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Proceedings of the Annual Acquisition Research Program 

The following article is taken as an excerpt from the proceedings of the annual 

Acquisition Research Program.  This annual event showcases the research projects 

funded through the Acquisition Research Program at the Graduate School of Business 

and Public Policy at the Naval Postgraduate School.  Featuring keynote speakers, 

plenary panels, multiple panel sessions, a student research poster show and social 

events, the Annual Acquisition Research Symposium offers a candid environment 

where high-ranking Department of Defense (DoD) officials, industry officials, 

accomplished faculty and military students are encouraged to collaborate on finding 

applicable solutions to the challenges facing acquisition policies and processes within 

the DoD today.  By jointly and publicly questioning the norms of industry and academia, 

the resulting research benefits from myriad perspectives and collaborations which can 

identify better solutions and practices in acquisition, contract, financial, logistics and 

program management. 

For further information regarding the Acquisition Research Program, electronic 

copies of additional research, or to learn more about becoming a sponsor, please visit 

our program website at: 

www.acquistionresearch.org  

For further information on or to register for the next Acquisition Research 

Symposium during the third week of May, please visit our conference website at: 

www.researchsymposium.org 
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Mathematical Modeling for Optimal System Testing under 
Fixed-cost Constraint 
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Abstract 
Testing of complex systems is a fundamentally difficult task, whether locating faults 

(diagnostic testing) or implementing upgrades (regression testing). Branch paths through the 
system increase as a function of the number of components and interconnections, leading to 
exponential growth in the number of test cases for exhaustive examination. In practice, the 
typical cost for testing in schedule or in budget means that only a small fraction of these paths 
are investigated. Given some fixed cost, then, which tests should we execute to guarantee the 
greatest information returned for the effort?  In this work, we develop an approach to system 
testing using an abstract model flexible enough to be applied to both diagnostic and regression 
testing, grounded in a mathematical model suitable for rigorous analysis and Monte Carlo 
simulation.  Early results indicate that in many cases of interest, a good, though not optimal, 
solution to the fixed-constraint problem (how many tests for budget x?) can be approached as a 
simple best-next strategy (which test returns the highest information per unit cost?). The goal of 
this modeling work is to construct a decision-support tool for the Navy Program Executive Office 
Integrated Warfare Systems (PEO IWS) offering quantitative information about cost versus 
diagnostic certainty in system testing.  

Keywords: diagnostic testing, regression testing, automated testing, Monte Carlo 
simulation, sequential Bayesian inference, knapsack problem 
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1. Introduction 
Many of us commute to work every day in what has become a relatively complex 

system: an automobile. When this system fails us, we are forced to allocate resources (i.e., time 
and money) to diagnostic testing and repair of one or more components within the system. The 
budget for this testing and repair is generally constrained by our prudence and our pocketbooks; 
we hope that the service technician employs a testing strategy that develops the best answer 
(e.g., replace the alternator) for the least cost.  

There are several possible stopping criteria for this testing. In particular, a logical choice 
would be to stop testing when the cost of replacement of all suspect parts is less than the cost 
of conducting one more test. This presupposes, however, that our system under test is in a 
failed state. Suppose we replace a known defective part or perform upgrade maintenance on a 
component: how much testing must we accomplish to convince ourselves that the system will 
operate correctly under all conditions?   

In this paper we present a language of description and a mathematical model to 
describe a system under testing, with the goal of evaluating strategies in terms of the 
information returned by a set of tests. In this framework, then, testing is the mechanism by 
which we trade some fixed cost (e.g., time, money) for information about the state of 
subcomponents in our system. In general, we seek the maximum information available for the 
minimum cost. In the present study, we consider the following question: Given a fixed budget, 
what is the maximum information discoverable from a particular test suite?  

Mathematical models of component and system reliability have roots in the work of von 
Neumann (1952) and Moore and Shannon (1956a; 1956b), as well as the seminal text by 
Barlow and Proschan (1965). The focus of these early works is generally on assessing the 
overall system reliability, particularly with regard to the economics of preventative vice reactive 
maintenance (e.g., see, Bovaird, 1961). In the present work, the focus is on efficiently identifying 
either a defective-by-design or failed component in a complex system.  

This fault diagnosis is sometimes referred to as the test-sequencing problem, and has 
also been well studied (e.g., see, Sobel & Groll, 1966; Garey, 1972; Fishman, 1990; Barford, 
Kanevsky & Kamas, 2004). In general, these investigators start with a system in a known failed 
state with the goal of finding the most cost-effective sequence of diagnostics to locate the failed 
component (or components) under a given set of assumptions.  

In contrast to fault diagnosis, the general case of regression testing appears to have 
received less attention in the open literature, with more specific cases examined in the realm of 
software engineering (e.g., Leung & White, 1991; White & Leung, 1992; Weyuker, 1998; Tsai, 
2001; Rothermel, Untch & Harrold, 2001; Mao & Lu, 2005). These studies typically start with a 
fully functioning system undergoing component modifications or upgrades, with the task of 
establishing that component modifications have not introduced new defects into the system. 

In the present study, we treat testing as a unified activity, with risk and cost as the 
common tension regulating the degree of testing required. From a fault-diagnosis perspective, 
we want to arrive at a replacement or maintenance decision quickly while ensuring the system is 
restored to perfect functionality. From a regression testing perspective, particularly with the 
open architectures employed within the Integrated Warfare System, following an engineering 
change or upgrade to a component, we want to conduct enough testing to verify that the system 
remains in perfect function. The element of risk is that costs incurred for perfect knowledge may 
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approach infinity, or may not be achievable with a given test suite. From a practical perspective, 
then, we accept with some level of confidence (e.g., 99% certainty, 95% certainty) that our 
diagnosis or prognosis is correct.  

The rest of this paper is organized as follows. Section 2 presents the model formulation 
and fundamental definitions. Section 3 details the mathematical model derived from this 
framework. Section 4 outlines numerical experiments examining testing strategies in terms of 
this model and presents simulation results. Section 5 discusses conclusions and avenues for 
future work. 

2. Definitions and Model Formulation 
The growing use of commercial off-the-shelf technologies in current weapons systems 

(Caruso, 1995; Dalcher, 2000), coupled with the complexity of end-to-end systems (Athans, 
1987; Brazet, 1993), suggests that we may never have enough information to fully specify our 
system as a white box, with all software, hardware and communication interfaces perfectly 
characterized. Thus, we construct our model with broad parameters that can be constrained as 
narrowly as available information permits.  

We characterize the model system S as a collection of modules and a suite of tests used 
to interrogate these modules. We examine the system through this test suite to identify defective 
modules or to determine that no defective modules exist. We assume that tests return 
ambiguous information about the state of modules within the system; that is, no single test is 
likely to return perfect knowledge about a particular module.  

Thus, in general, we expect that some sequence of tests must be applied to arrive at a 
correct diagnosis, where the term correct may require careful definition in terms of acceptable 
risk or required level of confidence. Stochastic simulation of the model system provides a 
framework in which different testing strategies may be applied and measured for further insight. 
Using this Monte Carlo approach, we may also test the bounds of our initial assumptions with 
additional simulation.  

2.1 System and module objects 

Within the system S, each module Mi represents the smallest diagnostic or replaceable 
unit, which does not necessarily correspond to a single physical component in the modeled 
system. We consider, for example, a motherboard comprised of a central processing unit 
(CPU), physical random access memory (RAM), a graphics adapter, and keyboard interface, 
each of which may cause the motherboard to fail. This might be modeled as a single module 
labeled Motherboard if the standard corrective maintenance action is to replace the 
motherboard. With more granular diagnostics and maintenance practices, however, we might 
model these components as MB_CPU, MB_RAM, MB_Graphics, and MB_Keyboard because 
each was testable and replaceable. 

Fundamental to this aspect of the model is a source of failure rate data for the system 
components. These failure rates become the a priori data in the larger probability model and do 
not necessarily need to be precise to add value to the iterative simulation results. The relative 
rates among the modeled components (e.g., the Server module fails about five times as often 
as the Router module) should be close to the observed data in the physical system to provide 
the most realistic convergence in testing to a correct diagnosis. 
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2.2 Test objects 

Tests are modeled as system of objects which, when executed, provide an ambiguous 
assessment of one or more modules within S. This ambiguity stems from two essential 
elements that map the tractable model to physical reality.  

The first ambiguous aspect is that any given test likely exercises only a portion of the 
functionality within a module. Each Mi is modeled as a unit circle Ai (Figure 1). Defects, when 
present, are assumed uniformly distributed on this circle. We assume that while multiple 
modules may be defective, only one defect exists per module. A defect in Mi is modeled as a 
random point on Ai or equivalently a random point on the interval [0, 1]. Although the module is 
the unit of replacement, we parameterize the sub-module details by treating them as a 
continuous space covered, in part, by a given test.  

 
Figure 1. The Simple Coverage of Test Tx on Module Mi,  

Indicated by the Gray Arc Aix. 
(The scalar measure of this coverage λ(Aix) = αix represents  

the fraction of Mi exercised by Tx.) 
 

We model the coverage of test Tx on module Mi as the arc Aix (Figure 1). When Tx is 
executed, or applied to the model system, the arc Aix on Mi is inspected for a defect. Given the 
assumption that defects appear uniformly on this unit circle, the probability that a defect in Mi 
will be detected by Tx is the measure of this arc λ(Aix) = αix. The scalar probability of detection by 
a test is precisely this user-specified functionality exercised by the test. This element of our 
language of description permits some ambiguity in characterizing the physical system without 
loss of rigor in modeling these tests and modules. In practice, given a sufficient number of real-
world cases from the physical system, this estimate for Aix could be refined through analysis of 
simulation results. 

The second ambiguous aspect is that any given test likely covers multiple modules, such 
that any test result must be interpreted as applying to all modules covered by that test (Figure 
2). For example, a positive result (FAIL) from a diagnostic test that covers the modules 
Carburetor, Distributor Cap, and Spark Plug Wiring indicates that at least one of these modules 
contains a defect (has failed), though additional testing would be required to identify which 
module is the culprit. Because we expect that a given test exercises multiple modules in the 
system, we speak more generally of the coverage of Tx on S (Figure 2). 

Within the model, an executed test assumes one of two values: PASS or FAIL. A PASS 
result for a given test Tx indicates that no region covered by this test contains a defect. A FAIL 
result indicates that at least one of the modules covered by Tx contains a defect or is BAD in the 
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model definition. While a FAIL result should reduce the set of modules that may need to be 
replaced, a perfect result—replacing only failed modules—will typically require some sequence 
of tests. Indeed, for a particular configuration of tests and modules, this perfect result may not 
be achievable. Analysis of simulation results should help identify those cases in which further 
testing will yield no new information.  

 
 

Figure 2. Notional Depiction of the Coverage of Tx on S,  
with Multiple Modules Exercised by This Test 

(A FAIL result from Tx indicates that at least one  
of the subset {Mi, Mj, Mk} has failed.) 

 

The use of vector arcs to model the coverage relationship between tests and modules 
enables precision when specifying the coverage by multiple tests on a single replaceable unit 
(Figure 3). Although several tests in the system suite may exercise a given module, it is likely in 
the physical system that these tests overlap significantly. This language of description, then, 
permits a user specification of the physical system in broad terms (e.g., the Remote Control test 
and Obstacle Detection test both exercise about 70% of the Garage Door Motor module, with 
about 20% overlap between the two tests). Even if these data are estimated from the physical 
system, existing case data and simulation results could be used to provide better specification 
of these joint coverages. 
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Figure 3. Overlapping Coverage between Tests Tx and Ty  

Are Characterized with the Arcs Aix and Aiy 
(The joint coverage is computable as the intersection of these arcs.) 

 

2.3 Summary 

This conceptual model captures the essential elements of a system with respect to 
testing, suitable for both diagnostic and regression work. The physical system is specified in 
terms of modules, tests, and coverages, with model elements constructed in such a way that 
imperfect information can still be used as an initial state.  

Although the model requires that the physical system be decomposable into discrete 
units of replacement, this does not limit the usefulness of this approach. Within the system, we 
expect different levels of maintenance (e.g., depot maintenance, field-level maintenance) and 
different levels of diagnostic techniques, all of which could be treated as different layers within 
this framework. We next formalize these model elements in mathematical language to construct 
a suitable computer simulation to investigate these testing strategies. 

3. Mathematical Analysis 
Our goal in this study of system testing is to maximize certainty for a given cost.  In 

developing a probability framework to model this process, we first form simple objective 
measures to characterize knowledge of the system state. We next examine a simple, step-wise 
strategy to predict a test sequence that will maximize or minimize these measures. We then 
compare this strategy to a two-test approach.  

The motivation for examining a two-test (or k-test) strategy under fixed cost is that this 
problem very much resembles the classic knapsack problem (Corman, Leiserson & Rivest, 
2002). Choosing at each step the single test that offers the largest increase in information (that 
is, inserting the largest item into the knapsack first) does not guarantee that we will, for a fixed 
cost, achieve the greatest information gain (maximize the content of our knapsack). It would be 
computationally advantageous, though, if we could demonstrate that for many cases of interest, 
a simple best-next strategy can approach a k-step strategy in information return (Cover & 
Thomas, 1991). 
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3.1 Module definitions 

Within our system S, we define Bi and Gi as the events that module Mi is bad or is good, 
with corresponding probabilities: 

  P( )
P( ) 1

i i

i i

B b
G b

=
= −

 
(3.1) 

Each bi represents information we have about the state of module Mi, and the collection 
{bi} gives us some insight into the health of S. Prior to any testing, we expect each bi is 
initialized based on an a priori failure rate for Mi. 

The probability bi is an intuitive measure of information, and we see that as bi tends to 0 
(good) or 1 (bad), our knowledge about Mi becomes more certain. A classic, quantitative 
measure of this knowledge is the information entropy (Shannon, 1948): 

  2 2log (1 ) log (1 )i i i i ib bh b b= − − − −   (3.2) 

We see that as bi tends to 0 or 1, hi is minimized (Figure 4).  By applying tests from our 
diagnostic suite, we should become more certain about the state of a module (good or bad) and 
so act to nudge bi to the edges of the interval [0, 1]. We can measure this improvement in 
certainty as a reduction in the individual module entropy hi, aggregated over the system: 

 
2 2

1
log (1 ) log (1 )

n

i i i i
i

H b b b b
=

= − − − −∑  
(3.3) 

Entropy is computationally attractive as a continuous and differentiable function over the 
interval of interest (Figure 4), though hi may be less intuitive when deciding which modules to 
replace. A measure similar to entropy, though not differentiable at maximum entropy, is: 

  max( ,1 )i i ibq b= −
 

(3.4) 

We can think of qi as a quality gauge of this replacement (or maintenance) decision with 
respect to a particular module. If, for example, a particular module has a bi = 0.70, we may 
replace it knowing that this informed guess should be correct 70% of the time. This also means 
that in 30% of these cases, we will unnecessarily replace or perform more granular debugging 
on this module. Our number of correct diagnoses across the system will increase as each bi is 
adjusted, by testing, away from bi=0.5 towards either 0 or 1 (Figure 4). Although this is not a 
rigorous result, it can be shown that minimizing system entropy is approximately equivalent to 
maximizing the number of correct diagnoses. 

 



 

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 208 - 
=

=

  
Figure 4. Module Entropy h(bi) and qi = max (bi, 1-bi),  

with Notional Module Probability bi Indicated 
(The scalar δ represents the displacement of bi from maximum entropy (bi = 0.5).  
Note that by symmetry, h(bi) = h(1 – bi), with distance 2δ between these states.) 
 

Consistent with previous studies (e.g., Birnbaum, Esary & Saunders, 1961; Butterworth, 
1972; Ben-Dov, 1981), we characterize our knowledge of S as a vector of these module 
probabilities, {bi}, where each component probability bi is on the interval [0, 1]. The true state of 
S is a bit vector with each component exactly 0 (good) or 1 (bad); in practice, we are unlikely to 
achieve this “perfect” knowledge, but computation of hi or qi permits some insight into this true 
state. 

Earlier studies typically examined scenarios in which S will function only if all modules 
are working correctly (serial system), some modules are working correctly (k-of-n system), or if 
at least one module is working correctly (parallel system). In the present study, we make no 
assumptions about whether S is in a known down state and instead focus on characterizing the 
health of the system—similar to literature in optimal maintenance strategies (e.g., Boivard, 
1961; or Barlow & Proschan, 1965). The focus in the present work is on the nature of the test 
suite available to the diagnostician or maintainer, and the most effective use of that suite to 
better characterize S. We next present the mathematical model for tests and testing. 

3.2 Test definitions 

Similar to our model of modules, we define Px and Fx as the events that test Tx passes or 
fails, respectively. We expect either result (pass or fail) to return ambiguous information 
because a test likely exercises or covers only some fraction of the functionality of a module 
(Figure 1), and because the test likely exercises several modules simultaneously (Figure 2). 
Thus, a passing result for Tx indicates only that no defect was detected, while a failing result 
narrows the pool of suspect modules to those exercised by Tx. 

After execution of a test, we update the prior probability bi to the new probability bi’ 
based on the test outcome: 



 

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 209 - 
=

=

Using Bayes’ rule, we can compute these probabilities as: 

These results suggest that tests can be seen as operators that transform bi into bi’. We 
note that the module probability is unchanged if test Tx has no coverage on Mi. In this case, the 
conditional probabilities P(Px|Bi) and P(Fx|Bi) degenerate to the unconditional probabilities P(Px) 
and P(Fx), and so we have bi’ = bi. 

Because the execution of test Tx necessarily incurs some cost in budget or schedule, we 
are motivated to compute a forecast value, qix, from a weighted sum of the unconditional 
probabilities on Px and Fx (Equation 3.8). Given the prior state of the system as the set of 
module probabilities {bi}, this method can then be used to assess the expected change across 
the system for a particular test Tx. 

 

Using the expected value of bi after test Tx (Equation 3.8), we can form a composite 
measure over our system of n modules with the sum Q(Tx): 

We expect that if Q(Tx) > Q(Ty), then test Tx will return more information than test Ty 
(Figure 4). This value, however, is a forecast; the actual information returned for a particular test 
execution may vary widely by scenario.  

We note also that because Q depends upon our current knowledge of the system as the 
set of probabilities {bi}, and because this set is constantly updated by testing, the choice of a 
particular test Tx may yield widely varying Q(Tx) depending upon when Tx is executed in the test 
sequence.      

 P( | ) if passes
P( | if  fails

 
)

i x x
i

i x x

B P T
b

B F T
′

⎧⎪⎪⎪⎨⎪⎪⎪⎩
=  

(3.5)
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(3.7)
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To calculate qix we need the conditional probability P(Px|Bi), which we compute by first 
considering the unconditional probability P(Px). We note that a test Tx will pass if every module 
covered is either good (Equation 3.1) or bad but undetected. A test Tx will fail to find a defect 
with probability (1 – αix), or the complement to the fractional coverage of Tx on Mi (Figure 1). 
Considering all n modules in the system, then, we have: 

Given that module Mi is bad (bi = 1), we then have: 

Similarly, we note that P(Fx) = 1 – P(Px), and we can then see that: 

We see that if Tx has no coverage on Mi (αix = 0), Equations 3.11 and 3.12 reduce to the 
unconditional probabilities on Tx. Similarly, if Tx has perfect coverage (αix = 1), Equations 3.11 
and 3.12 reduce to 0 (Tx cannot pass if Mi is bad) and 1 (Tx must fail if Mi is bad).  

Using Equation 3.10 and its complement, the conditional probabilities given that Mi is 
good are: 

A quick check of the boundaries shows that if Mi is good and there are no other 
coverages on Mi (all αjx = 0), Equation 3.13 reduces to 1 (Tx must pass), and Equation 3.14 
reduces to 0 (Tx cannot fail).  Indeed, this set of equations (3.11-3.14) addresses 
computationally the ambiguity associated with test results, coverages and modules (Figure 1 
and Figure 2). 

3.3 Test strategies 

The objective function Q(Tx) (Equation 3.9) is necessarily a one-step method if we 
choose that Tx which maximizes Q. If we have only the budget or schedule to execute one more 
test, maximizing Equation 3.9 will yield the optimal result. In practice, though, we expect that we 
may have the resources to execute some number of tests; and, similar to the classic knapsack 
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problem (Corman, Leiserson & Rivest, 2002), we are not guaranteed that this simple, one-step 
strategy will generally yield the largest information gain for a given cost. 

As a simple example of this knapsack problem, consider three tests {T1, T2, T3} with a 
forecast information return of {Q(T1) = 3, Q(T2) = 4, Q(T3) = 6} for associated cost {3, 4, 5}; the 
units of information and cost are not important to our point and can be thought of as unit cost 
per bit. Given a fixed cost constraint of 7, the single best-next test choice is T3, with a cost-per-
bit 5/6 and a net return of 5. The choice of T3, though, means that we cannot execute another 
test within the cost constraint of 7. This strategy, then, is clearly not optimal for the fixed 
constraint because the choice of T1 and T2, each individually more expensive than T3, yields a 
net information return of 7. 

To guarantee an optimal solution, then, we are obligated to compute 2k possible 
outcomes for a suite of k tests for all n modules in S. To mitigate this computational burden, we 
examine the real differences between an optimal solution and a good solution for our scenarios 
of interest. 

For additional insight, we consider a two-step strategy and its associated objective 
function with four components (Equation 3.15), computed over all modules (Equation 3.16): 

 

We note that in these pair-wise calculations (or in k-wise calculations), we must consider 
the possible intersection of coverages between Tx and Ty (Figure 3). That is, we expect two 
tests with significant overlap in module coverage should not yield a higher qixy than two paired 
tests with similar fractional coverages but no overlap or intersection between the two tests. 
Although the analytic work for these conditional probabilities follows Equation 3.11—3.14, we 
next turn to simulation to exercise this strategy for comparison to the single-step, best-next 
strategy.  

3.4 Summary 

We have presented the mathematical details supporting the abstract model presented in 
Section 2. We characterize our knowledge of the system health as a collection of probabilities 
{bi}, where bi indicates the probability that component Mi is bad (bi=1) or good (bi=0). Using a 
sequential Bayes’ approach, prior probabilities in {bi} are updated following test execution. As 
more tests are applied, each Tx should act to minimize entropy H (Equation 3.3) or increase our 
certainty about the state of each module as either good or bad. 

The paper focuses on strategies to choose a test, or sequence of tests, to guarantee the 
best (or at least a very good) return on the budget or schedule allocated to testing. In the 
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present work, our constraint is a given, fixed cost and our goal is to find the greatest information 
gain possible in the test suite within this cost. Although an optimal solution may often be 
computationally untenable, we next examine simulation results to better estimate the distance 
between “optimal” and “good.” 

4. Modeling Approach and Simulation Results 
In support of this research, a desktop simulation was developed to implement the 

analysis presented in Section 3 and to further examine the choices among test strategies. In 
addition to the best-next and two-step strategies, a random-strategy case was coded to select a 
test sequence randomly, and a pathological worst-case strategy was created to minimize rather 
than maximize the information return per test. The random and worst-case configurations were 
developed to provide some contrast to the “best” strategies. 

4.1 Model description 

The simulation code implements object models of Tests and Modules, collected under a 
System object. Configuration parameters are set in an XML text file (Figure 5). Each XML file 
represents a simulation, which is comprised of one or more configurations or simulation cases. 
Each configuration or case is then executed for some number of trials.  

Within each configuration, the number of modules and tests are explicitly set, while the 
module a priori failure rates and test-module coverages are established randomly within 
minimum and maximum parameters (Figure 5). These random coverages are reconfigurable 
between trials to permit a Monte Carlo investigation of the initial data. While these randomized 
scenarios provide some insight into systems testing, sufficient flexibility exists in the computer 
code and the XML configuration parameters to encompass more realistic systems. 

Because of the iterative nature of the model, the algorithm should be relatively 
insensitive to the initial conditions in the model with respect to module a priori failure rates. That 
is, the state vector {bi} is constantly adjusted through the application of tests, and we expect this 
convergence to dominate the final or quasi-steady state of knowledge regarding our system. 
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<?xml version="1.0"?> 
<simulation> 
<!-- ========================= --> 
<!-- SAMPLE CONFIGURATION FILE --> 
<!-- ========================= --> 
<configuration> 
<!-- ==================== --> 
<!-- EXECUTION PARAMETERS --> 
<!-- ==================== --> 
<CaseName>best</CaseName> 
<Strategy>best</Strategy> 
<RandomSeed>-1</RandomSeed> 
<NumberOfTrials>10</NumberOfTrials> 
<DecisionThreshold>0.90</DecisionThreshold> 
<DefectsPerTrial>1</DefectsPerTrial> 
<LogFileName>simulation.log</LogFileName> 
<ReconfigureTestsPerTrial>yes</ReconfigureTests
PerTrial> 
<!-- ================= --> 
<!-- MODULE PARAMETERS --> 
<!-- ================= --> 
<NumberOfModules>10</NumberOfModules> 
<FailureRate> 
  <Minimum>0.5</Minimum> 
  <Maximum>0.5</Maximum> 
</FailureRate> 
<CostPerModule> 
  <Minimum>1.0</Minimum> 
  <Maximum>1.0</Maximum> 
</CostPerModule> 
<SumCostOfAllModules>100.0</SumCostOfAllModules
> 
<TestsPerModule> 
  <Minimum>1</Minimum> 
  <Maximum>5</Maximum> 
</TestsPerModule> 
 

<!-- =============== --> 
<!-- TEST PARAMETERS --> 
<!-- =============== --> 
<NumberOfTests>35</NumberOfTests> 
<CostPerTest> 
  <Minimum>1.00</Minimum> 
  <Maximum>1.00</Maximum> 
</CostPerTest> 
<SumCostOfAllTests>100.0</SumCostOfAllTests> 
<ModulesPerTest> 
  <Minimum>1</Minimum> 
  <Maximum>3</Maximum> 
</ModulesPerTest> 
<CoveragePerModule> 
  <Minimum>0.20</Minimum> 
  <Maximum>1.00</Maximum> 
</CoveragePerModule> 
</configuration> 
<!-- ==================== --> 
<!-- END OF CONFIGURATION --> 
<!-- ==================== --> 
</simulation> 
 

Figure 5. Sample Configuration XML File 
 

4.2 Model processing 

Prior to the start of a configuration run (set of trials), a failure deck is created based on 
the relative failure rates of modules within the system. Similar to a deck of playing cards, 
modules appear in the failure deck based on their standing relative to the minimum failure rate 
in the system; thus, if the minimum failure rate across the system is 0.2, a module with a failure 
rate of 0.6 will appear three times within the failure deck. The same deck is employed across all 
trials in a configuration run to simulate the relative appearance of failures in a physical system. 
No a prior assumption was made in the mathematical analysis (Section 3) about the number of, 
and the simulation code reflects this versatility.  

Prior to the start of a trial, a test deck with one entry for each test is created (copied) 
from the system configuration. Strategies (best-next, best-next-two, random, and worst) 
consume this list as the “next” choice is executed; thus, as a test is executed it is removed from 
the deck, insuring that no test will be executed more than once per trial. This also reduces the 
search space for the next test. A new test deck must be generated with each trial.  

A single trial is processed in the following manner: 

1. All module bi are initialized from failure rate data. 
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2. All module coverages are established; these are either duplicated from the 
previous trial or randomized subject to the same configuration parameters. 

 
3. Some p number of modules (where 0 ≤ p ≤ n) are selected from the failure deck 

and a defect is planted in each module. It is possible (and interesting) to run the 
simulation with no defects planted. 

 
4. A test is chosen based on a simple strategy (e.g., best, random, or worst) 

 
5. This test is applied to the system object 

 
6. All affected bi are updated based on the outcome of (5) 

 
7. If there is still a test in the test deck, return to (4) 

Although we are interested in improving test strategies under fixed-cost constraint, in 
these trials we simply execute until the set of tests is exhausted. The motivation for this 
approach is that by allowing the simulation to process all tests available, we also gain insight 
into the effectiveness of the given test suite; this line of investigation will be pursued in future 
studies.  

4.3 Simulation results 

Using a 2 GHz Intel processor, a simulation of 300 trials using the best-next, best-next-
two, random and worst strategies required about 17 minutes (for all four) using a randomized 
configuration of 40 modules and 100 tests, with one defect planted. The zero-defect simulations 
required about the same execution. In all of these cases, the initial probability distribution was to 
set each module to bi=0.5 (maximum entropy). 
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Figure 6. Comparison of Mean qi among Simulations of a 40-module,  
100-test System with One Defect Planted 

(using the one-step (best-next), two-step (best-next-two),  
random and worst cases) 

 

Comparisons between the one-step and two-step approach (Figure 6) show little 
difference in the first 25 or so tests in terms of the mean maximum probability qi—suggesting 
that the one-step approach would yield an acceptable return on a fixed budget or schedule for 
testing for the randomized system configurations tested. More realistic scenarios may show 
more significant divergence between one-step and two-step (and by extension, k-step) 
methods.  

Similar comparisons in terms of information entropy (Figure 7) show more displacement 
between the one-step and two-step methods, though both methods are clearly superior to the 
random and “worst” case methods. In a similar simulation configuration but with no defect 
(Figure 8), the information entropy shows similar descent. At the tail end of the testing process, 
though, the steady-state H is lower in the no-defect case (Figure 8) than in the one-defect 
(Figure 7) case. 

Although the best-next-two strategy appears somewhat better than the best-next 
strategy for the fixed-cost constraint, the CPU time required for this two-step simulation 
expanded roughly by a factor of four on a per-trial basis, which is consistent with Equation 3.8 
and Equation 3.15. 
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Figure 7. Comparison of Mean Entropy H among Simulations  
of a 40-module, 100-test System with One Defect Planted 
(using the one-step (best-next), two-step (best-next -two),  

random and worst cases) 

 

Figure 8. Comparison of Mean Entropy H among the NO DEFECT  
Simulations of a 40-module, 100-test System 

(showing only slightly lower entropy values for all cases,  
though slope of descent is similar in all cases) 
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5. Conclusions and Future Work 
In this study, we have developed a simple, effective framework to examine the testing of 

complex systems. The idealized numerical experiments demonstrate that a simple best-next 
approach is computationally efficient if not optimal, though the convergence to a correct 
diagnosis appears to be very close to a two-step approach. Further investigation with more 
exhaustive k-step testing strategies should confirm that for many cases of interest the simple 
best-next approach yields acceptable results for a fixed-cost constraint. 

A novel aspect of this approach is the focus on tests as distinct objects providing 
information about modules. Much of the previous work in this area has focused on knowledge of 
the initial distribution of failure rates, requiring almost perfect knowledge of these a priori data in 
order to be effective (Butterworth, 1972; Ben-Dov, 1981). In terms of software testing, previous 
studies have relied on some knowledge of the internal structure of components or reusable 
objects, or near-perfect knowledge of the module interconnections (Rothermel, Untch & Harrold, 
2001; Mao & Lu, 2005). Here, we assume only that our system has some test suite; these tests 
may be derived from requirements documents, from formal system acceptance plans, or from 
daily systems operations. Application of this model requires only that we be able to characterize 
these tests in terms of approximate coverages on units of replacement. 

Although a variable cost per test is accounted for in the simulation code, the runs 
presented in this paper assumed a constant cost per test. In effect, we assume a unit cost per 
test, such that the number of tests becomes the associated cost. Further simulation work with 
more realistic configurations of modules, tests and coverages should yield more insight into 
operational diagnostic and regression problems. 

The treatment of tests as distinct objects readily enables use of this approach for 
simulation even when no bug or defect is known to be present. This testing scenario, which 
commonly follows a major system upgrade or engineering change to a system, is often referred 
to as regression testing. This zero-defect case may also be useful to evaluate the quality of a 
test suite with respect to all states of a system. In the zero-defect cases run in this study, the 
mean entropy (Figure 8) and maximum probability (not shown) do not go to 0 and 1, 
respectively, as we would expect if all states were reachable from the test suite. This line of 
research would be particularly well-suited for the classic regression or test-retest problems.   
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