_Spinner.Extractinputs(var DataMatrix: MasterMatrixType; 
InputMatrix: InputMatrixType); 

var 
Row, Column, Warning: Integer; 
Notice: String; 

begin 
Warning := 1; 
for Row := 1 to NumUsedNodes do 

for Column .- 1 to NumUsedNodes do 
if Row < Column then begin 

tcy 
Warning.- StrTointDef(Inputmatrix[Row, Column] .Text, -1); 

except 
begin 

Notice .- 'Value for Link joining Nodes ' + IntToStr(Column) 
+ '/' + IntToStr(Row) + ' is not a valid Integer 
value.'; 

MessageDlg(Notice, mtError, [mbOK], 0); 
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Notebook1.Pageindex := 1 
end 

end; 

end 

DataMatrix[Row, Column] 
DataMatrix[Column, Row] 

·= Warning; 
·= DataMatrix[Row, Column] 

end; 

{********************************************************************* 
** Interpolates utility value for input values that fall between ** 
** data points. ** 
*********************************************************************} 

function TWeb_Spinner.Interpolate(Input, XAxisLeft, XAxisRight, 
ValueLeft, ValueRight: Integer): Real; 

var 
AxisDiff, ValueDiff 
HowMuch, FinalValue 

begin 

Integer; 
Real; 

AxisDiff := XAxisRight - XAxisLeft; 
ValueDiff := ValueRight - ValueLeft; 

HowMuch := (Input - XAxisLeft)/AxisDiff; 
FinalValue := ValueLeft + (HowMuch * ValueDiff); 

Result .- FinalValue 
end; 

{********************************************************************* 
** Retrieves appropriate utility value from the respective ** 
** utility chart. ** 
*********************************************************************} 

function TWeb_Spinner.GetUtility(Input: Integer; 
InputType: InputPanelType): Integer; 

var 
UtilityValue: Real; 
Loop, Left, Right: Integer; 

begin 
if InputType = SetUpCost then begin 

if Input<= UtilSetUpCostXAxis[1] 
then UtilityValue := UtilSetUpCostArray[1] 

else if Input >= UtilSetUpCostXAxis[10] 
then UtilityValue := UtilSetUpCostArray[10] 

else begin 
for Loop := 1 to 9 do begin 

if ((Input>= UtilSetUpCostXAxis[Loop]) and 

end 
end; 

(Input< UtilSetUpCostXAxis[Loop + 1])) then begin 
Left := Loop; 
Right .- Loop + 1 

UtilityValue .- Interpolate(Input, UtilSetUpCostXAxis[Left], 
UtilSetUpCostXAxis[Right], 
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UtilSetUpCostArray[Left], 
UtilSetUpCostArray[Right]) 

end 
end 

else if InputType = MonthlyCost then begin 
if Input<= UtilMonthlyCostXAxis[1] 

then UtilityValue := UtilMonthlyCostArray[1] 
else if Input >= UtilMonthlyCostXAxis[10] 

then UtilityValue := UtilMonthlyCostArray[10] 
else begin 

for Loop := 1 to 9 do begin 
if ((Input>= UtilMonthlyCostXAxis[Loop]) and 

(Input< UtilMonthlyCostXAxis[Loop + 1])) then begin 
Left := Loop; 
Right .- Loop + 1 

end 
end; 
UtilityValue .- Interpolate(Input, UtilMonthlyCostXAxis[Left], 

UtilMonthlyCostXAxis[Right], 
UtilMonthlyCostArray[Left], 
UtilMonthlyCostArray[Right]) 

end 
end 

else if InputType = BER then begin 
if Input<= UtilBERXAxis[1] 

then UtilityValue := UtilBERArray[1] 
else if Input >= UtilBERXAxis[10] 

then UtilityValue := UtilBERArray[10] 
else begin 

for Loop := 1 to 9 do begin 
if ((Input>= UtilBERXAxis[Loop]) and 

end 
end; 

(Input< UtilBERXAxis[Loop + 1])) then begin 
Left := Loop; 
Right .- Loop + 1 

UtilityValue .- Interpolate(Input, UtilBERXAxis[Left], 
UtilBERXAxis[Right], 
UtilBERArray[Left], 
UtilBERArray[Right]) 

end 
end; 

Result .- Trunc(UtilityValue) 
end; 

{************************************************************************ 
** Computes total utility values for each potential link and stores ** 
** this information in the Web Spinner Utility Matrix. ** 
***********************************************************************} 

procedure TWeb_Spinner.FillUtilityMatrix(var UtilityMatrix: 
MasterMatrixType; 

87 



var 
Row, Column: Integer; 

SetUpCostMatrix, 
MonthlyCostMatrix, 
BERMatrix: MasterMatrixType; 
SetUpCostWt, MonthlyCostWt, 
BERWt: Integer); 

SetUpCostUtil, MonthlyCostUtil, BERUtil: Integer; 
begin 

for Row := 1 to NumUsedNodes do 
for Column := 1 to NumUsedNodes do 

end; 

if Row > Column then begin 
SetUpCostUtil := 0; 
MonthlyCostUtil .- 0; 
BERUtil := 0; 

if CheckBox1.Checked then 
SetUpCostUtil := GetUtility(SetUpCostMatrix[Row, Column], 

SetUpCost); 
if CheckBox2.Checked then 

MonthlyCostUtil := GetUtility(MonthlyCostMatrix[Row, Column], 
MonthlyCost); 

if CheckBox3.Checked then 
BERUtil := GetUtility(BERMatrix[Row, Column], BER); 

UtilityMatrix[Row, Column] .- ((SetUpCostUtil * SetUpCostWt) + 
(MonthlyCostUtil * MonthlyCostWt) + 
(BERUtil * BERWt)) div 100; 

UtilityMatrix[Column, Row] .- UtilityMatrix[Row, Column] 
end 

{********************************************************************* 
** Creates a Minimum Spanning Tree. ** 
*********************************************************************} 

procedure TWeb_Spinner.SolveMinTree(var DataMatrix: MasterMatrixType; 
ExpenseMatrix: MasterMatrixType; 

var Connections: LinkMatrixType); 
var 

EligibleParents Array[1 .. NumNodes] of Integer; 
AdoptiveChildren : Array[1 .. NumNodes] of Integer; 
Loop, PCount, CCount: Integer; 
Parent, Child, Util: Integer; 
Locked: Boolean; 

begin 
for Loop := 1 to NumNodes do begin 

EligibleParents[Loop] := 0; 
AdoptiveChildren[Loop] .- Loop 

end; 
EligibleParents(1] := 1; 
AdoptiveChildren[1] .- 0; 
Locked := false; 

for Loop .- 1 to NumUsedNodes do begin 
Parent .- 0; 

88 



Child := 0; 
Util := Infinity; 

for PCount := 1 to NumUsedNodes do begin 
if EligibleParents[PCount] <> 0 then begin 

for CCount := 1 to NumUsedNodes do begin 
if AdoptiveChildren[CCount] <> 0 then begin 

if Connections[PCount, CCount] = LockLinked then begin 
Util := -1; 
Parent := PCount; 
Child := CCount; 
Locked := true 

end; 
if DataMatrix[PCount, CCount] < Util then begin 

Util := DataMatrix[PCount, CCount]; 
Parent := PCount; 
Child .- CCount 

end 
end 

end 
end 

end; 

If ((Util <Infinity) and (Parent> 0) and (Child> 0)) then begin 
EligibleParents[Child] :=Child; 
AdoptiveChildren[Child] .- 0; 

if not Locked then begin 
Connections[Parent, Child] 
Connections[Child, Parent] 

end; 

Locked .- false 
end 

:= Linked; 
.- Linked 

end 
end; 

{********************************************************************* 
** Creates a Maximum Spanning Tree. ** 
*********************************************************************} 

procedure TWeb_Spinner.SolveMaxTree(var DataMatrix: MasterMatrixType; 
ExpenseMatrix: MasterMatrixType; 

var Connections: LinkMatrixType); 
var 

EligibleParents Array[l .. NumNodes] of Integer; 
AdoptiveChildren : Array[1 .. NumNodes] of Integer; 
Loop, PCount, CCount: Integer; 
Parent, Child, Util: Integer; 
Locked: Boolean; 

begin 
for Loop := 1 to NumNodes do begin 

EligibleParents[Loop] := 0; 
AdoptiveChildren[Loop] .- Loop 

end; 
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EligibleParents(1] := 1; 
AdoptiveChildren[1] .- 0; 
Locked := false; 

for Loop := 1 to NumUsedNodes do begin 
Parent := 0; 
Child := 0; 
Util : = 0; 

for PCount := 1 to NumUsedNodes do begin 
if EligibleParents[PCount] <> 0 then begin 

for CCount := 1 to NumUsedNodes do begin 
if AdoptiveChildren[CCount] <> 0 then begin 

if Connections[PCount, CCount] = LockLinked then begin 
Util := Infinity - 1; 
Parent := PCount; 
Child : = CCount; 
Locked := true 

end; 
if DataMatrix[PCount, CCount] > Util then begin 

Util := DataMatrix[PCount, CCount]; 
Parent := PCount; 
Child . - CCount 

end 
end 

end 
end 

end; 

If ((Util <Infinity) and (Parent> 0) and (Child> 0)) then begin 
EligibleParents[Child] :=Child; 
AdoptiveChildren[Child] .- 0; 

if not Locked then begin 
Connections[Parent, Child] .- Linked; 
Connections[Child, Parent] .- Linked 

end; 

Locked ·= false 
end 

end 
end; 

{********************************************************************* 
** This routine checks the connection matrix and draws the ** 
** appropriate links on the Web Spinner desktop. ** 
*********************************************************************} 

procedure TWeb_Spinner.DrawLinks(Connections: LinkMatrixType; 

LinkArrayType) ; 
var 

Loop, Row, Column: Integer; 
begin 

Nodes: NodeArrayType; var Links: 

for Loop := 1 to NumNodes do begin 
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Links[Loop] .Pen.Color := clFuchsia; 
Links[Loop] .Visible .-false 

end; 

Loop := 1; 
for Row := 1 to NumNodes do 

for Column := 1 to NumNodes do 
if Row <= Column then begin 

if Connections[Row, Column] = LockLinked then 
Links[Loop] .Pen.Color := clBlack 

else if Connections[Row, Column] =Linked then 
Links[Loop] .Pen.Color := clFuchsia 

else if Connections[Row, Column] = Redundant then 
Links[Loop] .Pen.Color := clLime; 

if ((Connections[Row, Column] 
(Connections[Row, Column] 
(Connections[Row, Column] 

Linked) or 
LockLinked) or 
Redundant)) then begin 

if Nodes[Row] .Top< Nodes[Column] .Top then begin 
if Nodes[Row] .Left < Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Row] .Top+ 12; 
Links[Loop].Left := Nodes[Row] .Left+ 12; 
Links[Loop].Height := Abs(Nodes[Row] .Top 

- Nodes[Column].Top); 
Links[Loop] .Width := Abs(Nodes[Row] .Left 

- Nodes[Column] .Left); 
Links[Loop].Shape .- stDiagLine1 

end 
else if Nodes[Row] .Left > Nodes[Column] .Left then begin 

Links[Loop].Top := Nodes[Row] .Top+ 12; 
Links[Loop].Left := Nodes[Column] .Left+ 12; 
Links[Loop] .Height := Abs(Nodes[Row] .Top 

- Nodes[Column] .Top); 
Links[Loop] .Width := Abs(Nodes[Row] .Left 

- Nodes[Column] .Left); 
Links[Loop].Shape .- stDiagLine2 

end 
else if Nodes[Row] .Left= Nodes[Column].Left then begin 

Links[Loop] .Top := Nodes[Row] .Top + 12; 
Links[Loop] .Left := Nodes[Row] .Left + 12; 
Links[Loop] .Height := Abs(Nodes[Row] .Top 

- Nodes[Column] .Top); 
Links[Loop] .Width .- 5; 
Links[Loop] .Shape .- stLeftLine 

end 
end 

else if Nodes[Row] .Top > Nodes[Column] .Top then begin 
if Nodes[Row] .Left< Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Column] .Top + 12; 
Links[Loop] .Left := Nodes[Row] .Left + 12; 
Links[Loop] .Height := Abs(Nodes[Row] .Top 

- Nodes[Column] .Top); 
Links[Loop] .Width .- Abs(Nodes[Row] .Left 

- Nodes[Column] .Left); 
Links[Loop] .Shape .- stDiagLine2 
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end 
else if Nodes[Row] .Left > Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Column] .Top+ 12; 
Links[Loop] .Left := Nodes[Column] .Left+ 12; 
Links[Loop] .Height := Abs(Nodes[Row] .Top 

- Nodes[Column] .Top); 
Links[Loop] .Width .- Abs(Nodes[Row] .Left 

- Nodes[Column] .Left); 
Links[Loop] .Shape := stDiagLine1 

end 
else if Nodes[Row] .Left = Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Column] .Top+ 12; 
Links[Loop] .Left := Nodes[Column].Left + 12; 
Links[Loop] .Height := Abs(Nodes[Row] .Top 

- Nodes[Column] .Top); 
Links[Loop] .Width .- 5; 
Links[Loop] .Shape .- stLeftLine 

end 
end 

else if Nodes[Row] .Top= Nodes[Column] .Top then begin 
if Nodes[Row] .Left < Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Row] .Top+ 12; 
Links[Loop] .Left := Nodes[Row] .Left + 12; 
Links[Loop] .Height := 5; 
Links[Loop] .Width .- Abs(Nodes[Row] .Left 

- Nodes[Column] .Left); 
Links[Loop] .Shape .- stTopLine 

end 
else if Nodes[Row] .Left > Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Row] .Top+ 12; 
Links[Loop] .Left := Nodes[Column] .Left + 12; 
Links[Loop] .Height := 5; 
Links[Loop] .Width .- Abs(Nodes[Row] .Left 

- Nodes[Column] .Left); 
Links[Loop] .Shape .- stTopLine 

end 
else if Nodes[Row] .Left= Nodes[Column] .Left then begin 

Links[Loop] .Top := Nodes[Row] .Top+ 12; 
Links[Loop] .Left := Nodes[Row] .Left + 12; 
Links[Loop] .Height := 5; 
Links[Loop] .Width .- 5; 
Links[Loop] .Shape := stTopLine 

end 
end; 

Links[Loop] .Visible := true; 
if Row< 10 then Links[Loop] .Hint := '0' + IntToStr(Row) + 
else Links[Loop] .Hint .- IntToStr(Row) + •. '; 

if Column < 10 then 
Links[Loop] .Hint := Links[Loop] .Hint + '0' + IntToStr(Column) 

else Links[Loop] .Hint := Links[Loop] .Hint+ IntToStr(Column); 

ListBox1.Items.Add(InttoStr(Row) + 
Loop .- Loop + 1 

end 
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end 
end; 

{********************************************************************* 
** Computes the sum of a particular attribute of the recommended ** 
** network (i.e. total set-up cost, total utility, ... ). ** 
*********************************************************************} 

function TWeb_Spinner.ComputeTotal(DataMatrix: MasterMatrixType; 
Connections: LinkMatrixType): Integer; 

var 
Row, Col, Value: Integer; 

begin 
Value := 0; 
for Row := 1 to NuroUsedNodes do 

for Col := 1 to NuroUsedNodes do 
if Row > Col then begin 

if Connections[Row, Col] <> NoLink 
then Value .- Value + DataMatrix[Row, Col] 

end; 
Result .- Value 

end; 

{********************************************************************* 
** Main WebSpinner Routine. Executed every time any modification ** 
** is made to the network or any solution data. Responsible for ** 
** central Web Spinner program execution with the assistance of ** 
** all other methods. All methods support this routine. ** 
*********************************************************************} 

procedure TWeb_Spinner.Main(Sender: TObject); 
begin 

InitializeLinks(Connections); 
ListBox1.Items.Clear; 

if CheckBox4.Checked then begin 
InitializeMatrix(DistanceMatrix, Infinity, 1); 
DistanceisCost(DistanceMatrix, Nodes); 
SolveMinTree(DistanceMatrix, DistanceMatrix, Connections); 
TotalCost .- ComputeTotal(DistanceMatrix, Connections); 
TotalUtil .- TotalCost 

end 
else begin 

InitializeMatrix(UtilityMatrix, 0, 1); 
InitializeMatrix(SetUpCostMatrix, 0, NuroUsedNodes + 1); 
InitializeMatrix(MonthlyCostMatrix, 0, NuroUsedNodes + 1); 
InitializeMatrix(BERMatrix, 0, NuroUsedNodes + 1); 

SetUpCostWt := SpinEdit1.Value; 
MonthlyCostWt := SpinEdit3.Value; 
BERWt := SpinEdit2.Value; 

FillUtilityMatrix(UtilityMatrix, SetUpCostMatrix, MonthlyCostMatrix, 
BERMatrix, SetUpCostWt, MonthlyCostWt, BERWt); 
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SolveMaxTree(UtilityMatrix, SetUpCostMatrix, Connections); 
TotalCost .- ComputeTotal(SetUpCostMatrix, Connections); 
TotalUtil .- ComputeTotal(UtilityMatrix, Connections) 

end; 

DrawLinks(Connections, Nodes, Links); 
Edit1.Text .- IntToStr(TotalCost); 
Edit8.Text .- IntToStr(TotalUtil); 
Edit3.Text .- IntToStr(NumUsedNodes) 

end; 

{********************************************************************* 
** Generates a new node on the desktop. ** 
*********************************************************************} 

procedure TWeb_Spinner.Shape1MouseDown(Sender: TObject; 
Button: TMouseButton; Shift: TShiftState; X, Y: Integer); 

var 
AvailableNode : Boolean; 
Loop : Integer; 

begin 
AvailableNode .- true; 

for Loop := 1 to NumNodes do begin 
if (Nodes[Loop] .Visible= false) and AvailableNode then begin 

Nodes[Loop] .Visible :=true; 
NumUsedNodes := NumUsedNodes + 1; 
AvailableNode := false 

end 
else if (Loop = NumNodes) and AvailableNode then begin 

Shape1.Brush.Color .- clRed; 
Shape1.Brush.Style := bsDiagCross 

end 
end 

end; 

{********************************************************************* 
** Prints the currently displayed screen. ** 
*********************************************************************} 

procedure TWeb_Spinner.Print1Click(Sender: TObject); 
begin 

TabSet1.Visible := false; 
Panel1.Visible := false; 
Print; 
TabSet1.Visible := true; 
Panel1.Visible .- true 

end; 

{********************************************************************* 
** 
** 

Returns program control to the WSAbout form when activated. 
Displays the initial welcome page. 

** 
** 

*********************************************************************} 
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procedure TWeb_Spinner.AboutlClick(Sender: TObject); 
begin 

About.Show; 
end; 

{********************************************************************* 
** Activates the Set-Up cost matrix on the Data Input Screen. ** 
*********************************************************************} 

procedure TWeb_Spinner.SpeedButtonlClick(Sender: TObject); 
begin 

OnExitinputBox(Sender); 
if InputPanel =Traffic then Extractinputs(TrafficMatrix, InputMatrix) 
else if InputPanel = SetUpCost then 

Extractinputs(SetUpCostMatrix,InputMatrix) 
else if InputPanel MonthlyCost then Extractinputs(MonthlyCostMatrix, 

InputMatrix) 
else if InputPanel BER then Extractinputs(BERMatrix, InputMatrix); 

Labell.Caption := 'SetUp Cost'; 
Labell.Color := clTeal; 
Panel8.Color := clTeal; 
ListBox2.Items.Clear; 
ListBox2.Items.Add('Initial SetUp cost to connect'); 
ListBox2.Items.Add('nodes. (Max=$' + IntToStr(Infinity- 1) + ') '); 
InputPanel := SetUpCost; 
FillinputMatrix(SetUpCostMatrix, InputMatrix) 

end; 

{********************************************************************* 
** Activates the BER matrix on the Data Input Screen. ** 
*********************************************************************} 

procedure TWeb_Spinner.SpeedButton4Click(Sender: TObject); 
begin 

OnExitinputBox(Sender); 
if InputPanel =Traffic then Extractinputs(TrafficMatrix, InputMatrix) 
else if InputPanel = SetUpCost then 

Extractinputs(SetUpCostMatrix,InputMatrix) 
else if InputPanel MonthlyCost then Extractinputs(MonthlyCostMatrix, 

InputMatrix) 
else if InputPanel BER then Extractinputs(BERMatrix, InputMatrix); 

Labell.Caption := 'Error Rate'; 
Labell.Color := clGreen; 
Panel8.Color := clGreen; 
ListBox2.Items.Clear; 
ListBox2.Items.Add('Error Rate of each Link.'); 
ListBox2.Items.Add(' (lOE-#) (negative values)'); 
InputPanel := BER; 
FillinputMatrix(BERMatrix, InputMatrix) 

end; 
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{********************************************************************* 
** Activates the Monthly cost matrix on the Data Input Screen. ** 
*********************************************************************} 

procedure TWeb_Spinner.SpeedButton2Click(Sender: TObject); 
begin 

OnExitinputBox(Sender); 
if InputPanel =Traffic then Extractinputs(TrafficMatrix, InputMatrix) 
else if InputPanel = SetUpCost then 

Extractinputs(SetUpCostMatrix,InputMatrix) 
else if InputPanel MonthlyCost then Extractinputs(MonthlyCostMatrix, 

InputMatrix) 
else if InputPanel BER then Extractinputs(BERMatrix, InputMatrix); 

Labell.Caption := 'Monthly Cost'; 
Labell.Color := clNavy; 
Panel8.Color := clNavy; 
ListBox2.Items.Clear; 
ListBox2.Items.Add('Monthly Costs to maintain'); 
ListBox2.Items.Add('each link. (Max=$' + IntToStr(Infinity- 1) 

+ I ) I ) j 

InputPanel := MonthlyCost; 
FillinputMatrix(MonthlyCostMatrix, InputMatrix) 

end; 

{************************************************************************ 
** Activates the Traffic Requirements matrix on the Data Input Screen. ** 
************************************************************************} 

procedure TWeb_Spinner.SpeedButton3Click(Sender: TObject); 
begin 

OnExitinputBox(Sender); 
if InputPanel =Traffic then Extractinputs(TrafficMatrix, InputMatrix) 
else if InputPanel = SetUpCost then 

Extractinputs(SetUpCostMatrix,InputMatrix) 
else if InputPanel MonthlyCost then Extractinputs(MonthlyCostMatrix, 

InputMatrix) 
else if InputPanel BER then Extractinputs(BERMatrix, InputMatrix); 

Labell.Caption := 'Traffic'; 
Labell.Color := clAqua; 
Panel8.Color := clAqua; 
ListBox2.Items.Clear; 
ListBox2.Items.Add('Traffic Requirements '); 
ListBox2.Items.Add('between nodes (packets).'); 
InputPanel := Traffic; 
FillinputMatrix(TrafficMatrix, InputMatrix) 

end; 

{********************************************************************* 
** Ensures all matrix data is acknowledged when user changes ** 
** between Web Spinner modules. ** 
*********************************************************************} 

procedure TWeb_Spinner.NotebooklPageChanged(Sender: TObject); 
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begin 
0 then begin if NumUsedNodes > 

if InputPanel SetUpCost then Extractinputs(SetUpCostMatrix, 
InputMatrix) 

else if InputPanel = MonthlyCost then 
Extractinputs(MonthlyCostMatrix, 

InputMatrix) 
else if InputPanel 
else if InputPanel 

BER then Extractinputs(BERMatrix, InputMatrix) 
Traffic then Extractinputs(TrafficMatrix, 

InputMatrix); 
if NumUsedNodes > 0 then Main(Sender) 

end 
end; 

{********************************************************************* 
** Fills in the upper right half of data input matrix every time ** 
** the user enter data on the data input screen. ** 
*********************************************************************} 

procedure TWeb_Spinner.OnExitinputBox(Sender: TObject); 
var Row, Column: Integer; 
begin 

for Row := 1 to NumUsedNodes do 
for Column := 1 to NumUsedNodes do 

if Row > Column then 
InputMatrix[Column, Row] .Text := InputMatrix[Row, Column] .Text 

else if Row> Column then InputMatrix[Row, Column] .Text := '0' 

end; 

{********************************************************************* 
** Displays the Utility matrix on the Data Input Screen. ** 
*********************************************************************} 

procedure TWeb_Spinner.Button1Click(Sender: TObject); 
begin 

OnExitinputBox(Sender); 
if InputPanel = Traffic then Extractinputs(TrafficMatrix, InputMatrix) 
else if InputPanel = SetUpCost then 

Extractinputs(SetUpCostMatrix,InputMatrix) 
else if InputPanel MonthlyCost then Extractinputs(MonthlyCostMatrix, 

InputMatrix) 
else if InputPanel BER then Extractinputs(BERMatrix, InputMatrix); 

InputPanel := Utility; 
Label1.Caption := 'Utility'; 
Label1.Color := clWhite; 
Panel8.Color := clWhite; 
ListBox2.Items.Clear; 
ListBox2.Items.Add('Current Utility Values '); 
ListBox2.Items.Add('between node (read only).'); 
FillinputMatrix(UtilityMatrix, InputMatrix); 
Main(Sender) 

end; 
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{********************************************************************* 
** Computes weight total every time user makes a change to the ** 
** current weighting distribution. (Weights poge.) ** 
*********************************************************************} 

procedure TWeb_Spinner.TotalWeights(Sender: TObject); 
begin 

try 
Edit9.Text .- IntToStr(SpinEditl.Value + SpinEdit2.Value + 

SpinEdit3.Value); 
except 

on EConvertError do begin 
SpinEditl.Value .- 0; 
SpinEdit2.Value := 0; 
SpinEdit3.Value := 0; 
Edit9.Text .- IntToStr(SpinEditl.Value + SpinEdit2.Value + 

SpinEdit3.Value); 
end; 

end; 

ChartFXl.OpenData[COD_VALUES] := MakeLong(l,3); 

ChartFXl.ThisSerie := 0; 
ChartFXl.Value[O] .- SpinEditl.Value; 
ChartFXl.Value[l] .- SpinEdit2.Value; 
ChartFXl.Value[2] .- SpinEdit3.Value; 

ChartFXl.CloseData[COD_VALUES] .- 0 
end; 

{*********************************************************************** 
** The following procedures are used to hide and/or unhide tools ** 
** and panels during program execution. ** 
***********************************************************************} 

procedure TWeb_Spinner.BitBtn2Click(Sender: TObject); 
begin 

Panel2.Visible .- false 
end; 

procedure TWeb_Spinner.ToolslClick(Sender: TObject); 
begin 

Panel14.Visible .- true 
end; 

procedure TWeb_Spinner.BitBtn5Click(Sender: TObject); 
begin 

Panel14.Visible := false; 
EditlO.Text .- ''; 
Editll.Text .-

end; 

procedure TWeb_Spinner.LinkinfoBoxlClick(Sender: TObject); 
begin 

if not Panel2.Visible then Panel2.Visible := true 
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else Panel2.Visible .- false 
end; 

procedure TWeb_Spinner.BitBtn8Click(Sender: TObject); 
begin 

Panel18.Visible .- false 
end; 

procedure TWeb_Spinner.BitBtn10Click(Sender: TObject); 
begin 

Panel24.Visible .- false 
end; 

procedure TWeb_Spinner.Solve1Click(Sender: TObject); 
begin 

if not Panel24.Visible then Panel24.Visible .- true 
else Panel24.Visible := false 

end; 

procedure TWeb_Spinner.BasicData2Click(Sender: TObject); 
begin 

CornboBox1.Text := IntToStr(LinkSpeed); 
SpinEdit4.Value := PacketSize; 
if not Panel18.Visible then Panel18.Visible .- true 
else Panel18.Visible := false 

end; 

procedure TWeb_Spinner.BitBtn12Click(Sender: TObject); 
begin 

Panel28.Visible .- false 
end; 

procedure TWeb_Spinner.LinkLegend1Click(Sender: TObject); 
begin 

if not Panel28.Visible then Panel28.Visible .- true 
else Panel28.Visible := false 

end; 

{*********************************************************************** 
** This is the "Ok" button on the Lock Link tool. When executed, ** 
** creates a locked link between indicated nodes. ** 
***********************************************************************} 

procedure TWeb_Spinner.BitBtn4Click(Sender: TObject); 
var 

LinkStart, LinkEnd: Integer; 
begin 

LinkStart := StrTointDef(Edit10.Text, 0); 
LinkEnd := StrTointDef(Edit11.Text, 0); 

if ((LinkStart = 0) or (LinkEnd = 0)) then 
MessageDlg('Nodes must be Integers> 0. ', mtError, [rnbOk], 0); 

if ((LinkStart <> 0) and (LinkEnd <> 0) and (LinkStart = LinkEnd)) then 
MessageDlg('Cannot create a link starting and ending at the same 

node. ' , mtError, [rnbOk] , 0) ; 
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if LinkStart 0 then EditlO.Text := ''; 
if LinkEnd = 0 then Editll.Text := ''; 

if ((LinkStart > 0) and (LinkEnd > 0) and (LinkStart <> LinkEnd)) then 
begin 

Connections[LinkStart, LinkEnd] .- LockLinked; 
Connections[LinkEnd, LinkStart] .- LockLinked; 
Main(Sender); 
Panel14.Visible := false; 
EditlO.Text := ''; 
Editll.Text .-

end 
end; 

{*********************************************************************** 
** Switches data points between any two charts. ** 
***********************************************************************} 

procedure TWeb_Spinner.SwitchGraphValues(var UtilArray: UtilityGraphType; 
var SmallChart: TChartFX; MainChart: TChartFX); 

var 
Loop: Integer; 

begin 
SmallChart.OpenData[COD_VALUES] .- MakeLong(l,lO); 
SmallChart.ThisSerie := 0; 
MainChart.ThisSerie := 0; 

for Loop := 0 to 9 do begin 
SmallChart.Value[Loop] .- MainChart.Value[Loop]; 
UtilArray[Loop + 1] .- Trunc(MainChart.Value[Loop]) 

end; 

SmallChart.CloseData[COD_VALUES] .- 0 
end; 

{************************************************************************ 
** The next three procedures are used whenever the user double-clicks ** 
** any of the three small charts on the Utility screen. They ** 
** activate the respective chart, transfer appropriate data points, ** 
** and fill in the appropriate labels. ** 
***********************************************************************} 

procedure TWeb_Spinner.ChartFX2LButtonDblClk(Sender: TObject; var X, Y, 
nSerie, nPoint, nRes: Integer); 

var 
Loop: Integer; 

begin 
if UtilityGraph BER then SwitchGraphValues(UtilBERArray, 

ChartFX3, ChartFX6); 
if UtilityGraph MonthlyCost then 

SwitchGraphValues(UtilMonthlyCostArray,ChartFX4, ChartFX6); 

UtilityGraph := SetUpCost; 
Panel19.Caption .- 'SetUp Cost ($) '; 
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Panel19.Color := clTeal; 
Shape3.Brush.Color := clTeal; 

ChartFX2.RGB2DBk := clYellow; 
ChartFX3.RGB2DBk .- clWhite; 
ChartFX4.RGB2DBk := clWhite; 

ChartFX2.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX6.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX2.ThisSerie .- 0; 
ChartFX6.ThisSerie := 0; 
for Loop := 0 to 9 do begin 

ChartFX2.Value[Loop] := UtilSetUpCostArray[Loop + 1]; 
ChartFX6.Value[Loop] := UtilSetUpCostArray[Loop + 1] 

end; 
ChartFX2.CloseData[COD_VALUES] .- 0; 
ChartFX6.CloseData[COD_VALUES] .- 0; 

Edit4.Text .- IntToStr(UtilSetUpCostArray[1]); 
EditS.Text .- IntToStr(UtilSetUpCostArray[2]); 
Edit6.Text := IntToStr(UtilSetUpCostArray[3]); 
Edit7.Text .- IntToStr(UtilSetUpCostArray[4]); 
Edit12.Text := IntToStr(UtilSetUpCostArray[5]); 
Edit13.Text := IntToStr(UtilSetUpCostArray[6]); 
Edit14.Text .- IntToStr(UtilSetUpCostArray[7]); 
Edit15.Text .- IntToStr(UtilSetUpCostArray[8]); 
Edit16.Text .- IntToStr(UtilSetUpCostArray[9]); 
Edit17.Text .- IntToStr(UtilSetUpCostArray[10]); 

for Loop := 0 to 9 do 
StringGrid1.Cells[Loop, 0] .- IntToStr(UtilSetUpCostXAxis[Loop + 1]) 

end; 

procedure TWeb_Spinner.ChartFX3LButtonDblClk(Sender: TObject; var X, Y, 
nSerie, nPoint, nRes: Integer); 

var 
Loop: Integer; 

begin 
if UtilityGraph SetUpCost then SwitchGraphValues(UtilSetUpCostArray, 

ChartFX2, ChartFX6); 
if UtilityGraph MonthlyCost then 

SwitchGraphValues(UtilMonthlyCostArray, ChartFX4, ChartFX6); 

UtilityGraph := BER; 
Panel19.Caption := 'BER (10E-#) '; 
Panel19.Color := clGreen; 
Shape3.Brush.Color := clGreen; 

ChartFX2.RGB2DBk .- clWhite; 
ChartFX3.RGB2DBk .- clYellow; 
ChartFX4.RGB2DBk .- clWhite; 

ChartFX3.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX6.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX3.ThisSerie .- 0; 
ChartFX6.ThisSerie .- 0; 
for Loop := 0 to 9 do begin 

101 



ChartFX3.Value[Loop] := UtilBERArray[Loop + 1]; 
ChartFX6.Value[Loop] := UtilBERArray[Loop + 1] 

end; 
ChartFX3.CloseData[COD_VALUES] .- 0; 
ChartFX6.CloseData[COD_VALUES] .- 0; 

Edit4.Text .- IntToStr(UtilBERArray[1]); 
EditS.Text .- IntToStr(UtilBERArray[2]); 
Edit6.Text .- IntToStr(UtilBERArray[3]); 
Edit7.Text .- IntToStr(UtilBERArray[4]); 
Edit12.Text .- IntToStr(UtilBERArray[S]); 
Edit13.Text .- IntToStr(UtilBERArray[6]); 
Edit14.Text .- IntToStr(UtilBERArray[7]); 
Edit15.Text .- IntToStr(UtilBERArray[8]); 
Edit16.Text .- IntToStr(UtilBERArray[9]); 
Edit17.Text .- IntToStr(UtilBERArray[10]); 

for Loop := 0 to 9 do 
StringGrid1.Cells[Loop, 0] .- IntToStr(UtilBERXAxis[Loop + 1]) 

end; 

procedure TWeb_Spinner.ChartFX4LButtonDblClk(Sender: TObject; var X, Y, 
nSerie, nPoint, nRes: Integer); 

var 
Loop: Integer; 

begin 
if UtilityGraph 

if UtilityGraph 

SetUpCost then SwitchGraphValues(UtilSetUpCostArray, 
ChartFX2, ChartFX6); 

BER then SwitchGraphValues(UtilBERArray, 

UtilityGraph := MonthlyCost; 
Panel19.Caption := 'Monthly Cost ($) '; 
Panel19.Color := clNavy; 
Shape3.Brush.Color := clNavy; 

ChartFX2.RGB2DBk := clWhite; 
ChartFX3.RGB2DBk := clWhite; 
ChartFX4.RGB2DBk := clYellow; 

ChartFX4.0penData[COD_VALUES] := MakeLong(1,10); 
ChartFX6.0penData[COD_VALUES] := MakeLong(1,10); 
ChartFX4.ThisSerie .- 0; 
ChartFX6.ThisSerie := 0; 
for Loop := 0 to 9 do begin 

ChartFX3, ChartFX6); 

ChartFX4.Value[Loop] := UtilMonthlyCostArray[Loop + 1]; 
ChartFX6.Value[Loop] := UtilMonthlyCostArray[Loop + 1] 

end; 
ChartFX4.CloseData[COD_VALUES] .- 0; 
ChartFX6.CloseData[COD_VALUES] .- 0; 

Edit4.Text .- IntToStr(UtilMonthlyCostArray[1]); 
EditS.Text .- IntToStr(UtilMonthlyCostArray[2]); 
Edit6.Text .- IntToStr(UtilMonthlyCostArray[3]); 
Edit7.Text .- IntToStr(UtilMonthlyCostArray[4]); 
Edit12.Text .- IntToStr(UtilMonthlyCostArray[S]); 
Editl3.Text := IntToStr(UtilMonthlyCostArray[6]); 
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Edit14.Text .- IntToStr(UtilMonthlyCostArray[7]); 
Edit15.Text .- IntToStr(UtilMonthlyCostArray[8]); 
Edit16.Text .- IntToStr(UtilMonthlyCostArray[9]); 
Edit17.Text := IntToStr(UtilMonthlyCostArray[10]); 

for Loop := 0 to 9 do 
StringGrid1.Cells[Loop, 0] := 

IntToStr(UtilMonthlyCostXAxis[Loop + 1]) 
end; 

{************************************************************************ 
** The next four procedures either subtract (down) or add (up) one ** 
** to the integer value in a textbox when the appropriate spin ** 
** button or spinedit button is clicked. If appropriate, the ** 
** respective chart value (plotted) is also changed. ** 
***********************************************************************} 

procedure TWeb_Spinner.GenericSBDownClick(var EditBox: TEdit); 
var 

Value: Integer; 
begin 

Value := StrTointDef(EditBox.Text, 0); 
if Value > 0 then Value := Value - 1; 

EditBox.Text .- IntToStr(Value) 
end; 

procedure TWeb_Spinner.GenericSBUpClick(var EditBox: TEdit); 
var 

Value: Integer; 
begin 

Value := StrTointDef(EditBox.Text, 0); 
if Value < 100 then Value := Value + 1; 

EditBox.Text .- IntToStr(Value) 
end; 

procedure TWeb_Spinner.SpinButton1DownClick(Sender: TObject); 
var 

Loop: Integer; 
begin 

ChartFX6.0penData[COD_VALUES] .- MakeLong(1,10); 
ChartFX6.ThisSerie := 0; 

if Sender SpinButton1 then GenericSBDownClick(Edit4); 
if Sender SpinButton2 then GenericSBDownClick(Edit5); 
if Sender SpinButton3 then GenericSBDownClick(Edit6); 
if Sender SpinButton4 then GenericSBDownClick(Edit7); 
if Sender SpinButtonS then GenericSBDownClick(Edit12); 
if Sender SpinButton6 then GenericSBDownClick(Edit13); 
if Sender SpinButton7 then GenericSBDownClick(Edit14); 
if Sender SpinButton8 then GenericSBDownClick(Edit15); 
if Sender SpinButton9 then GenericSBDownClick(Edit16); 
if Sender SpinButton10 then GenericSBDownClick(Edit17); 

ChartFX6.Value[O] .- StrTointDef(Edit4.Text, 0); 
ChartFX6.Value[l] .- StrTointDef(EditS.Text, 0); 
ChartFX6.Value[2] .- StrTointDef(Edit6.Text, 0); 
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ChartFX6.Value[3] .- StrTointDef(Edit7.Text, 0); 
ChartFX6.Value[4] := StrTointDef(Edit12.Text, 0); 
ChartFX6.Value[5] .- StrTointDef(Edit13.Text, 0); 
ChartFX6.Value[6] .- StrTointDef(Edit14.Text, 0); 
ChartFX6.Value[7] .- StrTointDef(Edit15.Text, 0); 
ChartFX6.Value[8] .- StrTointDef(Edit16.Text, 0); 
ChartFX6.Value[9] .- StrTointDef(Edit17.Text, 0); 

ChartFX6.CloseData[COD_VALUES] .- 0 
end; 

procedure TWeb_Spinner.SpinButton1UpClick(Sender: TObject); 
begin 

ChartFX6.0penData[COD_VALUES] := MakeLong(1,10); 
ChartFX6.ThisSerie := 0; 

if Sender SpinButtonl then GenericSBUpClick(Edit4); 
if Sender SpinButton2 then GenericSBUpClick(Edit5); 
if Sender SpinButton3 then GenericSBUpClick(Edit6); 
if Sender SpinButton4 then GenericSBUpClick(Edit7); 
if Sender SpinButtonS then GenericSBUpClick(Edit12); 
if Sender SpinButton6 then GenericSBUpClick(Edit13); 
if Sender SpinButton7 then GenericSBUpClick(Edit14); 
if Sender SpinButton8 then GenericSBUpClick(Edit15); 
if Sender SpinButton9 then GenericSBUpClick(Edit16); 
if Sender SpinButton10 then GenericSBUpClick(Edit17); 

ChartFX6.Value[O] .- StrTointDef(Edit4.Text, 
ChartFX6.Value[1] .- StrTointDef(Edit5.Text, 
ChartFX6.Value[2] .- StrTointDef(Edit6.Text, 
ChartFX6.Value[3] := StrTointDef(Edit7.Text, 
ChartFX6.Value[4] .- StrTointDef(Editl2.Text, 
ChartFX6.Value[5] .- StrTointDef(Edit13.Text, 
ChartFX6.Value[6] .- StrTointDef(Edit14.Text, 
ChartFX6.Value[7] .- StrTointDef(Edit15.Text, 
ChartFX6.Value[8] .- StrTointDef(Edit16.Text, 
ChartFX6.Value[9] .- StrTointDef(Edit17.Text, 

ChartFX6.CloseData[COD_VALUES] .- 0 
end; 

0) i 

0) i 

0) i 

0) i 

0) i 

0) i 

0) i 

0) i 

0) i 

0) i 

{*********************************************************************** 
** Resets any graph (chart) to a "risk neutral," linear curve. ** 
***********************************************************************} 

procedure TWeb_Spinner.ResetGraph(var Chart: TChartFX); 
var 

Loop: Integer; 
begin 

Chart.OpenData[COD_VALUES] .- MakeLong(1,10); 
Chart.ThisSerie := 0; 

for Loop := 0 to 9 do 
Chart.Value[Loop] := (10 - Loop) * 10; 

Chart.CloseData[COD_VALUES] := 0 
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end; 

{*********************************************************************** 
** Resets the large chart on the Utility page. ** 
***********************************************************************} 

procedure TWeb_Spinner.BitBtn6Click(Sender: TObject); 
begin 

ResetGraph(ChartFX6) 
end; 

{************************************************************************ 
** This is the "Ok" button on the large chart panel. It is used to ** 
** acknowledge changes made to particular utility curves. ** 

************************************************************************} 

procedure TWeb_Spinner.BitBtn7Click(Sender: TObject); 
begin 

if UtilityGraph SetUpCost then SwitchGraphValues(UtilSetUpCostArray, 
ChartFX6, ChartFX2); 

if UtilityGraph MonthlyCost then 
SwitchGraphValues(UtilMonthlyCostArray, 

ChartFX4); 
ChartFX6, 

if UtilityGraph BER then SwitchGraphValues(UtilBERArray, 
ChartFX6, ChartFX3) 

end; 

{*********************************************************************** 
** This is the "Ok" button on the Basic Data tool. When activated, ** 
** it updates the appropriate information in the appropriate global ** 
** variable. ** 
***********************************************************************} 

procedure TWeb_Spinner.BitBtn3Click(Sender: TObject); 
begin 

LinkSpeed := StrTointDef(CornboBoxl.Text, 0); 
PacketSize := SpinEdit4.Value; 
Panel18.Visible .- false 

end; 

{************************************************************************ 
** Displays the current distance between nodes (distance matrix) on ** 
** data inputs screen. ** 
***********************************************************************} 

procedure TWeb_Spinner.BitBtn9Click(Sender: TObject); 
begin 

OnExitinputBox(Sender); 
if InputPanel =Traffic then Extractinputs(TrafficMatrix, InputMatrix) 
else if InputPanel = SetUpCost then 

Extractinputs(SetUpCostMatrix,InputMatrix) 
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else if InputPanel MonthlyCost then Extractinputs(MonthlyCostMatrix, 
InputMatrix) 

else if InputPanel BER then Extractinputs(BERMatrix, InputMatrix); 

InputPanel := Distance; 
Labell.Caption := 'Distance'; 
Labell.Color := clWhite; 
Panel8.Color := clWhite; 
ListBox2.Items.Clear; 
ListBox2.Items.Add('Screen Distances between '); 
ListBox2.Items.Add('nodes as drawn. (read only)'); 
FillinputMatrix(DistanceMatrix, InputMatrix); 
Main(Sender) 

end; 

{************************************************************************ 
** The next two procedures provide the selection/deselection checkbox ** 
** functionality on the Solve Criteria tool. ** 
***********************************************************************} 

procedure TWeb_Spinner.CheckBox4Click(Sender: TObject); 
begin 

CheckBox1.Checked .- false; 
CheckBox2.Checked .- false; 
CheckBox3.Checked .- false; 
if NumUsedNodes > 0 then Main(Sender) 

end; 

procedure TWeb_Spinner.CheckBox1Click(Sender: TObject); 
begin 

CheckBox4.Checked := false; 
if NumUsedNodes > 0 then Main(Sender) 

end; 

{************************************************************************ 
** Identifies shortest (logical links) routes between nodes. ** 
** Ignores endless loops if user "violates" the tree structure using ** 
** locked links. ** 
***********************************************************************} 

procedure TWeb_Spinner.FindLoops(Node1, Node2, 

var 

Parent, SuperParent: Integer; 
var Route: String); 

Loop, Count, Counter, Row, Col : Integer; 
Children: Array[1 .. (NumNodes- 1)] of Integer; 
Strtemp: String; 
Present: Boolean; 

begin 
for loop:= 1 to (NumNodes - 1) do children[loop] .- 0; 

Count := 0; 
if Parent = SuperParent then begin 

if Parent< 10 then Route := '0' + IntToStr(Parent) 
else Route := IntToStr(Parent) 
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end; 

for Loop := 1 to NumNodes do begin 

end; 

if ((Connections[Parent, Loop] <> NoLink) and 
(Connections[Parent, Loop] <>Testing) and 
(Connections[Parent, Loop] <>Used) and 
(Connections[Parent, Loop] <> LUsed) and 
(Loop<> SuperParent)) then 

begin 
Count := Count + 1; 
Children[Count] := Loop 

end 

for Loop := 1 to (NumNodes - 1) do begin 
if ((Children[Loop] <> 0) and (not Found)) then begin 

if Children[Loop] = Node2 then begin 
RedundantRoutes .- RedundantRoutes + 1; 
Found := true; 
if Node2 < 10 then Path := 1 0 1 + IntToStr(Node2) 
else Path:= IntToStr(Node2); 
if Connections[Parent, Node2] =Linked then begin 

Connections[Parent, Node2] .-Used; 
Connections[Node2, Parent] :=Used 

end; 
if Connections[Parent, Node2] = LockLinked then begin 

Connections[Parent, Node2] .- LUsed; 
Connections[Node2, Parent] := LUsed 

end; 
end; 

if Children[Loop] <> Node2 then begin 
Present := false; {Ensures not beginning an endless network loop} 
for Counter := 1 to (Length(Route) - 1) do begin 

if ((Route[Counter] <> 1
, 

1
) and (Route[Counter + 1] <> 1

, 
1
)) 

then begin 
if Children[Loop] (StrToint(Route[Counter]) * 10 + 

StrToint(Route[Counter + 1])) 
then Present := true 

end 
end; 

if ((not Present) and (not Found)) then begin 
if children[loop] < 10 then strtemp := 1 0 1 

+ IntToStr(children[loop]) 
else strtemp := IntToStr(children[loop]); 

if Route = 1 1 then Route := strtemp 
else Route :=Route+ 1

,
1 + strtemp; 

FindLoops(Node1, Node2, children[loop], Parent, Route) 
end 

end; 

if Found then begin 
if Parent< 10 then Path := Path+ ~-o~ + IntToStr(Parent) 
else Path:= Path+ l_l + IntToStr(Parent); 
if Connections[Parent, SuperParent] =Linked then begin 

Connections[Parent, SuperParent] :=Used; 
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Connections[SuperParent, Parent] .-Used 
end; 
if Connections[Parent, SuperParent] = LockLinked then begin 

Connections[Parent, SuperParent] := LUsed; 
Connections[SuperParent, Parent] .- LUsed 

end 
end 

end 
end 

end; 

{************************************************************************ 
** Fills the Web Spinner route matrix with all logical connections. ** 
***********************************************************************} 

procedure TWeb_Spinner,FillRouteMatrix; 
var 

Row, Col, Row2, Col2, Nadel, Node2: Integer; 
Route: String; 

begin 
for Row := 1 to NumUsedNodes do begin 

for Col := 1 to NumUsedNodes do begin 
if Row > Col then begin 

Route := ''; 
Path:= ''; 
Found .- false; 
Nadel .- Row; 
Node2 .- Col; 

FindLoops(Nodel, Node2, Nadel, Nadel, Route); 
RouteMatrix[Row, Col] .- Path; 
RouteMatrix[Col, Row] := Path; 

for Row2 := 1 to NumUsedNodes do 

end 
end 

end 
end; 

for Col2 := 1 to NumUsedNodes do begin 
if Connections[Row2, Col2] =Used 

then Connections[Row2, Col2] := Linked; 
if Connections[Row2, Col2] = LUsed 

then Connections[Row2, Col2] .- LockLinked 
end 

{************************************************************************ 
** Computes Average Link Activity for physical links in the network. ** 
***********************************************************************} 

procedure TWeb_Spinner.ComputeAvgLinkActy; 
var 

Row, Col, Loop: Integer; 
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Len, Nadel, Node2: Integer; 
Route: String; 

begin 
for Row := 1 to NumNodes do 

for Col := 1 to NumNodes do 
AvgLinkActyMatrix[Row, Col] := 0; 

for Row := 1 to NumUsedNodes do begin 
for Col := 1 to NumUsedNodes do begin 

if Row > Col then begin 

Route := RouteMatrix[Row, Col]; 
Len:= Length(Route); 

for Loop := 1 to (Len - 4) do begin 
if ((Route[Loop] <> '-') and (Route[Loop + 1] <> '-')) then 
begin 

Nadel := (StrTointDef(Route[Loop],O) * 10) + 
StrTointDef(Route[Loop + 1], 0); 

Node2 := (StrTointDef(Route[Loop + 3],0) * 10) + 
StrTointDef(Route[Loop + 4], 0); 

if Nadel > Node2 then begin 
AvgLinkActyMatrix[Nodel, Node2] := 

AvgLinkActyMatrix[Nodel, Node2] 
+ TrafficMatrix[Row, Col]; 

AvgLinkActyMatrix[Node2, Nadel] .
AvgLinkActyMatrix[Nodel, Node2] 

end 
else begin 

AvgLinkActyMatrix[Node2, Nadel] .
AvgLinkActyMatrix[Node2, Nadel] 
+ TrafficMatrix[Row, Col]; 

AvgLinkActyMatrix[Nodel, Node2] .
AvgLinkActyMatrix[Node2, Nadel] 

end 

end 
end 

end 
end 

end 
end; 

{************************************************************************ 
** Computes and fills the Expected delay matrix for each physical ** 
** link in the network. ** 
***********************************************************************} 

procedure TWeb_Spinner.FillExpectedDelayMatrix; 
var 

Row, Col, Loop: Integer; 
Len, Nadel, Node2: Integer; 
ExpValue: Real; 
Route: String; 
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begin 
for Row := 1 to NumNodes do 

for Col := 1 to NumNodes do 
ExpDelayMatrix[Row, Col) .- 0.0; 

for Row := 1 to NumUsedNodes do begin 
for Col := 1 to NumUsedNodes do begin 

if Row > Col then begin 

Route := RouteMatrix[Row, Col); 
Len:= Length(Route); 

for Loop := 1 to (Len - 4) do begin 
if ((Route[Loop) <> '-') and (Route[Loop + 1) <> '-')) then 
begin 

Nadel := (StrTointDef(Route[Loop),O) * 10) + 
StrTointDef(Route[Loop + 1), 0); 

Node2 .- (StrTointDef(Route[Loop + 3),0) * 10) + 
StrTointDef(Route[Loop + 4), 0); 

if AvgLinkActyMatrix[Nodel, Node2) <> 0 then 
ExpValue := 1/((LinkSpeed * 1.0)/(PacketSize * 1.0) 

- AvgLinkActyMatrix[Nodel, Node2)) 
else ExpValue := 0; 

ExpDelayMatrix[Row, Col) .- ExpDelayMatrix[Row, Col) 
+ ExpValue; 

ExpDelayMatrix[Col, Row) 
end 

.- ExpDelayMatrix[Row, Col) 

end 
end 

end 
end 

end; 

{************************************************************************ 
** Verifies that the user wants to exit the Web Spinner application. ** 
********~**************************************************************} 

procedure TWeb_Spinner.CloselClick(Sender: TObject); 
begin 

if MessageDlg('Exit the Web Spinner Application?', mtConfirmation, 
mbOkCancel, 0) = mrOk then begin 

About.Close; 
Web_Spinner.Close 

end 
end; 

{************************************************************************ 
** This is the "Reset" button on the large chart panel on the ** 
** Utility page. When activated, it returns the large chart to the ** 
** values contained when the user began modifying it. In effect, ** 
** it allows the user to reject recent chart modifications. ** 
***********************************************************************} 
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procedure TWeb_Spinner.BitBtn13Click(Sender: TObject); 
begin 

if UtilityGraph = SetUpCost then SwitchGraphValues(UtilSetUpCostArray, 
ChartFX2, ChartFX6) 

else if UtilityGraph BER then SwitchGraphValues(UtilBERArray, 
ChartFX3, ChartFX6) 

else if UtilityGraph MonthlyCost then 
SwitchGraphValues(UtilMonthlyCostArray, ChartFX4, ChartFX6) 

end; 

{************************************************************************ 
** The final routines are used to create and print the hardcopy ** 
** report that is sent to the printer. ** 
***********************************************************************} 

procedure TWeb_Spinner.ListBox3Drawitern(Control: TWinControl; 
Index: Integer; Rect: TRect; State: TOwnerDrawState); 

var 
S1, S2, S3: String; 
A: Array[0 .. 255] of Char; 
P, P2: Integer; 

begin 
P := Pos(Spacer, ListBox3.Iterns[Index]); 
P2 .- Pos(Spacer2, ListBox3.Iterns[Index]); 

S1 .- Copy(ListBox3.Iterns[Index], 1, P- 1); 
S2 .- Copy(ListBox3.Iterns[Index], P + 1, P2- P- 1); 
S3 .- Copy(ListBox3.Iterns[Index], P2 + 1, 

Length(ListBox3.Iterns[Index])); 

ListBox3.Canvas.FillRect(rect); 
DrawText(ListBox3.Canvas.Handle, StrPCopy(A, S1), -1, Rect, 

dt_SingleLine or dt_Left or dt_VCenter); 

Rect.Left := Header1.SectionWidth[O]; 
DrawText(ListBox3.Canvas.Handle, StrPCopy(A, S2), -1, Rect, 

dt_SingleLine or dt_Left or dt_VCenter); 

Rect.Left := Header1.SectionWidth[O) + Header1.SectionWidth[1]; 
DrawText(ListBox3.Canvas.Handle, StrPCopy(A, S3), -1, Rect, 

dt_SingleLine or dt_Left or dt_VCenter) 
end; 

procedure TWeb_Spinner.Header1Sizing(Sender: TObject; ASection, 
AWidth: Integer); 

begin 
ListBox3.Invalidate 

end; 

procedure TWeb_Spinner.ListBox4Drawitern(Control: TWinControl; 
Index: Integer; Rect: TRect; State: TOwnerDrawState); 

var 
S1, S2, S3: String; 
A: Array[0 .. 255] of Char; 
P, P2: Integer; 
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begin 
P := Pos(Spacer, ListBox4.Items[Index]); 
P2 := Pos(Spacer2, ListBox4.Items[Index]); 

S1 
S2 
S3 

:= 
:= 

·= 

Copy(ListBox4.Items[Index], 1, P- 1); 
Copy(ListBox4.Items[Index], P + 1, P2- P- 1); 
Copy(ListBox4.Items[Index], P2 + 1, 

Length(ListBox4.Items[Index])); 

ListBox4.Canvas.FillRect(rect); 
DrawText(ListBox4.Canvas.Handle, StrPCopy(A, S1), -1, Rect, 

dt_SingleLine or dt_Left or dt_VCenter); 

Rect.Left := Header2.SectionWidth[0]; 
DrawText(ListBox4.Canvas.Handle, StrPCopy(A, S2), -1, Rect, 

dt_SingleLine or dt_Left or dt_VCenter); 

Rect.Left := Header2.SectionWidth[O] + Header2.SectionWidth[l]; 
DrawText(ListBox4.Canvas.Handle, StrPCopy(A, S3), -1, Rect, 

dt_SingleLine or dt_Left or dt_VCenter) 
end; 

procedure TWeb_Spinner.Header2Sizing(Sender: TObject; ASection, 
AWidth: Integer); 

begin 
ListBox4.Invalidate 

end; 

procedure TWeb_Spinner.BitBtn14Click(Sender: TObject); 
var 

Row, Col, TotalPkts, Value, Loop, Activity: Integer; 
ExpValue, TotalDelay, NetExpDelay: Real; 
Route, NewRoute : String; 

begin 
FillRouteMatrix; 
ComputeAvgLinkActy; 
FillExpectedDelayMatrix; 

Edit18.Text := IntToStr(NumUsedNodes); 
Value := ComputeTotal(SetUpCostMatrix, Connections); 
Edit20.Text := '$' + IntToStr(Value); 
Value := ComputeTotal(MonthlyCostMatrix, Connections); 
Edit2l.Text := '$' + IntToStr(Value); 
Edit22.Text .- IntToStr(LinkSpeed) + ' bps'; 
Edit23.Text .- IntToStr(PacketSize) + ' bits'; 

ListBox3.Items.Clear; 
ListBox4.Items.Clear; 

TotalDelay := 0.0; 
TotalPkts := 0; 
Activity := 0; 

for Row := 1 to NumUsedNodes do 
for Col := 1 to NumUsedNodes do 

if Row < Col then begin 
if Connections[Row, Col] <> NoLink then begin 
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if AvgLinkActyMatrix[Row, Col] <> 0 then begin 
ExpValue := 1/((LinkSpeed * 1.0)/ 

(PacketSize * 1.0) 
- AvgLinkActyMatrix[Row, Col]); 

if ((ExpValue < 0.0) and (AvgLinkActyMatrix[Row, Col] 
>Activity)) then 
Activity := AvgLinkActyMatrix[Row, Col] 

end 
else ExpValue .- 0; 
TotalDelay := TotalDelay + (ExpValue 

* AvgLinkActyMatrix[Row, Col]); 
ListBox3.Items.Add(' ' + IntToStr(Row) + '-' + IntToStr(Col) 

end; 

+ Spacer + ' + 
IntToStr(AvgLinkActyMatrix[Row, Col]) 
+ Spacer2 + ' ' + 
FloatToStrF(ExpValue, ffGeneral, 3, 0) 

+ ' sec'); 

TotalPkts .- TotalPkts + TrafficMatrix[Row, Col]; 
end; 

If TotalPkts > 0 then NetExpDelay := TotalDelay I TotalPkts 
else NetExpDelay := TotalDelay; 
Edit19.Text := FloatToStrF(NetExpDelay, ffGeneral, 3, 0) + ' sec'; 

for Row := 1 to NumUsedNodes do 
for Col := 1 to NumUsedNodes do 

if Row > Col then begin 
Route := RouteMatrix[Row, Col]; 
NewRoute : = ' '; 
if Route[1] <> '0' then NewRoute := NewRoute + Route[1]; 

for Loop:= 2 to Length(RouteMatrix[Row, Col]) do begin 
if ((Route[Loop- 1] <> '-') and (Route[Loop] <> '0')) then 

NewRoute := NewRoute + Route[Loop]; 
if ((Route[Loop- 1] = '1') and (Route[Loop] <> '-')) then 

NewRoute .- NewRoute + Route[Loop - 1] + Route[Loop] 
end; 

RouteMatrix[Row, Col] .- NewRoute; 
RouteMatrix[Col, Row] .- RouteMatrix[Row, Col] 

end; 

for Row := 1 to NumUsedNodes do 
for Col := 1 to NumUsedNodes do 

if Row < Col then 
ListBox4.Items.Add(' ' + IntToStr(Row) + '-' + IntToStr(Col) 

+ Spacer + ' ' + RouteMatrix[Row, Col] + Spacer2 + ' ' + 
FloatToStrF(ExpDelayMatrix[Row, Col], ffGeneral, 3, 0) 

+ ' sec'); 

if Activity > 0 then begin 
MessageDlg('Current unifrom link bandwidth insufficient for 

average ' + 
'network loading. Under current traffic pattern ' + 
'requirements, a minimim bandwidth of ' + 

113 



end; 

IntToStr((Activity * PacketSize) + 1) + ' is 
required. ' , 
mtinformation, [rnbOk], 0); 

Panel18.Visible .- true 
end 

{************************************************************************ 
** This is the "Print" button on the Analysis page. It launches the ** 
** report printing process. ** 
***********************************************************************} 

procedure TWeb_Spinner.BitBtn15Click(Sender: TObject); 
var 

Len, Index, Pl, P2, P3, P4: Integer; 
S1, S2, S3, S4, SS, S6: String[32]; 
Items: TStringList; 

begin 

Items := TStringList.Create; 
Pixelsininchx := GetDeviceCaps(Printer.Handle, LOGPIXELSX); 
TenthsOfinchPixelsY := GetDeviceCaps(Printer.Handle, LOGPIXELSY) 

div 10; 

AmountPrinted := Printer.Canvas.TextHeight('X') + TenthsOfinchPixelsY; 
try 

Web_Spinner.Enabled := false; 
Printer.Title := 'Web Spinner'; 
Printer.BeginDoc; 
Application.ProcessMessages; 
LineHeight := Printer.Canvas.TextHeight('X') + TenthsOfinchPixelsY; 
PrintHeader; 
PrintNetworkinfo; 
PrintColNames; 

Len := ListBox3.Items.Count; 
If ListBox4.Items.Count > Len then Len .- ListBox4.Items.Count; 

for Index := 0 to (Len - 1) do begin 
Application.ProcessMessages; 

S1 .- I I 
i 

S2 .- I I 
i 

S3 .- I I 
i 

S4 .- I I 
i 

ss .- I I 
i 

S6 .- I I 
i 

if Index< ListBox3.Items.Count then begin 
P1 .- Pos(Spacer, ListBox3.Items[Index]); 
P2 .- Pos(Spacer2, ListBox3.Items[Index]); 

S1 .-
S2 .-
S3 .-

Copy(ListBox3.Items[Index], 1, P1- 1); 
Copy(ListBox3.Items[Index], P1 + 1, P2- P1- 1); 
Copy(ListBox3.Items[Index], P2 + 1, 

Length(ListBox3.Items[Index])) 
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end; 
if Index< ListBox4.Items.Count then begin 

P3 .- Pos(Spacer, ListBox4.Items[Index]); 
P4 := Pos(Spacer2, ListBox4.Items[Index]); 

S4 
ss 
S6 

end; 

.-

.-

.-

Copy(ListBox4.Items[Index], 1, P3- 1); 
Copy(ListBox4.Items[Index), P3 + 1, P4 - P3 - 1); 
Copy(ListBox4.Items[Index], P4 + 1, 

Length{ListBox4.Items[Index])) 

Items.AddObject{' ', Pointer{S)); 
Items.Add0bject{S1, Pointer{11)); 
Items.Add0bject{S2, Pointer{11)); 
Items.AddObject{S3, Pointer(11)); 
Items.AddObject(' ', Pointer{8)); 
Items.AddObject(S4, Pointer(10)); 
Items.AddObject(SS, Pointer(11)); 
Items.AddObject(S6, Pointer(12)); 
PrintLine(Items); 

if AmountPrinted + LineHeight > Printer.PageHeight then begin 
AmountPrinted := 0; 
if not Printer.Aborted then Printer.NewPage; 
PrintHeader; 
PrintColNames; 

end; 
Items.Clear 

end; 

AmountPrinted := AmountPrinted + (TenthsOfinchPixelsY * 4); 
if (AmountPrinted + (10 * LineHeight)) > Printer.PageHeight then 

begin 
AmountPrinted := 0; 
if not Printer.Aborted then Printer.NewPage; 

end; 

PrintData; 
PrintCriteria; 
if not Printer.Aborted then Printer.EndDoc; 
Web_Spinner.Enabled := true; 

except 
onE: Exception do MessageDlg(E.Message, mtError, [mbok], 0); 

end 
end; 

procedure TWeb_Spinner.PrintLine(Items: TStringList); 
var 

OutRect: TRect; 
Inches: Double; 
I : Integer; 

begin 
OutRect.Left := 0; 
OutRect.Top := AmountPrinted; 
OutRect.Bottom := OutRect.Top + LineHeight; 
with Printer.Canvas do 

for I := 0 to Items.Count -1 do begin 
Inches := Longint(Items.Objects[I]) * 0.1; 
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OutRect.Right := OutRect.Left + Round(Pixelsininchx *Inches); 
if not Printer.Aborted then 

end; 

TextRect(OutRect, OutRect.Left, OutRect.Top, Iterns[I]); 
OutRect.Left := OutRect.Right 

ArnountPrinted := ArnountPrinted + (TenthsOfinchPixelsY * 2); 
if (ArnountPrinted + LineHeight) > Printer.PageHeight then begin 

ArnountPrinted := 0; 
if not Printer.Aborted then Printer.NewPage; 

end; 
end; 

procedure TWeb_Spinner.PrintHeader; 
var 

SaveFont: TFont; 
begin 

Printer.Canvas.Draw(S * PixelsininchX div 10, ArnountPrinted, 
Irnage2.Picture.Graphic); 

Printer.Canvas.Draw(Printer.PageWidth - Irnage2.Width -
(4 * PixelsininchX div 10), ArnountPrinted, 
Irnage3.Picture.Graphic); 

SaveFont := TFont.Create; 
SaveFont.Assign(Printer.Canvas.Font); 
Printer.Canvas.Font.Assign(Label35.Font); 
Printer.Canvas.Font.Size := 18; 
Printer.Canvas.Font.Style := [fsBold, fsitalic, fsUnderLine]; 
with Printer do begin 

if not Printer.Aborted then 
Canvas.TextOut((PageWidth div 2) 
- (Canvas.TextWidth('Network Analysis') div 2), 
ArnountPrinted + LineHeight, 'Network Analysis'); 

ArnountPrinted := ArnountPrinted + (5 * LineHeight) + 
TenthsOfinchPixelsY; 

end; 
Printer.Canvas.Font.Assign(SaveFont); 
SaveFont.Free; 

end; 

procedure TWeb_Spinner.PrintNetworkinfo; 
var 

Netinfo: TStringList; 
begin 

Netinfo := TStringList.Create; 
Printer.Canvas.Font.Narne := Label35.Font.Narne; 
Printer.Canvas.Font.Size := 12; 
Printer.Canvas.Font.Style := [fsBold]; 
ArnountPrinted := ArnountPrinted - (TenthsOfinchPixelsY * 2); 
with Netinfo do begin 

AddObject(' ', pointer(19)); 
AddObject('Nurnber of Nodes:', pointer(15)); 
Add0bject(Edit18.Text, pointer(6)); 
AddObject(' ', pointer(4)); 
AddObject('Expected Net Delay:', pointer(16)); 
AddObject(Edit19.Text, pointer(11)); 

end; 
PrintLine(Netinfo); 
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Netinfo.Clear; 
with Netinfo do begin 

AddObject(' ', pointer(19)); 
AddObject('Net Set-Up Cost:', pointer(lS)); 
Add0bject(Edit20.Text, pointer(6)); 
AddObject(' ', pointer(4)); 
AddObject('Link Capacities:', pointer(16)); 
AddObject(Edit22.Text, pointer(ll)); 

end; 
PrintLine(Netinfo); 

Netinfo.Clear; 
with Netinfo do begin 

AddObject(' ', pointer(19)); 
AddObject('Monthly Net Cost:', pointer(15)); 
AddObject(Edit21.Text, pointer(6)); 
AddObject(' ', pointer(4)); 
AddObject('# Bits I Packet:', pointer(16)); 
AddObject(Edit23.Text, pointer(11)); 

end; 
PrintLine(Netinfo); 

Printer.Canvas.Font := ListBox3.Font; 
AmountPrinted .- AmountPrinted + (TenthsOfinchPixelsY * 3); 
Netinfo.free; 

end; 

procedure TWeb_Spinner.PrintColNames; 
var 

ColNames: TStringList; 
begin 

ColNames := TStringList.Create; 
Printer.Canvas.Font.Name := Label35.Font.Name; 
Printer.Canvas.Font.Size := 14; 
Printer.Canvas.Font.Style := [fsBold, fsUnderline, fsitalic]; 
Printer.Canvas.Pen.Color := clBlack; 
with ColNames do begin 

AddObject(' ', pointer(S)); 
AddObject(' Physical Link Data 

pointer(34)); 
AddObject(' ',pointer(?)); 
AddObject(' Logical Link Data 

pointer(33)); 
end; 
PrintLine(ColNames); 
AmountPrinted := AmountPrinted + TenthsOfinchPixelsY; 
ColNames.Clear; 
Printer.Canvas.Font.Size := 11; 
Printer.Canvas.Font.Style := [fsUnderLine]; 
with ColNames do begin 

AddObject(' ', pointer(S)); 
AddObject(' Link 
AddObject('Avg Pkts/Sec 
AddObject('Mean Pkt Delay 
AddObject(' ', pointer(8)); 
AddObject(' Link 
AddObject('Route 
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pointer(11)); 
pointer(11)); 

pointer(10)); 
pointer(11)); 



AddObject( 1 Exp Route Delay 
end; 
PrintLine(ColNames); 
Printer.Canvas.Font := ListBox3.Font; 

pointer(12)) 

AmountPrinted := AmountPrinted + TenthsOfinchPixelsY; 
ColNames.free; 

end; 

procedure TWeb_Spinner.PrintData; 
var 

Row, Col: Integer; 
Line: TStringList; 

begin 
Line := TStringList.Create; 
Printer.Canvas.Font.Name := Label35.Font.Name; 
Printer.Canvas.Font.Size := 13; 
Printer.Canvas.Font.Style := [fsBold, fsUnderline, fsitalic]; 
Printer.Canvas.Pen.Color := clBlack; 
AmountPrinted := AmountPrinted + (TenthsOfinchPixelsY * 2); 
with Line do begin 

AddObject( 1 1
, pointer(5)); 

AddObject( 1 Traffic Data 

pointer(41)); 
AddObject( 1 Bit Error Rates 

pointer(30)); 
end; 
PrintLine(Line); 
AmountPrinted .- AmountPrinted + TenthsOfinchPixelsY; 

Line.Clear; 
Printer.Canvas.Font := ListBox3.Font; 
Printer.Canvas.Font.Style := [fsUnderline]; 
Printer.Canvas.Font.Size := 8; 

Line.AddObject( 1 1
, pointer{5)); 

for Col := 1 to NumUsedNodes do 
Line.AddObject(InttoStr(Col) + 1 pointer (3)); 

Line.AddObject( 1 1
, pointer((NumNodes-NumUsedNodes) * 3 + 11)); 

for Col := 1 to NumUsedNodes do 
Line.AddObject(InttoStr(Col) + 1 1

, pointer (3)); 
PrintLine(Line); 

Line.Clear; 
Printer.Canvas.Font := ListBox3.Font; 
Printer.Canvas.Font.Size := 8; 
for Row := 1 to NumUsedNodes do begin 

Line.AddObject( 1 1
, pointer(5)); 

for Col := 1 to NumUsedNodes do begin 
with Line do begin 

if Row= Col then AddObject( 1
-

1
, pointer(3)) 

else AddObject(IntToStr(TrafficMatrix[Row, Col]), pointer(3)); 
end 

end; 
Line.AddObject( 1 1

, pointer((NumNodes-NumUsedNodes) * 3 + 11)); 
for Col := 1 to NumUsedNodes do begin 
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with Line do begin 
if Row= Col then AddObject( 1

-
1

, pointer(3)) 
else AddObject(IntToStr(BERMatrix[Row, Col]), pointer(3)); 

end 
end; 
PrintLine(Line); 
Line.Clear 

end; 
Printer.Canvas.Font := ListBox3.Font; 
AmountPrinted := AmountPrinted + (TenthsOfinchPixelsY * 4); 

Printer.Canvas.Font.Name := Label35.Font.Name; 
Printer.Canvas.Font.Size := 13; 
Printer.Canvas.Font.Style := [fsBold, fsUnderline, fsitalic]; 
Printer.Canvas.Pen.Color := clBlack; 
AmountPrinted := AmountPrinted + (TenthsOfinchPixelsY * 2); 
with Line do begin 

AddObject( 1 1
, pointer(S)); 

AddObject( 1 Link Set-Up Costs 
pointer(41)); 

AddObject( 1 Monthly Link Costs 
pointer(30)); 

end; 
PrintLine(Line); 
AmountPrinted := AmountPrinted + TenthsOfinchPixelsY; 

if (AmountPrinted + (12 * LineHeight)) > Printer.PageHeight then begin 
AmountPrinted := 0; 
if not Printer.Aborted then Printer.NewPage; 

end; 

Line.Clear; 
Printer.Canvas.Font := ListBox3.Font; 
Printer.Canvas.Font.Style := [fsUnderline]; 
Printer.Canvas.Font.Size := 8; 

Line.AddObject( 1 1
, pointer(S)); 

for Col := 1 to NumUsedNodes do 
Line.AddObject(InttoStr(Col) + 1 

, pointer (3)); 
Line.AddObject( 1 1

, pointer((NumNodes-NumUsedNodes) * 3 + 11)); 
for Col := 1 to NumUsedNodes do 

Line.AddObject(InttoStr(Col) + 1 1
, pointer (3)); 

PrintLine(Line); 
Line.Clear; 

Printer.Canvas.Font := ListBox3.Font; 
Printer.Canvas.Font.Size := 8; 
for Row := 1 to NumUsedNodes do begin 

Line.AddObject( 1 1
, pointer(S)); 

for Col := 1 to NumUsedNodes do begin 
with Line do begin 

if Row= Col then AddObject( 1
-

1
, pointer(3)) 

else AddObject(IntToStr(SetUpCostMatrix[Row, Col]), pointer(3)); 
end 

end; 
Line.AddObject( 1 1

, pointer((NumNodes-NumUsedNodes) * 3 + 11)); 
for Col := 1 to NumUsedNodes do begin 
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with Line do begin 
if Row= Col then AddObject('-', pointer(3)) 
else AddObject(IntToStr(MonthlyCostMatrix[Row, Col]), 

pointer(3)); 
end 

end; 
PrintLine(Line); 
Line.Clear 

end; 
Printer.Canvas.Font := ListBox3.Font; 
AmountPrinted .- AmountPrinted + TenthsOfinchPixelsY; 
Line.free 

end; 

procedure TWeb_Spinner.PrintCriteria; 
var 

Line: TStringList; 
Criteria, Criteria2, Criteria3: String; 

begin 
Line := TStringList.Create; 
Printer.Canvas.Font.Assign(Label35.Font); 
Printer.Canvas.Font.Size := 11; 
Printer.Canvas.Font.Style := []; 
AmountPrinted := AmountPrinted + (TenthsOfinchPixelsY * 4); 
Criteria := ''; 
Cri teria2 : = ' ' ; 
Criteria3 := ''; 
if CheckBox4.Checked then Criteria := 'Distance' 
else begin 

if CheckBox1.Checked then Criteria := 'SetUp Cost 
if CheckBox2.Checked then Criteria2 .- 'Monthly Cost 
if CheckBox3.Checked then Criteria3 := 'BER' 

end; 
Printer.Canvas.Font.Style .- [fsBold, fsUnderline]; 
Line.Clear; 
with Line do begin 

AddObject(' ', pointer(S)); 
AddObject('Criteria Used for Network Generation', pointer(SO)) 

end; 
PrintLine(Line); 
Printer.Canvas.Font.Style .- [fsitalic]; 

Line.Clear; 
with Line do begin 

AddObject(' ', pointer(S)); 
AddObject(Criteria, pointer(11)); 
AddObject(' ', pointer(2)); 
AddObject(Criteria2, pointer(11)); 
AddObject(' ', pointer(2)); 
AddObject(Criteria3, pointer(11)); 

end; 
PrintLine(Line); 
Printer.Canvas.Font.Style := []; 

AmountPrinted := AmountPrinted + (TenthsOfinchPixelsY * 2); 
Line.Clear; 
with Line do begin 
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AddObject(' ', pointer(S)); 
AddObject('Set-Up Cost Weight =', pointer(20)); 
AddObject(IntToStr(SpinEditl.Value) + '%', pointer(lO)); 

end; 
PrintLine(Line); 

Line.Clear; 
with Line do begin 

AddObject(' ', pointer(5)); 
AddObject('Monthly Cost Weight=', pointer(20)); 
AddObject(IntToStr(SpinEdit3.Value) + '%', pointer(lO)); 

end; 
PrintLine(Line); 

Line.Clear; 
with Line do begin 

AddObject(' ', pointer(5)); 
AddObject('BER Cost Weight =', pointer(20)); 
AddObject(IntToStr(SpinEdit2.Value) + '%', pointer(lO)); 

end; 
PrintLine(Line); 

Printer.Canvas.Font.Assign(ListBox3.Font); 
Line.Free 

end; 

end. 
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