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Two objectives dominate consideration of control moment gyroscopes for spacecraft maneuvers: high torque

(equivalentlymomentum) and singularity-free operations.This paper adds to the significant bodyof research toward

these two goals using a minimal three-control-moment-gyroscope array to provide significant singularity-free

momentum performance increase spherically (in all directions) by modification of control-moment-gyroscope skew

angles, compared with the ubiquitous pyramid geometry skewed at 54.73 deg. Spherical 1H (one control moment

gyroscope’s worth momentum) singularity-free momentum is established with bidirectional 1H and 2H in the third

direction in a baseline configuration. Next, momentum space reshaping is shown via mixed skew angles permitting

orientation of maximum singularity-free angular momentum into the desired direction of maneuver (yaw in this

study). Finally, a decoupled gimbal angle calculation technique is shown to avoid loss of attitude control associated

with singularmatrix inversion. This technique permits 3H (maximal) yawmaneuvers without loss of attitude control

despite passing through singularity. These claims are demonstrated analytically, then heuristically, and finally

validated experimentally.

Nomenclature

�A� = gradient matrix of gimbal angles and skew angle(s)
with respect to gimbal rotation angle

c = cosine function
det = determinant
H = total momentum vector f hx hy hz gT
jHj = magnitude of total angular momentum of the array

of control moment gyroscopes
Hs = total momentum magnitude of control-moment-

gyroscope array when encountering a singular
condition

hx;y;z = momentum in the x, y, and z directions (normalized
by one control moment gyroscope’s worth of
momentum)

s = sine function
�i = skew angle for ith control moment gyroscope
@hx=@�i = Partial derivative of momentum in x-direction taken

with respect to ith gimbal rotation angle
�i = gimbal rotation angle for ith control moment

gyroscope
_�i = gimbal rotation rate for ith control moment

gyroscope
1H, 2H,
3H

= normalized angular momentum output by one, two,
and three control moment gyroscopes

4H = normalized angular momentum output by four
control moment gyroscopes (also called saturation)

I. Introduction

R APID spacecraft reorientation often drives design engineers to
consider control moment gyroscopes (CMGs). CMGs are

momentum exchange devices that exhibit extreme torque mag-
nification (i.e., for a small amount of torque input to the CMGgimbal
motors, a large resultant output torque is achieved) but inherently
possess singular directions, where no torque can be generated.

Despite singularity issues, CMG research began in the 1960s for
large satellites like Skylab (which used three double-gimbaled
CMGs, or DGCMGs) [1]. Computers of the time could not perform
matrix inversion in real time. Simple systems that did not require
matrix inversion were an obvious choice. Otherwise, algo-
rithmically simple approximations must have been available for
the system chosen. CMG steering and singularity avoidance was
researched a lot in the 1970s, 1980s, and 1990s [2–11].

Singularity avoidance was typically done using a gradient method
and DGCMGs [5,6,12]. These gradient methods are not effective for
single-gimbaled CMGs (SGCMGs) like they are for DGCMGs.
Magulies and Aubrun were the first to formulate a theory of
singularity and control [7] including the geometric theory of singular
surfaces, the generalized solution of the output equation, null motion
(using greater than three SGCMGs), and the possibility of singularity
avoidance for general SGCMG systems. Also, in 1978, Russian
researcher Tokar published singularity surface shape description,
size of work space, and considerations of gimbal limits [8].

Kurokawa et al. identified that a system such as a pyramid type
SGCMG system will contain an impassable singular surface and
concluded systems with no less than six units provide adequatework
space free of impassable singular surfaces [17]. TheMir space station
was designed for six-SGCMG operations. The research contained in
this paper evaluates singularity-free operations using a mere three-
CMG array by reducing singularities and then penetrating those
remaining singularities without loss of attitude control.

Continued research aimed at improving results with less than six
CMGs emphasized a four-CMG pyramid [14]. Much research
resulted in gradient methods that regarded passability as a local
problem that proved problematic [13,15,16]. Global optimization
was also attempted but proved problematic in computer simulations
[17–19]. Difficulties in global steering were also revealed in [20].
Reference [21] compared six different independently developed
steering laws for pyramid-type SGCMG systems. The study
concluded that exact inverse calculation was necessary (the exact
inverse calculation is used in this paper). Other researchers addressed
the inverted matrix itself, adding components that made the matrix
robust to inversion singularity [22–24] as extensions of the approach
to minimize the error in generalized inverse Jacobian calculation
[25]. These approaches introduced tracking errors where necessary
to avoid singularities by following a different momentum path
(generating other-than-desired torque). Reference [26] sought to use
a hybrid steering logic to maintain attitude tracking precision while
avoiding hyperbolic internal singularities or escaping elliptic
singularities with a four-CMG array skewed at 54.73 deg, the
ubiquitous baseline described in [14] and depicted in Fig. 1.
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Momentum path planning is another approach used to attempt to
avoid singularities that can also achieve optimization if you have
knowledge of the command sequence in the near future [25,27,28].
Another method used to avoid singularities is to use null motion to
first reorient the CMGs to desired gimbal positions that are not near
singular configurations [29]. By definition, null motion is motion of
the CMGs that results in a net zero torque. Null motion only exists
when more than three SGCMGs are used. The extra degrees of
freedom provided by a redundant configuration with more than three
SGCMGs are used to execute the null motion. Despite the massive
amount of research done on CMGs, precision control with CMGs
(especially only three SGCMGs, a nonredundant configuration) is
still an unsolved problem [28,30,31]. This research paper inves-
tigates a modification of the four-CMG pyramid. Here, only three
CMGs are used; thus, the problem is nonredundant: three-axis
control is accomplished by exactly three degrees of freedom. There
will not be an extra degree of freedom to use a constraint equation for
singularity avoidance. Furthermore, this paper will describemethods
to exactly follow the commanded path to minimize tracking errors
rather than a path that avoids singularities.

Typical CMG output torques are on the order of hundreds to
thousands of times the torque output of reaction wheels, another kind
ofmomentum exchange attitude control actuator.Aunique challenge
of CMG implementation remains the mathematical singularity.
Arguably, the most common configuration for a skewed array of four
CMGs is the pyramid array where the four CMGs are skewed at an
angle of �� 54:73 deg, resulting in an optimal spherical
momentum capability [1] requiring internal singularity avoidance
[1–8,32–37]. The desire is often stated as an equivalent (spherical),
maximized momentum capability (not singularity-free) in all
directions based on the f� ���g or f� � ��g 0H and 4H
saturation singularities, where all four CMGs are pointing in the
same direction (Fig. 2). The typical design approach may be

succinctly stated: 1) optimize spherical momentum, and then
2) minimize impact of singularities. The approach adopted here will
reverse the traditional approach as follows: 1)minimize singularities,
and then 2) maximize spherical momentum. Surprisingly, the result
turns out quite differently. This paper begins by comparing perfor-
mance of a three of four (3=4)-skewed pyramid using the baseline
skew angle�� 54:73 deg (derived from the four-CMGpyramid) to
the performance of a 3=4 CMG pyramid with the skew angle
specifically optimized for maximum singularity-free angular
momentum. It will be shown that a 3=4 CMG pyramid skewed at
�� 54:73 deg can achieve a maximum singularity-free momentum
of 15% of one CMG’s maximal momentum, while the proposed
geometry can achieve 100% of one CMG’s maximal momentum in
all directions with superior performance in a preferred direction.

II. Torque Generation and Singularities

To achieve a specified output torque from a CMG array, a
command must be sent to the gimbal motor. Equations (1–4) derive
this relationship for i� nCMGs normalized by oneCMG’s worth of
momentum (1H). First, write the angular momentum vectors hx, hy,
and hz in x, y, and z directions composed of components of angular
momentum contributions of the three CMGs combining to form the
overall system angularmomentum vectorH. It is desirable to express

the rate of change of angular momentum _H in order to use the first-
principles Newton–Euler relationship between the rate of change of
angular momentum and the applied external torques. The rate of

change of angular momentum _H may be decomposed into the
gradient with respect to the gimbal angles @H=@�i multiplied by the

rate of change of the gimbal angles f _�g. CMGs are inclined so gimbal
planes form skew angles�i with respect to the xy plane as depicted in
Fig. 2, where i� 1 � 3 for three CMGs.. Begin by writing equations
for each momentum vector in xyz coordinates for three CMGs
normalized by 1H:

hx � cos �3� cos �1 � cos�2 sin �2
hy � cos�3 sin �3� cos�1 sin �1� cos �2
hz � sin�1 sin �1 � sin�2 sin �2 � sin�3 sin �3

)
(1a)

hx � cos �3 � cos �1 � cos� sin �2 hy � cos��sin �3 � sin �1�

� cos �2hz � sin��sin �1 � sin �2 � sin �3�
�

(1b)

H � hxx̂� hy ŷ� hzẑ (2a)

@H
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�
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sin �1 cos� cos �2 � sin �3
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64
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|�����������������������������������������{z�����������������������������������������}
�A�

� �A� (2b)

The �A� matrix (containing gimbal angles �i and skew angles �i)
must be inverted to find the required CMG gimbal command for
commanded output torque per Eq. (3). The Newton–Euler relation
relates generated torque to the timed rate of change of angular
momentum of the spacecraft system. A CMG absorbs momentum

change _H, causing an equal and opposite change in momentum on
the spacecraft. For n CMGs, the general relation is

Fig. 1 Singularity surfaces associated with the ubiquitous skew angle

of 54.73 deg.

Fig. 2 Individual CMG momentum directions for a 3=4 CMG skewed

array in a singular configuration of gimbal angles.
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ai��i� _�1 � �A�f _�g

! �A��1f _Hg � �A��1�A�f _�g � f _�g (3)

For some combinations of gimbal and skew angles, the �A�matrix
columns can become linearly dependent. At these combinations of
skew and gimbal angles, the determinant of the �A� matrix becomes
zero, leading to singular inversion as follows:

det�A� � s�fs�2�s��1 � �2�� � c�c�2�s��3 � �1� � 2c�1c�3c��g
(4)

where s� sine, and c� cosine.

III. Three of Four Skewed Control Moment
Gyroscope Array

The 3=4 CMG array modifies the commonly studied four-CMG
skewed pyramid. A minimum of three CMGs is required for three-
axis control, and the fourth is often used for singularity avoidance.
With the 3=4 array, only three CMGs are used for active attitude
control with the fourth CMG held in reserve for robust failure
properties. The fourth CMG is not active (dormant), with no
electrical power applied to its gimbal motor until required by the loss
of a failing CMG. When a CMG fails, it may be despun (controlled)
and then depowered while the spare CMG is powered and spun up
(again controlled). Thus, the fourth CMG substitutes the failing
CMG, maintaining a 3=4 CMG array configuration. The 3=4 CMG
array remains the focus of this research, and the results here can be
equally applied to the new (substituted) 3=4 CMG array. Experi-
mental verification will be provided in later sections using a

spacecraft testbed with a 3=4 CMG array containing a balance mass
in the place of the fourth CMG (Fig. 2).

The approach taken by the authors is to first optimize the 3=4
skewed array (system of four CMGs in a skewed configurationwhere
only three CMGs operate for attitude control) geometry itself by
choosing the skew angle that provides the greatest singularity-free
momentum. At this optimal singularity-free skew angle, the 3=4
CMG array can operate at momentum values less than the
singularity-free threshold without any kind of singularity avoidance
scheme. Furthermore, utilization of mixed skew angles can rotate the
work space to maximize momentum in a preferred direction, again
singularity-free. Yaw is the preferred direction in this study. A direct
comparison with the traditional optimal spherical skew angle will
demonstrate the dramatic improvement in torque capability of the
CMGarray. Analytical derivation is followed by heuristic, geometric
analysis, and then validation via experimentation on a realistic
spacecraft simulator in ground tests.

IV. Analysis

Singular combinations of gimbal angles and skew angles can be
determined analytically by examining the determinant of the �A�
matrix. Recall

det�A� � s�fs�2�s��1 � �2�� � c�c�2�s��3 � �1� � 2c�1c�3c��g

When the determinant goes to zero, thematrix has linearly dependent
columns resulting in singular inversion. There are six cases (with
multiple subcases) that result in a singular �A� matrix (less than full
rank) with �i � �, where each singular case is caused by a
component quantity being equal to zero resulting in the total quantity
not being invertible (see Table 1):

Table 1 Six singular cases where det�A� � 0

Case Value

1 sin�� 0
2 sin��1 � �3� � sin��3 � �1� � 0
3 sin �2�sin��1 � �3�� � cos� cos �2�sin��3 � �1� � 2 cos �1 cos �3 cos�� � 0
4 sin �2 � 0
5 sin��1 � �3� � cos �2 � 0
6 sin��1 � �3� � cos �2 � 0

Fig. 3 3=4 skewed CMG array used in this study.
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Case 1:

sin�|{z}
0

fsin �2�sin��1 � �3�� � cos� cos �2�sin��3 � �1�

� 2 cos �1 cos �3 cos��g
! sin�� 0 (5)

Case 2:

sin�fsin �2�sin��1 � �3��|��������{z��������}
0

� cos� cos �2�sin��3 � �1�|������{z������}
0

� 2 cos �1 cos �3 cos��g ! sin��1 � �3� � 0 and

sin��3 � �1� � 0 (6)

Case 3:

sin�fsin �2�sin��1 � �3�� � cos� cos �2�sin��3 � �1� � 2 cos �1 cos �3 cos��g|�������������������������������������������������������������������{z�������������������������������������������������������������������}
0

! sin �2�sin��1 � �3�� � cos� cos �2�sin��3 � �1� � 2 cos �1 cos �3 cos�� � 0 (7)

Case 4:

sin�f sin �2|{z}
0

�sin��1 � �3�� � cos� cos �2|������{z������}
0

�sin��3 � �1�

� 2 cos �1 cos �3 cos��g ! sin �2 � 0

and cos� cos �2 � 0 (8)

Case 5:

sin�fsin �2�sin��1 � �3��|��������{z��������}
0

� cos� cos �2|������{z������}
0

�sin��3 � �1�

� 2 cos �1 cos �3 cos��g ! sin��1 � �3� � 0

and cos� cos �2 � 0 (9)

Case 6:

sin�f sin �2|{z}
0

�sin��1 � �3��

� cos� cos �2�sin��3 � �1� � 2 cos �1 cos �3 cos��|�������������������������������{z�������������������������������}
0

g

! sin �2 � 0 and sin��3 � �1�
� 2 cos �1 cos �3 cos�� 0 (10)

There are a few trivial cases. Nontrivial cases may be analyzed as
follows. In general, for a given skew angle, each case produces
gimbal angle combinations that result in det�A� � 0. These gimbal
combinationsmay be used to calculate the resultantmomentum at the
singular condition. Minimum singular momentum values may then
be plotted for iterated skew angles 0 deg<� < 90 deg. Having
established the minimum value of momentum at singular combi-
nations of gimbal angles, it is not possible to become singular at
momentum less than these values (Fig. 3). Thus, the result is the
maximum singularity-free momentum space. As we see in Fig. 3, the
extensively studied skew angle (�� 54:73 deg), which is originally
optimized for maximal momentum performance of four CMGs (not
singularity-free momentum), yields roughly 0:15H momentum

before reaching a singular state for three CMGs. To avoid singu-
larities and maintain attitude control, spacecraft control torque is
limited to less than 0:15H. Thus, using the ubiquitous skew angle of
54.73 deg, which was optimized for spherical maximum momen-
tum (not singularity free) with four SGCMGs, in the case of three
CMGs only, 15%of one CMG’s torque is achievable singularity free.
Using the new skew angle of �� 90 deg (see Figs. 4 and 5), which
was optimized for singularity-free momentum space, 1:0H (100%
the momentum capability of one CMG) is achievable singularity-
free in any direction. Theoretically, singularity-free momentum
is increased from roughly 0:15H to 1H: �1H � 0:15H�=
0:15H > 500%. This theoretical claim must be validated. To do so,
Sec. V will provide simulated visual depictions of the singularity
surfaces in the momentum space demonstrating a lack of
singularities in the momentum space less than 1H, and then
Sec. VII will provide experiments that command maneuvers
resulting in angular momentum trajectories that exceed 0:15H while
monitoring the condition of the �A�matrix for potential singularities.
If the inverse condition number of the �A�matrix ever goes to zero, the

CMGs have encountered a singularity. It will be shown that the
CMGs remain singularity free as claimed (see Fig. 4).

V. Heuristics

The preceding analysis reveals singularity-free operations less
than 1H in all directions by implication. While useful, the analysis
certainly does not yield much intuition for the attitude control
engineer to design safe momentum trajectories through the momen-
tum space. Are there directions that can exceed 1H singularity-free?

Advances in computer processor speedsmake a heuristic approach
readily available. Consider rotating a vector 360 deg creating a CMG
gimbal cutting plane (discretized at some interval). Then, rotate the
gimbal plane 360 deg, creating a lattice of discrete points forming a
solid, filled sphere. This lattice provides discretized points to analyze
CMG array momentum. This may be done in embedded loops of
computer code. Each discrete point corresponds to a set of three

Fig. 4 Skew angle optimization for maximum singularity-free

normalized momentum.
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coordinates or, equivalently, three gimbal angles. At each discrete
point, the singularity/nonsingularity of �A� is established. At singular
points, the normalized magnitude of angular momentum may be
calculated. A point may be plotted at the magnitude of the momen-
tum in the singular direction. This results in a three-dimensional
singularitymap granting intuition formaneuvering in themomentum
space (e.g., Figs. 6–8). When the singular condition exists, one, two,
or three CMGs’ angular momentums may be generating momentum
in the same direction, and this fact leads to the nomenclature listed in
Fig. 5, which is ubiquitously used in the literature (e.g., [37]). If all
three CMGs point in the same positive or negative direction (0H and
3H), this represents the maximum capability of the array, and the
singularity is referred to as saturation. Other singular cases that occur
when one CMG is pointing opposed to the other two CMGs (1H) are
referred to as internal.

Singular surfaces plotted in the momentum space (e.g., Figs. 6–8)
result from several kinds of singularities: 0H, 1H, 2H, and 3H,
depicted in Fig. 5. Typically, the optimal spherical skew angle is
determined by the outer, saturation singular surface alone (0H and
3H in the case of a 3=4 CMG array). To find the maximum
singularity-free skewangle, the analysismust also account for the 1H
and 2H internal singularities.

It may be noted here that the often used optimal spherical skew
angle (�� 54:73 deg) that results in equivalent momentum in all
directions is derived using the 0H f� � ��g and 4H f� ���g
singular surfaces of a four-CMG skewed array. The 0H and 4H
singular surfaces are the saturation surfaces that result from all four
CMGs pointing in the same direction, and their corresponding
saturation surfaces for the 3=4 array are the 0H and 3H singular
surfaces. In the case of a 3=4 CMG array, the singular surfaces are
depicted in Fig. 6 for the often used optimal spherical momentum
skew angle (�� 54:73 deg).

Note that the spherical nature of the external, saturation singular
surfaces f� ��g andf� � �g typified by the ubiquitous four-CMG
pyramid array skewed at �� 54:73 deg (Fig. 1) are nearly
maintained in the 3=4 array. The internal 1H and 2H singularities are
quite a problem, since they occupy a large portion of the momentum
space. The combined singularity hypersurface makes it difficult to
see a clear momentum path around the origin.

The typical design methodology might use the shape of the 3H
outer momentum surfaces f� ��g and f� � �g to define ��
54:73 deg as the optimal spherical momentum skew angle. The
attitude control engineer would be left with the task of maneuvering
in this crowded momentum space while trying to avoid any point on

Fig. 7 Skew iteration at 70 deg (top), 80 deg (lower left), and 90 deg

(lower right).

Fig. 8 Mixed skew angles (see Table 2) highlighting case 2

f90; 0; 90 deggT .

Fig. 5 3=4 CMG skewed array momentum cutting planes with

�� 90 deg.

Fig. 6 Singular surfaces for a traditional 3=4 CMG skewed array at a

skew angle of 54.73 deg..
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the singular hypersurface. Striking a singular point results in (at least
temporary) loss of attitude control. Also note the maximum
momentum capability is less than 3H. Per Fig. 3, the maximum
singularity-free momentum capability using �� 54:73 deg is
0:154868H. If the skew angle were increased to 90 deg, Fig. 3 skew
angle optimization indicates that, theoretically, singularity-free
momentum would be increased 1:0H. Consider the singular hyper-
surfaces for heuristic, geometric observations.

It was established in Sec. IV that a skew angle of 90 deg
theoretically results in a singularity-free momentum space of 1H for
the 3=4 CMG array. Repeating the numerical, heuristic singularity
analysis as the skew angle increases is very revealing. Figure 7
displays the singular momentum space for a skew angle of 70, then
80, then 90 deg. Similar plots incremented every �� 5 deg are
contained in [38], while these three examples in Fig. 7 are sufficient
to demonstrate the behavior of increasing the skew angle.Notice how
the 1H and 2H singular surfaces move away from the origin and
gradually converge into each other as the skew angle increases to
90 deg. Fewer singular surfaces are obviously beneficial, but the
vacancy of the center of the momentum space is especially
significant, since it creates a significant portion of the momentum
space that is free of singular conditions (free for maneuver without
regard to singularities). Furthermore, it will be shown in the next
section that the large area of singularity-freemomentum space can be
rotated via mixed skew angles to emphasize a preferred axis of
rotation. The yaw axis is the preferred axis of maneuver in this study,
but notice in Fig. 7 that greater angular momentum (2H) capability
exists in the roll direction for this geometry of CMG array, while
pitch maneuvers can achieve 1H singularity free. It is desirable to
rotate the direction ofmaximum singularity-freemomentum space to
the yaw direction. It will be seen that mixed skew angles can rotate
the momentum space to emphasize roll or pitch.

VI. Momentum Space Rotation: Mixed Skew Angles

Typically, skewed CMG arrays use identical skew angles for each
CMG (�i � �). By using mixed skew angles, the singularity-free
football-shaped space can be reoriented to place the 2H momentum
capability in the yaw direction. Six possible momentum
reorientations are possible by laying down momentum planes from
90 to 0 deg, as listed in Table 2, resulting in rotations of the momen-
tum space depicted, respectively, in Fig. 8. This section refers tofixed
geometries and does not investigate the adaptive skew angle [39],
especially since the adaptive skew angle provides an extra degree of
freedom, while this research seeks to investigate what can be done
with nonredundant configurations.

Notice (in Fig. 8) that three options for mixed skew angles result in
the original momentum space rotated about ẑ such that x̂$ ŷ, while
two other options generate spherical momentum space filled with
significant internal singularities. Notice the center of the momentum
space is cloggedwith singular surfaces such that those twofigures are
blackened in the center. Our difficulty seeing the center is indicative
of difficulties steering a momentum vector through that space
without striking a singular surface for those two mixed skew angle

combinations. This is an undesirable feature similar to the original
case of four CMGs skewed at 54.73 deg (Fig. 1) or three CMGs
skewed at 54.73 deg (Fig. 6) where only 0:15H was available
singularity-free. This study seeks geometries with large areas of the
momentum space that are free of singularities.

One successful reorientation f�1; �2; �3g � f90; 0; 90 degg is
accomplished by simply sliding the second CMG from 90 to 0 deg,
resulting in singularity-free yaw momentum increase with a
favorably vacant internal singularity structure. Figure 9 depicts a 3=4
CMGarray skewed atmixed skew angles�1 � 90 deg,�2 � 0 deg,
and �3 � 90 deg. Trajectories originating at the origin of the
momentum space have 1H spherical momentum capability and 2H
momentum capability about yaw (ẑ) singularity-free. Theoretically,
singularity-freemomentum is increased to2H from 0:15H compared
with the case of three CMGs skewed at 54.73 deg (Figs. 3 and 7):
�2H � 0:15H�=
0:15H > 1000%. This claim must be experimentally validated.
Section VIII provides experiments that command maneuvers
resulting in angular momentum trajectories that exceed 0:15H and
even exceed 1H (the demonstrated limit of singularity-free momen-
tum space with nonmixed skew angles). Note that momentum
trajectories that are initiated from points near (0,0,2) can traverse to
�0; 0;�2�, resulting in �4H being stored in the CMG array
producing �4H momentum imparted to the spacecraft about yaw
singularity free.

VII. Experimental Verification:
Skew Angle Optimization

Experimental verification of the singularity-free skew angle is
performed on a free-floating three-axis spacecraft simulator to
demonstrate singularity-free operations. The free-floating spacecraft
testbed is referred to as TASS2 (three-axis spacecraft simulator)
indicating its heritage as the second such testbed developed at the
Naval Postgraduate School. The first testbed, TASS1 [40], wasmuch
smaller and did not use CMGs. A description of the experimental
hardware is based on [38], for which the graphics were directly
replicated here (Fig. 10). Figure 10 shows the actual picture of the
three-axis simulator named as TASS2. The spacecraft bus simulator
is supported on a spherical air bearing to simulate a weightless
environment. A thin film of compressed air is injected between a
spherical ball and a mating spherical cup. This thin film of air creates
an essentially frictionless lubrication layer between the ball and cup.
When test articles mounted to the ball segment are balanced, such
that their aggregate center of gravity corresponds with the center of
rotation of the ball, rotational motions of the ball and test articles
match those of an object with similar inertial properties free falling

Fig. 9 f�1; �2; �3g � f90; 0; 90 degg mixed skew angle momentum

cutting planes depicted for a 3=4 CMG skewed array.

Table 2 Six possible combinations of mixed

skew angles laying one or two momentum

cutting planes from 0 to 90 dega

�1, deg �2, deg �3, deg

0 90 90
90b 0b 90b

90 90 0
0 0 90
0 90 0
90 0 0

aCorresponding singular hypersurfaces are depicted in
Fig. 8, starting from the upper left and going to the
lower right
bSpecial attention is brought to the case of
f�1; �2; �3g T � f90; 0; 90 deggT.
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though space. Because it is important to minimize the disturbance
torque from any imbalance, three servolinear stages with lumped
masses may be employed for automatic mass balancing. The three
linear stages are placed parallel to the three spacecraft body axes but
are not used in this study.

The spacecraft testbed payload is an optical relay for laser beams.
The lower deck of the spacecraft is a bench model spacecraft with
CMGs, active mass balancing system, fiber optic gyroscopes for
attitude rate sensing, and typical onboard computers. The upper deck
of the testbed is an experimental laser optical relay designed to accept
a laser from the ground, aircraft, or space-based source and relay the
laser to an uncooperative target on the ground, in the air, or in space.
Description of the mission and some details about experimental
hardware may be found in [40,41]. This laser relay mission demands
rapid target acquisition yaw maneuvers in minimum time followed
by fine pointing during target tracking.

To first demonstrate singularity-free operations (verify the large
maneuver space is free of singular conditions as theoretically
predicted earlier in this paper), experimental maneuvers were per-
formed with a�5 deg yaw maneuver in 4 s followed by a �5 deg
yaw maneuver in 4 s. The attitude is then regulated to zero while the
CMG continues to output torque to counter gravity gradient
disturbances typical of imbalanced ground test spacecraft simulators.
The testbed has an autobalancing device to eliminate this gravity
disturbance torque, but the device was disengaged to permit the
experiment to explore more of the momentum space and to simplify
assertions of CMGperformance, since CMGswill be the only torque
actuators. During previous research, this maneuver (�5 deg yaw
maneuver in 4 s is followed by a �5 deg yaw maneuver in 4 s) was
performed using a CMG geometry with skew angle of 57 deg (not
depicted). The CMG array became singular, and the testbed
spacecraft attitude control was lost, motivating this current study.
The skew angle was increased to 90 deg for all three CMGs, and the

identical experiment was repeated. Notice in Figs. 11 and 12 that the
maneuver is performed and the testbed is regulated for 5min. without
striking any singular surfaces.Momentummagnitude and the inverse
of the condition of the �A� matrix verify this assertion.

Notice what happens when the same momentum trajectory is
placed in the context of the theoretical singular momentum space of
the optimal spherical skew angle �� 54:73 deg (Fig. 13). The
internal singular surfaces are depicted individually for ease of
visualization. This momentum trajectory is constantly close to the
internal singular surfaces and quickly strikes a singular surface. A
corresponding singular surface exists for a skew angle of 57 deg.
Prior experiments using �� 57 deg went singular and resulted in
the loss of attitude control when the momentum trajectory struck this
corresponding singular surface.

VIII. Experimental Verification:
Momentum Space Rotation

Next, experiments were performed with mixed skew angles to
orient the maximum singularity-free momentum capability about the
yaw axis, as seen in Figs. 14 and 15. The first experiment (Fig. 11)
verified that momentum trajectories could exceed 1H in roll, but care
was taken not to exceed 1H in yaw, since 1H defines the yaw limit for
singularity-free operations of the f90; 90; 90 degg configuration. To
verify momentum space rotation here, we seek to verify that we can
exceed 1H about yaw, so the yawmaneuvers were increased 160% in
the same duration from 5 to 13 deg in only 4 s. This demands

Fig. 11 Experiment: �5 deg yaw in 4 s, �5 deg yaw in 4 s, and then

regulate for 5 min.

Fig. 12 Experiment: �5 deg yaw in 4 s, �5 deg yaw in 4 s, and then

regulate for 5 min. Skew angles equal 90 deg.

Fig. 13 Fictional experiment: Fig. 11 placed in context of 54.73 deg

momentum envelope.

Fig. 10 TASS2, where IMU refers to inertial measurement unit.
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significantly more momentum change, specifically about yaw. Per
Figs. 14 and 15, the momentum is achieved singularity-free and the
maneuver is performed without incident; thus, we see that the
momentum space can be rotated to increase yaw maneuver
capability.

IX. Analysis of Singularity Reduction: Decoupled
Steering Commands Technique

In this section, we derive a strategy dubbed “decoupled control
steering”, where we take advantage of the simplifications that arise
from the optimum singularity-free skew angle �� 90 deg, seeking
to yield maximal (3H) momentum capability about yawwithout loss
of full attitude control. Substituting the �A� matrix with �� 90 deg
into Eq. (2) yields

( _�1
_�2
_�3

)
�

sin �1 0 � sin �3
0 sin �2 0

cos �1 cos �2 cos �3

2
4

3
5

|������������������������{z������������������������}

�1

+

( _hx
_hY
_hZ

)
(11)

( _�1
_�2
_�3

)
�

c�3
c�1s�3�s�1c�3

�s�3
�c�1s�3�s�1c�3� tan�2

s�3
c�1s�3�s�1c�3

0 1
s�2

0
�c�1

c�1s�3�s�1c�3
�s�1

�c�1s�3�s�1c�3� tan�2
s�1

c�1s�3�s�1c�3

2
64

3
75

|���������������������������������������{z���������������������������������������}
( _hx

_hY
_hZ

)
(12)

Note that the y-momentum change equation has become
decoupled from the x and z equations. Pitch momentum is

determined completely by gimbal 2. The pitch equation may be
separated from the matrix system of equations. The benefit is the
elimination of singular gimbal commands for CMGs that are not in
geometrically singular gimbal angle positions. Consider what
happens if the first and third CMGs enter a combination of gimbal
angles that satisfy cos �1 sin �3 � sin �1 cos �3 � 0. This would not
result in singular commands toCMGgimbal 2. CMGgimbal 2would

receive the following command: _�2 � �1= sin �2� _hy. The individual
equations for each of the three CMGs to be implemented are

_�1 �
cos �3

cos �1 sin �3 � sin �1 cos �3
_hx

� � sin �3
�cos �1 sin �3 � sin �1 cos �3� tan �2

_hy

� sin �3
cos �1 sin �3 � sin �1 cos �3

_hz

_�2 �
1

sin �2
_hY

_�3 �
� cos �1

cos �1 sin �3 � sin �1 cos �3
_hx

� � sin �1
�cos �1 sin �3 � sin �1 cos �3� tan �2

_hy

� sin �1
cos �1 sin �3 � sin �1 cos �3

_hZ (13)

During singular conditions, nonsingular CMGs would operate
normally per their decoupled steering logic. Take special care not to
implement the equations listed below in a seemingly equivalent
matrix form [Eq. (12)]. By calculating eachCMG’s proper command
individually (rather than in a matrix), decoupled control steering
allows nonsingular CMGs to be properly commanded during periods
that other CMGs are singular. This can prevent loss of full attitude
control and permits the momentum trajectory to pass the internal
singular state.

X. Simulation of Singularity Reduction

Yawmaneuvers were simulated using typical coupled control and
compared with the proposed decoupled control strategy. First, a
�50 deg yawmaneuver is followed immediately by a�50 deg yaw
maneuver, and then regulation at zero. The results of both methods
are displayed in Fig. 16. Notice the coupled implementation of the
Moore–Penrose pseudoinverse results in large unintended roll each
time the momentum trajectory strikes the singular surface.

On the contrary, notice how decoupled control smoothly traverses
the singularity surface with negligible roll or pitch errors. Since
analysis and simulation both indicate the proposed decoupled control
technique should work, experimental verification was performed on
a free-floating spacecraft simulator (Figs. 17–19).

Notice in the simulation depicted in Fig. 16 that identical
simulated experiments are compared, except one of the experiments
used a coupled-matrix steering law (dotted line), while the second
used uncoupled, individual steering equations to command each
CMG (solid line). The thin line is hard to see when both experiments
travel identical paths through the momentum space, but when the
coupled-matrix steering law encounters a singularity, loss of attitude
control results in large, undesired roll maneuvers. Underneath, it is
easier to see the think line that represents the simulation using the
uncoupled, individual steering equations, which cleanly passes
through the singularity without loss of attitude control.

XI. Experimental Verification: Singularity Reduction
via Decoupled Steering Technique

Experiments were performedwith decoupled control tomaximum
momentum capability about the yaw axis. First note that Fig. 17
displays the ability of decoupled control steering to penetrate the
singular surface associated with the coupled �A� matrix of the CMG

Fig. 14 Experimental results: �13 deg yaw in 4 s, and �13 deg yaw

in 4 s performed in f�1; �2; �3g � f90; 0; 90 degg mixed skew angle

configuration. the momentum trajectory is placed in the context of

theoretical singular hypersurface.

Fig. 15 Experimental results: �13 deg yaw in 4 s, and �13 deg yaw
in 4 s performed in f�1; �2; �3g � f90; 0; 90 degg mixed skew angle

configuration (with maneuver momentum and inverse condition of �A�).
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gimbal angles and skew angle. This attribute is exploited with an
aggressive yawmaneuver (Fig. 18). The commanded yawmaneuver
angle was increased 700% from�5 deg in 4 s to�35 deg in 10 s.
This demands significantly more momentum change, specifically

about yaw. Figure 18 displays the required maneuver is achieved
without incident. Notice that the coupled �A� matrix was singular
twice during this maneuver.

Typical coupled control steering would have resulted in loss of
spacecraft attitude control. Instead, with decoupled steering, youwill
notice a nice maneuver despite the singular �A� matrix. Attitude
control is not lost at any time. Also notice the extremely high
magnitude of momentum achieved without loss of attitude control
associated with the passage of singularities.

XII. Conclusions

These experiments validate the much desired goal of CMG
attitude control: extremely high torque without loss of attitude
control associated with mathematical singularity. The optimized
geometry is shown to increase singularity-free torque capability
significantly. The maximized singularity-free momentum may be
rotated to a preferred predominant maneuver direction by using
mixed skew angles. Using a proposed decoupled control strategy,
further singularity reduction is achieved that is shown to allow
momentum trajectories to cleanly pass through singular surfaces
without loss of attitude control. These claims were introduced
analytically, and promising simulations were provided. Finally,
experimental verification was performed, demonstrating maximal
yaw maneuvers that passed through singular surfaces that would
render loss of attitude control using typical coupled control
techniques.
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