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ABSTRACT 

The growing cost of physical tests and evaluations of military systems has resulted 

in increased use of computer simulations to provide decision support information. Many 

such systems, such as weapons and countermeasure systems, rely on sensors. Hence, devel­

opment of widely applicable computer models for sensors is vitally important. This research 

investigates the possibility of developing sensor simulations as components for use in models 

with varying fidelity and purpose. Development of abstractions is emphasized to maximize 

the applicability of components in a variety of modeling contexts. Concrete examples of 

reusable sensor components are demonstrated in working models and a preliminary design 

for a generalized modeling framework is proposed. 
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed in this research may not 

have been exercised for all cases of interest. While every effort has been made, within 

the time available, to ensure that the programs are free of computational and logic errors, 

they cannot be considered validated. Any application of these programs without additional 

verification is at the risk of the user. 
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I. INTRODUCTION 

Military organizations of the world constantly develop new war fighting technology. 

Advances in our own technologies produce the potential for operational and organizational 

improvements that are unforeseen. However, advances in the capabilities of potential ad­

versaries present challenges that must be answered by our systems and organizations. 

One area of concern is the advancement of anti-ship missile technologies available to 

potential enemies of the United States. As the cost of technology drops and the availability 

of technology rises, the challenges faced by our shrinking resources grows. We are faced 

with an urgent need to quickly improve ship missile defenses, or at least to understand our 

vulnerabilities. Research in this field is vigorous. 

Because our missiles are expensive and foreign missiles are unavailable, test pro­

grams for missile defense systems are often infeasible. Even when feasible, physical testing 

on a range is expensive. Consequently, the use of simulation models to support design, pro­

curement and research funding decisions is ever increasing. This increased use of simulation 

to support important decisions motivates the study and construction of simulation tools 

that are applicable to test and evaluation as well as to tactical development and combat 

effectiveness studies. 

Simulation modeling can provide decision support at all stages of a system's devel­

opment and employment. During concept development, medium to low resolution models 

can provide insight into future needs. Once needs are identified, simulation may be used 

by engineers to prototype designs, and by physicists to test theoretical concepts. When 

prototypes become available, the test and evaluation community can use simulation to plan 

physical testing, and then to extrapolate physical test results with calibrated simulations. 

When a system is selected for procurement, simulation may help define tactical concepts 

prior to the system's introduction into the inventory. Finally, when a system is employed, 

a simulation is can assess the effectiveness of organizations equipped with the system. Sys­

tems are often improved during their lifecycles, and all these uses of simulation may be 

repeated to develop, test and evaluate the improved system. 

Rapidly increasing computer capacity and programming skill has made this scenario 

possible. As computing capabilities grow, the demand for better and more complex soft­

ware grows. But high demand and limited resources have made software development an 

expensive undertaking. The expense of software, such as simulation models, necessitates a 

program for model and code reuse to minimize the demands placed on limited programming 

resources while satisfying the growing requirements. 
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In this thesis, we examine simulation support for sensor systems. After a brief 

discussion of current efforts associated with the sensing models used for soft-kill missile 

countermeasure system support, we develop a model for active sensor components. The 

conceptual model we develop is then demonstrated in a number of contexts to evaluate the 

possibility of a code reuse scheme in real projects, including countermeasure evaluat~ons. 

Finally, we discuss the supporting structure needed to make a component, such as our sensor 

model, reusable on an organizational scale. 

A. MISSILE COUNTERMEASURES 

Missile countermeasures are divided into two broad categories. Hard-kill systems, 

which aim to destroy the missile before it reaches its target, and soft-kill systems, which 

attempt to confuse the missile into pursuing a false target. In practice, the two systems 

interfere with each other, making them difficult to employ together. 

Soft-kill countermeasure systems can be active or passive, the most common being 

decoys, chaff and radar jamming devices. Chaff is well understood, but continues to be 

studied in the presence of new missiles. Radar jammers are of continued interest because of 

new missile radars, and because they interfere with our own sensor systems. Decoys are of 

particular interest since our improving ability to manipulate radar signals can make them 

highly effective. 

B. CURRENT EFFORTS 

The Ship's Electronic Warfare Systems Division of the Naval Research Laboratory 

(SEWS) provides simulation support for soft-kill countermeasure acquisition. SEWS has a 

long history of providing support for countermeasure and radar system development and 

procurement for the USN, and is home to a large body of expertise in radar engineering. 

Originally, modeling efforts at SEWS supported research on the radar reflection 

characteristics of existing passive missile decoys, ships and aircraft. These efforts have 

provided important performance evaluations that have contributed both to design and to 

the procurement process. 

Recently, focus has shifted to include evaluation of countermeasure effectiveness, in­

cluding countermeasures still under design. Today, the effort is expanding towards support 

of tactics development and vulnerability assessment. The shift of interest towards evalua­

tion of effectiveness, in addition to evaluation of performance, has spawned a relationship 

between SEWS and the Department of Operations Research at the Naval Postgraduate 
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School. This thesis is the second1 to explore application of Operations Research techniques 

to the problems being addressed at SEWS. 

As we will discuss in Chapter II, these changing demands for simulation support are 

a typical phenomenon encountered as a system or concept evolves. Operations Research 

techniques will increase in applicability as modeling requirements move further from system 

performance analysis and closer to analysis of effectiveness. 

Two models are currently used for production level research at SEWS. VIEWS 

[Hardenburg, 1995], a medium resolution physical model of radar was developed in the 

1970's is used directly for countermeasure support. C Routines Utilizing Ships Environ­

ments and Missiles (CRUISE..Missile) [Fletcher, 1996], the successor to VIEWS chronolog­

ically, is an even higher resolution physical radar system model. 

CRUISE..Missile the high resolution model, simulates signal processing at the level 

of components on circuit boards, and simulates a ship as several thousand corner radar 

reflectors. Although CRUISE..Missile was developed for other purposes, it has been used 

to model missile-ship engagements with chaff. A single run of a single ship, single missile 

engagement requires hours to complete. 

CRUISE..Missile is intended to so accurately model every aspect of the real systems 

that a single run is sufficient to obtain useful information. CRUISE._Missile has been very 

successful for its intended purpose but, as will be discussed in Chapter II, it is difficult 

to extend such a model to uses other than pure engineering. Since systems are modeled 

by simulating individual electrical components, the job of modeling a new missile seeker is 

tantamount to building that seeker by hand, a time consuming and expensive task. 

The VIEWS model is lower resolution, and after two years of renewed development 

is the principle model for countermeasure analysis at NRL. VIEWS was resurrected and 

modernized to fill the need for a lower resolution model for the effectiveness analyses describe 

above. VIEWS is is a better candidate for extension to operational testing because of its 

lower resolution and stylized approach to signal processing. Consequently, VIEWS has been 

ported from FORTRAN to C++ to ease development of this extension and to facilitate more 

complex scenarios. 

VIEWS models the target ship as several corner reflectors, and models signal pro­

cessing at the process level. Presently, VIEWS models a single ship, DDG-51, a single mis­

sile, and several countermeasures. The stylized model of signal processing used in VIEWS 

facilitates modeling of additional missile seekers because it is process based; i.e., it models 

the characteristics of the seeker, rather than the circuits. The simplified ship model also 

1 The first thesis is "Simulation of a Radar Detection Model Using the NPS Platform Foundation," Aaron 

S. Ellison, March 1996 
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eases extension of the overall model because fewer corner reflectors must be placed and 

managed. 
From an operational perspective, and perhaps even a combat modeling perspective, 

VIEWS is promising. It runs on inexpensive hardware and is fast enough to be used as 

a subroutine in a scenario testing model for tactics development. For combat models, 

VIEWS could be used to generate databases for lower resolution models, following the 

ATCAL/COSAGE [DTIC, 1980, unsighted] methodology. 

The remainder of this thesis is organized to examine and develop a reusable model 

component for active sensors, and then to address the problem of reusing information, 

experience and computer code for simulation support of military systems as they mature. 

In Chapters II and III we will focus on a single aspect of the countermeasure simulation 

problem, sensors, and provide a concrete example of a reusable model component. We then 

discuss a proposed software framework in Chapter IV. 
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II. A CONCEPTUAL MODEL OF ACTIVE SENSORS 

Development of a component, such as a sensor, requires a conceptualization of the 

system to be modeled. We have several goals in this chapter. First, we will describe 

the important features of an active sensor from the viewpoint of a number of simulation 

consumers. From this we develop an operational description that will serve as a guide in 

the following section, where we develop the se~sor component conceptual model. 

To facilitate construction of a reusable component, the conceptual description, or 

abstraction, will be designed to accommodate simulations at any resolution and all quali­

tative categories of modeling. The abstraction will accommodate all identified world views 

without imposing any particular resolution or viewpoint, and should be understandable by 

people not necessarily expert in sensor system design. 

A. WORLD VIEWS 

We identify four potential "consumers" (i.e., users) of our sensor model and attempt 

to define each consumer's idea of an active sensor by listing the important characteristics 

of the sensor from that consumer's point of view. This exercise will identify the common 

elements of the different viewpoints and, perhaps more importantly, the differences, to 

ensure our operational description accommodates all viewpoints. 

1. Strategic Planner 

The strategic planner sees a sensor as a device carried by some platforms which 

detects, and possibly locates, certain things in the vicinity of its owner. Characteristics of 

interest might be: 

• Accuracy. 

• Portability. 

• Controllability. 

• Susceptibility to environmental conditions. 

• Susceptibility to counter detection. 

The strategic planner is interested in Measures of Effectiveness associated with the 

information the sensor provides, rather than the details of the sensor's implementation. 
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2. Tactics Developer 

The tactics developer, who is also interested in battle effectiveness, sees a sensor sim­

ilarly to the strategic planner, but at a lower organizational level. Important characteristics 

for this simulation consumer might be: 

• Accuracy. 

• Power consumption. 

• Human resource consumption. 

• Susceptibility to environmental conditions. 

• Controllability. 

• Susceptibility to counter detection. 

Like the strategic planner, the tactics developer is interested in Measures of Ef­

fectiveness associated with the information provided by the sensor, but he may also be 

interested in some of the details of implementation. He is interested in what the sensor 

does, what information it provides, and the quality of that information, but he may also be 

interested in some of the details of how that information is obtained. 

3. Procurement Professional 

The procurement professional sees a sensor as a device which has a specified purpose, 

and a set of specified capabilities. Because he is usually managing a contract with explicit 

requirements, he is interested in Measures of Performance, such as: 

• Signal strength. 

• Bearing and range resolution. 

• Detection degradation due to environmental conditions. 

and in Measures of Effectiveness, such as: 

• Probability of detecting a specified target at a specified range. 

• Probability of system failure. 

• Probability of counter detection. 
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4. System Designer 

The sensor designer has a much more detailed view. To him, an active sensor is a 

device which detects and locates certain things in the environment by emitting an energy 

signal, waiting for that signal to return, and then processing the returned signal to derive 

information. The system expert is tasked with adding to the advantages of the system and 

reducing the disadvantages, by meeting a set of design specifications for performance, such 

as: 

• Power requirements. 

• Signal strength. 

• Antenna gain. 

• Detection thresholds. 

The needs of all of these simulation consumers can be satisfied by using an appro­

priate set of abstractions. The abstractions do not satisfy any needs themselves, but allow 

the construction of components that do. To define the interfaces required in the framework, 

we must settle on a single operational description. 

B. OPERATIONAL DESCRIPTION 

The most detailed description need not be adopted for the purposes of modeling a 

generic sensor. Indeed, as we are designing an abstraction of the sensor, there are many 

details that are both unnecessary and unwanted. As stated previously, our goal is to develop 

an abstraction that fits into models of many styles and resolutions. As we will show in 

Chapter III, adopting this abstraction greatly enhances the possibility that components 

will be applicable in some unknown future model without limiting the detail that can be 

achieved. We will adopt the following generalized operational description of an active sensor: 

An active sensor is a device which translates data into informa­

tion. The data is acquired by emitting a signal and waiting for it 

to return; upon its return, the signal is processed by the sensor to 

generate information, which is sent to the sensor's users for an un­

specified use. The sensor may have various modes of operation which 

are controlled by its owner via some method of issuing commands. 
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The entities shown in Figure 2.1, represent the sensor and all of the entities with which the 

sensor communicates. The sensor exchanges information with its users, takes commands 

from its owner, and sends and receives signals. The abstract sensor component is analo­

gous to object oriented Software ICs, due to Cox [Cox and Novobilski, 1991], and can be 

developed with no knowledge of an overall model in which it will eventually be used. 

( Ust)) 

Information 

Active Sensor 

( 1"') 
Conmand 

ive 
.Sensor 
Signal 

Figure 2.1. An active sensor and the other simulation entities it interacts with. 

C. OBJECT DESIGN 

Because we are developing the conceptual model for eventual implementation in an 

object oriented program, we begin design by defining the important objects, or entities in 

the description. We will focus on abstract objects; that is, we will specify the behaviors of 

each entity, but say nothing of how those behaviors will be carried out. 

The sensor exists in an environment, is perhaps mounted on a platform of some 

kind, has an owner and, possibly, several users. The signals that carry information between 

entities and sensors are created by the sensor but act according to their own rules. The signal 

interacts with the environment and other entities as arbitrated by an entity we designate 

the Referee (Entity 10 below). Figure 2.2 will be a useful guide to the descriptions of these 

entities. 

ENTITY 1 
Signal. An object to abstract the notion of data that moves through space and time. 

Signals may represent concrete energy signals, such as sound waves or radar waves, or 

abstract signals, such as messages. In some cases, the signal may interact with the Referee 

to determine its own behavior. 
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.-----------------------------------------------

Responder 

Signa/Receiver 

Sensor Active Sensor 

Commandable 

( Signal )..,.•r-----{( ActiveSensorSignal ) 

( SensorOwner ) 

( SensorUser ) 

Figure 2.2. Inheritance Graph for Abstract Sensor Entities. 

ENTITY 2 
Signal Receiver. An object that can receive signals. Behavior resulting from reception of 
a signal is unspecified. There need be no guarantee that a particular Signal Receiver will 

understand all signals. 

ENTITY 3 
Commandable. An object that can receive commands. Behavior resulting from reception 
of a command is unspecified. There need be no guarantee that a particular Commandable 

entity will understand all commands. 

ENTITY 4 
Sensor. A special kind of Signal Receiver that translates signal data into information. 

Also, a special kind of Commandable entity. Signals are processed and the results are sent 

to the sensor's users, perhaps only on request. The Sensor may have change modes of 
operation when it receives a command from its owner. 

ENTITY 5 
Active Sensor. A special kind of Sensor that can generate its own signals. Because it is 
a Sensor, the Active Sensor is also a Signal Receiver and a Commandable entity. 

ENTITY 6 
Active Sensor Signal. A special kind of Signal which is created by active sensors. The 

Referee (Entity 10) is used to discover what other objects with which a signal should interact. 
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The Referee is used in this manner to hide information from other entities, namely the 

Sensor, who should have no knowledge of the entities for which it is searching, apart from 

the information conveyed by its signals. The result of interaction with another entity will 

be defined by the properties of that entity and the particular signal, but is unspecified. 

ENTITY 7 
Responder. A special type of Signal Receiver that responds to a signal by generating an­

other signal. The intended use of Responders is to represent the signal reflecting properties 

of an entity. 

ENTITY 8 
Sensor Owner. An entity that can own a sensor. Such an entity must know how to issue 

commands to the sensor and possibly query the sensor for information about its operational 

status. Because this ability is a feature of all types (e.g., passive, bistatic) of sensors, we do 

not specify this entity to be an active sensor owner. The owner of a sensor must also have 

position information. 

ENTITY 9 
Sensor User. An entity that can accept the information output by a sensor. Such an entity 

may also know how to ask the sensor for information. Because all types of sensors will output 

similar information to their users, and because the abstract model should accommodate all 

types of sensors, we do not specify this entity to be an active sensor user. 

ENTITY 10 
Referee. An entity that arbitrates the activities of other entities. The Referee enables 

encapsulation by providing the means for entities to get the information they need to im­

plement behavior, while keeping that information hidden until it is needed. Hiding this 

information is essential to long term software stability, and greatly simplifies the structure 

of other simulation entities. Thus, when the signal needs to know the entities with which 

it will interact in its lifetime, it must ask the referee. 

D. DISCRETE EVENT DESIGN 

Because we are developing the conceptual model for eventual implementation in a 

discrete event simulation, we must define the events for the entities we have defined. We will 

use event graphs, due to Schruben [Schruben, 1983], to graphically describe the processes 

being modeled. Event graphs are directed graphs in which the nodes represent events, and 

the edges represent scheduling. A concise introduction to event graphs can be found in 
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[Buss, 1995]. The graphs shown here are necessarily incomplete due to their generality. 

Implementations of concrete sensor examples will add the details, such as time delays and 

scheduling conditions that are necessary for the particular implementation. 

1. The Active Sensor Entity 

The active sensor itself has four events that are defined by the inheritance relation­

ships shown in Figure 2.2 and one additional event, as shown in Figure 2.3. The implemen­

tation of inherited behaviors may be specified in parent classes or in the particular sensor 

being implemented. 

Event Scheduled 
by Active Sensor -

Signal Object 

Propagate Event , 
Scheduled ,._]____ 

in Active Sensor i 

Signal Object 

Event Scheduled 
in Sensor User -.-·--· 

Object ' 

Event Scheduled 
1----'-- in Sensor User 

Object 

Event Scheduled 
by Sensor Owner Object 

Event Scheduled 
by Sensor Owner Object 

Figure 2.3. The generalized event graph for an active sensor. Specific sensors will have 
conditions, timing rules and parameters on the arcs. Specific sensors will also have state variables 
on the nodes, with rules for updating them. 

BEHAVIOR 1 (ACTIVE SENSOR) 

Generate Signal. Instantiate a signal object of a particular kind, establish its parameters 
and tell it to propagate. 

BEHAVIOR 2 (SIGNAL RECEIVER) 

Receive Signal. Accept a returning signal, extract data from it, and process that data. 

BEHAVIOR 3 (SENSOR) 

Send Information. Give the information gained through processing signals to a user. 

11 



BEHAVIOR 4 (SENSOR) 
Send Status. Process a request from the owner to report operating status. 

BEHAVIOR 5 (COMMANDABLE) 
Receive Command. If the command is one that is understood, then carry it out, other-

wise, do nothing. 

2. Active Sensor Signal 

The active sensor signal only has one inherited event and one event of its own, as 

depicted in Figure 2.4. 

BEHAVIOR 6 (SIGNAL) 
Propagate. Ask the referee for a list of the entities that might be encountered based on 
signal properties. Then, tell each entity in the list to reflect the signal. Depending on the 
resolution of the particular signal model, signal parameters given to the reflecting object 
may be calculated based on environmental conditions, which are obtained via the referee. 

BEHAVIOR 7 (ACTIVE SENSOR SIGNAL) 
Return to Sender. Use environmental information provided by the Referee to determine 
properties upon arrival back at the sensor. Tell the sensor to receive the signal. Note that 
the returning signal is a new instance of the signal type originally propagated by the sensor. 

Event Scheduled 
by Active Sensor 

Object 

Receive Signal 
Event scheduled •­
in Active Sensor 

Object 

Receive Signal 
- Event Scheduled 

in a Signal 
Receiver 

Event Scheduled 
by a Responder 

Figure 2.4. Generalized event graph for the abstract sensor signal entity. 

3. Responder 

Responders have only the one event inherited from Signal Receiver, which IS as 

shown in Figure 2.5. 
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BEHAVIOR 8 (SIGNAL RECEIVER) 

Receive Signal. Receive a Signal and create a new one. The new Signal properties will be 

based on the properties of the first, and the properties of the Responder define the details 

of the interaction. Send the new signal back to its point of origin by telling the new signal 

to return to sender. 

Event Scheduled 
by Active Sensor --­

Signal 

Retum to Sender Event Scheduled 
- .___..in a new Active Sensor Signal Object 

Figure 2.5. Generalized event graph for the abstract sensor signal reflector entity. 

4. Sensor Owner 

Figure 2.6 shows the single event for the Sensor Owner. 

BEHAVIOR 9 (SENSOR OWNER) 

Receive Sensor Status. Receive a message from a sensor containing the Sensor's opera-

tional status. This may trigger other, unspecified actions. . 

Event Scheduled 
by Active Sensor -

Object 
Unspecified behavior 

Figure 2.6. Generalized event graph for the abstract sensor owner entity. 

5. Sensor User 

Since Sensors might provide information without warning, or could experience a 

delay in satisfying a request for information, the Sensor User needs a method for receiving 

information, as shown in Figure 2.7. 

BEHAVIOR 10 (SENSOR USER) 

Receive Sensor Information. Receive a message from a sensor containing sensor contact 

information. This may trigger other, unspecified actions. 

13 



Event Scheduled 
by Active Sensor -

Object 
_ __. Unspecified behavior 

Figure 2. 7. Generalized event graph for the abstract sensor user entity. 

In the next section, we translate the abstract objects and activities into a program­

ming interface behind which the actual behaviors will be implemented. 

E. ABSTRACT IMPLEMENTATION 

Our implementation is in the new computer language, Java, from Sun Microsystems 

[Gosling and McGilton, 1996]. The Bibliography lists books and documents found on the 

World Wide Web which are useful in learning about the language. Since Java's syntax is 

similar to C and C++, anyone with a passing familiarity with either of those languages 

should be able to follow the source code examples shown in this chapter and the next. 

Java, like any good object oriented language, can directly represent abstractions 

such as those we have described. The Java constructions to do this are cailed interfaces 

and abstract classes. An interface is a Java construct that defines constants and specifies 

methods that must be implemented by any class that claims to conform to the interface. 

Interfaces support single and multiple inheritance from other interfaces. Unlike an interface, 

an abstract class may implement some of the methods it declares. Abstract classes are 

always part of a single-inheritance tree, but, like concrete classes, may implement any 

number of interfaces. Neither interfaces nor abstract classes may be instantiated. 

Defining the interfaces will complete the design of the abstract sensor component 

and provide the foundation for concrete examples. Complete code listings for the interfaces 

presented here can be found in Appendix A. The completed, though still general, event 

graph for the abstract model is shown in Figure 2.8 on page 15. 

1. The Sensor Interfaces 

The inheritance tree shown in Figure 2.2 on page 9, contains four interfaces to be 

implemented by any Active Sensor. Figure 2.9 on page 16 expands the pertinent portions 

of Figure 2.2 to include the method declarations in each interface. Due to inheritance, the 

Active Signal interface specifies five methods that must be implemented by any object that 

claims to implement that interface: 
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Active Sensor · 
Signal Active Sensor 

Sensor User , 

~-----1------~!"!"""'!"!"""'~--__. 
Active Sensor Signal 

Figure 2.8. Complete generalized event graph for abstract sensors. 

public void receiveSignal ( Signal s ) ; 
public void receiveCommand( Command c ) ; 
public void sendinfo ( SensorUser u ) ; 

public void sendStatus ( SensorOwer o ) ; 

public void generateSignal(); 

2. The Signal Interfaces 

As with the sensor interfaces, we expand Figure 2.2 to show the methods declared 

in each interface in Figure 2.10 on page 16. The resulting methods required of any Active 

Signal are: 

public void propagate (); 
public void returnToSender(); 
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Signa/Receiver Commandable 

public void 
receiveSignal(Signal s); 

public void 
receiveCornmand(Signal s) 

• • I 
Sensor 

public void 
sendinfo(SensorUser u); 

public void 
sendStatus(Sensorowner o); 

t 
ActiveSensor 

public void 
generateSignal(); 

Figure 2.9. Expanded Sensor Interface Inheritance Tree. 

Signal 

public void 
propagate(); 

f 
ActiveSensorSignal 

public void 
returnToSender(); 

Figure 2.10. Expanded Signal Interface Inheritance Tree. 

16 



3. The Responder Interfaces 

Again, we expand Figure 2.2 to show the methods declared in the Responder inter­

face in Figure 2.11. The resulting methods required of any Responder are: 

SignaiReceiver 

public void 
receiveSignal(Signal s); 

t 
c Responder 

Figure 2.11. Expanded Responder Interface Inheritance Tree. 

public void receiveSignal(); 

4. Other Interfaces 

The remaining interfaces are not members of an inheritance hierarchy: The Sensor 

Owner interface declares one method: 

public void receiveSensorStatus( SensorStatus s ); 

and the Sensor User interface declares another: 

public void receiveSensorinfo( Sensorinfo i ); 
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III. DEMONSTRATIONS 

In this chapter we develop several models to demonstrate the use of the abstract 

sensor component in a number of modeling contexts. The demonstrations are intended to 

show that the abstraction can serve in both high and low resolution models to support very 

different types of analysis. 

The descriptions here focus on the sensor component, and the large body of support­

ing code will not be discussed at length here. In Chapter IV, we will discuss a supporting 

framework that should be developed to make components such as the sensor generally useful. 

A. SCENARIO 

The demonstrations model a so-called barrier search scenario. The barrier search 

was chosen because it has mature analysis techniques with which to verify the new model. 

Additionally, the barrier search does not require a sophisticated position or motion model 

and is straightforward to implement. 

In a barrier search problem (see Figure 3.1), there are two players: a target and a 

searcher. The target attempts to travel down a channel with speed u. The searcher creates 

a barrier across the channel by traveling back and forth between two points, A and B so 

that its sensors traverse the entire channel width, L. The searcher has speed v. 

Target 

~u 
1 

R ov R ...... . - - _ _..,._. • - -- --~----- - - . ... 
A Searcher B 

~ L . ~ 
1 

Figure 3.1. Barrier Search Scenario. A searcher with a sensor of effective radius R travels back 
and forth between points A and B with speed v. The target moves down the channel with 
speed u. 
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The demonstration models discussed in the next two sections model the barrier 

search. In both models the searcher begins on the left and patrols the barrier until some 

number of targets have attempted to cross. Targets arrive at a location which is uniformly 

distributed over the length of the barrier. Target arrivals occur when the previous target 

is detected or successfully penetrates the barrier. Target and searcher have fixed speeds 

throughout the experiment. 
The barrier search is modeled with two' sensor component models using the compo-

nent developed in Chapter II. The first is a deterministic "Cookie-Cutter" glimpsing sensor. 

The second is a glimpsing radar based on the theoretical physics of radar. 

B. COOKIE CUTTER SENSOR 

Cookie cutter sensors are the foundation of search and detection theory in Opera­

tions Research. The cookie cutter sensor has radius R, and detects a target with certainty 

if the range, r, to the target is less than R, as shown in Figure 3.2 and in Equation 3.1. 

P. ={ 1 ifr::; R 
d 0 otherwise 

(3.1) 

R Range 

Figure 3.2. Probability of Detection for a Cookie Cutter Sensor. 

1. Model 

The barrier search scenario using cookie cutter models are developed analytically 

in [Washburn, 1989] and [OASG, 1977]. The perspective taken in this development is op­

erational; the goal being to determine the probability of detection given values for the 

parameters. We assume the target arrives at the barrier at a position which is uniformly 

distributed over the channel width, L. The searcher begins to traverse the channel from 
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the left when the first target arrives. In this circumstance, the searcher has a maximum 

probability of detecting the target as defined in Equation 3.2. 

(3.2) 

The long run probability of detection is more closely approximated by Equation 3.3. 

pd ~ { 1- [ A(A~l) (>.- v'T!f-1) 2] ' r ~ 2J..\ (..\ + 1) 

1, r > 2v'>. (..\ + 1) 
(3.3) 

where, 
r= 

..\= 

2. Simulation 

To simulate the scenario with the sensor component developed in Chapter II, con­

crete classes which implement the sensor component interfaces must be constructed. List­

ings for these classes can be found in Appendix B. Listings for supporting code to han­

dle discrete event simulation and entity motion can be found by following links from 

http://dubhe.cc.nps.navy.milrahbuss on the World Wide Web. 

The cookie cutter sensor is simple to implement using the sensor component model. 

Four classes must be defined: a Sensor, a Signal, a Responder and a Platform. As shown in 

Figure 3.3, these entities correspond to the ones in the abstract model. In some cases, the 

concrete classes inherit from classes or implement interfaces that have not been discussed; 

Listings for these classes are available at http: I /dubhe. cc .nps .navy .mil;-ahbuss, and 

are discussed in greater detail in [Buss and Stork, 1996]. 

a. CCActiveSensor Class 

The cookie cutter active sensor implements the methods of interfaces Com­

mandable and ActiveSensor, as well as the methods required of any simulation entity. It 

responds to only two commands: one to activate, and one to passivate the sensor. When 

the sensor is activated, it schedules a generateSignal event to occur after a delay. The 

delay is set when the sensor is instantiated with an argument to its constructor. 

When the generateSignal event occurs, the sensor instantiates an object 

of class CCActiveSensorSignal, passing as parameters to the constructor a reference to the 

sensor itself, the position at generation time and the maximum range of the signal. The 
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l·'~~~~!~~~i.g~atl)~~po~c~f3tl-~ Responder) 
"' "' , , "' __ ~ SensorOwner) 

Platform --
~ .... -,- - ~ SensorUser) 

' .... 

... 
; 

'}( Commandable ) 

; 

SimEntitylmpi!+L--------f~g~<:tiV~Eiri~~f ~-- ...(Signa/Receiver) 
.... 

... "( ActiveSensor) 

- - ..( ActiveSensorSignal ) 

Figure 3.3. Cookie Cutter Model Inheritance Graph. Entities that schedule events which pass 
simulation time inherit from the Simkit [Buss and Stork, 1996] class SimEntitylmpl. The sensor 
component interfaces from Chapter II are implemented by the entities to establish the sensor­
related behaviors. The class SimpleShip implements the Responder interface because it may 

own an instance of a Responder, namely the CCActiveSignaiResponder. 

signal is then told to propagate. Finally, a generateSignal event is scheduled to occur 

after the delay time. 
When the sensor receives a signal, it checks to ensure the signal is its own, 

and records the fact that a detection was made. It also cancels any further signal generation, 

effectively ending the simulation trial. 

b. CCActiveSensorSignal Class 

The signal class for the cookie cutter sensor simply stores the information 

passed to it's constructor: who made it, where was it made, and what is its maximum range. 

When told to propagate, the signal asks the Referee for a list of the players that respond 

to signals. For each player in the list, the signal gets its position and calculates the range 

from the originating point. If that range is less than the maximum range of the signal, the 

player is told to recei veSignal. 

A responder creates the signal with a different constructor which takes the 

original signal together with a position as arguments. Information is copied from the original 

signal, and no further reference to that signal is retained. 

When told to returnToSender, the signal tells its creator (the CCActiveSen-

sor instance that created the original signal) to recei veSignal. 
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c. CCActiveSignalResponder Class 

The responder only has one method, recei veSignal. When this method is 

called by a signal, this responder simply instantiates a new signal of the same type, using 

the position of the responder's platform and the original signal as arguments to the signal 

constructor. The new signal is then told to returnToSender. 

d. Main Program 

In Java, all code must be part of some class, so there is a main class in 

addition to the sensor related classes that runs the model. The method of batch means 

[Law and Kelton, 1991 J is used to find the fraction of trials in which the target is detected. 

The algorithm followed by the main class to run the simulation is as follows: 

1. Instantiate two objects of class SimpleShip: searcher and target 

2. Instantiate a CCActiveSensor object with maximum range R, and add it to the 
searcher 

3. Instantiate a CCActiveSignaiResponder object and add it to the target 

4. Instantiate two data collectors, one for batch results and one for trial-results 

5. For i = 1 to i = number of batches 

(a) reset the trial data gatherer 

{b) Issue a patrol command to the searcher 

(c) For i = 1 to i = number of trials per batch 

1. Place the first ship at the left-hand barrier waypoint position 
11. Place the second ship at a position uniformly distributed between the left 

and right ends of the barrier, and north of the barrier a distance R 
111. Issue a course/speed command to the target 

1v. Issue an activate command to the searcher 

v. Start the simulation clock 

VI. Record detection or non-detection in the trial data collector 

(d) Record the average number of detections from the batch in the batch data 
collector 

6. Output results 

The program is invoked (under UNIX), with the following command line: 
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or 

java CCBarrier <batches> 
<search speed> 
<sensor range> 
<barrier length> 

java CCBarrier <filename> 

<trials per batch> 
<target speed> 
<glimpse interval> 
[seed] 

Where, 
= Number of batches to run batches 

trials per batch 
search speed 
target speed 
sensor range 
glimpse interval 
barrier length 
seed 

= Number of target attempts per batch 
= Searcher speed in knots 

filename 

= Target speed in knots 
= Sensor range in nm 
= Time between sensor glimpses in seconds 
= Width of the channel in nautical miles 
= Long integer random seed (optional) 
= Name of an input file 

If a filename is specified, that file has a single line containing the arguments 

as listed, separated by white space. 
Alternatively, this program is available as an applet on the World Wide Web 

that can be run in a Java enabled web browser, such as Netscape 3.0 or Microsoft Internet 

Explorer 3.0. The applet version provides a graphical interface with labeled fields to fill in 

and produces the same output as the program. The applet can be found by following links 

from http: I /dubhe. cc .nps .navy .mill;-ahbuss/. 

3. Results and Verification 

The model proved to be insensitive to the value for the glimpse interval parameter 

up to about 960 sec. However, runtime is dramatically reduced by using larger values. The 

results below correspond to the following set of parameters: 

Number of batches 
Trials per batch 
Search Speed 
Target Speed 
Sensor Range 
Glimpse Interval 
Barrier Length 
Seed 

24 

= 500 
=50 
= 12(knots) 
= 7(knots) 
= lO(nm) 
= 480(sec) 
= 80(nm) 
= 2116429302 



This run resulted in a batch mean probability of detection of 0.4706 with vari­

ance 0.0044. This gives a 95% confidence interval for the probability of detection of 

(0.4647, 0.4764). A histogram of the batch results of are shown in Figure 3.4. To verify 

the results, Equation 3.3 was solved with the same parameters: 

v = 12(knots) 
u = 7(knots) 
R = lO(~m) 
L = 80(nm) 

resulting in Pd ~ 0.476, which falls within the confidence interval of the simulation results. 

70 ----·- --·-·- 70 

60 60 

50 50 

-40 40 
c. 
:I 
0 
0 30 30 

20 20 

10 10 

0 0 
'<!' (0 co ('I) N '<!' (0 co '<!' N '<!' (0 co 10 N '<!' (0 co (0 N '<!' ~ 
N N N c:) ('I) ('I) ('I) ('I) c:) '<!' '<!' '<!' '<!' c:) 10 10 10 10 c:) (0 (0 

0 
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Probability of Detection 

Figure 3.4. Cookie Cutter Model Results. This histogram counts the number of batches 

resulting in a given probability of detection. The probability of detection should be normally 

distributed, as shown by the pdf plotted with the histogram. 

C. MONOPULSE RADAR 

Missile countermeasures must be evaluated with a more sophisticated sensing model 

than the Cookie Cutter described above. The Cookie Cutter sensor is sufficient for the 

barrier search because the MOE is simple, i.e., the probability that the searcher detects the 

target. With countermeasures, the MOE changes from a simple determination of detection 

or non-detection, to one of discrimination, i.e., the probability that the sensor correctly 

identifies its target when several are present. 
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We have two goals in this demonstration of a Monopulse Radar model. First, we wish 

to reuse the barrier scenario to demonstrate the ability to reuse a large body of supporting 

code. In fact, the main program has only minor modifications, which we will highlight 

below. Second, we wish to develop a sensor model that operates at a higher level of detail, 

capturing some of the physics of radar operation. 

1. Model 

The model is still highly stylized-the sweep of the radar is not modeled explicitly, 

but simulated with an omnidirectional signal containing only the number of pulses that 

would be incident on the target if the signal was a sweeping beam. Signal generation is 

timed to coincide with the sweep rate to approximate the number of glimpses a directed, 

sweeping radar would get. Finally, the signal used simulates a pulse train, rather than 

individual pulses. 
To model the physics of waves, the model is based upon The Radar Range Equation 

(Equation 3.4), which can be found in any book on radar. 

s PGAarcsEn (3.4) 
= 

[47rR2]2 [a~oise + a~utter] [LsysLatm] N 

where, s =Signal to Noise ratio 
N 
p = Average transmitted power 

A = Antenna aperature 

G = Antenna gain 

CJrcs = Target radar cross section 

E = Integration efficiency 
n = Number of pulses integrated 

R = Slant range to target 
2 

a noise = rms noise power 
2 

(J clutter = rms clutter power 

Lsys = System losses 

Latm = Atmospheric losses 

Equation 3.4 is rearranged in Equation 3.5 into terms that will be useful in the implemen­

tation. 
S [ P ] [ a res ] [ AEn l 
N = 47r R2 47r R2 a;oise 

(3.5) 

We have removed variables that will not be modeled. 
The first term of Equation 3.5 is the signal power incident upon the target. The 

second term, when multiplied by the first produces the signal power returning to the radar 
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receiver. Finally,when the third term is applied, the result is the signal to noise ratio (SNR) 

as processed by the radar system. 

2. Simulation 

Several assumptions are made in the simulation. First, we assume a constant thresh­

old SNR for the radar system below which a returning signal will not constitute a detection. 

Second, the target is assumed to be a so-called Swerling case 3 target [Swerling, 1976], which 

models a radar reflector that is dominated by a single large scatterer and many smaller in­

dependent scatterers. This model simulates a large scatterer surrounded by ocean clutter. 

Receiver noise is assumed to be normally distributed. Finally, we will ignore atmospheric 

and system losses. 

As previously stated, the simulation will use a glimpse approach similar to the 

original Cookie Cutter model. To be consistent with the assumptions of the Swerling target 

model, probabilistic independence between successive glimpses is assumed. The source code 

listings for this demonstration can be found in Appendix C. 

a. MonopulseRadar class 

The MonopulseRadar class is similar to the CCActiveSensor, requiring mod­

ification of only two methods. First, the generateSignal method generates a new sig­

nal type, PulseTrain, rather than the CCActiveSensorSignal. Second, the recei veSignal 

method applies the final term of Equation 3.5 to the returning signal and compares the 

result to a fixed threshold value to determine if a detection has been made. 

b. PulseTrain class 

The PulseTrain class is a new Signal type, implementing the ActiveSen­

sorSignal interface. To incorporate the physics of wave propagation, reception by potential 

contacts is no longer instantaneous. Instead, the PulseTrain class inherits from the SimEn­

tity class and defines simulation events to schedule signal arrival at the potential contact 

after a delay computed from the range to the contact. Similarly, the returning signal arrives 

at the sensor· after a delay. 

The PulseTrain is instantiated with all the information needed for subsequent 

calculations, and told to propagate as before. After retrieving the potential contact list from 

the Referee, it calculates the range to each potential contact, and if the contact is within 

the range scale setting of the radar, it schedules an arrival based on the range and the speed 
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of light. When the arrival event occurs, the PulseTrain calculates the power incident upon 

that Responder, and calls the responder's receiveSignal method. 
Returning PulseTrains are instantiated by the Responder with the arcs of 

the Responder as an argument. Term two of Equation 3.5 is applied, and the result stored. 

The range to the sensor that created the original signal is calculated and arrival is scheduled 

after the appropriate delay. When the arrival event occurs, the PulseTrain calls the sensor's 

receiveSignal method. 

c. PulseTrainResponder class 

The PulseTrainResponder is instantiated with a mean value for arcs· When 

the recei veSignal method is called, it instantiates a copy of the received signal with a 

value of arcs' which is used in term two of Equation 3.5. The value used is a chi-square 

random variate with four degrees of freedom which models a target with a single dominant 

radar scatterer and several smaller scatterers. 

d. Main Program 

The main program is virtually identical to the Barrier Search program of 

the previous demonstration. The differences are: 

1. The searcher is equipped with a MonopulseRadar instead of a CCActiveSensor. 

2. The target is equipped with a PulseTrainResponder rather than a CCActive­

SignalResponder. 

3. Results 

The Monopulse Radar model was run with the same parameters as the Cookie Cutter 

model. Additional parameters used for the run correspond to the operational parameters 

of the SPS-68 surface search radar as published in [Streetly, 1996]: 

Pave 

A 
E 
a noise 

N 

= lO(W) 
= 1.37 m2 

= 0.96 
= 6(dB), average 
= 18(pulses/ glimpse) 

The model run resulted in an average probability of detection of 0.4540 and variance 

0.00451 (see Figure 3.5). This produces a 95% confidence interval of (0.4481, 0.4599). As 

expected, the confidence interval for the radar is lower than the perfect cookie cutter. 
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Figure 3.5. Monopulse Radar Model Results. This histogram counts the number of batches 
resulting in a given probability of detection. The distribution of an ideal sensor is also plotted. 
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IV. APPLICATION 

The models presented in the previous chapter demonstrate the usefulness of the 

abstract model developed in Chapter II. The component model we have developed is appli­

cable to the missile countermeasure problem, but not immediately useful in the absence of a 

larger framework. In particular, it was not possible to develop a motion model sophisticated 

enough for the missile-ship engagement scenario in the time available for this research. 

Since time did not permit a more directly applicable implementation, we will discuss 

what is needed to use the sensor component in more sophisticated future models. We do so 

by sketching out the other components that would make up a framework. We will focus, as 

we did in Chapter II, on abstractions. 

The framework envisioned in this chapter was inspired by an existing library, the 

Naval Postgraduate School Platform Foundation [Bailey, 1995]. Recent research employing 

the Platform Foundation, including a thesis related to the problem of simulating radars 

[Ellison, 1996], has highlighted the usefulness of simulation libraries in developing models 

quickly. It has validated the concept of reusable and extensible computer code, and provided 

important insights into the problem of designing a true framework. However, the Platform 

Foundation was developed to be an extensible application, rather than a framework or 

Application Programming Interface (API). 

Readers familiar with the Department of Defense High Level Architecture (HLA) 

[DMSO, 1996], will notice some differences in design philosophy between it and the frame­

work we propose. Whereas HLA is being designed to facilitate cooperation between existing 

and future models, the framework proposed here is designed to facilitate rapid development 

of small to medium sized models for a specific purpose. 

While the HLA object model is a sound approach to an immense problem, the 

modeler's ability to hide information is limited by the requirement to broadcast information 

about an entity without concern for how that information will be used. The broadcast 

mechanism is only necessary to support cooperation between legacy and future models, but 

adopting this mechanism as the centerpiece for model cooperation forces future models to 

conform when they could otherwise benefit from the full benefits of object oriented design. 

A. DESIGN GUIDELINES 

The proposed framework, the Abstract Military Modeling Toolkit (ammt), was con­

ceived for a much smaller problem than the HLA, although it shares many of the same 

difficulties. The intended users of ammt are organizations like NPS, SEWS, and test and 
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evaluation support organizations that have a need for simulation models but limited re­

sources. To this end, design was guided by a few general principles: 

• Language. ammt should be implemented in a portable, easy to learn language 
with a larger programmer base. Compilers for this language should be freely 

available. 

• Object Oriented. ammt should be designed as an object oriented class library 
to maximize the benefits provided by software engineering. 

• Abstract. At its core, ammt should be a set of abstract classes or interfaces. 
This abstract core can establish a sound design base that does not impose the 
restrictions of a concrete implementation. Any number of concrete implementa­
tions could be developed for particular modeling contexts. 

• Distributed. ammt should be designed with distribution in mind, and even­
tually should directly support both distributed object libraries and distributed 

execution. 

The remainder of this chapter examines a few critical areas that should be addressed 

by ammt. The list is incomplete, but sufficient to guide a full design and implementation. 

We will discuss three specific areas of interest for military modeling: 

• Arbitration. An mechanism to effect the principle of least privilege, or infor­
mation hiding. 

• Location. A generalized model for locating entities in physical space. 

• Movement. A generalized model for physical movement. 

B. ARBITRATION 

Simulation of real entities, such as soldiers, ships and aircraft, involves managing 

a complex and unforeseen set of interactions between those entities. In an object oriented 

program, it is desirable to use an event model, similar to that used in modern graphical user 

interface (GUI) programming. That is, entities exist with some state, and wait for events 

to occur. In a GUI, an entity such as a button, merely exists-it is only the externally 

generated event of a mouse click that causes the button to actually do anything. 

A simulation analogy to the GUI Button is an entity, such as a ship. A simulation 

model of the ship exists with some state until an event occurs that results in state-changing 
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action by the ship. For example, the ship may be cruising at some course and speed and 

receive a communication message that causes it to maneuver. Or, the ship may encounter 

an environmental interaction, such as running aground in shallow water. 

This approach has many advantages. For instance, the designer of the ship model 

need not be omniscient. So long as the ship object responds to the appropriate events, it 

need not know how to determine whether or not it has run aground. This allows information 

to be maintained in a safe place, separate from the ship. Just as the ship object has 

no knowledge of the contents of a message before the message arrives, it should have no 

knowledge of the impending grounding. 

Software stability and extensibility is enhanced by hiding information as described 

above. Bookkeeping of information, such as the existence of shallow water at some location, 

is not duplicated across all entities that might be interested, so the chances for error in future 

code is reduced. The memory requirements of entities are also reduced, though perhaps at 

a price paid in execution time. 

Additionally, hiding of information makes "cheating" more difficult. Cheating arises 

when a programmer, faced with a deadline, has "back door" access to information that would 

normally be considered private to some other object. The "quick and dirty" solution is to 

use the back door, with full intentions of correcting the poor code later. Later, when the 

implementation of the object that "owns" the information is changed, the cheating code 

breaks because the quick and dirty solution was forgotten. 

These issues motivate a structure that maximizes the hiding of information. How­

ever, the shallow water example above serves to raise the question of where information 

should reside. Who should know where the shallow water is? The answer adopted in this 

preliminary design of the ammt lies in arbitration of such interactions by two simulation 

entities that will be part of every model constructed with ammt: The Referee, and the 

Environment. 

1. Referee 

The Referee is envisioned as a god-like entity that is kept informed of everything 

that transpires, although it is not necessarily aware of information internal to simulation 

entities. All interactions between other entities will in some way involve the Referee. The 

sensor component developed in Chapter II serves as an example: Signals interact with the 

Referee to determine what other entities will be affected by the signal. 

Such a scheme requires all players in the simulation to register with the Referee 

when they are created and to unregister when they are destroyed. It also requires players 
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to register their activities, or state changes, so the Referee can schedule events, or opportu­

nities, that are unforeseen by the player. The Referee will make use of another simulation 

entity, the Environment, to determine some such events, and to provide information to 

players about environmental conditions. 

2. Environment 

The Environment class holds information about conditions in a physical region. It 

can schedule state changes in itself, such as changes in the weather or season. There may be 

several Environment instances in a simulation, particularly if the simulation models activity 

in a large physical region. 

The Environment class would also be the place where topographical and domestic 

information, such as soil type and vegetation, would be maintained. Players will not directly 

interact with the environment,· instead, they interact with the Referee, which gets the 

information from the Environment and passes it along to the player. This indirection 

is imposed to allow construction of components who's only direct link to the rest of the 

simulation is the Referee. 

3. Opportunities 

An Opportunity embodies the notion of something that might happen. Opportuni­

ties are the sole responsibility of the Referee, who schedules and cancels them according to 

its own rules. 

As an example, assume there are two ships, each with a course and speed that will 

eventually lead to collision. Assuming the ships have no sensors, they have no knowledge 

of each other, and so they are unable to interact. If this were the complete model, nothing 

would ever happen. 

But, in ammt the ships register their position, course and speed with the Referee 

when they maneuver. The Referee then calculates the closest point of approach (CPA) and 

notices that the ships will collide if they remain on course and speed. This situation causes 

the Referee to schedule an Opportunity for the two ships at the time of CPA. If the ships 

do not maneuver, the Opportunity will occur at it's scheduled time, sending a message to 

both ships that they have collided. If one of the ships maneuvers before the Opportunity 

occurs, then that Opportunity is canceled, the new states are examined by the Referee, and 

a new Opportunity might be scheduled. 

The Opportunity concept is general enough to handle all interactions that are un­

foreseeable by simulation players. However, this mechanism will potentially result in the 
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scheduling of a large number of events. Further, because the Referee must make opportu­

nity determinations whenever any player changes state, the Referee could easily become a 

large and unwieldy burden on the model. 

C. LOCATION 

The idea of location is particularly ve:x;ing for simulation modeling. Many systems 

exist for specifying an object's physical location in space, examples include the zones of 

TACWARS, the network node locations of JWEAPS, grid squares, hexagons and continuous 

coordinates. Further, simulation players have more than one kind of location. For example, 

a ship has an organizational location in a fleet, a soldier has a location in a chain of 

command, and a radar contact has a location in a radar's parameter space. We will discuss 

only one such location, physical, but the final design should address many. 

1. The Position Abstract Class 

Because ammt is to be abstract, it is possible to delay some of the problems related to 

positioning. We can define an abstract class, Position, that contains no data, but embodies 

the notion of a displacement vector. Entities whose state includes physical position would 

then have a member variable of type Position. Concrete entities would necessarily be 

designed to work with certain specializations of Position, but the abstract entities of the 

ammt do not need that specific information. 

Because Position is abstract, entities that work with Positions cannot know how to 

perform operations on them. Instead, the abstract class, Position, should declare a number 

of standard operations that will be needed by simulation entities regardless of the specific 

implementation. These operations return either boolean values, or values in the units of 

the positioning system. Examples of such operations are: 

• add a Position and a Displacement 

• subtract a Displacement from a Position 

• find the distance between two Positions 

• find the charted distance between two Positions 

• find the slant range between two Positions 

• find the direction from one Position to another 

• find the elevation angle from one Position to another 
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• multiply a Position by a number 

• divide a Position by a number 

• determine if one Position is within a region defined by other Positions 

• determine if one Position is between two bearings from another Position 

• determine if one Position lies to the north of another Position 

• determine if one Position lies to the east of another Position 

It is often useful to identify entities who have a particular attribute, and define 

operations that can be performed on such entities. In Java, the common practice is to define 

an interface with the adjective form of the word that describes the attribute. Following this 

practice for objects that have the Position attribute, we call the interface "Positionable". 

2. The Positionable Interface 

Positionable entities are those that have a position in space. Like the attribute 

itself, the interface imposes no specific system of positioning, but merely requires support 

for certain operations. 
Since Positionable objects are simply objects that have the Position attribute, the 

simplest definition the Positionable interface would specify only accessor methods. An 

accessor method is one that allows setting and getting of the attribute. In Java, we could 

write the entire interface as follows: 

public interface Positionable 
{ 

} 

public void position( Position p); 
public Position position(); 

II setter 
II getter 

However, this system allows any object to get the Position of any Positionable object, 

perform operations on that Position, and set the the Positionable objects Position to a new 

value. This is undesirable, since entities such as ships should not be moved around by 

entities such as radar signals. 
Instead, the operations defined for Positionable objects can parallel the ones for 

Position, with a few exceptions: 

• find the distance between two Positionable objects 
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• find the charted distance between two Positionable objects 

• find the slant range between two Positionable objects 

• find the direction from one Positionable object to another Positionable object 

or Position 

• find the elevation angle from one Positionable object to another Positionable 

object or Position 

• determine if a Positionable object is within a region defined by a set of Positions 

• determine if a Positionable object is between two bearings from another Posi­

tionable object or Position 

• determine if a Positionable object lies to the north of another Positionable object 

or Position 

• determine if a Positionable object lies to the east of another Positionable object 

or Position 

In implementation, these methods are simple redirections to the parallel method in the 

Position instance variable. Notice that these methods only provide information, and not 

the ability to change the attribute. 

D. MOVEMENT 

Physical movement can be modeled in many ways, from Newtonian physics that 

models forces on objects to affect motion, to highly stylized instantaneous jumps from one 

location to another. The ammt framework should neither impose nor exclude any such 

motion model. Furthermore, each concrete example of physical positioning, such as grids 

or continuous coordinates, will require at least one corresponding system for movement. In 

the abstract, however, it is only necessary to declare the operations. 

As for location, above, there should be abstract objects to contain the state infor­

mation, and interfaces to distinguish objects that have the new attribute. Using the terms 

of object oriented design, an object that can move "is a" Positionable object. Hence, new 

state variables and behaviors should be based on the existing state information. Movement 

requires at least one additional state variable, Velocity. 

1. The Velocity Abstract Class 

Velocity is an abstract class that encapsulates the notion of changing position as 

a function of time. Like the Position class, Velocity should provide for operations so that 

other objects can treat it abstractly: 
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• add two Velocities 

• subtract two Velocities 

• find the angle between two Velocities 

• multiply a Velocity by a number 

• divide a Velocity by a number 

• determine the magnitude of a Velocity 

2. The Moveable Interface 

Moveable objects have both a Position and a Velocity. The Moveable interface inher­

its from Positionable, and adds methods for accessing the motion state of the implementing 

object: 

• determine the speed of a Moveable object 

• determine the direction of a Moveable object's motion 

• determine the relative velocity of one Moveable object with respect to another 

E. FURTHER DEVELOPMENT 

The issues addressed in this chapter are only a beginning. The abstract framework 

components described here only comprise a part of the framework that is required, and even 

those will require several design iterations. In particular, the Referee deserves considerable 

thought and development, since each new paradigm added to the ammt framework will 

necessitate expansion of the Referee's abilities. 

Additional paradigms that should be incorporated into the ammt include, but are 

not limited to: 

• Motion 

Most modeling contexts require the notions of the orientation of objects, rota­
tion, and angular velocity. Constraints on motion based on the type of platform 
are also important, for instance, submarines can't fly. 
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• Communication 

The idea of a communication message should be provided. Early ideas for this 

follow the Signal/Signal Receiver construction used in the sensor component. 

The Signal approach allows for modeling of signal interception. 

• Passive Sensors 

The Active Sensor component developed in Chapter II was designed to be ex­

panded to passive sensors. A critical missing element is generation of signals by 

entities other than sensors, and coordinating the reception of those signals by 

the Referee. 

• Weapon Systems 

Although many weapon systems, such as missiles, can be modeled using the 

same structure as other platforms, there will be need for weapons that cannot. 

One example might be directed energy weapons. 

Weapon systems typically have complex supporting systems, such as fire control, 

which should be generalized for the ammt if possible. 

• Command Structure 

Military organizations are centered around a chain of command. The chain of 

command should be modeled by ammt to support decision modeling. Decisions 

are made based on available information, so an operational commander should 

be modeled to be at a location, or on a platform, and to act only on information 

available from his sensors and communications equipment. 

• Operational Status 

Platforms may not always have all of their designed functionality. For instance, 

a sensor system may fail, making it unavailable until it is repaired. The concepts 

of failure, damage and repair should be abstract components of ammt. 

No code was written that actually implements the design described in this chapter. 

Instead, it is a sort of designers notebook compiled from the experience of writing the 

supporting code for the models presented in Chapter III. The ammt code, such as it is, is 

provided at http: I /dubhe. cc .nps .navy .mil;-ahbuss on the World Wide Web. We look 

forward to further development efforts. 
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V. CONCLUSIONS 

This research set out to explore the problem of providing simulation support for 

sensing systems. In the process, we developed some previously unavailable tools in a new 

computer language, Java. In the course of this research we perhaps found more questions 

than answers, but the insights our model gives for the sensing problem will help guide future 

modeling efforts. 

We have shown that sensor components can be designed to accommodate a diverse 

set of modelers. While the sensor components implemented in this thesis do not fit any 

existing framework, the design methodology and abstract concepts are generally applicable, 

and independent of any computer language. 

We developed a robust and general abstract component model for sensors. We 

then used that model to construct several customized components at different resolutions 

that work within the same supporting framework. While our abstract model will certainly 

benefit from further development, the power of abstract model development is evident. 

We have given an example of a method for communication between modelers and 

computer programmers. The conceptual sensor model of Chapter II requires no program­

ming expertise to understand. However, the form of the abstract component is easily 

understood and implemented by an Object Oriented programmer. Because programmers 

discuss their code in similar terms, the modeler who learns about Object Oriented design 

is also better equipped to understand the programmer's discussions of the implementation. 

We have demonstrated an agenda for code and concept reuse. Without such a 

program, future software development will be slow and costly in an environment of rapidly 

changing technology and force structure. This will impact all areas of software development, 

including simulations. 

Software design is as important as implementation. Software development is an 

iterative process, including the software design phase. Because changes in software design 

impact a potentially huge body of code, we should recognize its importance and ensure 

that software engineers are involved in the process of constructing simulation models. This 

is already common practice for large monolithic models, but should also be adopted by 

organizations that need smaller custom models. The proposed framework, when available, 

will impose a solid software engineering discipline and could relax the need for software 

engineering expertise at small organizations. 

Clarity and extensibility of models can be more important than run-time efficiency. 

Computer hardware and runtime is cheap compared to software development. Simulation 
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models should be written to be as generic as possible, due to unknown and unforseeable 

needs of future analysis. 
System experts should focus on component building, rather than model building, to 

support simulation throughout the system's lifecycle. Simulation experts should focus on 

modeling. A framework, such as the one proposed, can facilitate such an arrangement with 

potentially great rewards. 
There is a need for simulation support that spans the lifecycle of systems. Military 

systems remain in service longer than ever before and undergo numerous revisions. Simula­

tion support is required throughout this lifecycle, and should thus be viewed as an integral 

part of the system. 
A single model cannot span the entire lifecycle. Furthermore, since modeling re-

quirements vary widely depending on the customer, it is impossible to construct one model 

that suits all needs. The need for separate custom models necessitates development of 

components that can serve in more than one model. Perhaps more importantly, reusable 

components are needed to allow for rapid assembly of supporting code to for use in custom 

models for new components. 
In this thesis we developed models that demonstrate the feasibility of constructing 

small simulations with a reusable component framework. The approach requires thorough 

development of components in abstract terms. It is noteworthy that the most important 

part of the process, design of the model, does not require programming expertise. The 

abstract nature of the components suggests that the approach could be applied in larger 

scale simulation models as well, and that development of a more complete framework, such 

as the one proposed, is worthy of further investigation. 
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APPENDIX A. ABSTRACT SENSOR COMPONENT LISTINGS 

This appendix contains the Java interface files described in Chapter II. These files 

are part of the Java package simkit.javasim.ammt which is available in it's entirety at 

the URL below. All source code is available from Professor Buss's web pages at http: 

//dubhe.cc.nps.navy.mil/-ahbuss/. 

Responder 

Signa/Receiver 

Sensor ActiveSensor 

Commandab/e 

( Signal ) ... •t-------4( ActiveSensorSignal ) 

( SensorOwner ) 

( SensorUser ) 
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II FILE: SignalReceiver 
package simkit.javasim.ammt; 

import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import jgl.*; 

I** 
* Base interface for all simulation entities that 
* can receive signals of any kind. 
* <br> 
* ~author Kirk A. Stork 
* ~version 1. 0 
**I 

public interface SignalReceiver { 

I** 
Receive a signal. 
<br> 
If the signal is unkown, do nothing or print a warning, 
otherwise, handle the signal. 
**I 

public void receiveSignal( Signals); 
} 
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II FILE: Responder.java 
package simkit.javasim.ammt; 

import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import jgl.*; 

I** 
* Interface for objects that respond to signal 
* reception by instantiating a new signal and 
* sending it sowmewhere. 

* <br> 
* This interface is provided for typing purposes. 
* @author Kirk A. Stork 
* @version 1.0 

**I 

public interface Responder 
extends SignalReceiver 

{ 
} 
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II FILE Sensor.java 
package simkit.javasim.ammt; 
import scalar.*; 
import misc.•; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.•; 
import g2d.*; 
import jgl.*; 

I** 
*Base interface for all kinds of sensors. 
* <br> 
* The methods defined in this interface handle two 
* commands, and a request for the sensor's information. 
* Sensor information is information about the contacts 
* this sensor has detected, which will be sent to 
* the user specified. The information is not returned 
* because the request may require expending simulated 
* time. 

* 
* ~author Kirk A. Stork 
* ~version 1.0 
**I 

public interface Sensor 

{ 
I** 

extends SignalReceiver 

Process a request for information. 

This method is called by sensor users when they 
want the current contact information this sensor 
posesses. The request is processed and when this object 
is ready, it calls the SensorUser's receiveSensor!nfo 
method to deliver the information. 

**I 

public void send!nfo( SensorUser u); 

I** 
Turn this sensor on. 
<br> 
When this method is called, the sensor should be turned on, 
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if the sensor is capable of being turned on. 

**I 

public void activate(); 

I** 
Turn this sensor off. 
<br> 
When this method is called, the sensor should be turned off, 
if the sensor is capable of being turned off. 

**I 

public void deactivate(); 

public void receiveCommand( SensorCommand c); 

} 
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II FILE: ActiveSensor.java 

package simkit.javasim.ammt; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.avt.*; 
import g2d.*; 
import jgl.*; 

I** 
* Basse interface for active sensors. 

* 
* Active sensors are sensors that emit signals to 
* do their vork. 

* 
* ~author Kirk A. Stork 
*~version 1.0 
**/ 
public interface ActiveSensor 

{ 

I** 

extends Sensor 

Tell this sensor to generate a signal. 

This is included in the interface 
for the case vhen a single signal 
is to be generated by a command. 

**I 

public void generateSignal(); 

I** 
Change the sensor state to standby. 

Standby is a state sometimes available for 
sensors that have a long warmup period, or that 
are used intermittantly. 

**I 

public void standBy(); 
} 
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II FILE Signal.java 
package simkit.javasim.ammt; 
import jgl.*; 

I** 
* Base interface for signals. 
* <br> 
* A signal is a simulation entity that, in the abstract 
* sense, carries information from place to place. 
* Communication and sensors are the first uses of this 
* interface, although others are expected. 
* ~author Kirk A. Stork 
* ~version 1.0 

**I 

public interface Signal 
{ 

I** 
Tell this signal to propagate. 
<br> 
The specific meaning of propagation is highly implementation 
specific. The intention is for the signal to interact 
with the referee to discover how to get where its going. 
This might involve passage of simulation time. 

**I 

public void propagate(); 

I•* 
Set a property of the signal. 

**I 

II public void putProperty( String property, Object value); 

I** 
Get a property of the signal, return null silently if 
the asked for property does not exist (or print a warning). 

**I 

II public Object property(String property); 

I** 
Return a copy of the properties in this signal. 
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This method is used when a responder needs to construct 
a signal in response to a signal interaction. 

**I 

II public HashMap properties(); 

I** 
Call back for the SignalArrival event. 
<br> 
~see SignalArrivalEVT 

**I 

public Sensor creator(); 
II public void handleArrivalEVT ( SignalReceiver receiver); 

public void dispose(); 
} 
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II FILE Signal.java 
package simkit.javasim.ammt; 
import jgl.*; 

I** 
* Interface for Active Sensor Signals. 
* ~author Kirk A. Stork 
* ~version 1.0 

**I 

public interface ActiveSensorSignal 
extends Signal 

{ 

I** 
Return a reference to the creator of this signal. 

This method is used when a responder needs to construct 
a signal in response to a signal interaction. 

**I 

II public SignalSender creator(); 

I** 
Indicate this signal to be the product of a signal/responder 
interaction. 
<br> 
This method should cause the signal to return to the 
active sensor that created the signal whos interaction 
instantiated this signal. No other interactions should 
occur between this signal and other entities. 

*I 
public void returnToSender(); 

} 
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II FILE SensorOwner.java 
package simkit.javasim.ammt; 
import jgl.*; 

I** 
* Base interface for entities that can own sensors 
* <br> 
* A sensor can have only one owner. O,wnership implies 
* the ability to send the sensor operational commands. 

* 
* ~author Kirk A. Stork 
* ~version 1.0 

**I 

public interface SensorOwner 
{ 

I** 
Accept sensor status information. 
<br> 
This is called by sensor objects when they want 
to tell their owner that sensor status has changed. 

**I 

public void receiveSensorStatus( SensorStatus s); 
} 
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II FILE SensorUser.java 
package simkit.javasim.ammt; 
import jgl.*; 

I** 
* Base interface for entities that can use sensor 
* information. 
* <br> 
* ~author Kirk A. Stork 
* ~version 1.0 
**I 

public interface SensorUser 
{ 

I** 
Accept sensor information. 
<br> 
This is called by sensor objects when they want 
to deliver contact information to this user. 

**I 

public void receiveSensorinfo( Sensor!nfo info); 
} 
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APPENDIX B. COOKIE CUTTER SENSOR DEMONSTRATION 
LISTINGS 

This appendix contains the Java classes described in Chapter III for the Cookie 

Cutter Sensor barrier search model. All source code is available from Professor Buss's web 

pages at http: I /dubhe. cc .nps .navy .mil;-ahbuss/. 
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II FILE: CCActiveSensor.java 
import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import jgl.*; 
import java.io.*; 

public class CCActiveSensor 
extends SimEntityimpl 
implements ActiveSensor 

{ 

Length maxRange_; 
Platform 
boolean 
String 
PrintStream 
DataAccumulator 

owner_; 
wait_for_data_requests_; 
status_; 
out; 
myStats; 

boolean detected; 

{ 

double glimpse; 
CCBarrier theModel_; 

public CCActiveSensor( String 
Platform 
boolean 
Length 
CCBarrier 

super(name); 
theModel_ = theSim; 
owner_ = owner; 

name, 
owner, 
wait_for_data_requests, 
maxRange, 
theSim ) 

wait_for_data_requests_ 
maxRange_ = maxRange; 

wait_for_data_requests; 

myStats = null; 
try{ 

out= new PrintStream(new FileOutputStream("CCActiveSensor.log")); 
} catch ( Exception e) { 

System.err.println(e); 
} 

detected= false; 
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} 

public void doSensorCommand(SensorCommand c) { 

} 

if ( tracing ) Trace.msg( Trace.MSG, 
"command() in: " + 
this.toString() + 
" argument : " + 
c . toString () 
) ; 

String status= (String)(c.get("Change")); 
if ( status != null ) { 

status_ = status; 
changeStatus () ; 

} else { 
System.err.println("WARNING: Sensor command not understood"); 

} 

private void changeStatus() { 

} 

if (status_.equals("Active")) { 
generateSignal(); 
CCGenerateSignalEVT e = nev CCGenerateSignalEVT(this); 
e.vaitDelay(nev Time(O.O)); 
detected = false; 

} 

if (status_.equals("Passive")) { 
this.interrupt("CCGenerateSignalEVT"); 

} 

public void setGlimpse(double interval) { 
glimpse = interval; 

} 

public void generateSignal() { 

} 

if ( detected ) { return; } 
CCActiveSensorSignal s 
nev CCActiveSensorSignal( this, ovner_.position(), maxRange_); 
s. propagate() ; 
CCGenerateSignalEVT e = nev CCGenerateSignalEVT(this); 
e.vaitDelay(nev Time(glimpse)); 
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public void receiveSignal( Signal s ){ 
if ( s instanceof CCActiveSensorSignal ) { 

Object result= ((CCActiveSensorSignal)s).interactionLocation(); 
if ( result != null && s.creator() == this ) { 

detected = true; 
theModel_.doEndSimEVT(this); 

} 

} 

} 

public void standBy() { 
} 

public void activate() { 
} 

public void deactivate() { 
} 

public void sendlnfo(SensorUser u) { 
} 

public void receiveCommand( SensorCommand c) { 
doSensorCommand(c); 

} 

public void reportTo( DataAccumulator stats ) { 
myStats = stats; 

} 

public void reset() { 

} 

if ( detected ) { 
myStats.getSample(1.0); 

} else { 
myStats.getSample(O.O); 

} 

detected = false; 

} // class SimpleRadar 
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class CCGenerateSignalEVT extends SimEvent 
{ 

} 

private boolean localdisposed; 

public CCGenerateSignalEVT(CCActiveSensor o) { 
super(o); 
localdisposed = false; 

} 

public void onRun() { 
((CCActiveSensor)myOwner).generateSignal(); 

} 

public void oninterrupt(){} 

public void dispose() { 
super.dispose(); 

} 

if (localdisposed) return; 
localdisposed=true; 

public void finalize() { 
super.finalize(); 

} 

if ( localdisposed) return; 
this.dispose(); 
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II FILE: CCActiveSensorSignal.java 
import scalar.*; 
import misc.•; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.avt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import jgl.*; 
import java.util.*; 

public class CCActiveSensorSignal 
implements ActiveSensorSignal 

{ 

private 
private 
private 
private 
private 

CCActiveSensor creator_; 
Time creationTime_, interactionTime_; 
Position creationLocation_, interactionLocation_; 
Length maxRange_; 

boolean CCActiveSensorSignalDisposed; 

public CCActiveSensorSignal( CCActiveSensor owner, 

} 

creator_ 
creationTime_ 
creationLocation_ 
maxRange_ 
interactionLocation_ 

Position startingPoint, 
Length maxR ) { 

owner; 
TimeMaster.SimTime(); 
startingPoint; 
maxR; 
null; 

interactionTime_ null; 
CCActiveSensorSignalDisposed false; 

public CCActiveSensorSignal( CCActiveSensorSignal original_signal, 
Position loc ) 

{ 

} 

creator_ original_signal.creator_; 
creationTime_ = original_signal.creationTime_; 
creationLocation_ = original_signal.creationLocation_; 
maxRange_ = original_signal.maxRange_; 
interactionTime_ = TimeMaster.SimTime(); 
interactionLocation_ = loc; 
CCActiveSensorSignalDisposed = false; 
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public Sensor creator() { 
return creator_; 

} 

public Position creationLocation() { 
return creationLocation_; 

} 

public void propagate() { 

} 

Responder est; 
Position cst_offset, cst_pos; 

for( Enumeration e = Referee.responders(); 
e.hasMoreElements();) { 

est 
cst_pos 
cst_offset 

double dist 

= (Responder)(e.nextElement()); 
((Positionable)cst).position(); 
(Position)(cst_pos.subtract 

( creationLocation_) ); 
cst_offset.length(); 

if ( dist <= maxRange_.value() ) { 
cst.receiveSignal( this); 

} 
} 
this.finalize(); 

public String toString() { 
return super.toString(); 

} 

public Position interactionLocation() { 
return interactionLocation_; 

} 

public void returnToSender() { 
((SignalReceiver)creator_) 

.receiveSignal(this); 
this.finalize(); 

} 

public void dispose() { 
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if (CCActiveSensorSignalDisposed) return; 
creator_ 
creationTime_ 
creationLocation_ 
maxRange_ 
interactionLocation_ 

= null; 
= null; 
= null; 
= null; 

null; 
interactionTime_ null; 
CCActiveSensorSignalDisposed = true; 

}· 

public void finalize() { 
dispose(); 

} 

} // class CookieCutterRadarSignal 
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II FILE: CCActiveSignalResponder.java 

import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.avt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import jgl.*; 
import java.util.*; 

public class CCActiveSignalResponder 
implements Responder 

{ 

} 

private Positionable ovner_; 

public CCActiveSignalResponder(SignalReceiver ovner) 
throvs MoveNotSupportedException 

{ 

} 

if ( ovner instanceof Positionable ) { 
ovner_ = (Positionable)ovner; 

} 
else throv nev MoveNotSupportedException(); 

public void receiveSignal(Signal s) { 

} 

if ( s instanceof CCActiveSensorSignal ) { 

} 

CCActiveSensorSignal response = 
nev CCActiveSensorSignal( 

(CCActiveSensorSignal)s, 
ovner_.position()); 

response.returnToSender(); 

70 



II FILE: SimpleShip.java 
import scalar.•; 
import misc.•; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import jgl.*; 
import java.util.*; 

I** 
Target ship player for Modell. 
•I 

public class SimpleShip 
extends Platform 
implements SensorOwner, SensorUser, Commandable, Responder 

{ 

private Time nextManeuverTime, legtime; 
private Bearing coursel, course2; 
private int curCourseNo; 
private Length leg; 
private Array waypoints; 
private CCBarrier theModel; 

public SimpleShip( String name, CCBarrier theSim ) { 
super(name); 
nextManeuverTime = null; 
responders_= new HashSet(); 
sensors_ =new HashSet(); 
theModel = theSim; 
Referee.registerPlayer(this); 

} 

private void doReportWhen( ManeuverCommand c) { 
Length 1 = (Length)(c.get("Distance Travelled")); 
Time delay= l.divide(speed()); 

} 

WaypointArrivalEVT e =new WaypointArrivalEVT(this); 
e.waitDelay(delay); 

public void doWaypointArrivalEVT() { 
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theModel.doEndSimEVT(this); 
} 

private void doStandardPattern(ManeuverCommand c) { 
if ( ((String)(c.get("Pattern"))).equals("Barrier")) { 

doBarrierPattern(c); 
} 

else { 
System.err.println("Un.known Maneuver command received by " + 

this); 
} 

} 

private void doBarrierPattern( ManeuverCommand c) { 
waypoints =new Array(); 

} 

waypoints.add(new Position(position())); 
waypoints.add(((Position)(c.get("End")))); 
setSpeed((Velocity)(c.get("Speed"))); 
course2 ((Position)(waypoints.at(1))) 

.bearingFrom((Position)(waypoints.at(O))); 
course1 ((Position)(waypoints.at(O))) 

.bearingFrom((Position)(waypoints.at(1))); 
leg= new Length(((Position)(waypoints.at(O))). 

subtract((Position)(waypoints.at(1))). 
length()); 

legtime = leg.divide(speed()); 
setCourse(new Bearing(course2)); 
curCourseNo = 2; 

SimpleShipManeverEVT e new SimpleShipManeverEVT(this); 
e.waitDelay(legtime); 

public void doManeuverEVT() { 
updatePosition(); 

switch(curCourseNo) { 
case 1: 

II this means the next course should be to point 1 
this.setCourse(new Bearing(course2)); 
curCourseNo = 2; 
break; 
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} 

} 

case 2: 
II this means the next course should be to point 2 
this.setCourse(new Bearing(course1)); 
curCourseNo = 1; 
break; 

default: 
System.err.println("Oh-Oh, $omething is wrong"); 

SimpleShipManeverEVT e =new SimpleShipManeverEVT(this); 

e.waitDelay(legtime); 

public void receiveSensorStatus(SensorStatus s){} 
public void receiveSensorinfo(Sensorinfo i){} 

II========================================================================= 

·li COMMAND HANDLING 
II========================================================================= 

public void receiveCommand( Command c ) { 

} 

if ( c instanceof ManeuverCommand ) { 
doManeuverCommand( (ManeuverCommand)c ); 

} else 
if ( c instanceof SensorCommand ) { 

doSensorCommand( (SensorCommand)c ); 
} 

II========================================================================= 

II SENSORS 
II========================================================================= 

protected HashSet sensors_; 

public void addSensor( Sensor s) { 
sensors_.put(s); 

} 

public void removeSensor( Sensor s) { 
sensors_.remove(s); 

} 

II========================================================================= 
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II RESPONDERS 
II========================================================================= 

protected HashSet responders_; 

public void addResponder( Responder r) { 
responders_.put(r); 

} 

public void removeResponder( Responder r) { 
responders_.remove(r); 

} 

II========================================================================= 
II SIGNAL RECEPTION 
II========================================================================= 

public void receiveSignal( Signal s ) { 

} 

for (Enumeration e = responders_.elements(); 
e.hasMoreElements();) { 

((Responder)(e.nextElement())).receiveSignal(s); 
} 

for (Enumeration e = sensors_.elements(); 
e.hasMoreElements();) { 

((Sensor)(e.nextElement())).receiveSignal(s); 
} 

public boolean knowsCommand( Command c ) { 
II this has to get more useful, but for now its ok 

if ( ( c instanceof SensorCommand) I I 

} 

} 

( c instanceof ManeuverCommand ) ) { 
return true; 

return false; 

public void doManeuverCommand( ManeuverCommand c ) { 

String maneuverKind = (String)(c.get("Kind")); 

if (maneuverKind.equals("CourseiSpeed Change")) { 
this.setCourse(((Bearing)(c.get("Course")))); 
this.setSpeed(((Velocity)(c.get("Speed")))); 
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} 

} 

if (maneuverKind.equals("Standard Pattern")) { 
doStandardPattern(c); 

} 

if (maneuverKind.equals("Report When")) { 
doReportWhen(c); 

} 

protected void doSensorCommand( SensorCommand c ) { 

} 

String sensorType = (String)(c.get("SensorType")); 

if (sensorType.equals("All")) { 
for (Enumeration e = sensors_.elements(); 

e.hasMoreElements(); ) { 

((Sensor)(e.nextElement())).receiveCommand(c); 
} 

} else { 
System.err.println( 

} 

"Don't knoll holl to handle sensor commands for " + 
"sensors of kind"+ sensorType); 

} // class SimpleShip 

class SimpleShipManeverEVT extends SimEvent 
{ 

} 

public SimpleShipManeverEVT(SimEntityimpl Ollner) { 
super(ollner); 

} 

public void onRun() { 
((SimpleShip)(myDllner)).doManeuverEVT(); 

} 

public void oninterrupt() {} 
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class WaypointArrivalEVT extends SimEvent 
{ 

} 

public WaypointArrivalEVT(SimEntityimpl ov.ner) { 
super(ov.ner); 

} 

public void onRun() { 
((SimpleShip)(myOv.ner)).doWaypointArrivalEVT(); 

} 

public void onlnterrupt() {} 
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II FILE CCBarrier.java 
import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import java.io.*; 
import java.util.*; 

I** 
Simple Barrier Search simulation 

*I 

public class CCBarrier extends SimEntityimpl 
{ 

static int nTrials, trialNo, i; 
static Date startTime, endTime; 
static Histogram batchStats = 

new Histogram("Batch Means", true); 
static PrintStream out; 
static Format mf = new Format("%12.6f"); 

public static void main( String args[]) 
throws Exception 

{ 

if ( args.length != 6 ) { 
System.out.println("Wrong number of arguments"); 
System.out.println( 

" usage: java CCBarrier <Number of Batches> "+ 
" <Number of Trials per batch>" + 
" <Searcher Speed> <Target Speed>" + 
"<Glimpse Interval> <seed>"); 

System.exit(1); 
} 

TimeMaster.reset(); 
out= new PrintStream(new FileDutputStream("CCBarrier_Results.dat")); 

int batches= Integer.parseint(args[O]); 
nTrials = Integer.parseint( args[1] ); 
double ss (Double.value0f(args[2])).doubleValue(); 
doublets= (Double.value0f(args[3])).doubleValue(); 

77 



} 

double glimpse= (Double.valueOf(args[4])).doubleValue(); 
long seed= Long.parseLong(args[5]); 
startTime = nev Date(); 
trialNo = 0; 
CCBarrier theModel = nev CCBarrier( ts, ss); 

theModel.targetPositRand.SetSeed(seed); 
theModel. theSensor. setGlimpse (gl,impse); 
for ( i = 0; i < batches; i++){ 
trialNo = 0; 
vhile( trialNo < nTrials ) { 

theModel.runSim(); 
theModel.theSensor.reset(); 
trialNo++; 

} 

endTime = nev Date(); 

System.out.println("Number of Trials: " + 
theModel.searchSuccessStats.count()); 

System.out.println("Avg Detection Rate: " + 
theModel.searchSuccessStats.mean()); 

out .println(i + "\t" + mf .form(theModel. searchSuccessStats .mean()) + 
"\t" + mf.form(theModel.searchSuccessStats.variance())); 

System.out.println("Cumulative Run Time = " + 
((endTime.getTime() - startTime.getTime())/1000.0) + 
"sec"); 

System.out .println("Next Seed = " +theModel. targetPositRand. seed()); 

batchStats.getSample(theModel.searchSuccessStats.mean()); 
theModel.searchSuccessStats.reset(); 
} 

batchStats.makeHistogramPlotDisplay(/*bin vidth*/0.1); 
batchStats.makeMovingAvePlotDisplay(); 
batchStats.makeReportDisplay(); 

SimpleShip searcher, target; 
SimpleEnvironment theEnvironment; 
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Command Cj 

double 
RandomStream 
DataAccumulator 
CCActiveSensor 
ClockFrame 

d, dd,searchSpeed_,targetSpeed_; 
targetPositRand; 
searchSuccessStats; 
theSensor; 
clock; 

Position startSearchAt; 

public CCBarrier(double targetSpeed, double searchSpeed) { 
searcher =new SimpleShip("USS Searcher", this); 
target = new SimpleShip("USS Target", this); 
theEnvironment =new SimpleEnvironment(l.O); 
searchSuccessStats new DataAccumulator( 

"Search Success", false); 
targetPositRand =new RandomStream(); 
targetSpeed_=targetSpeed; 
searchSpeed_=searchSpeed; 
d ..; 0; 

double dd; 

theSensor =new CCActiveSensor( "Cookie Cutter MK I", 
searcher, 
false, 
Length.fromNMValue(10.0), 
this); 

theSensor.reportTo( searchSuccessStats); 

searcher.addSensor(theSensor); 

target.addResponder( new CCActiveSignalResponder( 
target)); 

try{ 
out = new PrintStream( 

new FileOutputStream("CCBarrier.log")); 
} catch ( Exception e) { 

System.err.println(e); 
} 

searcher.setPosition( new Position( 
Length.fromNMValue(10.0), 
new Length(O. 0), 
new Length(O.O) ) ); 

c =new ManeuverCommand(); 
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} 

c.put("Kind", "Standard Pattern"); 
c. put ("Pattern", "Barrier") ; 
c.put("End", new Position( Length.fromNMValue(70.0), 

new Length(O.O), 
new Length(O.O))); 

c.put("Speed", Velocity.fromKnotValue( searchSpeed_)); 
searcher.receiveCommand( c); 

c =new SensorCommand(); 
c .put("Change", "Active"); 
c .put ("SensorType", "All"); 
searcher.receiveCommand( c); 

public void runSim() { 

dd = targetPositRand.Uniform(0,80); 

target.setPosition( new Position( Length.fromNMValue(dd), 
Length.fromNMValue(10.0), 
new Length(O.O) )); 

c =new ManeuverCommand(); 
c.put("Kind", "Course/Speed Change"); 
c.put("Course", new Bearing( 180.0, 0.0, 0.0)); 
c.put("Speed", Velocity.fromKnotValue( targetSpeed_)); 
target.receiveCommand( c); 

c =new ManeuverCommand(); 
c.put("Kind", "Report When"); 
c .put ("Distance Travelled", Length.fromNMValue(20 .0)); 
target.receiveCommand(c); 

II Time delay= (Length.fromNMValue(20.0)). 
II divide(Velocity. 
I I fromKnotValue ( targetSpeed_)); 
II System.out.println("Barrier penetration will take"+ delay); 
II SimEvent e =new EndSimEVT(this); 
II e.waitDelay(delay); 
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TimeMaster.startSimulation(); 
} 

public void doEndSimEVT(Object caller) { 
II searcher.interruptAll(); 

target.interruptAll(); 
II theSensor.interruptAll(); 
II this.interruptAll(); 

TimeMaster.stop(); 
} 

} 

II=================================================== 
class EndSimEVT extends SimEvent 
{ 

} 

public EndSimEVT(SimEntitylmpl owner) { 
super(owner); 

} 

public void onRun() { 
((CCBarrier)(myOwner)).doEndSimEVT(this); 

} 

public void onlnterrupt() {} 

II=================================================== 
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APPENDIX C. MONOPULSE RADAR DEMONSTRATION 
LISTINGS 

This appendix contains the Java classes described in Chapter III for the Monopulse 

Radar model. All source code is available from Professor Buss's web pages at http: I I 

dubhe.cc.nps.navy.mill-ahbussl. 
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II File MonopulseRadar.java 
import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import java.io.*; 
import java.util.*; 

public class MonopulseRadar 
extends SimEntitylmpl 
implements ActiveSensor 

{ 

Platform 
boolean 
String 

owner_; 
wait_for_data_requests_; 
status_; 
out; Print Stream 

DataAccumulator 
boolean 

myStats; 
detected; 

Time glimpselnterval_; 
Length rangeScale_; 
PulseTrainSim theModel_; 
Power transmitPower_; 
int nPulses_, nReturns; 
double antennaGain_, antennaAperature_, 

integrationEfficiency_, threashold_; 
PulseTrain s_; 
RandomStream noiseStream; 
double noisedB_; 

public MonopulseRadar( String name, 
Platform owner, 
boolean wait_for_data_requests, 
Length maxRange, 
Power transmitPower, 
double gain, 
double efficiency, 
double aperature, 
double threashold, 
int nPulses, 
double rneanNoiseDB, 
PulseTrainSirn theSirn ) 
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{ 

} 

super(name); 
noisedB_ =meanNoiseDB; 
noiseStream =new RandomStream((int)7); 
owner_ = owner; 
wait_for_data_requests_ = wait_for_data_requests; 
rangeScale_ = maxRange; 
theModel_ = theSim; 
myStats = null; 
detected= false; 
transmitPower_ =transmitPower; 
nPulses_=nPulses; 
antennaGain_ = gain; 
antennaAperature_ = aperature; 
integrationEfficiency_ = efficiency; 
threashold_=threashold; 
glimpseinterval_ =new Time(O.O); 
try{ 

out= new PrintStream(new FileOutputStream("Radar.log")); 
} catch ( Exception e) { 

System.err.println(e); 
} 

public void doSensorCommand(SensorCommand c) { 

} 

if ( tracing ) Trace.msg( Trace.MSG, 
"command() in: " + 
this.toString() + 
" argument : " + 
c. toStringO 
) ; 

String status= (String)(c.get("Change")); 
if ( status != null ) { 

status_ = status; 
changeStatus 0 ; 

} else { 
System.err.println("WARNING: Sensor command not understood"); 

} 

private void changeStatus() { 
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} 

if (status_.equals("Active")) { 
GeneratePulseTrainEVT 

} 

e =new GeneratePulseTrainEVT(this); 
e.waitDelay(new Time(O.O)); 

if (status_.equals("Passive")) { 
this.interrupt("GeneratePulseTrainEVT"); 

} 

public void setGlimpse(Time interval) { 
glimpselnterval_ = interval; 

} 

public void setRangeScale(Length range) { 
rangeScale_ = range; 

} 

public void generateSignal() { 

} 

if ( s_ !=null) s_.finalize(); 
if ( detected ) { return; } 

s = 
new PulseTrain( this, 

owner_.position(), 
transmitPower_, 
range Scale_ 
) ; 

s_. propagate 0 ; 

GeneratePulseTrainEVT 
e =new GeneratePulseTrainEVT(this); 

e.waitDelay(glimpselnterval_); 

public void receiveSignal(Signal s) 
{ 

if ( (s instanceof PulseTrain) && 
((PulseTrain)s).creator() ==this) { 

nReturns++; 
Power signalStrength = (((PulseTrain)s).returnedPower()); 
double snr = signalStrength.value() * 

antennaGain_ * 
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} 

} 

antennaAperature_ * 
integrationEfficiency_ * 
nPulses_; 

snr -= noiseStream.BoxMuller(noisedB_, noisedB_/2.0); 
if ( snr > threashold_ ) { 

detected = true; 
out.println(TimeMaster.SimTime() + 

11 detect 11 + theModel_.i + 11 \t 11 + 

theModel_.trialNo + 11 \t 11 + 
snr + 11 \t 11 + 
(((PulseTrain)s).interactionLocation_.subtract( 
owner_.position())).length()); 

theModel_.doEndSimEVT(this); 
} else { 

} 

out.println(TimeMaster.SimTime() + 
11 nodetect 11 + theModel_.i + 11 \t 11 + 

theModel_.trialNo + 11 \t 11 + 
snr + "\t 11 + 
(((PulseTrain)s).interactionLocation_.subtract( 
owner_.position())).length()); 

s. dispose 0 ; 

public void standBy() { 
} 

public void activate() { 
} 

public void deactivate() { 
} 

public void sendinfo(SensorUser u) { 
} 

public void receiveCommand( SensorCommand c) { 
doSensorCommand(c); 

} 

public void reportTo( DataAccumulator stats ) { 
myStats = stats; 
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} 

public void reset() { 

} 

if ( detected ) { 
myStats.getSample(1.0); 

} else { 
myStats.getSample(O.O); 

} 

nReturns = 0 ; 
detected = false; 

} // class MonopulseRadar 

class GeneratePulseTrainEVT extends SimEvent 
{ 

} 

private boolean localdisposed; 

public GeneratePulseTrainEVT(MonopulseRadar o) { 
super(o); 

} 

public void onRun() { 
( (MonopulseRadar) myOvner) .. generateSignal 0 ; 

} 

public void oninterrupt(){} 
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//FILE: PulseTrain.java 
import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import java.io.*; 
import java.util.*; 

public class PulseTrain 
extends SimEntitylmpl 
implements ActiveSensorSignal 

{ 
private static final double C = 299792458.0; 

private MonopulseRadar creator_; 
private Time 
Position 

private Power 

private boolean 
private Length 
private double 
private static 

creationTime_, interactionTime_; 
creationLocation_, interactionLocation_; 

transmittedPower_, 
reflectedPower_, 
receivedPower_, 
returnedPower_; 
PT_Disposed; 
rangeScale_; 
partialSNR; 

PrintStream out; 
static boolean inited=false; 

II Constructor for outgoing signals 

public PulseTrain( MonopulseRadar 
Position 

owner, 
startingPoint, 
power, 
rangeScale ) 

{ 

Power 
Length 

creator_ 
creation Time_ 
creationLocation_ 
transmittedPower_ 
range Scale_ 

owner; 
TimeMaster.SimTime(); 
startingPoint; 
power; 
rangeScale; 
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} 

interactionTime_ 
reflectedPover_ 
receivedPover_ 
interactionLocation_ 
PT_Disposed 

if ( ! ini ted ) { 
try{ 

null; 
null; 

= null; 
null; 

= false; 

out =nev PrintStream(nev FileOutputStream("train.log")); 
} catch ( Exception e) { 

System.err.println(e); 
} 

inited = true; 
} 

II constructor for reflected signals 

public PulseTrain( PulseTrain original_signal, 

{ 

double reflectionRatio, 
Position interactionLocation 

try { 
creator_ 
creationTime_ 
creationLocation_ 
transmittedPover_ 
rangeScale_ 

interactionTime_ 
interactionLocation_ 

PT_Disposed 

= original_signal.creator_; 
original_signal.creationTime_; 

= original_signal.creationLocation_; 
original_signal.transmittedPover_; 

= original_signal.rangeScale_; 

= TimeMaster.SimTime(); 
interactionLocation; 

= false; 

II calculate received paver at target 
Length dist = nev Length((creationLocation_. 

subtract(interactionLocation_)) 
.length()); 

double proploss = dist.value() * dist.value(); 
proploss proploss* 4.0 * Math.PI; 
receivedPover_ = (Pover)(transmittedPover_.divide(proploss)); 
II really vlm-2 

II apply the ratio from the interaction 
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} 

out.println(TimeMaster.SimTimeO + 11 \t" + 
receivedPower_ + 11 Delivered at range " + 

dist); 

reflectedPower_ = receivedPower_.multiply(reflectionRatio); 

II w again 

out .println(" " + "\t" + 
reflectedPower_ + 11 reflected"); 

} catch (Exception e) { 
System.err.println(e); 
e.printStackTrace(); 

} 

public void propagate() { 
Responder est; 
Position cst_offset, cst_pos; 
Time delay; 

for( Enumeration e = Referee.responders(); 
e.hasMoreElements();) { 

} 

est 
cst_pos 
cst_offset 

(Responder)(e.nextElement()); 
((Positionable)cst).position(); 
(Position)(cst_pos.subtract 

double dist 
( creationLocation_) ); 

cst_offset.length(); 

if ( dist <= rangeScale_.value() ) { 
II calculate arrival delay for this potential contact 

if ( dist > 0) { 
delay= new Time(distiC); 
PulseArrivalEVT evt =new PulseArrivalEVT(this, est); 
evt.waitDelay(delay); 

} 

} 

Time dieAt =new Time(rangeScale_.value() I C); 
PulseDeathEVT evt =new PulseDeathEVT(this); 
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evt.waitDelay(dieAt); 
} 

public void doPulseDeathEVT() { 
this.dispose(); 

} 

public void doPulseArrivalEVT( SignalReceiver destination) { 
destination.receiveSignal(this); 

} 

public void doPulseReturnEVT( SignalReceiver destination) { 
destination.receiveSignal(this); 
this.dispose(); 

} 

public Sensor creator() { 
return creator_; 

} 

public Position creationLocation() { 
return creationLocation_; 

} 

II method for sensor to get the data out of 
II the signal 

public Power returnedPower() { 
return returnedPower_; 

} 

public String toString() { 
return super.toString(); 

} 

public void returnToSender() { 
double dist = ((creator_.owner_.position()) 

.subtract(interactionLocation_)).length(); 
double proploss dist * dist; 
proploss = proploss* 4.0 * Math.PI; 
returnedPower_ = reflectedPower_.divide(proploss); 
double delay = distiC; 
PulseReturnEVT e =new PulseReturnEVT(this, creator_); 
e.waitDelay(new Time(delay)); 
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} 

public void dispose() { 

} 

if (PT_Disposed) return; 
creator_ = null; 
creationTime_ 
creationLocation_ 
transmittedPover_ 

= null; 
= null; 

null; 
interactionTime_ = null; 
reflectedPover_ = null; 
rangeScale_ = null; 
interactionLocation_ = null; 
PT_Disposed =true; 

public void finalize() { 
super.finalize(); //let the SimEntitylmpl do its cleanup 
dispose(); 

} 

} // class PulseTrain 

class PulseArrivalEVT extends SimEvent 
{ 

private SignalReceiver destination_; 

public PulseArrivalEVT( PulseTrain ovner, 
SignalReceiver destination) { 

super(ovner); 
destination_ = destination; 

} 

public void onRun() { 
((PulseTrain)myDvner).doPulseArrivalEVT(destination_); 

} 

} // class PulseArrivalEVT 

class PulseReturnEVT extends SimEvent 
{ 

private SignalReceiver destination_; 
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public PulseReturnEVT( PulseTrain ovner, 
SignalReceiver destination) { 

super(ovner); 
destination_ = destination; 

} 

public void onRun() { 
((PulseTrain)myOvner).doPulseReturnEVT(destination_); 

} 

} // class PulseArrivalEVT 

class PulseDeathEVT extends SimEvent 
{ 

public PulseDeathEVT( PulseTrain 
super(ovner); 

} 

ovner) { 

public void onRun() { 
((PulseTrain)myOvner).doPulseDeathEVT(); 

} 

} // class PulseArrivalEVT 
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II FILE: PulseTrainResponder.java 

import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.awt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import jgl.*; 
import java.util.*; 

public class PulseTrainResponder 
implements Responder 

{ 
private static RandomStream rcs_rand = 

new RandomStream( (int)9); 

private Positionable owner_; 
private double sigma_rcs_; 
private double alpha, lambda; 

public PulseTrainResponder(SignalReceiver owner) 
throws MoveNotSupportedException 

{ 

} 

if ( owner instanceof Positionable ) { 
owner_ = (Positionable)owner; 

} 
else throw new MoveNotSupportedException(); 

public void setRCS(double sigma_rcs) { 
sigma_rcs_ = sigma_rcs; 
alpha = 2.0; 
lambda= sigma_rcsl2.0; 

} 

public void receiveSignal(Signal s) { 
if ( s instanceof PulseTrain ) { 

II get a random value for my res 
PulseTrain response = 
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} 

} 
} 

new PulseTrain( (PulseTrain)s, 
rcs_rand.Gamma(alpha, lambda), 
owner_.position()); 

response.returnToSender(); 
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II FILE: SimpleShip.java 
import scalar.*; 
import misc.*; 
import simkit.*; 
import simkit.javasim.*; 
import simkit.avt.*; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import jgl.*; 
import java.util.*; 

I** 
Target ship player for Modell. 

*I 

public class SimpleShip 
extends Platform 
implements SensorOvner, SensorUser, Commandable, Responder 

{ 
private Time nextManeuverTime, legtime; 
private Bearing course!, course2; 
private int curCourseNo; 
private Length leg; 
private Array vaypoints; 
private PulseTrainSim theModel; 

public SimpleShip( String name, PulseTrainSim theSim ) { 
super(name); 
nextManeuverTime = null; 
responders_= nev HashSet(); 
sensors = nev HashSet(); 
theModel = theSim; 
Referee.registerPlayer(this); 

} 

private void doReportWhen( ManeuverCommand c) { 
Length 1 = (Length)(c.get("Distance Travelled")); 
Time delay= l.divide(speed()); 

} 

WaypointArrivalEVT e = nev WaypointArrivalEVT(this); 
e.vaitDelay(delay); 

public void doWaypointArrivalEVT() { 
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theModel.doEndSimEVT(this); 
} 

private void doStandardPattern(ManeuverCommand c) { 

} 

if ( ((String)(c.get("Pattern"))).equals("Barrier")) { 
doBarrierPattern(c); 

} 

else { 

} 

System.err.println("Unkno'Wll Maneuver command received by " + 
this); 

private void doBarrierPattern( ManeuverCommand c) { 
waypoints =new Array(); 

} 

waypoints.add(new Position(position())); 
waypoints.add(((Position)(c.get("End")))); 
setSpeed((Velocity)(c.get("Speed"))); 
course2 ((Position)(waypoints.at(l))) 

.bearingFrom((Position)(waypoints.at(O))); 
course! ((Position)(waypoints.at(O))) 

.bearingFrom((Position)(waypoints.at(l))); 
leg= new Length(((Position)(waypoints.at(O))). 

subtract((Position)(waypoints.at(l))). 
length()); 

legtime = leg.divide(speed()); 
setCourse(new Bearing(course2)); 
curCourseNo = 2; 

SimpleShipManeverEVT e new SimpleShipManeverEVT(this); 
e.waitDelay(legtime); 

public void doManeuverEVT() { 
updatePosition(); 

switch(curCourseNo) { 
case 1: 

II this means the next course should be to point 1 
this.setCourse(new Bearing(course2)); 
curCourseNo = 2; 
break; 
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} 

} 

case 2: 
II this means the next course should be to point 2 

this.setCourse(new Bearing(course1)); 

curCourseNo = 1; 
break; 

default: 
System.err.println("Oh-Oh, something is wrong"); 

SimpleShipManeverEVT e =new SimpleShipManeverEVT(this); 

e.waitDelay(legtime); 

public void receiveSensorStatus(SensorStatus s){} 

public void receiveSensorlnfo(Sensorlnfo i){} 

II========================================================================= 

II COMMAND HANDLING 
II========================================================================= 

public void receiveCommand( Command c ) { 

} 

if ( c instanceof ManeuverCommand ) { 

doManeuverCommand( (ManeuverCommand)c ); 

} else 
if ( c instanceof SensorCommand ) { 

doSensorCommand( (SensorCommand)c ); 
} 

II========================================================================= 

II SENSORS 
II========================================================================= 

protected HashSet sensors_; 

public void addSensor( Sensor s) { 
sensors_.put(s); 

} 

public void removeSensor( Sensor s) { 

sensors_.remove(s); 
} 

II========================================================================= 
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II RESPONDERS 
II========================================================================= 

protected HashSet responders_; 

public void addResponder( Responder r) { 
responders_.put(r); 

} 

public void removeResponder( Responder r) { 
responders_.remove(r); 

} 

II========================================================================= 
II SIGNAL RECEPTION 
II========================================================================= 

public void receiveSignal( Signal s ) { 

} 

for ( Enumeration e = responders_. elements(); 
e.hasMoreElements();) { 

((Responder)(e.nextElement())).receiveSignal(s); 
} 

for (Enumeration e = sensors_.elements(); 
e.hasMoreElements();) { 

((Sensor)(e.nextElement())).receiveSignal(s); 
} 

public boolean knowsCommand( Command c ) { 
II this has to get more useful, but for now its ok 

if ( ( c instanceof SensorCommand) I I 

} 

} 

( c instanceof ManeuverCommand ) ) { 
return true; 

return false; 

public void doManeuverCommand( ManeuverCommand c ) { 

String maneuverKind = (String)(c.get("Kind")); 

if (maneuverKind.equals("CourseiSpeed Change")) { 

this.setCourse(((Bearing)(c.get("Course")))); 
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} 

this.setSpeed(((Velocity)(c.get("Speed")))); 
} 
if (maneuverKind.equals("Standard Pattern")) { 

doStandardPattern(c); 
} 
if (maneuverKind.equals("Report When")) { 

doReportWhen(c); 
} 

protected void doSensorCommand( SensorCommand c ) { 

} 

String sensorType = (String)(c.get("SensorType")); 

if (sensorType.equals("All")) { 
for ( Enumeration·e = sensors_.elements(); 

e.hasMoreElements(); ) { 
((Sensor)(e.nextElement())).receiveCommand(c); 

} 

} else { 
System.err.println( 

"Don't know how to handle sensor commands for " +. 

"sensors of kind"+ sensorType); 
} 

} // class SimpleShip 

class SimpleShipManeverEVT extends SimEvent 
{ 

} 

public SimpleShipManeverEVT(SimEntityimpl owner) { 
super(owner); 

} 

public void onRun() { 
((SimpleShip)(myOwner)).doManeuverEVT(); 

} 

public void oninterrupt() {} 
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class WaypointArrivalEVT extends SimEvent 
{ 

} 

public WaypointArrivalEVT(SimEntityimpl owner) { 
super(owner); 

} 

public void onRun() { 
((SimpleShip)(myOwner)).doWaypointArrivalEVT(); 

} 

public void oninterrupt() {} 
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II FILE PulseTrainSim.java 
import scalar.*; 
import misc.•; 
import simkit.*; 
import simkit.javasim.•; 
import simkit.awt.•; 
import g2d.*; 
import simkit.javasim.ammt.*; 
import java.io.*; 
import java.util.•; 

I** 
Simple Barrier Search simulation 

•I 

public class PulseTrainSim extends SimEntityimpl 
{ 

static int nTrials, trialNo, i; 
static Date startTime, endTime; 
static Histogram batchStats = 

new Histogram("Batch Means", true); 
static PrintStream out; 
static Format mf =new Format("/.12.6f"); 

public static void main( String args[]) 
throws Exception 

{ 
if ( args.length != 6 ) { 

System.out.println("Wrong number of arguments"); 

} 

System.out.println( 
" usage: java CCBarrier <Number of Batches> "+ 
" <Number of Trials per batch>" + 
" <Searcher Speed> <Target Speed>" + 
"<Glimpse Interval> <seed>"); 

System. exit (1) ; 

TimeMaster.reset(); 

out = new PrintStream( 
new FileOutputStream("Monopulse_main_Results.dat")); 

int batches= Integer.parseint(args[O]); 
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} 

nTrials = Integer.parselnt( args[1] ); 
double ss = (Double.value0f(args[2])).doubleValue(); 
doublets= (Double.value0f(args[3])).doubleValue(); 
Time glimpse= new Time((Double.value0f(args[4])).doubleValue()); 

long seed= Long.parseLong(args[5]); 
startTime =new Date(); 
trialNo = 0; 
PulseTrainSim theModel =new PulseTrainSim( ts, ss); 

theModel.targetPositRand.SetSeed(seed); 
theModel.theSensor.setGlimpse(glimpse); 
for ( i = 0; i < batches; i++){ 
trialNo = 0; 
while( trialNo < nTrials ) { 

theModel.runSim(); 
theModel.theSensor.reset(); 
trialNo++; 

} 

System.out.println("End of batch"); 
endTime =new Date(); 

System.out.println("Number of Trials: " + 
theModel.searchSuccessStats.count()); 

System.out.println("Avg Detection Rate: " + 
theModel.searchSuccessStats.mean()); 

out .println(i + "\t" + mf .form(theModel. searchSuccessStats .mean()) + 
"\t" + mf .form(theModel. searchSuccessStats. variance 0)); 

System.out.println("Cumulative Run Time = " + 
((endTime.getTime() - startTime.getTime())/1000.0) + 
" sec"); 

System.out.println("Next Seed= " +theModel.targetPositRand.seed()); 

batchStats.getSample(theModel.searchSuccessStats.mean()); 
theModel.searchSuccessStats.reset(); 
} 

batchStats.makeHistogramPlotDisplay(/*bin width*/0.1); 
batchStats.makeMovingAvePlotDisplay(); 
batchStats.makeReportDisplay(); 
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SimpleShip 
SimpleEnvironment 
Command 

searcher, target; 
theEnvironment; 
c; 

double 
RandomStream 
DataAccumulator 
MonopulseRadar 
ClockFrame 

d, dd,searchSpeed_,targetSpeed_; 
targetPositRand; 
searchSuccessStats; 
theSensor; 
clock; 

Position startSearchAt; 

public PulseTrainSim(double targetSpeed, double searchSpeed) { 
searcher = new SimpleShip("USS Searcher", this); 
target = new SimpleShip("USS Target", this); 
theEnvironment =new SimpleEnvironment(l*170.568e-15,*1 1.0); 
searchSuccessStats = new DataAccumulator( 

"Search Success", false); 
targetPositRand =new RandomStream(); 
targetSpeed_=targetSpeed; 
searchSpeed_=searchSpeed; 
d = 0; 
double dd; 

theSensor =new MonopulseRadar( "Monopulse Radar MK I", 
searcher, 
false, 
Length.fromNMValue(10.0), 
new Power(10.), 
1.0, II antenna gain 
.96, II integration efficiency 
1.37, II antenna aperature 
-6.0, II detection threshold 
18, 
6.0, 
this); 

theSensor.reportTo( searchSuccessStats); 

searcher.addSensor(theSensor); 
PulseTrainResponder r = new PulseTrainResponder(target); 
r.setRCS(10000.0); 
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} 

target.addResponder( r); 
try{ 

out = new PrintStream( 
new FileOutputStream("Monopulse.log")); 

} catch ( Exception e) { 
System.err.println(e); 

} 

searcher.setPosition( new Position( 
Length.fromNMValue(10.0), 
new Length(O.O), 
new Length(O.O) ) ); 

c =new ManeuverCommand(); 
c.put("Kind", "Standard Pattern"); 
c.put("Pattern", "Barrier"); 
c.put("End", new Position( Length.fromNMValue(70.0), 

new Length(O.O), 
new Length(O.O))); 

c.put("Speed", Velocity.fromKnotValue( searchSpeed_)); 
searcher.receiveCommand( c); 

c =new SensorCommand(); 
c .put("Change", "Active"); 
c.put("SensorType", 11 All 11

); 

searcher.receiveCommand( c); 

public void runSim() { 

dd = targetPositRand.Uniform(0,80); 

target.setPosition( new Position( Length.fromNMValue(dd), 
Length.fromNMValue(10.0), 
new Length(O.O) )); 

c =new ManeuverCommand(); 
c.put("Kind", "Course/Speed Change"); 
c.put("Course", new Bearing( 180.0, 0.0, 0.0)); 
c.put("Speed", Velocity.fromKnotValue( targetSpeed_)); 
target.receiveCommand( c); 

c =new ManeuverCommand(); 
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} 

c.put("Kind", "Report When"); 
c.put("Distance Travelled", Length.fromNMValue(20.0)); 
target.receiveCommand(c); 

TimeMaster.startSimulation(); 
} 

public void doEndSimEVT(Object caller) { 
target.interruptAll(); 
TimeMaster.stop(); 

} 

//=================================================== 
class EndSimEVT extends SimEvent 
{ 

} 

public EndSimEVT(SimEntityimpl owner) { 
super(ovner); 

} 

public void onRun() { 
((PulseTrainSim)(myOvner)).doEndSimEVT(this); 

} 

public void oninterrupt() {} 

/!=================================================== 
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