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ABSTRACT 

Delivering electrical power to remote military bases can be an expensive and dangerous 

task. The idea of delivering renewable power to remote military bases through space-

based solar power has existed for many years, but has not yet materialized. This research 

sought to examine existing studies and leverage their findings to determine a systems 

architecture and subsequent design alternatives that could deliver space-based solar 

power to a military base in Afghanistan. Three design alternatives were created and were 

based on the defined systems architecture. The system attributes vary by design 

alternative, to include transmitter size, rectenna size, power transmitted, mass of 

components, and number of launches required. The design attributes were weighted 

accordingly to stakeholder objectives. In turn, the entire design alternative was given a 

Measure of Effectiveness score. This score was used to determine the most effective 

design alternative among the designs presented in this research. The result is one of the 

three designs conclusively meets stakeholder requirements and is more effective than the 

others, yet further research should be done to improve the design and address other 

concerns, such as the extremely high cost of the system and the potential environmental 

and safety issues of the high-power microwave beam. 
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EXECUTIVE SUMMARY 

Delivering electrical power to remote military bases can be an expensive and dangerous 

task. The idea of delivering power to these remote military bases through space-based 

solar power satellites has existed for many years, but it has not yet materialized. Early 

concepts were too expensive and the needed technology was not mature. In more recent 

years, technology has improved and there has been an increasing focus on renewable 

energies and energy efficiencies. The focus of energy has received attention from world 

leaders as well as from the United States of America, to include the countries’ president 

and its military forces. 

One concept for delivering large amounts of renewable energy is through a space-

based solar power satellite system. This research sought to leverage existing studies to 

determine a systems architecture and subsequent design alternatives that could deliver 

space-based solar power to a military base in Afghanistan. To determine the systems 

architecture, this research analyzed the architectures from John C. Mankins and utilized 

the system engineering process from D.M Buede, which included gathering stakeholder 

requirements, establishing an objectives hierarchy, and conducting a functional analysis. 

The systems architecture and the research of Raul G. Gómez et al. were then used to 

create three design alternatives which meet the power requirements of the stakeholders. 

The final part of this research sought to determine which design was most 

effective according to stakeholder requirements. The system attributes varied by design 

alternative, to include transmitter size, rectenna size, power transmitted, mass of 

components, and number of satellite launches required. The final design attributes were 

weighted accordingly to stakeholder objectives. In turn the entire design alternative was 

given a Measure of Effectiveness score. This score was used to determine the most 

effective design alternative among the designs presented in this research. The result is 

that one of the three designs conclusively meets the stakeholder requirements and is more 

effective than the others, yet further research should be done to improve the design and 

address other major concerns, such as the extremely high cost of the system and the 

potential environmental and safety issues of the high power microwave beam. 
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I. INTRODUCTION 

A. OBJECTIVE 

The research and conclusions within this paper are targeted at finding the best 

system design alternative for using Space-based Solar Power (SSP) satellites for military 

bases in Afghanistan, where energy is expensive and/or very difficult to obtain. 

B. BACKGROUND  

1. The Global Energy Situation 

The global energy situation is worsening. In the coming years, more efficient 

energy sources will need to be developed and implemented. This is driven primarily by 

three factors. First, there is a growing demand for energy to feed the economic demand. 

Second, there exists growing concerns regarding long-term accumulation of fossil fuel-

driven green-house gases in the earth’s atmosphere. Third, the prospect exists that global 

production of petroleum and other fossil fuels will peak and possibly decline in the next 

few decades. John Mankins is a researcher in SSP and has done extensive studies on the 

current and future state of the world’s energy. He forecasts the annual energy 

consumption for the next 100 years and shows an exponential relationship between 

energy needs and the increase in population. He also takes the position that a baseline 

would require two-times the level of energy consumption in 2010 by 2030–2040, and 

four-times the 2010 amount by 2090–2100 (Mankins 2011, 1–2). Table 1 provides a 

summary of forecasts for global population, renewable energy, and CO2 emissions for the 

years starting in 2010 to 2100. Mankins’ key expertise is in advanced space systems 

concepts, space solar power, and technology research and development (R&D) 

management. He has contributed many studies in the space solar power discussion. 
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Table 1.   Forecasts of future energy/environment factors (from Mankins 2011, 3) 

 

2. United States’ Call for Usage of Efficient Energy Sources 

The United States of America has taken several steps to help utilize more energy 

efficient practices. In Executive Order 13423, the U.S. president provides clear policy for 

federal agencies to “conduct their environmental, transportation, and energy-related 

activities under the law in support of their respective missions in an environmentally, 

economically and fiscally sound, integrated, continuously improving, efficient, and 

sustainable manner” (U.S. President 2007, sec. 1–11). He further explains the goals for 

each federal agency head. One of these goals relates to the reduction of greenhouse gas 

emissions and seeks to 

improve energy efficiency and reduce greenhouse gas emissions of the 

agency, through reduction of energy intensity by (i) 3 percent annually 

through the end of fiscal year 2015, or (ii) 30 percent by the end of fiscal 

year 2015, relative to the baseline of the agency’s energy use in fiscal year 

2003 (U.S. President 2007, sec. 1–11). 
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The second goal relates to renewable energy and states that, 

(i) at least half of the statutorily required renewable energy consumed by 

the agency in a fiscal year comes from new renewable sources, and (ii) to 

the extent feasible, the agency implements renewable energy generation 

projects on agency property for agency use. (U.S. President 2007, sec. 1–11). 

Federal agencies can meet these goals with the increased usage of renewable 

energy. Federal agencies must submit fiscal year reports to the Department of Energy 

(DoE) according to the Federal Energy Management Program (FEMP) (U.S. DoD 

Annual Energy Management Plan 2010, 1). These yearly reports summarize the 

submitting agencies’ energy management programs and measure their progress against 

the energy performance goals. 

3. DoD’s Initiative to Manage Energy Usage 

The Department of Defense (DoD) utilizes one percent of the total U.S. 

consumption of energy. Although this may seem to be an insignificant overall amount, 

the DoD is the largest single consumer of energy in the U.S. By comparison, the country 

of Nigeria, with over 140 million people, consumes less energy than the DoD (Karbuz 

2007) while in 2012, the DoD in comparison employs about 3.2 million people 

(Alexander 2012). The DoD per capita energy consumption is approximately 10 times 

more than a single person in China (Karbuz 2007). Statistics such as these help explain 

why top U.S officials are calling to utilize renewable energy sources instead of traditional 

sources, especially within the DoD. 

The DoD has taken several steps to meet the requirements set before them by the 

President and the DoE. In order to meet the annual fiscal report requirement, the DoD 

submits the Annual Energy Management Report. The report highlights the topics of 

facilities energy use, energy intensity level, renewable energy use, water intensity levels, 

and continuing initiatives to maintain energy program improvements. The report includes 

individual statistics for the U.S. Army (USA), U.S. Navy (USN), U.S. Air Force (USAF), 

and statuses the goals set by Executive Order 13423. 

At the department level, the USAF, for example, releases several reports to 

support the DoD Annual Energy Management Plan. Some of these reports include the Air 
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Force (AF) Energy Plan, AF Infrastructure Plan, and AF Aviation Operations Energy 

Plans. These reports focus on specific areas within the department in order to properly 

manage and set goals for energy. 

4. Powering Military Bases in Remote Areas 

The White House also expresses its concern for military bases and their use of 

energy. A released statement emphasizes the inherent connection between energy 

independence and national security. As a response to President Obama’s 2012 State of 

the Union, the White House statement explains that the DoD has the goal of meeting 

25 percent of its energy needs with renewable energy by 2025, with the Army, AF, and 

Navy making commitments of deploying 1 gigawatt (GW) of renewable energy each by 

the deadline. Renewable energy is important to making our bases more energy secure, 

and through renewable energy implementation the DoD is better able to carry out its 

mission to defend the nation by being less dependent upon fossil fuels (U.S. Press 

Secretary 2012). 

The implementation of more energy efficient sources is especially important for 

oversea and remote military bases. Not only does the use of more efficient and renewable 

sources reduce emissions that harm the environment, but it also reduces the risk to the 

warfighter on the battle field. The use of fossil fuels on the battlefield may run low for 

one reason or another and may put lives at risk, but the use of sustainable resources of 

power can reduce this risk (Indian Energy 2012). The use of renewable energy for remote 

military bases, including Forward Operating Bases (FOB), is crucial as they are 

“currently heavily dependent on long-distance deliveries of significant quantities of bulk 

fuel” (U.S. Office of Naval Research 2010). For covert bases, every flight or vehicle 

leaving and arriving at the facility on a fuel-providing mission compromises secrecy and 

the mission. In a timely mission, being able to operate at full energy capability may be 

the difference between a successful or failed mission, or even the difference of life and 

death. The ability to reduce the usage of fossil fuels and the ability to increase 

dependency upon renewable energy sources is a key aspect to supporting the mission for 

oversea bases. 
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5. Renewable Energy Through Space-Based Solar Power (SSP) 

Solutions 

Solar power is one form of renewable energy that can reduce the use of fossil 

fuels. The use of solar panels on earth, however, is far less reliable than utilizing fossil 

fuels because the technology is dependent upon favorable weather conditions and much 

of the sun’s solar power is lost through the earth’s atmosphere. The concept of a SSP 

solution addresses these issues. First, solar panels placed in space are not deterred by 

earth’s atmospheric weather. Secondly, the solar power available in space is greater than 

on earth. The solar flux available in geostationary orbit (GEO) is constantly 1360 W/m
2 

as compared to the surface of Earth’s 600 W/m
2
 in optimal season, weather, and time of 

day (Gómez et al. 2009, 22). This means that at most the earth will receive half of the 

amount of solar energy as compared to GEO. On average, photovoltaic arrays in GEO 

receive eight times the amount of sunlight as opposed to on earth (Price 2001). 

a. Space-Based Solar Power Satellite 

Dr. Peter Glaser first coined the concept of SSP satellites in the late 1960s, 

just years after Russia’s 1957 Sputnik, the inaugural worldwide space launch event. 

Glaser’s idea consists of a large platform positioned in a high earth orbit that 

continuously collects solar power and converts it into electricity. The electricity 

generated helps drive a wireless power transmitter (WPT) system that transmits the 

electricity to earth. This concept is captured in Figure 1 and is taken from Dr. Glaser’s 

1973 patent (Mankins 2011, 6). 



 6 

 

Figure 1.   Illustration of Glaser’s SPS Concept from the 1971 Patent 

(from U.S. Patent Office and Trademark Office, patent no. 3781647) 

At the time of his patent, the worldwide space community did not believe 

Dr. Glaser’s concept was realizable in the next few decades. Because of this, shortly after 

initial publication of the concept, research progressed slowly. The U.S. conducted further 

research through Energy Research and Development Agency (ERDA) – the DoE 

predecessor – and National Aeronautics and Space Administration (NASA). Due to 

unfavorable reviews of the near-term feasibility by U.S. Congress Office of Technology 

Assessment (OTA) and National Research Council (NRC), government sponsored 

activities were cancelled. It was not until after the year 2000 that independent research by 

U.S. National Academy of Sciences (NAS) and NRC showed that SSP was a solution 

feasible in the next couple decades. The R&D path to developing these satellites showed 

to be of great potential to future space endeavors. As a result, studies have increased on a 

global scale by such agencies as National Science Foundation (NSF), Japanese Aerospace 

Exploration Agency (JAXA), European Space Agency (ESA) and the DoD (Mankins 

2011, 8). 
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b. Space-Based Lunar Solar Power 

The idea of space-based lunar solar power (LSP) was originally developed 

by David R. Criswell in 1985. His concept approaches the renewable energy issue by 

placing a large solar power harnessing system on the surface of the moon. The system 

would take the harnessed power and beam it to earth for use. Criswell’s studies show that 

in the year 2050, commercial sources will need to provide at least 2 kilowatts of 

electricity per person, or 20 terawatts (TW) globally. According to his research, the moon 

receives 13,000 TW of solar power incidence and that facilities built on the moon can 

potentially deliver more than the needed 20 TW of affordable electric power to Earth. 

Criswell’s concept consists of four main elements: the sun, the moon, the power beam 

from the moon to the earth, and the rectenna which receives the beam (Criswell 2004, 

682–686). A rectenna is a rectifying antenna, which is a special type of antenna used to 

convert received microwave energy to usable direct current electricity. William Brown 

describes the term “rectenna” being used generically for the receiving aperture of any 

beamed power transmission system that combines the function of capture and 

rectification. At the core, a rectenna’s functions are power collecting, harmonic filtering, 

and rectification into DC power (Brown 1992, 1244). This concept of space-based lunar 

solar power is depicted in Figure 2.  
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Figure 2.   Space-based lunar solar power operational overview 

(from Criswell 1996, 5) 

Space-based LSP has several advantages compared to SSP satellites. The 

first advantage is that the moon is a stable and predictable platform. Secondly, the moon 

contains all the needed materials for solar cells and structures, greatly reducing the 

potential amount of equipment required to transport from earth to space. Thirdly, because 

of the large physical size of a satellite system, its presence requires a large amount of real 

estate in its selected orbit. A lunar solution is far less intrusive to other satellites and 

greatly reduces the risk of being in the path of another satellite constellation or space 

debris. Lastly, access to the moon is potentially greater and safer, increasing overall 

maintainability and worker safety (Kulcinski 2001, 3). 

C. SCOPE, BOUNDS, AND ASSUMPTIONS 

This thesis focuses on finding a system architecture and a design alternative that 

will fulfill the needed power for a remote military base in Afghanistan. The physical 

design must be deployable in Afghanistan using existing transportation. The system must 

be able to provide reliable and consistent power to the corresponding base for nearly 24-

hours a day, 365-days a year. Additionally, the system must provide 100% of the base’s 
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operational power needs during this time period. Figure 3 provides current solution 

overviews that meet this requirement for powering a remote military base.    

   

Figure 3.   Current solutions for powering base operations 

Space-based solar power satellites, as depicted by Dr. Glaser, are the assumed 

concept for this thesis in order to fulfill the need to use renewable energy. The SSP 

architecture and design alternative is open for discussion in this thesis. Another 

assumption, based on research and findings, is that the technology needed for SSP 

already exists and the system is technically feasible. Figure 4 illustrates the assumption of 

using SSP and also defines the scope of this thesis within the overall system of powering 

a remote military base in Afghanistan by the dotted green line. 

 

Figure 4.   Scope and bounds of this thesis 
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The estimates and analysis conducted in this study applies to powering electrical 

equipment that supports a military base’s operational power needs only. The energy 

required to power items like aircraft, cars, tanks, etc., are outside the scope of this research. 

Operational power needs include items such as communication devices, runway and street 

lighting, and generators, to name a few. Items such as computers, cooking equipment, 

housing infrastructure, and other energy-consuming devices are also included. When a 

Rough Order of Magnitude (ROM) estimate is provided for total energy use at a military 

base, the assumption is that the ROM estimate includes operational power needs only. 

D. SYSTEMS ENGINEERING METHODOLOGY AND APPROACH 

The study primarily follows the systems engineering approach as defined by D.M. 

Buede in his 2009 work The Engineering Design of Systems. A graphical representation 

of this approach is presented in Figure 5. For the scope of this study, steps from nodes 

A111 through A114 are used. The following describes what takes place during each step 

of the systems engineering approach. 

 

Figure 5.   D.M. Buede systems engineering approach (from Buede 2009, 460) 
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1. The first step in the systems engineering approach, as represented in 

Figure 5 by node A111, is to define the system-level design problem. This 

step begins by understanding who the stakeholders are, what the user 

requirements are, what deficiencies are in the current system, and the 

potential interfaces of a future system. Understanding these areas will help 

to define a concept of operations (CONOPS), a system objective 

hierarchy, and system boundaries. 

2. The second step in the systems engineering approach, as represented in 

Figure 5 by node A112, will be to design a system functional architecture. 

This section begins by establishing the simple functionalities for the 

operational concept. The result of establishing functionalities and an 

operational concept will lead to a draft, evaluation, and selection of a 

functional model. 

3. The third step in the systems engineering approach, as represented in 

Figure 5 by node A113, is to develop a systems physical architecture. 

Taking into account the system functional architecture, this section will 

include a brainstorming of a generic physical architecture, will propose 

alternate physical architectures, and will recommend one of the physical 

architectures as best suited to meet the requirements. 

4. The fourth step in the systems engineering approach, as represented in 

Figure 5 by node A114, is to develop the system allocated architecture. By 

taking into account the system functional architecture and system physical 

architecture, this section will briefly allocate functions and system-wide 

requirements to physical subsystems. 

5. The fifth step, not included in Buede’s system engineering approach, is to 

create design alternatives based on the selected architecture presented in 

this thesis. An analysis of each design alternative will be conducted 

against the defined Measures of Performance (MOP) to determine the 

highest Measure of Effectiveness (MOE) score. The highest overall 

architecture MOE score will be the final recommended solution. The 

analysis of design alternatives will consider system objectives, 

requirements, functional, and physical aspects. 

E. THESIS ORGANIZATION 

Chapter I. This chapter presents background on the need for renewable energy 

within the U.S. Starting from the U.S. President, energy policy has been implemented 

down to the various military services. The overall theme is to become less dependent on 

fossil fuel forms of energy and to deploy further uses of renewable energy sources. 

Renewable energy sources are especially critical for use in remote military bases and 

FOBs. Variations of SSP are promising options for fulfilling the renewable energy 
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requirement. Solutions presented are on orbit and on lunar solar powered systems. The 

chapter also presents an overview of the systems engineering process that is used in this 

thesis and presents the scope, bounds, and assumptions. 

Chapter II. The focus of this chapter is to define the problem by first 

understanding who the stakeholders are. Gathering the requirements from stakeholders 

and filtering them through this thesis’ scope, bounds, and assumptions will help develop 

a comprehensive needs list and an effective needs statement. 

Chapter III. Through a comprehensive understanding of the requirements, 

functional characteristic to physical component flow diagrams will be generated. From 

these diagrams, an architecture and design alternatives can be created, and an analysis of 

these designs can be conducted to see how well the requirements have been met. Based 

on set MOPs, these designs can be scored and the best design alternative can be set 

forward. This chapter will also conduct a brief cost analysis. 

Chapter IV. This final chapter will summarize the findings, make final 

conclusions, and will recommend areas for further study. 
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II. SYSTEM LEVEL DESIGN PROBLEM DEFINITION 

A. PROBLEM STATEMENT 

The DoD has the goal of meeting 25 percent of its energy needs with renewable 

energy by 2025, with the Army, AF, and Navy making commitments of deploying 1 GW 

of renewable each by the deadline. Renewable energy is important to making our bases 

more energy secure, and through renewable energy implementation the DoD is better 

able to carry out its mission to defend the nation by being less dependent upon fossil fuels 

(U.S. Press Secretary 2012). 

The implementation of renewable energy sources is especially important for 

oversea and remote military bases. Currently, in order to obtain the necessary power 

levels, large amounts of oil are transported to the base, often through neighboring 

countries. Obtaining oil this way is very costly in unit price and requires teams for 

logistics and operations. This is the case for U.S. remote military bases in Afghanistan. In 

2009, Pentagon officials stated that the fully burdened cost to deliver one gallon of 

gasoline to remote areas of Afghanistan was approximately $400 with outlier costs as 

high as $1,000. Additionally, dependency upon the delivery of oil introduces greater risk 

to human life. In 2008, 44 trucks and 220,000 gallons of fuel were lost due to attacks and 

other events when fuel was delivered to Bagram Air Field in Afghanistan. Some 80 

percent of U.S. military casualties in Afghanistan are a result of improvised explosive 

devices (IED), which are primarily placed on supply convoy paths (Tiron 2012). With 

18,207 kilometers out of 21,000 kilometers of unpaved road in Afghanistan, threat of 

IEDs is a very real problem (Blanchfield 2005).  

These facts regarding oil and the situation in Afghanistan address the need for 

more efficient power sources and renewable energy sources for remote military bases. 

Current suggestions and models have primarily focused around solar power solutions. 

Although this is a feasible resolution for stationary bases, the large amount of space and 

infrastructure required to deploy such a system renders this solution less than ideal for 

remote military bases, especially for those which may need to relocate often. An efficient 
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and effective solution has yet to be deployed which meets the energy needs for an entire 

remote military base. The challenge therefore is to find a fast deployable solution 

efficient enough to power an entire remote military base while eliminating the need and 

dependency for fossil fuels. The implications of acquiring this technology are potentially 

huge, even to the degree of saving human lives. 

B. NEEDS ANALYSIS 

1. Stakeholder Analysis 

Establishing good requirements is often considered as the foundation and key of a 

systems engineering effort. The engineers must first focus their efforts and involvement 

in gathering requirements from the stakeholders. A stakeholder’s requirement is an 

operational statement concerning their need. This is gathered by taking the stakeholder 

requirements and translating them into engineering terminology. Once requirements are 

established, it is the role of the systems engineers to provide a system that accomplishes 

the primary objectives set by the stakeholders, including those objectives associated with 

the creation, production, and disposal of the system (Buede 2009, 3, 52, 195). 

A stakeholder analysis was conducted to gain a better understanding of the 

generally needed capability and determine big picture customer desires. 

a. Stakeholders 

(i) Policy and Decision Makers 

 The President of the United States of America ultimately oversees 

policy and direction to strengthen the environmental and energy 

management of U.S. Federal agencies. In one of his executive 

orders, the President directs that U.S. federal agencies are to 

conduct their missions in an environmentally, economically and 

fiscally sound, integrated, continuously improving, efficient, and 

sustainable manner (U.S. President 2007, sec. 1–11). 

 The DoD and the Secretary of Defense (SECDEF) are charged to 

provide the military forces needed to deter war and to protect the 

security of our country (U.S. Department of Defense 2013). The 

DoD, as a Federal agency, is therefore directly affected by 

Executive Order 13423 and must comply with the President’s 

direction on environmental and energy management.  
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(ii) User Representatives 

 Military bases of all services, located around the globe, assist the 

DoD to fulfill its mission. These bases and their personnel provide 

support of various kinds, some of which are acquisitions, 

maintenance, strategy development, operations, and policy. This 

includes continental United States (CONUS) and Outside the 

Contiguous United States (OCONUS) bases. Commanders of these 

bases are charged to fulfill their specific missions with the 

resources available. 

 Combatant Commands have the responsibility of Operational 

Control, which deals with logistics of pushing supplies and fuel 

forward to deployed forces. They also field and maintain any 

system which is pushed forward. An example of a unit under a 

combatant command is the Marine Air-Ground Task Force Support 

Battalion 11.2 whose mission it is to “provide an armed escort for 

the local nationals” who carry the fuel to FOBs (Jackson 2012). 

 Administrative Control Commands deal with organizing, training, 

and equipping combatant forces. Each service has their own 

administrative command which specifically assists deployed 

forces.  

 The warfighter carries out the mission on all parts of the globe and 

sacrifices his own life. He may spend his time and energy planning 

and carrying out the gathering of resources and protecting of 

convoys containing critical resources. These forces support the 

warfighter on the front lines. 

(iii) Acquisition Agents and System Developers 

 The Assistant Secretary of the Air Force for Acquisitions 

(SAF/AQ), the Assistant Secretary of the Navy for Research, 

Development, and Acquisition (ASN RDA), and the Secretary of 

the Assistant Secretary of the Army for Acquisition, Logistics, and 

Technology (ASA ALT) are charged with the development and 

acquisition of military assets, such as weapon systems, buildings, 

and munitions. 

b. Stakeholder Approach 

The approach for capturing stakeholder needs was conducted based on 

research of officially released documentation at the Executive, DoD, and AF levels. 

These documents expressed general direction and instruction for agencies, but also 

include specific requirements. These documents created the framework for the user 

needs. In addition, ROM estimates were sought and found in various source 
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documentations. These ROM estimates also helped to identify more specific needs of the 

stakeholders. 

c. Rough Order of Magnitude (ROM) Power Estimates 

Research provided ROM estimates of power needed to fully operate 

military bases. This information provides an initial baseline requirement for the needed 

amount of power that is desired. Research provided ROM estimates for powering two 

military bases: 

 45 MW estimate needed for Nellis AFB based on given data that 15 MW 

is 1/3 of total power (Karbuz 2007, 4). 

 135 MW estimate needed for National Guard Based Toledo, Ohio based 

on fact that 28.9 MW of electricity is 21.3% of total electricity consumed 

(U.S. DoD Annual Energy Management Plan 2010, 20). 

2. Effective Needs Statement and Objectives Hierarchy 

The United States military requires a system which can deliver power necessary 

to operate a remote military base, and must be delivered using an SSP architecture. 

Means of producing power other than SSP are available, but this study specifically seeks 

the best SSP design alternative for remote military base use and is therefore chosen for 

this study. The location of need is in the country of Afghanistan and all necessary power 

must support operations with minimal pause or deficiency. The system must be able to 

provide power between the amounts of 45 MW and 135 MW. The system must meet all 

requirements and be deployable in Afghanistan using currently available transportation. 

The Objectives Hierarchy in Figure 6 is derived based on the effective needs statement. 
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Figure 6.   Objectives hierarchy 

The Objectives Hierarchy of a system contains a hierarchical representation of the 

major performance, cost, and schedule characteristics that the stakeholders will use to 

determine their satisfaction with the system (Buede 2009, 57). For the scope of this 

thesis, performance is the primary focus. Schedule pertaining to system development is 

not considered in this thesis. Cost is not considered a primary objective in this research, 

but it is considered after the total design effectiveness is measured. 

The Objectives Hierarchy begins with the overarching statement derived from the 

effective needs statement, which is to deliver SSP to a remote military base in 

Afghanistan sufficient for its operations. From this statement, the hierarchy is divided 

into two main objectives, Operational Effectiveness and Operational Suitability. 

Operational Effectiveness is divided further into Power Sufficiency and Beam Accuracy. 

Power Sufficiency consists of the satellite’s Download Transfer, Satellite’s Coverage 

Time (Availability), Power Consistency, and Power Reception. The use of the term 

“availability” is defined as “the probability that a system or equipment, when used under 

stated conditions in an ideal support environment, will operate satisfactorily at any point 

in time as required” (Blanchard and Fabrycky 2011, 426–427). 
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In addition to Operational Effectiveness, Operational Suitability is the second 

objective under the overarching effective needs statement. Operational Suitability 

consists of Ground Transportability and Satellite Deployability. Operational suitability 

also consists of system supportability, survivability, reliability, maintainability, and 

safety, but these are not specific areas investigated by this thesis. 
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III. DESIGN AND ANALYSIS 

A. FUNCTIONAL ANALYSIS 

The functional analysis section begins with the operational concept for the SSP 

system powering a remote military base in Afghanistan. Functional analysis is an integral 

part of decomposition in the “Vee” process model, the left side in Figure 7. The derived 

architectures help trace user requirements to the final end product design.  

 

Figure 7.   “Vee” process model (from Blanchard and Fabrycky 2011, 37) 

The three architectures are essential to forming the proper context and 

understanding of the entire system. The functional architecture defines what the system 

must do. The physical architecture represents partitioned physical resources available in 

order to meet the system’s functions. The allocated architecture displays the mapping of 

functions to the available resources in a discrete-event simulation of the system’s 

functions (Buede 2009, 27). 

1. Simple Functionalities for Operational Concept 

A simple functionality is “an ordered sequence of functional processes that 

operate on a single input to produce a specific out” (Buede 2009, 215). These simple 
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functionalities do not necessarily name all the required inputs for the mentioned output. 

Additionally, not all functional processes required to obtain the desired output may be 

named. Table 2 below is a flow of simple functionalities. The complete rows starting with 

“solar power” and “receive power beam” pertain to the boundaries and scope of this 

thesis. 

Table 2.   System simple functionalities 

Input Simple Function Output 

Positioning/pointing data Translate incoming data Data to transportation 

system 

Solar power Convert power Power beam 

Receive power beam Convert power Usable power 

The operational concept in Figure 8 incorporates the simple functionalities from 

Table 2 and stakeholder requirements and is adapted from Donald Rapp (Rapp 2007, 18). 

 

Figure 8.   Operational concept overview 
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2.  Functional Architecture 

A functional architecture of a system contains a hierarchical model of the 

functions performed by the system, its components, and its configuration items (CI). The 

functional architecture can be defined at several levels of detail according to Buede. First, 

it can be defined as a logical architecture that defines what the system must do – a 

decomposition of the system’s top-level function. Second, Buede defines functional 

architecture as a logical model that captures the transformation of inputs into outputs 

using control information. Lastly, he defines it as a logical model of a functional 

decomposition plus the flow of inputs and outputs, to which input/output requirements 

have been traced to specific functions and items (Buede 2009, 211–216). 

The generic functional architecture shows an overview of how the system will 

capture energy from the sun and transport this captured energy for use at the remote 

military base in Afghanistan. The generic functional architecture presented in Figure 9 is 

based on Mankin’s Generic SPS Functional Architecture provided in his international 

assessment of space solar power (Mankins 2011, 18). The functional architecture 

presented in this thesis sought to simplify Mankin’s architecture to an even higher level 

in order to stay within the reasonable scope of this thesis. 
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Figure 9.   Generic functional architecture 

The generic functional architecture in Figure 9 is used to answer the following 

questions: 

 What primary functions are involved in order to provide a remote military 

base with SSP? 

 What are the high-level inputs and outputs involved with a SSP system? 

The functional architecture is composed of seven primary functions and five 

supporting functions. The system is decomposed into the following functions and is 

shown in Figure 9: 

 Receive Solar Power (A1) includes receiving the sun’s solar arrays into 

the appropriate form for use. 

 Convert to Transmittable Power (A2) receives the collected power and 

converts the power into a specified form for later use in the system. 
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 Direct Beam (A3) rotates the transmitter to be aimed directly at the ground 

receiver on earth. 

 Transmit Power (A4) accepts the power and transmits it to a designated 

location. 

 Ground Receive Power (A5) receives the transmitted power from the 

space system transmitter. 

 Convert to Standard Power (A6) includes accepting the received 

transmitted power and converting it into a usable form for final use. 

 Manage and Disburse Power (A7) sends the converted power to the areas 

designated by the user. This may be a single output line or include 

multiple lines for disbursement. 

 Deploy from Earth to Space (A8) includes taking the space system from 

earth into space. 

 Transport to Designated Location in Space (A9) takes the in-space system 

and maneuvers it to the designated location in preparation for its primary 

mission. 

 Manage Power, Support and Maintenance Systems (10) involves 

managing and monitoring of power on the space system, the receiving and 

sending of messages to ground operators, as well as receiving, processing 

and sending information to keep the system operational. 

 Deploy Ground System (A11) includes taking the ground power receiver 

and transporting it and deploying it at the user’s location. 

 Manage Power and Distribution (A12) monitors the overall power being 

received from the satellite and distributed by the ground system to the 

operational user. 

The flow of the generic functional architecture starts on the left side of the 

diagram with the incoming solar power to A1 where the system receives the solar power. 

The primary focus of interest is the flow of logic from A1 to A7 where the power is lastly 

disbursed for operational use to the user. The box around A1 to A4 is labeled “Satellite 

1…n” because the architecture is open to having multiple solar power satellites if needed. 

The top brackets encompassing functions A8, A9, and A10 apply to the entire satellite 

segment of the system. The bottom brackets encompassing functions A11 and A12 apply 

to the entire ground segment of the system. 
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3.  Physical Architecture  

The physical architectures presented in this section are hierarchical descriptions of 

the physical resources available for this system. The architectures contain top-level 

components and progress down to the configuration items. The configuration items can 

be hardware, software, or can be a combination of hardware and software, people, 

facilities, procedures, and documents such as user manuals. To develop the architectures, 

a top-down process is used by developing one level of the tree at a time. By developing 

the architecture in parallel with the functional architectures, the design of both 

architectures can be evaluated to determine their effectiveness in meeting the requirement 

objectives.  

There are several elements of physical architectures that have been decided 

specifically for this research. First, Buede makes a clear distinction between generic 

physical architectures and instantiated physical architectures. He explains that generic 

physical architectures provide resources for every function identified in the functional 

architecture. For all requirements addressed in the functional architectures, there must be 

a physical architecture associated without any specification of the performance 

characteristics of the physical resources. The instantiated physical architecture is a further 

extension of the generic physical architecture to which complete definitions of the 

performance characteristics of the resources are added (Buede 2009, 253–256). While 

this study does address several performance characteristics, instantiated physical 

architectures are specifically created. A second element of physical architectures that has 

been decided is that this study will not address the development of procedures for users 

of the system to follow, such as operating, maintenance, training, or support instructions 

usually included in operating manuals. 

The physical architecture in Figure 10 is derived from tracing the functional 

architecture to physical sub-systems. This architecture can be used as a simple program 

Work Breakdown Structure (WBS) as defined in MIL-STD-881B [1993] for Defense 

Material Items. This figure represents the WBS as high-level key sub-systems and is 

decomposed further in the design process. 
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Figure 10.   High-level physical architecture 

4.  Allocated Architecture 

The allocated architecture integrates the requirements decomposition with the 

functional and physical architectures. Figure 11 considers the functions from the 

functional architecture and system requirements and allocates them to a physical sub-

system. By doing this, the function of each subsystem is defined by the linked physical 

architecture component. All functions have a one-to-one traceability to the physical 

architecture component and vice versa, to which D.M Buede explains as being 

tremendously beneficial when allocating input and output items to internal and external 

interfaces (Buede 2009, 299). 
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Figure 11.   Allocated architecture  

According to Buede, there are five major activities associated with the 

development of the allocated architecture. The first major activity is to allocate functions 

and system-wide requirements to physical sub systems. The second is to define and 

analyze functional activation and control structure. Thirdly, completing the allocated 

architecture includes conducting performance and risk analyses. The fourth major activity 

is to document architectures and obtain approval. The last major activity is to document 

subsystem specifications (Buede 2009, 285–286). For the scope of this thesis, the first 

three major activities are addressed minus the risk analysis. 

 

B. VALUE SYSTEM DESIGN AND ANALYSIS 

1. Weighted Objective Hierarchy 

The objectives hierarchy, as defined by Buede, is the “hierarchy of objectives that 

are important to the system’s stakeholders in a value sense” (Buede 2009, 182). The 

objectives hierarchy does not imply physical characteristics or attributes that the system 

should contain. Instead, it helps to organize and prioritize requirements and goals of the 

system which will later be traced to physical characteristics. The objectives hierarchy was 
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presented in Chapter 2 of this study and is presented again in Figure 12. The second 

presentation of the objectives hierarchy includes weighted values which will be used to 

develop the Value System Model later in this chapter. 

The process for establishing the weighted values involved a careful look at the 

needs statement mentioned in Chapter 1, and at discussions and hierarchies from other 

reports, papers and stakeholders. A draft objectives hierarchy was created and presented 

to the stakeholders and project advisors. After receiving feedback, revisions were made 

and re-presented. The revision process occurred until the stakeholders and advisors were 

satisfied with the final weighted values presented in this thesis. 

The weights shown in Figure 12 are shown in two different but related ways: local 

and global. Local weights are the representation of weights immediately under a category 

or subcategory. The total of weights under the immediate category or immediate 

subcategory sum to a total of 1.0. Global weights establish the relative importance of the 

item to the overall system. To obtain the global weight of each item, the product of the 

local weight and all parent local weights is calculated. By doing so, the total sum of all 

global weights at the lowest level equals 1.0. For clarity, when one value is given for a 

specific objective, this represents the local weight only. When two numbers are given, the 

left number is the local weight and the right number is the global weight. 

The global weights shown in Figure 12 reflect the importance of each of the 

functions relative to the entire system. The figure shows that both operational 

effectiveness and suitability are of equal importance. Without each of these objectives 

being accomplished, it is difficult successfully meet the overall objective. Functions of 

supportability, survivability, reliability, and maintainability are not given weights for this 

exercise. It is important to note that these functions are important and should be 

investigated in further study and analysis. For this study, these functions are common 

among most satellite systems and are assumed to be significantly resembled in the SSP 

satellite architecture and design alternatives in this study. 
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Figure 12.   Objectives hierarchy with weights 

2. Analysis Plan 

The analysis begins by first compiling the values of the physical components for 

all design alternatives. One example would be the diameter of the transmitter. The values 

for each physical component are then scored relative to the other design alternatives for 

that same physical component and then weighted accordingly. The produced score for 

each physical component is used to calculate the overall Measure of Effective (MOE) for 

the system function and then the overall MOE for the system design alternative. The 

highest MOE of the three designs will determine which design alternative best fits the 

overall requirements of this thesis relative to the other design alternatives. 

The goal of this research and analysis is to present one system architecture with 

three design alternatives to meet the given requirements and to choose which is the most 

effective among them. Three separate design alternatives are presented. The framework 

for the designs is based on the research as discussed in the Architecture and Design 

Attributes section below and the work of Raul Gómez et al. 



 29 

3. Architecture and Design Attributes 

This section discusses each of the major physical components, derived from the 

allocated architecture, and explains their Measure of Performance (MOP) attributes to be 

presented in each system design alternative to follow. Some components have multiple 

aspects requiring discussion. The goal of this section is to define the architecture 

attributes and design attributes that will both vary and be equal among design 

alternatives.  

One attribute not directly related to a specific physical component is the orbit in 

which the satellite will operate. The architecture assumes a Geostationary (GEO) orbit as 

the optimal operating orbit. While in GEO, the solar powered satellite has the longest 

exposure time to the sun’s rays, receiving optimal power from the sun. The time the 

satellite spends in eclipse is less than 70 minutes (Guoan 2006, 4), or approximately 5% 

of the orbital period (Wilder 2010, 56). An eclipse in GEO only occurs about twice per 

year and therefore the satellite would be shaded less than 1% of the total time. Because of 

the high percentage of availability, the proposed architecture pursues only one SSP 

satellite system. Additionally, very little beam steering is required as a result of the orbit 

and the axial tilt of the Earth with respect to the Sun (NSSO 2007, A-2). 

The following is a discussion of each physical component and its function as 

derived from the allocated architecture. The result is the determination of each physical 

component’s attributes, their functional MOP, and whether the value is equal across 

designs used in this study or if the functional MOP varies for each design. A summary of 

this discussion is found in Table 3.  
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Table 3.   Summary of physical components, functional attributes, and design values 

Physical Component Attribute Name Measurement  Design Value 

Solar Panels power per mass W/kg 4,300 W/kg 

 

power per area solar 
flux W/m^2 1,360 W/m^2 

 
efficiency (% loss) % loss 73% loss 

 
useable time % total time 99% 

 
mass of solar panels kg varies 

 
power received MW varies 

    Power Transmitter transmission type N/A microwave 

 
frequency GHz 38 GHz 

 
transmitter diameter m varies 

 
power transmitted MW varies 

 
mass of transmitter kg varies 

    Ground Power Receiver rectenna diameter m varies 

 
power receivable (max) MW varies 

 
power received (actual) MW varies 

 

% power loss due to 
rectenna size % loss varies 

    

Satellite Deployment System 
payload max mass per 
launch vehicle kg 13,400 kg 

 

mass of payload 
(transmitter + panels) kg varies 

 

# of launch vehicle 
payloads needed # varies 

 
orbit N/A GEO 

    

Ground Deployment System 
payload max mass per 
air vehicle kg 122,472 kg 

 

# of air transport 
payload needed # varies 

a. Solar Panels 

The pertinent factors to SSP panels are size, weight, useable time, power 

received, and efficiency. The size to power relationship is measured as watts per square 

meter (W/m
2
) of solar panel used. Two recent studies use 1360 W/m

2
 (Gómez et al. 2009, 

22) and 1,366 W/m
2
 (NSSO 2007, 4). This study will assume the former of 1,360 W/m

2
. 
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Mass is measured in comparison to watts and is presented as watts per kg 

(W/kg). Estimates of some solar power cells in space are approximately 50 to 80 w/kg 

(Rapp 2007, 4). Thin-film cell arrays provide estimates of upwards 1,000 W/kg (Hoffman 

2002, 5) and even 4,300 W/kg (Gómez et al. 2009, 37). This thesis utilizes the most 

optimistic and assumes the 4,300 W/kg in order to meet desired power output with lowest 

satellite mass. 

Efficiency of the solar panel is measured in the amount of power lost in 

the process of receiving and outputting the power to the transmitter. This is represented 

as the percentage loss (% loss) of power. Some technologies claim an efficiency loss as 

little as 4.6 %, but the lifetime of these solar cells is considered too short to be practical 

for the application of SSP (Bailey et al. 2002, 1). Other estimates are losses of 85% (ISU 

1992, xxxix), 87% (Rapp 2007, 4), and 85% (Wilder 2010, 71) losses. Solar cells in 

development, such as multi-junction solar cells, claim to reach better results with typical 

losses of 75% (Luce 2002, 43), 73% (Rapp 2007, 34), and other cell types claiming 50% 

to 60% loss (NSSO 2007, 21). Due to the varying solar cell technologies reviewed and 

opinions of solar cell efficiencies, this study will assume solar panel energy loss of about 

67%. Note that efficiency of Power Converter 1 is taken into account when calculating 

the overall solar panel efficiency loss in Table 3. 

Lastly, useable time is important to determine how much power the solar 

power can collect. Useable time is dependent upon which orbit the satellite system is 

placed, which is assumed to be GEO for this research. Because the satellite is considered 

to be exposed to the sun over 99% of the time, this factor is considered negligible. 

b. Power Converter—Direct Current (DC) to Radio Frequency (RF) 

The first power converter examines conversion of the solar power received 

from the solar panel to the desired medium of transmission. The Power Transmitter 

section below explains the rationale for choosing a microwave methodology, and 

consequently the first power converter will convert DC to RF. Estimates show 60% (ISU 

1992, xi) and greater than 80% (Gómez et al. 2009, 36) efficiencies when converting the 

power. This thesis assumes 80% efficiency for its architecture. The overall efficiency for 

receiving the solar power and converting it for transmission is about 27%, or given as a 

73% loss in Table 3. 
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c. Direction Beam 

The direction beam ensures that the beam accurately targets the rectenna 

so that maximum power can be captured and used. The direction beam is especially 

important for laser transmission concepts due to its technological safety concerns. A goal 

of the direction beam would be to limit the beam from targeting unintended locations. As 

the next section explains, microwave power is believed to be less a threat than laser 

concepts to humans and the atmosphere, but further testing still needs to be done to verify 

this. If tests show that either laser or microwave transmission can be detrimental, the 

control mechanism for the beam ought to have an extremely high accuracy rate with 

several automatic safety systems onboard. Donald Rapp proposes, “the center of the 

microwave beam should be confined to a region within 0.0005 degrees of the center of 

the rectenna” (Rapp 2007, 32). As the following designs propose, the mass of these 

satellite systems is extremely large by comparison to most space systems in existence, 

and therefore any disruption of normal operations causing the slightest movement may 

have catastrophic effects. While this is an extremely important component of the system 

architecture, further research needs to be conducted to ensure its accuracy and safety. 

This study assumes that all designs would use the same direction beam mechanism and 

assumes an error rate negligible to this research. 

d. Power Transmitter 

There are several important factors when considering power transmission 

for the systems architecture and design. The first consideration is the type of 

transmission. In doing research, the majority of sources reviewed have weighed the 

benefits and faults of microwave and laser transmission. Potential laser concepts have 

efficiencies near 20%, which means approximately 80% of the heat must be managed by 

equipment on the satellite (Gómez et al. 2009, 26). In contrast, researched microwave 

power is believed to achieve near 76% efficiencies (Brown 1992, 1240) with some claims 

upwards of 94% to near 100% (Gómez et al. 2009, 27, 30). Drawbacks to laser 

transmission are adverse beam affects when traveling through clouds and particular 

weather (Gómez et al. 2009, 38) whereas microwave transmission is not affected at all. 
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Laser transmission is also disrupted by atmospheric turbulence near the ground (Wilder 

2010, 27). Although the larger community may be skeptical, it is believed by some that 

microwave transmission is safe for birds and aircraft to fly through it (Wood 2012, 71). 

The larger community affirms that microwave transmission has the overall edge and is 

therefore used in all design alternatives presented in this study. As for the efficiency of 

the microwave beam, the high efficiency projections by Gómez et al. conclude this area 

to be negligible for this research. Rather, the consideration of rectenna size in the next 

section has a greater impact on the percentage of transmitted power received and is of 

greater interest in building the system designs. The amount of power transmitted will be 

determined in each design alternative. 

A second power transmission consideration is the optimal frequency for 

transmission. Research indicates that the two frequency ranges of 2.4 to 5.4 GHz and 35 

to 38 GHz have been considered as optimal. All else equal, studies and research show 

that 2.45 GHz transmission requires a significant increase in rectenna size and overall 

cost (Gómez et al. 2009, 65) with an estimate by the NSSO stating the rectenna is two 

hundred times larger in area when compared to using a transmission frequency of 35 to 

38 GHz. Additionally, the NSSO states the ionosphere is heated two hundred times more 

at 2.45 GHz compared to 35 GHz and can potentially interfere with mobile phones, 

which also use the 2.45 GHz spectrum (ISU 1992, xxxix). Because a large amount of 

literature points to the 35 to 38 GHz spectrum, this thesis will utilize the 38 GHz 

spectrum since this allows transmission of the most energy into the smallest space and is 

best for operational purposes to a remote military base. 

The last three areas to consider for power transmission are the size of the 

transmitter, the mass of the transmitter, and the amount of power transmitted. The size is 

measured by its diameter and is given in meters. The mass of the transmitter is measured 

in kilograms. Power transmitted is measured in megawatts (MW) and is driven primarily 

by the power received from the solar panels. All three areas will be determined in each 

design alternative. 
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e. Ground Power Receiver (Rectenna) 

The ground power receiver is a rectified antenna, referred to as the 

rectenna, and three related attributes are considered for the systems architecture. The first 

consideration is the area of the rectenna and is measured by its diameter in meters 

squared (m
2
). The second is the amount of power received, measured in MW. The power 

released by the rectenna takes into consideration the rectenna size, the microwave 

transmission, the size of the microwave beam, which is determined by the size of the 

transmitter, and the power density of the beam. As mentioned earlier, a larger transmitter 

creates a more focused microwave beam, requiring a smaller rectenna to receive the 

maximum power from the beam. Area of the rectenna and the amount of power received 

will vary for each design alternative. The third attribute is efficiency of the rectenna and 

is discussed as part of the second power converter below. 

f. Power Converter 2—RF to DC 

The second power converter is located on the ground as part of the 

rectenna and converts the received RF back to DC before output to the user. The overall 

efficiency of both the rectenna and the power are considered to be extremely high. If 

designed correctly, the rectenna can achieve near perfect conversion from RF to DC 

(Gómez et al. 2009, 30) and is therefore considered negligible for this study. 

g. Satellite Deployment System 

The primary area of consideration of the satellite deployment system is the 

launch vehicle. The payload’s maximum weight is determined by the vehicle and its 

configuration. Three launch vehicles in their respective weight carrying configurations 

were examined: United Launch Alliance’s Atlas V and Delta IV, and Space X’s Falcon 

9H. The maximum payload weight for the Atlas V 521 to Geosynchronous Transfer Orbit 

(GTO) is about 9,000 kg (Lockheed Martin 1999, 2–30). For Delta IV Heavy, the 

maximum weight is about 13,400 kg to GTO (ULA 2007, 2–10). Space X’s Falcon 9H 

can carry a payload to GEO of approximately 11,500 kg (Gómez et al. 2009, 33). This 

study assumes these maximum capacities available for a SSP launch and uses the Delta 

IV Heavy’s 13,400 kg standard in the system architecture. The payload mass will be 
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approximated in each of the design alternatives. Knowing the total payload mass and 

maximum mass per vehicle, the number of launch vehicles needed will be calculated for 

each design alternative. 

h. Ground Deployment System 

The ground deployment system is primarily concerned with how to get the 

rectenna to the destination in Afghanistan. This is determined by utilizing the largest 

available cargo plane to the U.S military, the Air Force’s C-5 Galaxy. The maximum 

payload capacity is designed at 122,472 kg (USAF 2012), which is the value used for this 

study. With this given capacity load and the mass of the rectenna system, the approximate 

number of flights needed to transport the rectenna system will be calculated for each of 

the architectures. 

4. Proposed Design Alternatives 

The following design alternatives are based on the discussion of architecture 

attributes above and the sample SSP system technical models from Raul Gómez et al. 

Given various MW outputs, Gómez calculates the needed rectenna diameter, the 

percentage of energy received, and mass of solar panels. Gómez’s assumptions in 

calculating his models align with the assumptions made in this research. His sample 

technical calculations can be found in Table 4 and help to fill in the areas where the 

Value in Table 3 reads “varies” for a particular value. Table 4 is a snapshot of the 

pertinent calculations from Gómez and excludes irrelevant data from his original table. 

The value in the first column of Table 4, power on ground (POG), refers to the power 

which hits the ground, not the power actually received by the rectenna. 
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Table 4.   Sample technical model calculations (from Gómez et al. 2009, L) 

 

The following design alternatives utilize the assumed attributes presented in Table 

3 and the variable attributes calculated by Gómez et al. in Table 4. The architectures are 

created to best meet the power requirement as defined in Chapter II of this thesis. Taking 

the MW POG and the Percentage of Maximum Energy from Table 4, three solutions 

were determined to best meet this study’s requirements. Three design alternatives are 
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presented - Architectures A, B, and C - and all seek to meet the 45 MW to 135 MW 

requirement. Attributes of all three design alternatives are summarized in Table 5. 

a. Design Alternative A 

Design alternative A seeks to meet the power requirement between 45 

MW and 135 MW. The mass of the solar panels is given as 855,285.67 kg with a 600 m 

diameter transmitter in order to output 1,000 MW at the transmitter. The rectenna has a 

diameter of 57.47m and receives 110 MW of power. The mass of the total launch vehicle 

payload is 2,737,638.61 kg and requires an estimated 204.3 payloads. The total mass to 

be transported to the remote military base is 1,882,352.94 kg and requires an estimated 

15.37 vehicles. The design alternative attributes are presented in Table 5 below. 

b. Design Alternative B 

Design alternative B seeks to meet the power requirement between 45 

MW and 135 MW. The mass of the solar panels is given as 171,057.13 kg with a 141 m 

diameter transmitter in order to output 200 MW at the transmitter. The rectenna has a 

diameter of 1222.73 m and receives 106 MW of power. The mass of the total launch 

vehicle payload is 613,410.07 kg and requires an estimated 45.78 payloads. The total 

mass to be transported to the remote military base is 442,352.94 kg and requires an 

estimated 3.61 vehicles. The design alternative attributes are presented in Table 5 below. 

c. Design Alternative C 

Design alternative C seeks to meet the power requirement between 45 

MW and 135 MW. The mass of the solar panels is given as 64,146.42 kg with a 141 m 

diameter transmitter in order to output 75 MW at the transmitter. The rectenna has a 

diameter of 2,445.46 m and receives 65.25 MW of power. The mass of the total launch 

vehicle payload is 506,499.36 kg and requires an estimated 37.8 payloads. The total mass 

to be transported to the remote military base is 442,352.94 kg and requires an estimated 

3.61 vehicles. The design alternative attributes are presented in Table 5 below
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Table 5.   Summary of design alternatives 
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5. Evaluation Measures and Weighting 

The evaluation method for each component is based on the discussion in the 

Architecture and Design Attributes section of this study. A summary of the architecture 

and design attributes and their measurements is summarized in Table 5. 

To determine the system weighted values for each component, this thesis uses a 

three step House of Quality process. House of Quality 1 begins with the Objectives 

Hierarchy and its determined weights as presented in Figure 12. The objectives are paired 

and evaluated against their relation and importance to the requirements, producing a 

weighted performance for the requirements. The following scoring system was 

determined by the stakeholders and project advisor and the score was determined by the 

thesis student. An evaluation score of “0” means no importance and no relation. An 

evaluation score of “3” means little importance and little relation. A score of “9” means 

high importance and high relation. House of Quality 2 pairs and evaluates the weighted 

requirements from House of Quality 1 against the functions as determined earlier in this 

study. The same evaluation criteria in House of Quality 1 are used and the result is a 

weighted performance for each function. In House of Quality 3, the weighted values of 

each function from House of Quality 2 is paired and evaluated against the physical 

components as determined in the Allocated Architecture section of this study. The same 

evaluation criteria in House of Quality 1 are used. House of Quality 3 produces a 

weighted measure for each physical component. Houses of Quality 1 through 3 and their 

respected evaluations are presented in Tables 6 through 8, respectfully. 
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Table 6.   House of quality 1: objectives evaluated against requirements 
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Power Reception 0.05 0.050 9 3 3         

Download/Transfer of 
Power 0.05 0.050 9 3 3         

Power Consistency 0.05 0.050 3     9       

Coverage Time 
(Availability) 0.05 0.050 3 3   9       

Beam Accuracy 0.3 0.300       9   3   

Satellite Deployability 0.25 0.250           9   

Ground Transportability 0.25 0.250         9     

Check Sum   1.00               

                    

Weighted Performance     1.2 0.5 0.3 3.6 2.3 3.2 11.0 

Percent Performance     0.110 0.041 0.027 0.329 0.205 0.288 
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Table 7.   House of quality 2: requirements evaluated against functions 
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Table 8.   House of quality 3: functions evaluated against physical components 
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6. Value System Modeling 

The Value System Model utilizes the weighted measures obtained in the Houses 

of Quality and applies the actual attained values presented in the system design 

alternatives. A complement aspect of the objectives hierarchy and the Houses of Quality 

process is measures of effectiveness (MOE) scoring. MOE scores describe “how well a 

system carries out a task or a set of tasks within a specific context; an MOE is measured 

outside the system for a defined environment and state of the context variables and is 

used to define mission requirements” (Buede 2009, 182). Each physical component has a 

corresponding functional Measure of Performance (MOP), MOP threshold, MOP Goal, 

and Attained Value. A score of 0 to 1 is given based on how well the attained value meets 

the MOP threshold and goal. For this thesis, all Attained Values are evaluated relative to 

the three design alternatives presented. This is the case for all MOP Attributes except the 

ground power receiver, which is given a score of 1 if the design alternative meets the 45 

MW to 135 MW requirement and is given a score of 0 if the design alternative does not. 

Once all Attained Values are found, the individual score is then multiplied by the 

corresponding component weighted value as determined in House of Quality 3 to produce 

a MOP score. By adding all MOP scores for a particular function, and then multiplying it 

against the weighted function score from the Objectives Hierarchy with weights, each 

function receives an MOE score. The total of all function MOE scores produce an overall 

system design MOE score. A summary of the physical component MOP, MOP threshold, 

MOP goal, Attained MOP Value and overall MOE score for Architectures A through C is 

presented in the System Value Models in Tables 9 through 11, respectfully. 
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Table 9.   System value model: design alternative A 
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Table 10.   System value model: design alternative B 
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Table 11.   System value model: design alternative C 
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7.  Cost Analysis 

Actual cost data for a SSP system is unknown, yet different estimates have been 

projected. One estimate is for base development costs of an SSP, which Gómez estimates 

at $132B USD, while the ESA estimates $265B USD (Gómez et al. 2009, 60, L). For 

production and expected total costs of the three designs used in this research, Gómez 

estimates a production cost of $1.58B USD and a total cost of $10.38B USD for Design 

Alternative A, a production cost of $356M USD and a total cost of $2.38B USD for 

Design Alternative B, and a production cost of $294M USD and a total cost of $2.13B 

USD for Design Alternative C (Gómez et al. 2009, 60, L). These estimates are for 

production costs for the expected system lifespan of 30 years, but they do not include 

maintenance costs. 

A cost-value analysis was conducted by considering the design alternative MOE 

scores against their respected estimated costs and is shown in Table 12. By plotting this 

information in Figure 13, relationships can be seen between cost and effectiveness. In the 

case that one design alternative has a higher cost and a lower MOE score than another 

alternative, it is considered “dominated” by the other alternative. In this cost-value 

comparison, Alternative A is dominated by both Alternatives B and C because both have 

higher MOE scores and both have a lower cost. By conclusion, Alternative A would not 

be considered further. 

Table 12.   Design alternative cost versus MOE score 

Design Alternative 
Estimated Total Cost 

(U.S. $ in billions) 
MOE Score 

Design Alternative A 10.38 0.679 

Design Alternative B 2.38 0.903 

Design Alternative C 2.13 0.853 
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Figure 13.   Design alternative total cost versus MOE score comparison 

In order to select the better of the two remaining alternative designs with respect 

to cost, additional research and stakeholder involvement is required to determine the 

weight and importance of cost. Depending on the weight of the cost factor as defined by 

the stakeholder, Alternative A or B may be determined as the overall better alternative. If 

cost is not considered a significant factor, Alternative B will remain the overall better 

alternative due to having the higher of the MOE scores. 
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IV.  CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY OF FINDINGS 

The research and conclusions within this study are targeted at finding the best 

systems design alternative for using SSP for military bases in Afghanistan where energy 

is expensive and/or very difficult to obtain. A review was conducted of literature 

concerning the need for renewable energy for the DoD, especially abroad in remote areas 

like Afghanistan. Additionally, research was conducted on key concepts and components 

necessary for SSP. One architecture with three system design alternatives were created 

and systematically weighed according to stakeholder requirements to determine which 

design best fit the user requirements. 

B. FINAL CONCLUSIONS 

The conclusion to the research and analysis is that a system architecture does exist 

and the best design alternative from the three examined by this thesis is presented in 

Design Alternative B. This design presents the most balanced approach and overall best 

meets the requirements relative to Design Alternatives A and C. Design Alternative B 

delivers 106 MW, which is well within the requirement, while maintaining a balanced 

approach to solar panel mass, transmitter size, rectenna size, and deployability of the 

entire system.  

Design Alternative A falls short of being the best design due to having the largest 

satellite mass. The design consisted of the largest array of solar panels by a considerable 

amount. In addition, the mass of the transmitter is considerably more than the other 

designs as well. Both solar panel and transmitter mass result in the design requiring the 

most number of launches for operation and therefore decreases the satellite deployability 

score significantly. The benefit with Design Alternative A is the ability to use the 

smallest rectenna while maintaining the required power amount. If the maximum payload 

mass per launch can increase in future launch capability, Design Alternative A becomes a 

more reasonable solution. 
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Design Alternative C falls short of the best design due to it having the largest 

rectenna diameter at 2,445.46 meters. This is approximately twice the rectenna size of 

Design Alternative B and 42.5 times larger than Design Alternative A. This is impractical 

for use in a remote military base where space may be limited due to safety and security 

concerns. The strength of this architecture is that it requires fewest launches to space. In 

order to reduce the rectenna size, increasing either the number of solar panels or the size 

of the transmitter would be required, but this would result in increased launches required. 

While this design presents a solution with the least amount of mass deployed to space, the 

limit to ground deployability renders this design second best of the three. 

Considering cost, Design Alternative A is not an option due to being “dominated” 

by the other alternatives having fewer total costs and higher overall MOE scores. 

Additional stakeholder analysis is required in order to determine how cost may affect the 

MOE scores of the other two alternatives. Depending on stakeholder analysis pertaining 

to cost, Alternative C could potentially be more effective than Alternative B. 

While this study determined the best design alternative of the three presented, this 

study makes several assumptions. The first assumption, based on research and findings, is 

that the technology needed for SSP already exists and the system is technically feasible. 

The second assumption in this thesis is that SSP is the best alternative for meeting the 

power requirement. 

C.  RECOMMENDED AREAS OF FURTHER STUDY 

While this thesis provides a look at the overall system architecture and design for 

the major components of a SSP satellite system, further areas of research will serve to 

benefit the concept. One area is to provide additional design alternatives and to re-

calculate the overall MOEs relative to the other designs. This would provide a more 

robust data set. A further area would be to create additional architectures that have the 

same output of power but with varying values for the other factors. An example is to 

examine the lunar solar power concept, its corresponding architecture, and its operational 

suitability for providing power to a remote military base. This would require a greater 

focus on system availability and system components such as large capacity batteries and 



 51 

power management. Such a concept may lead to an architectural approach using both 

SSP satellites and fossil fuels. One technical area of further study includes the look at 

causes and effects of beam jitter in the space environment. A closer look is needed at the 

safety concerns and effects of proposed microwave power beam concepts. Another area 

of further research is to look at maintainability costs, and to receive stakeholder 

involvement for in-depth cost analysis to include in Design Alternative MOE scores. A 

detailed look at the extremely high cost of this system would be beneficial. Finally, a 

look into FOBs and their power consumption may significantly reduce the power 

requirement for a SSP system. 
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