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This paper presents a study of star tracker attitude estimation algorithms and 

implementation on an indoor ground-based Three Axis Spacecraft Simulator (TASS). Angle, 

Planar Triangle, and Spherical Triangle algorithms are studied for star pattern recognition. 

Least squares, QUEST and TRIAD algorithms are studied for attitude determination. A star 

field image is suspended above TASS. The indoor laboratory environment restricts the 

placement of the star field to be in close proximity to TASS. This restriction adds some 

additional complication to the standard attitude determination problem. An iterative 

solution handles this complication. Experimental verification is also performed for the 

proposed iterative solution. 

I. Introduction 

HE objective is to develop a star tracker precision attitude estimation system for use on an indoor, ground-based 

spacecraft simulator. Star pattern recognition algorithms are studied with a focus on accuracy and algorithmic 

efficiency. Attitude determination algorithms are studied similarly.  The Three Axis Spacecraft Simulator (TASS) is 

the testbed and it is equipped with a CCD camera to capture the star field image suspended above.  

 The star pattern recognition algorithm takes the camera image of the star field, assigns to it a mathematical 

description of the pattern, and finds the unit vector to each imaged star. Stars in the CCD image appear distributed 

among multiple pixels and the centroid of this distribution must be found.  Unit vectors from the focus point of the 

camera lens to the image plane of the CCD are then found for each star. These vectors are mapped from the camera 

reference frame to the spacecraft body reference frame.  

 The pattern for the stars in the camera image is then found. The pattern is checked against a database of the 

entire sky to find a match. The pattern can be defined as simply as an angle. Triangles provide more information for 

more robust matching.
3,4

 Novel methods such as grids
 
can also be robust and efficient.

11
 Algorithms used in this 

study are the triangle, planar triangle, and spherical triangle.  

 Once the star vectors measured in the spacecraft frame are matched to the inertially referenced database of star 

patterns and star vectors all the necessary information is available to solve the attitude determination problem. 

Attitude determination algorithms determine the rotation of the star vectors from the inertial referenced frame to the 

spacecraft body frame. There are many algorithms for attitude determination, but three were studied in this report: 

least-squares
2
, Quaternion-Estimator (QUEST)

8
, and the TRIAD

8
 algorithm.   

II. Star Pattern Recognition 

A.   Angle Method 

The angle method is the simplest star identification algorithm.  Star pairs are observed by the camera, and their 

unit vectors are developed referenced to the frame of the star tracker.  The star tracker then calculates the angles 

between all stars within the FOV of the camera.  The angles are calculated by the equation 1: 

 1

1 2cos r r  
               

1 

where r1 and r2 are the unit vectors pointing to each star. The angle θ will be the same from the inertial frame as it is 

viewed from the satellite.   

The angle of the stars in the camera’s FOV are calculated using Equation 1.  However, the angle calculated is in 

the frame of the star tracker camera.  The angles must be converted to the body frame of the satellite for use in any 

attitude determination algorithm.  Those body frame angles must be compared to angles in the inertial reference 
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frame.  Therefore, an onboard database of inertial stars with their angles calculated from the inertial reference frame 

must be available.  

B. Planar Triangle 

Another algorithm for star identification is the method of planar triangles
3
.  The star tracker develops a triangle 

from a combination of three stars.  The benefit of this algorithm is that more information can be obtained from a 

triangle than an angle, which should allow the star tracker to determine the satellite’s attitude more accurately. 

From the calculated triangle, the area and polar moment can be determined.  The area and polar moment provide 

two additional pieces of information to match in the database.  By observing three stars with unit vectors 1b , 2b , 

and 3b , the area of the planar triangle is obtained by: 

( )( )( )A s s a s b s c   
              

2 

 

where 

 
1

2
s a b c  

               

3 

1 2a b b 
               

4 

2 3b b b 
               

5 

1 3c b b 
                

6 

 

The above equations are valid in the Earth-Centered-Inertial or ECI frame as well as the star tracker frame. In the 

planar triangle method, three observed stars provide far more information than only two stars using the angle 

method.  As shown, there are multiple angle calculations as well as other features of the triangle to store. 

It will also be necessary to obtain the polar moment in conjunction with the area of the triangle.  Two triangles 

may have the same area, but will have different second moments. The polar moment by: 

 2 2 2

36

A a b c
J

 


             
7 

When using planar triangles, the use of the triangles polar moment and planar area will reduce the number of 

similar solutions for matching, however there are certain costs with using this algorithm.  There are more features a 

triangle can provide when compared to an angle.  Naturally, instead of determining the satellite’s position with two 

stars, it now requires three stars if using the planar triangle algorithm.  There are however more mathematical 

calculations that must be performed when using the triangle algorithm compared to the angle calculations.  Also, 

with the triangle there are two data points for each triangle which will require a larger memory to hold this data. 

C. Spherical Triangle 

A similar algorithm used in star pattern recognition is spherical triangles
4
.  The star tracker calculates a spherical 

triangle when it observes three stars within its FOV.  Again, the polar moment and area are used to determine which 

spherical triangle is being observed by the star tracker. 

The three unit vectors to the stars within the FOV, allow the area of the spherical triangle to be calculated by: 

14 tan tan tan tan tan
2 2 2 2

s s a s b s c
A           
        

               

8 

where S  is the same as above and a, b, and c are: 

1 1 2

1 2

cos
b b

a
b b
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1 2 3

2 3

cos
b b

b
b b
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1 3 1

3 1

cos
b b

c
b b


 

   
                

11 

Again, the above equations are valid in the ECI frame as well as the star tracker frame. The polar moment is also 

valuable information to be obtained from each observed triangle.  Two similar triangles may have similar areas or 

polar moments, but it is unlikely that two triangles will have exactly the same polar moments and areas.  The 

acquisition of two unique pieces of information from each triangle makes the algorithm resistant to false attitude 

determinations from the star tracker using an erroneous triangle. 

The polar moment of a triangle is obtained by breaking the spherical triangle into smaller triangles.  The area of 

each of these smaller triangles is then multiplied by the square of the arc distance from the centroid of each smaller 

triangle, to the centroid of the overall triangle.  The spherical triangle’s polar moment is then obtained by summing 

the results of each smaller triangle: 
2

pI dA                
12 

where dA is the smaller triangle area and 
2  is the arc distance.  The polar moment of each spherical triangle is 

calculated via a recursive algorithm that breaks the triangle into smaller triangles successively until the depth of 

recursion is met. 

III. Attitude Determination 

The problem of attitude determination is obtaining the correct orthogonal rotation matrix, so that the measured 

observations in the sensor frame match the reference frame. The measured vectors are the aforementioned body-

frame vectors to imaged stars while the reference vectors are those same stars referenced from the ECI frame and 

contained in the database.   

The stars imaged in the FOV of the star tracker have now been paired to stars in the inertial frame by the star 

pattern recognition algorithms, but the attitude of the spacecraft is still unknown.   

For this section, the inertial reference unit vectors are represented by 1
ˆ ˆ

nV V , and the body frame unit vectors are 

represent by 1
ˆ ˆ

nW W .  Therefore, an orthogonal matrix A is needed that satisfies: 

  ˆ ˆ , 1, ,i iAV W i n              13 

Due to measurement errors and corruption in both the star tracker measurements and errors in the inertial 

vectors, there is no exact solution for A.  Therefore an approach is needed to select an A that matches ˆ
iV  to ˆ

iW .  

This is known as Wahba’s Problem
12

.   

Wahba’s problem is the estimation of a satellite’s attitude by using direction cosines.  Given two sets of points, 

in this case 1
ˆ ˆ

nV V and 1
ˆ ˆ

nW W where n ≥ 2, find a rotation matrix A which aligns the first set of vectors into the 

best least squares coincidence with the second set of vectors.  Mathematically, a matrix A minimizes: 

 

2

1

ˆ ˆ
n

j j

j

W AV
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where  denotes the Euclidean norm.  This equation can be represented in the terms of a cost or loss function as: 

  
2

1

1 ˆ ˆ
2

n

i i i

i

L A a W AV


               15 

subject to the constraint: 

 3 3

T

xAA I                16 

The quadratic loss function in the attitude matrix can be transformed into a quadratic loss function in the 

corresponding quaternion
9
.  Wahba, presents a least-squares criterion to define the best estimate for an orthogonal 

matrix A that minimizes the cost function represented by Equation 15. 

There are many different types of attitude determination algorithms for star trackers in use today, but a common 

type used is a class that estimates the four Euler symmetric parameters that form the quaternion
13

.  The quaternion 

outputs of these algorithms are extremely popular as it is the minimal non-singular set for global attitude description.  
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The quaternion also provides an attitude matrix which is quadratic in the parameters and is also free of 

transcendental trigonometric functions
2
. The optimal estimator of the quaternion can be used to solve the 

constrained least-squares Wahba problem
13

.  

Other algorithms used in solving Wahba’s problem by obtaining the quaternion are the TRIAD
6
 algorithm as 

well as the Quaternion Estimator (QUEST)
8
 algorithm.  The TRIAD and QUEST algorithms each provide 

quaternions as well as the direction cosine matrix of the satellite.  The TRIAD algorithm is fairly simplistic while 

without requiring any inversion of matrices while the QUEST algorithm requires fairly complex eigenvalue 

calculations. 

A. Least Squares 

The star tracker camera will have some noise which will cause errors in the measurements. To account for errors, 

most of the error is concentrated on a small area about the direction of iAr , and therefore the sphere containing that 

point is approximated as a tangent plane, which is represented by the following equation
4
: 

 
,

0

i i i

T

i i

b Ar v

v Ar

 


              17 

Here ib is the ith measurement and the sensor error vi is approximately Gaussian
4
.  Therefore all angle 

measurements will contain some error and this error must be accounted for. 

The error or residual errors are assigned to each measurement of ri.  Therefore, Equation 17 becomes: 

 

 

1 2

1 2

1 2

i i i

i n

i m

i m

b Ar e

b b b b

e e e e

r r r r

 

   




            

18 

 

where bi are the measured values for the inertial star vectors and ei are the residual errors for each star tracker 

measurement of ri. 

Using Gauss’s principle of least squares, it is desired to obtain an A that minimizes the residual errors.  Solving 

for the residual errors we obtain: 

i i ie Ar b 
                

19 

 

A cost function of residual errors is
2
:  

1

2

TJ e e
                

20 

Or: 

 
1

2
2

T T T TJ b b b Ar r A Ar  
            

21 

There are two requirements for minimizing this quadratic function: 1) a necessary condition and 2) a sufficient 

condition.  The necessary condition and sufficient conditions are defined as
2
: 

1

0T T

r

n

J

r

J A Ar A b

J

r

 
 
 

     
 
 

              

22 

2
2 T

r T

J
J A A

r r
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where
TA A must be positive definite.  Above, r J is the Jacobian and 

2

r J is the Hessian.  The matrix A is 

positive definite when the matrix has a maximum rank (n).  The quadratic function J is a performance surface in n + 

1 dimensional space with a convex shape of an n-dimensional parabola with a single distinct minimum
2
.  

From the necessary conditions defined above, the “normal equations” are: 

 T TA A r A b
              

24 

If there are n independent observation equations, therefore the rank of A is n, making 
TA Apositive definite

2
.  With 

equation 
TA Apositive definite,  TA A is invertible and an explicit solution for the optimal solution is obtained.  

Therefore r is solved by: 

 
1

T Tr A A A b



              

25 

Equation 25 is the matrix equivalent of Gauss’ original “equations of condition” in index/summation notation
2
. 

Naturally, an inverse of 
TA Amust exist to find a solution for r .  The inverse exists only if there number of linearly 

independent observations is equal to or greater than the number of unknowns.  In least squares, the order of the 

matrix inverse is equal to the number of unknowns, not the number of measurement observations
2
. An example of 

attitude determination with a star will illustrate these principles. 

Assume the camera of the star tracker observes two stars within its FOV.  The unit vectors of these stars in the 

star tracker reference frame are designated 1r and 2r .  These two stars have unit vectors in the inertial frame as well, 

1R̂  and 2R̂ .  For this example, we will only use one of the stars for calculations.  The inertial coordinates of the star 

are matched the body coordinates by a direction cosine matrix A.  Therefore the equation is  

11 12 13

21 22 23

31 32 33

x x

y y

z z

R a a a r

R a a a r

R a a a r

     
    

     
                     

26 

Rearranging, the equation becomes: 

11 12 13

21 22 23

31 32 33

x x y z

y x y z

z x y z

R a r a r a r

R a r a r a r

R a r a r a r

  
  

   
                 

27 

Rearranging further to take the following form:  

11

12

13

21

22

23

31

32

33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

x x y z

y x y z

z x y z

a

a

a

R r r r a

R r r r a

R r r r a

a

a

a

 
 
 
 
 

    
         
       

 
 
 
 
         

28 

Equation 28 now takes the form of the normal matrix equation: 

ˆ ˆy Ax
               

29 

with 
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11

12

13

21

22

23

31

32

33

0 0 0 0 0 0

ˆ ˆ, 0 0 0 0 0 0 ,

0 0 0 0 0 0

x x y z

y x y z

z x y z

a

a

a

R r r r a

R y r r r A x a

R r r r a

a

a

a

 
 
 
 
 

    
          
       

 
 
 
 
 

    

30 

The ŷ vector is the known inertial coordinates to the star, the A  matrix is the known body frame vector to the 

same star, with the x̂  comprising the elements of the direction cosine matrix being the only unknown quantity.  

Now Equation 29 can be solved by inserting the elements of the matrix equation into the following to form the least 

squares problem: 

 
1

ˆ ˆT Tx A A A y



             

31 

The vector x̂  of the direction cosine matrix is simply reshaped into the usual form to get the direction cosine 

matrix. 

B. TRIAD 

The TRIAD algorithm is a deterministic solution that generates a direction cosine matrix between two coordinate 

systems when two vectors are given in each of the particular coordinate systems
8
.  Applying this algorithm to the 

attitude determination problem is fairly straightforward.  The star tracker needs only to see two stars within its FOV 

to determine two unit vectors.  These are referred to as the observed vectors
8
.  The other two unit vectors, or 

reference vectors, are found using the angle, planar triangles, or spherical triangles algorithms defined previously. 

Using the TRIAD algorithm, two non-parallel unit vectors to stars in the inertial frame as well as two non-

parallel unit vectors in the star tracker frame are obtained.  Using the same designation as above, these vectors are 

identified as 1V̂  and 2V̂ for inertial stars with two body frame vectors from the star tracker as 1Ŵ and 2Ŵ .  The 

algorithm then finds an orthogonal matrix A which becomes the attitude matrix for the satellite finds the orientation 

difference between the two systems
8
.  The equations that the algorithm must satisfy are: 

1 1 2 2
ˆ ˆ ˆ ˆ      AV W AV W 

            
32 

The algorithm then requires computation of the following column matrices or triads
8
: 

 

  

1 2

1 1 2

1 2

1 1 2

3

1 2

ˆ ˆ
ˆˆ ˆ      

ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ

V V
r V r

V V

V V V
r

V V
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1 2

1 1 2

1 2

1 1 2

3

1 2

ˆ ˆ
ˆ ˆˆ       s

ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ

W W
s V

W W

W W W
s

W W


 



 



          

34 

 

There exists a unique orthogonal matrix that satisfies: 

 ˆ ˆ     1, 2,3i iAr s i 
            

35 

which is defined as: 
3

1

ˆ ˆT

i i

i

A s r



               

36 

The triads are then constructed into matrices for further computation.  A reference matrix is made consisting of the 

reference triads while an observed matrix is likewise constructed of observed triads.  The matrices are: 

   1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ     ref obsM r r r M s s s 

         
37 

where refM and obsM matrices are 3x3 matrices.  The attitude determination matrix is obtained by: 

1 1 2 2 3 3

   orT

obs ref

T T T

A M M

A r s r s r s



     
            

38 

There are problems with the TRIAD algorithm though.  The first vector has more prominence in determination 

of A .  Some of the information in the second vector is discarded
8
.  It is therefore necessary and best practice to 

obtain use the most accurate instrument to find the first vector of each set, in this case 1 1
ˆ ˆ and V W .  Therefore, the 

first vector, or anchor vector, may be obtained by the star tracker while the second vector cold come from the 

magnetometer
8
. 

C. QUEST 

The QUEST algorithm
8
 developed for the Magsat mission by Shuster is another method to solve Equation 32.  

The quadratic loss in the attitude matrix function can be converted to a corresponding quaternion.  The result is that 

an eigenvalue equation is obtained that provides the quaternion 
8
.  This result is that the optimal quaternion is 

computed by a fast deterministic algorithm. 

Equation 32, the loss function, is minimized when an optimal matrix optA is determined, however, we can also 

maximize a gain, g, that also solves the same equation.  In Equation 32, the nonnegative ,  1, ,ia i n are a set of 

weights 
8
.  Since the loss function may be scaled without affecting the resultant optA , it is thereofre possible to set: 

1

1
n

i

i

a



               

39 

The corresponding gain function  g A is given as 

   
1

ˆ ˆ1
n

T T

i i i

i

g A L A aW AV q Kq


   
         

40 

It is easy to see that the loss,  L A , function will be at a minimum when the gain function ,  g A is at its 

maximum 
8
.  This can be interpreted in the following way as well: 

1

ˆ ˆ( )
n

T

i i i

i

g A a tr W AV


 
 

            

41 
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where tr represents the trace operation performed in MATLAB.  The matrix A is usually represented as quaternions 

since they are simpler to use. 

To continue with this algorithm, several other quantities will need to be calculated to form the matrix K.  The 

matrix is a 4x4 matrix that takes the following form: 

T

S I Z
K

Z





 
  
               

42 

where Z is a 3x1 vector, S I is a 3x3 matrix, 
TZ is a 1x3 matrix, and  is a scalar 

8
.  The matrix S is defined 

from the equation: 

1

1

ˆ ˆ ˆ( )

where

ˆ ˆ

n
T T T

i i i i i

i

n
T

i i i

i

S B B a WV VW

B aWV





   






         

43 

The vector, Z , is defined as: 

 
1

ˆ ˆ
n

i i i

i

Z a W V


 
             

44 

The quantity  is the trB or: 

1

ˆ ˆ
n

i i i

i

aW V


 
             

45 

Using these quantities, the gain function can be written in the following form: 

 2( ) 2tr 2 trT T T Tg q q Q Q trB QQ B q QB         
      

46 

where 

3 2

3 1

2 1

0

0

0

Q Q

Q Q Q

Q Q

 
 

  
               

47 

Using the matrix K , this produces a bilinear equation of the form: 

  Tg q q Kq
              

48 

Using the original constraint, the quaternion that maximizes can be used by implementing Lagrange multipliers 
8
.  A 

new gain function is defined.  Using the notation of introduced by Shuster and Oh, this gain function is denoted as

 g q .  The gain function is written as: 

  T Tg q q Kq q q  
            

49 

 

which is maximized without constraint 
8
.  The variable,  , is used to satisfy this constraint.  The verification is 

satisfied by differentiating which produces the equation: 

Kq q
              

50 

Therefore, the optimal quaternion is an eigenvector of the matrix K, and  is an eigenvalue.  The maximizing of 

 g q will occur by choosing the eigenvector that corresponds to the largest eigenvalue of the matrix K 
8
.  

Therefore: 

opt optKq q
             

51 
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IV. Experimental Setup 

A. Three Axis Spacecraft Simulator 

The second-generation Three Axis Spacecraft Simulator 

(TASS) at the Naval Postgraduate School’s Spacecraft 

Research and Design Center was used for the experimental 

setup. TASS floats on an air-bearing to simulate space flight 

and provide three rotational axes of motion. TASS is five 

feet in diameter. It uses four control moment gyroscopes for 

actuation. Onboard computers can execute Matlab code and 

Simulink models real time with xPC Target. Attitude sensors 

include the star tracker, inertial measurement unit, sun 

sensor, magnetometer, inclinometer, and a precision laser 

sensor. 

Suspended one meter above TASS is an LCD monitor 

displaying a star field. Since the star tracker camera cannot 

be located at the center of rotation of TASS the reference 

frame fixed to the star tracker will not only be rotated but 

also translated.  In space, this translational motion of the 

frame is not observable since stars are approximately 

infinitely far away.  In a laboratory environment this 

translational motion will affect the star tracker algorithms. 

Figure 3 illustrates the star field, the inertial 

frame I centered at the center of rotation of the 

spacecraft simulator, the camera fixed frame B, the 

translated inertial frame I  and the translated body 

frame B .  The center of the translated inertial frame 

I moves with the camera, but does not rotate and its 

axes are parallel to those of frame I .  The 

translation of frame I from frame I   is done by 

position vector iR .  Frame B is the frame associated 

with the camera and therefore is fixed with the 

camera.  The frame B is translated from frame B 

such that the origin of frame B coincides with the 

origin of the inertial frame I .  

For star fields located at a far distance, the unit 

vectors represented in frame B are related to the unit 

star vector îr represented in frame I  by the following relationship: 

B I

i ib Ar
              

52 

where A is the direction cosine matrix representing the attitude of the spacecraft simulator and the superscripts 

denote the specific frame used for the star vectors.  In addition, the angle between 1b  and 2b  is same as the angle 

between 1r  and 2r  for distant stars.  When the stars are displayed in close proximity, however, the angle between 

1b  and 2b  is not same as the angle between 1r  and 2r  as can seen in Figure 3. 

 
Figure 1. Three Axis Spacecraft Simulator testbed 

with star tracker camera sticking out the top. LCD 

monitor suspended in the ceiling displays the star 

field image. 

 

 
Figure 2: Star field suspended above TASS. 
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In order to solve this problem, let us first define i  representing the distance between ith star and the origin of 

frame B (or frame I  ). Similarly, we can also define  i   being the distance between ith star and the origin of frame 

I (or frame 'B ). Using  i  and i , the following relationship can be found. 

0 i i i ib rR   
             

53 

which can be rewritten as: 

0

B B I

i i i ib A rR  

 

             
54 

From above, 0

BR

 is a constant vector fixed to the spacecraft body, 

B

ib  is measured by the star tracker camera, 

and 
I

ir   is a star vector represented in the inertial frame which will serve as the database. The equation is not a 

linear equation to solve for the attitude matrix because i  is a function of A.  

Assuming that the star tracker camera is looking at the 
Bz  direction and defined a vector 

 ' 0 0 1Ip


  .  The distance from the origin of the inertial coordinate system to the monitor is 1.7695 m 

which is defined as h.  The  is derived from: 

 ˆ ˆ ˆI I I I

i ib p h p r
  
  

            
55 

Equation 55 can be rearranged so that: 

 

 

ˆ

ˆ

T
I T

o

i T
I T B

i

h p A r

p A b









             

56 

The i  can also be computed as 

 
Figure 3: Vector representations of star field, star tracker frame, and the inertial frame. 

 

X

Y

Z

O

*
*

X

Y

Z

O

I

I

B

I

B

B

X I'

Y
I'

z I'

h

ZB'

X
B'

s1
s2

I
, O B'

Y
B'

*

*

*

*

*

r1

r2

b1
b2

R0

B I', O



 

American Institute of Aeronautics and Astronautics 

 

11 
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i
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p r





              

57 

For reference database, the star vectors measured in frame B at zero attitude need to be converted into star 

vectors  in frame I . The unit star vector at the inertial frame I which will serve as a database becomes  
B B

o i i
i

i

R b
r










             

58 

The Figure 4 illustrates an image from the database stars with the respective star numbers.  Once, the vectors are 

obtained in inertial frame I, the angle database is completed.  All the inertial angles are calculated.  The inertial 

numbers of the stars used to calculate the angles are stored with their respective angles to create a lookup table.  The 

entire database is stored as a MAT file in the TASS computer system.  The final database comprises angles with star 

numbers and the table with the inertial unit vectors and star number. 

 

 

B. Iterative Attitude Estimation 

Equation 54, 0

B B I

i i i ib A rR  

  , is not easily applicable for computation of attitude matrix A because 

i  is also a function of A. Instead of solving complex optimization problem, we want to apply the algorithms 

presented in Section III. In order for this, a simple iterative approach is proposed. First, compute the vectors 

0

B B

i ibR 

 using the prediction of a spacecraft attitude A. The prediction of a spacecraft attitude can be made from 

previous estimates of the spacecraft attitude or using additional sensors such as rate gyros. With this attitude 

prediction, the sect of vectors, 0

B B

i ibR 

 , can be used to compute the angles between them. These angles are now 

compared with the angles in the database and set of matching stars are identified for attitude estimation.  If the 

prediction of the attitude is not accurate, the accuracy for the angle matches need to be relaxed. In order for accurate 

 
Figure 4: Inertial star database image with numbering. 

 

Figure X. Vector representations of star field, star tracker frame, and the inertial frame 
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estimation, the resulting attitude estimation can again be used to perform more accurate matches and attitude 

estimation. Therefore, this method needs several iterations with slight increase in computational power. 

V. Results  

 

Experiments were performed to test the fidelity of attitude estimation the angle algorithm. For verification of 

the results, simple angle method with the QUEST attitude determination algorithm was implemented on the test-bed.  

Star unit vectors translated to the B  frame from the star image are first computed, and the angles between the 

brightest or master star and all other stars are calculated.  These angles are compared to the inertial angles stored in 

the database. The experiment is setup so that the prediction of A attitude matrix used for computation of 

0

B B

i ibR 

 has either no errors or some errors while the test-bed is at zero attitude.  By doing these tests, we can 

measure the accuracy of the estimation as well as the required accuracy of the prediction of the A matrix for the 

proposed algorithm.   

After the angles are matched, the star inertial vectors and observed star vectors are then entered into the QUEST 

algorithm.  The QUEST algorithm will then calculate an updated or accurate A matrix and attitude quaternion.  This 

new A matrix can then be used as a new initial estimate for further attitude calculation iterations. 

 

A. Estimation Results without Iteration 

For these tests, there is only one iteration of attitude updates. A series of A matrices with an initial error of 6 

degrees, 3 degrees, 0 degrees, -3 degrees, and -6 degrees were chosen.  A matching accuracy of 500 arc-seconds for 

each angle was chosen for all A matrices.  Therefore, an angle from an observed star angle must match an inertial 

angle by the value  250 arc-seconds.  All the multiple matches were filtered out to ensure accurate results in the 

experiment. For each test with 50 attitude estimations, several parameters were observed.  The resulting average 

updated A matrix from the QUEST algorithm for each test with its standard deviation were recorded.  The number of 

stars and angles matched were saved, as well as the Euler angles and their standard deviations.   

a) Testing with an A of 0 degree error. 

With a prediction of the A matrix of 0 degree error, in other words a 3x3 identity matrix, five test runs with 50 

attitude determinations for each test were accomplished with a 500 arc-second accuracy.  The results of the attitude 

testing for the Euler angles and their standard deviations are included in Table 1.  Even though there is no error 

inserted, only seven stars out of nine are easily matched due to the noise of the system.  The mean values and 

standard deviations for all the Euler angles remain fairly constant over the five tests as well. 

Table 1.   Tabulated results for Euler angles and standard deviation for an A matrix of 0 radian error. 

 Run 1 Run 2 Run 3 Run 4 Run 5 Overall Average 

Phi 6.86E-04 5.65E-04 6-004 5.65E-04 9.28E-04 6.86E-04 
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Theta 3.70E-03 3.00E-03 2.00E-03 3.00E-03 5.00E-03 3.34E-03 

Psi 2.97E-05 2.30E-04 1.30E-04 2.30E-04 4.30E-04 2.10E-04 

       

σ Phi 1.20E-03 1.10E-03 9.18E-04 1.10E-03 1.40E-03 1.14E-03 

σ Theta 0.0066 0.0061 0.005 0.0061 0.0074 6.24E-03 

σ Psi 6.74E-04 6.18E-04 5.06E-04 6.18E-04 7.57E-04 6.34E-04 

       

Number of 

stars 

matched 7.000 7.000 7.000 7.000 7.000 7.000 

 

The average attitude matrix for this testing is: 

0.9943    0.0002    0.0027

0.0003    0.9927    0.0006

0.0033    0.0005    0.9983

A

 
 

  
 
 

 

while the standard deviation for this matrix is: 

0.0121    0.0006    0.0065

0.0006    0.0154    0.0011

0.0062    0.0012    0.0035



 
 

  
 
 

 

As seen from these simulations, the attitude is close to the true attitude (identity matrix) due to no errors in the 

predicted attitude and most of the stars are picked up by the star tracker.  The next phase of testing is with an error in 

the attitude prediction. 

b. Testing with an A with 3 degrees error. 

The next phase of testing inserted an error of 3 degrees into the Euler angles to form an initial A matrix used in 

attitude determination.  Five more test runs for attitude determinations were accomplished with a 500 arc-second 

matching accuracy.  The results of the attitude testing for the Euler angles and their standard deviations are included 

in Table 2.  The QUEST and angle algorithms do correct for the error, but fewer stars are matched.  The main thing 

noticeable from this test is the marked decline in the number of stars detected by the algorithm.  Only 3.26 stars are 

detected due to the initial error during 50 runs.  If the initial attitude estimate is off, the results from the angle 

algorithm decline sharply.   
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Table 2.   Tabulated results for Euler angles and standard deviation for an A matrix of 3 radian error. 

 Run 1 Run 2 Run 3 Run 4 Run 5 Overall Average 

Phi 1.70E-03 6.58E-04 2.90E-03 3.50E-03 2.70E-03 2.29E-03 

Theta 7.40E-03 1.70E-03 1.36E-02 1.71E-02 1.26E-02 1.05E-02 

Psi 3.30E-04 -2.41E-04 9.58E-04 1.30E-03 8.54E-04 6.40E-04 

       

σ Phi 3.70E-03 1.58E-04 5.50E-03 6.20E-03 5.40E-03 4.19E-03 

σ Theta 0.0199 4.18E-04 0.0299 0.0335 0.0294 2.26E-02 

σ Psi 2.10E-03 5.77E-05 3.10E-03 3.40E-03 3.00E-03 2.33E-03 

       

Number of 

stars 

matched 3.260 3.320 3.200 3.320 3.200 3.260 

 

The average attitude matrix for this testing with a 3 radian error is: 

0.9832    0.0007    0.0073

0.0012    0.9786    0.0023

0.0131    0.0020    0.8006

A

 
 

  
 
 

 

while the standard deviation for this matrix is: 

0.0445    0.0139    0.1072

0.0144    0.0556    0.0357

0.1205    0.0896    0.0188



 
 

  
 
 

 

c. Testing with an A with a 6 radian error. 

Further testing with a large error of 6 radians was attempted with a matching accuracy of 500 arc-seconds.  This 

error would test the ability of the algorithms to arrive at the correct attitude solution with a large initial estimate 

error.  The results of this test were poor.  To get the algorithm to function, the accuracy had to be dropped to 900 

arc-seconds or 0.0044 radians to get two angles to match with the database correctly.  Four angles were detected, but 

only two were accurate.  The only way to make the algorithm work with this amount of error, is to filter the database 

further for angles that are within 0.0044 radians of each other.   

d. Testing with an A with a -3 radian error. 

The next series of tests involved using an A matrix with an Euler error of -3 radians.  The error was inserted and 

the simulations ran.  Table 3 contains the results of the -3 angle error tests.  The matching accuracy is maintained at 

500 arc-seconds for all tests. 
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Table 3.   Tabulated results for Euler angles and standard deviation for an A matrix with -3 radian error. 

 Run 1 Run 2 Run 3 Run 4 Run 5 Overall Average 

Phi -3.71E-04 -2.92E-04 -5.49E-05 -2.91E-04 -7.65E-04 4.30E-03 

Theta 7.51E-04 5.86E-04 9.27E-05 5.85E-04 1.60E-03 1.06E-02 

Psi -8.86E-05 -7.20E-05 -2.26E-05 -7.23E-05 -1.71E-04 1.20E-03 

       

σ Phi 1.20E-03 1.10E-03 5.59E-04 1.10E-03 1.60E-03 9.10E-03 

σ Theta 0.0025 0.0023 0.0012 0.0023 0.0033 2.48E-02 

σ Psi 2.50E-04 2.26E-04 1.17E-04 2.26E-04 3.33E-04 3.50E-03 

       

Number of 

stars 

matched 6.020 6.000 6.000 6.000 6.000 6.004 

 

From the results in Table 3, the Euler Angles are accurately calculated, but the star matches drops from the nine 

matches achieved with a zero radian error.  Only six of the stars are matched in most of the cases with an initial 

error. The average attitude matrix for this testing with a -3 radian error is: 

0.9939   -0.0001    0.0014

-0.0001    0.9937   -0.0006

0.0012   -0.0006    0.9997

A

 
 

  
 
 

 

while the standard deviation for this matrix is: 

0.0196    0.0004    0.0040

0.0004    0.0202    0.0020

0.0041    0.0019    0.0011



 
 

  
 
 

 

e. Testing with an A with a -6 radian error. 

With an A matrix of -6 radians error, five test runs for attitude determination were accomplished with a 500 arc-

second accuracy.  The results of the attitude testing for the Euler angles and their standard deviations are included in 

Table 8. The error still allows six stars to match in all cases. 

Table 4.   Tabulated results for Euler angles and standard deviation for an A matrix with -6 radian error. 

 Run 1 Run 2 Run 3 Run 4 Run 5 Overall Average 

Phi -6.86E-04 -4.49E-04 -6.08E-04 -4.49E-04 -6.07E-04 4.30E-03 

Theta 1.40E-03 9.12E-04 1.20E-03 9.13E-04 1.20E-03 1.06E-02 

Psi -1.55E-04 -7.20E-05 -1.38E-04 -1.05E-04 -1.38E-04 1.20E-03 
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σ Phi 1.50E-03 1.30E-03 1.50E-03 1.30E-03 1.50E-03 9.10E-03 

σ Theta 0.0032 0.0027 0.003 0.0027 0.0015 2.48E-02 

σ Psi 3.20E-04 2.71E-04 3.06E-04 2.71E-04 3.06E-04 3.50E-03 

       

Number of 

stars 

matched 6.000 6.000 6.000 6.000 6.000 6.000 

 

The average attitude matrix for this testing with a -6 radian error is: 

0.9939   -0.0001    0.0014

-0.0001    0.9937   -0.0006

 0.0012   -0.0006    0.9997

A

 
 

  
 
 

 

while the standard deviation for this matrix is: 

0.0125    0.0003    0.0026

0.0003    0.0130    0.0013

0.0026    0.0012    0.0007



 
 

  
 
 

 

 

 

B. Estimation Results with Iterations 

The next testing incorporated using the QUEST algorithm to provide an iterative attitude matrix update the 

attitude estimation.  The updated attitude solution should increase the accuracy by providing by providing corrected 

A matrices as initial estimate to the algorithms matching the inertial database to the body frame image. 

The update testing was completed with an initial error of 2 radians in the TASS initial attitude estimate with an 

matching accuracy requirement of 500 arc-seconds.  The testing starts at a single update, and then continues on up to 

five attitude updates.  Theoretically, at each update, the attitude solution will improve.  Table 5 contains the results 

of the testing.   

 

Table 5.   Tabulated results for Euler angles and standard deviation with A matrix updates. 

 Update 1 Update 2 Update 3 Update 4 Update 5 Overall Average 

Phi 1.30E-03 7.98E-04 1.50E-03 2.40E-03 1.30E-03 4.30E-03 

Theta 6.50E-03 3.20E-03 4.00E-03 3.10E-03 4.00E-03 1.06E-02 

Psi 5.05E-04 3.13E-04 -1.33E-04 -1.63E-04 -6.44E+00 1.20E-03 
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σ Phi 2.30E-03 1.70E-03 2.90E-03 3.40E-03 2.90E-03 9.10E-03 

σ Theta 0.0125 0.0094 0.0087 0.0073 0.0093 2.48E-02 

σ Psi 1.30E-03 9.91E-04 1.10E-03 1.30E-03 1.10E-03 3.50E-03 

       

Number of 

stars 

matched 5.000 6.640 6.680 6.600 6.630 6.310 

 

The main result of the update test is the increasing accuracy of the initial estimate of the attitude solution.  With 

an initial error of 2 radians, the updates remove the error and provide an updated attitude matrix.  As shown in the 

bottom line, the attitude updates improve with increasing amounts of attitude solution updates.  The amount of star 

matches improves from 5 at the beginning to ~6.6 stars at the end with five updates.  Table 5 shows the increase in 

star identification with increasing updates, while Table 6 shows the Euler angles over the same updates. 

By using an updated attitude matrix with errors removed while holding accuracy constant, star matching 

improves rapidly.  With only one update, only five star matches are achieved.  When using two updates, the matches 

increase to almost seven stars identified, which is very close to the testing in Table 1 which was conducted using an 

A matrix of 0 error. 

 

Figure 5: Tabulated results for stars recognized and standard deviation for an A matrix with a 2 radian error.  

 

With increasing A matrix updates, more precise Euler angles should also be obtained from the more 

accurate A matrix.  The Euler angles, shown in Table 11, overall exhibit similar trends of increasing accuracy.  Most 

improved are the Theta and Psi angles  
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Figure 6: Phi, Theta, and Psi angles over iterations.  

 

VI. Conclusion 

The angle algorithm for star pattern recognition and the QUEST algorithm for attitude determination were 

successfully implemented on the TASS.  The algorithm worked with an accuracy of 500 arc-seconds with an initial 

estimate of position as a 3x3 identity matrix.  The algorithms accurately determined the TASS position for a range 

of error from 3 radians to -6 radians.  Beyond 3 radians and -6 radians the angle method breaks down in its ability to 

accurately determine the position of the TASS.   

By updating the A matrix by outputs from the QUEST algorithm, the accuracy of the attitude solution increased 

markedly until a certain point, then leveled off.  The maximum star recognition increased from ~5 stars with one 

update and to 6.6 stars and leveled off.  The testing shows that increased accuracy is obtained by providing an 

updated attitude solution as an initial estimate to the algorithms. 
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