
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1994

Decoupling Approximations Applied to an
Infinite Array of Fluid Loaded Baffled Membranes

Scandrett, C. L.; Kriegsmann, G. A.
Monterey, California.  Naval Postgraduate School

https://hdl.handle.net/10945/35057

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Decoupling Approximations Applied to an Infinite 
Array of Fluid Loaded Baffled Membranes 

by 

C. L. Scandrett 
Department of Mathematics'. Naval Postgraduate School, Monterey'. CA 

G. A. Kriegsmann 
Department of Mathematics and the Center for 

Applied Mathematics and Statistics, New .Jersey Inst. Tech., Newark NJ 
0.N.R contract number N00014-92-.J-1261 

Classification: 65N Partial Differential Equations, boundary value problems 
76Q Hydrodynamic sound, acoustics 

Keywords: Finite Difference Methods, Waveguides 
Nonlocal TI.adiation Boundary Conditions 

1 



Abstract 

Application of a time dependent. nonlocal radiation boundary condition. used in con­
junction with the finite difference technique is applied to the acoustic problem of scattering 
from an infinite array of baffled. fluid loaded membranes. The new boundary operator is 
compared with the second order Engquist and Majda boundary operator, and with several 
fluid/structure decoupling approximation techniques in the determination of scattering 
amplitudes. 

Introduction 

The scattering of a plane acoustic wave by a periodic array of baffled me1nbrancs is 
studied in this paper. This scattering problem is not only mathematically and physically 
interesting in its own right, but it also a critical component for an analysis of a large finite 
array [1.2]. In the paper by Crighton et al[3L the example of scattering from an array of 
fluid loaded membranes is reviewed as a simple model which displays many of the features 
found in scattering from more complicated arrays, such a.'-J scattering and radiation from 
transducer arrays[ 4], and periodically stiffened plates used in hull construction[5]. This 
paper addresses the numerical problem of solving such scattering problems, and explores 
the usefulness of recent approximate techniques. 

Floquet theory is first applied to reduce the physical domain above the array into a 
fundamental cell which is a waveguide-like region above a single membrane. The solution in 
this cell is composed of propagating and evanescent modes which carry the scattered energy 
away from the me1nbranc. Next, a new radiation boundary operator is derived which 
essentially annihilates all the propagating modes when applied at an artificial boundary 
y = R1i, which is several wavelengths above the array. Using this operator and finite 
differences provides an accurate numerical approximation to the scattered field in the 
truncated fundamental cell. 

In addition to developing an accurate finite difference scheme to study the scattering 
problenL three approximate methods arc proposed and implemented. The first two arc 
derived from a a pseudo-differential equation formulation of the problem wherein the back 
pressure frmn a single mc1nbranc is expressed as the square root of a differential operator. 
Approximations relating the membrane displacement to the pressure are obtained by ap­
proximating the square root by its truncated Taylor series or a rational function. Using 
the first term in the Taylor series gives the plane wave approximation [6] while using the 
first two terms gives an approximation derived elsewhere by Kricgsnrnnn and Scandrett .. 
and Miksis and Ting (KSMT) [7,8.9] for a single baffled membrane. Both these approx­
imations yield simple analytical results for the field within the fundamental cell. Finally. 
the third approximation comes about by truncating the Green's function to incorporate 
only the propagating modes of the cell. Then the integro-differential equation for the 
membrane motion is solved using finite differences. This is called the propagating mode 
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approximation (PM) or NLRD (Nonlocal Radiation Boundary Condition) approximation. 
Results using these three approximations arc compared against those of the full fi­

nite difference scheme (FFD). Except for frequencies near resonance, the plane wave and 
KSMT approximations agree very well with the FFD results - the KSMT approximation 
being slightly superior. Near resonant frequencies the plane wave approximation becomes 
inaccurate while the KSMT approximation is still quite good. In both cases the PM ap­
proximation gives excellent results although it requires considerably n10re numerical effort. 

An outline of the paper follows. In section L the formulation of the problem is given: 
followed by section 2, which gives a description of the finite difference scheme and the 
radiation operator. In this section. comparison of the new operator to the second order 
radiation operator of Engquist and Majda[lO] is done. Section 3 outlines the derivation of 
the approximate techniques used'. and the paper concludes with several examples. 

1. Formulation 

A periodic array of identical membranes, each of length A'. is held in place by an 
acoustically rigid infinite baffic. The uniform spacing between membranes is B, resulting 
in a periodic geometry of period 2a, where 2a =A+ B. Above the array is a homogeneous 
and isotropic acoustic fluid and below it a vacuum. The bafficd structure is insonificd by 
a plane time harmonic pressure wave of radial frequency w (See Fig. la). 

In dimensionless variables :E = (:1:, y), the equation governing the pressure in the fluid 
IS 

\72 p + k2 p = () (1) 

where k = wA/ Ca and Ca is the sound speed in the fiuid. The spatial variables were made 
dimensionless by scaling with respect to A. 

The equation for the lateral displacement of the ,;th membrane after scaling is 

d2Wj + c·2 ,,.2w. - E,,2 ,.2P( ·z· ()· ,,.) 
d:r2 , fl :J - c. '" • , , ' fl , x E ni [j[ = 1'.2 ... CX) (2) 

where the dinicnsionless parameters c and c arc ratios of fluid to membrane wave speeds 
( c,j Cm) and densities (pa.A/ Pm) respectively. The nj denote the set of points occupied 
by the /h mc111brane. The ratio of pressure to nicmbranc displacement scale factors is 

Aw2 Pa· 
The presence of the acoustically hard baffic introduces the boundary condition 

DP 
-
8 

(:r,O) = 0, :r ~ n 
:Y 

(3a) 

where n is that portion of the plane occupied by the baffics, while fixing the membranes'. 
endpoints on the baffic requires 

W7 = 0, :z: E Dni (3b) 
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where Dni denotes the encl points of the jlh membrane. Equating the time harmonic 
normal velocities of the fiuid and membrane at their points of contact yields 

DI' 
--W· x E n 1·, y=O Dy - i' . 

(4) 

The plane incident time harmonic pressure P 1 is a solution of ( 1) and is given by 

(5) 

where (~) 1 is the angle the incident wave makes with the positive x axis and the time 
dependence is assumed to be e-iwt. If the line y = 0 were entirely rigid, then the incident 
wave would be reflected a.'-l I'1 (:D, -y. k). Accordingly. the total pressure is decomposed as 

where the effect of the periodic array is manifest in JL the scattered field. 
Inserting (6) into (1)-(4) it is found that p satisfies 

() < y , 

;z; EH 

;z; E Hi 

d
2 
Wi + (.2 1,.2 W _ c <.2 1.2 { 2I'r ( .1. O· i,.) + JJ( .1. O· i,.)} --2- , /), j - c ' ti . • ' . ' /), • ' . ' /), : 

dx 

(6) 

(7a) 

(7b) 

(7c ) 

( 7cl) 

The formulation of the scattering problem is completed by requiring p to behave as an 
outgoing wave at x . 

The formal solution of (7a ) is given by 

x 

p( ;z;. y : k) = I:: anehn ~: +t/J,, y . 

-GC· 

/Jn= Vk2 - /n 2 

/ n = -!,; cos(:.) J + rrn / a, 

y > O (8a) 

(8h) 

(8c) 

where the reflection coefficients an are to be determined. This solution is formally valid 
for all ( :r;. y) above the baffled membranes. The numbers fJ,,, in (8b) arc the propagation 
constants of the reflected waves scattered hy the surface. For given !,; : (~) 1. and a. there arc 
only a finite number of these that arc purely real. That is: there arc nmnhcrs N (k: 81: a) 
and M ( k. (~) 1. o,) such that fJ is real for - M ::; j ::; N and is purely imaginary for j > N 
and j < -M. The latter modes represent surface waves which decay exponentially for 
y > 0, while the former correspond to radiating waves. Finally, using conservation of fiux 
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(or power) arguments it is readily found that the coefficients an : for the propagating waves: 
satisfy the relationship 

1/ 2 N 

~, f pWo(:r:)rfa:=2aL /3nllanll
2 

.l-1/ 2 -M 

(9) 

where the overbar denotes complex conjugation and the s , the imaginary part of a complex 
number. 

2. Finite Difference Scheme 

The finite difference scheme which is used to solve the coupled fluid structure problem 
ls very similar to that presented in Kriegsmann and Scandrett [7]. It is an explicit time 
marching scheme which is second order accurate in both time and space. The solution of 
the time harmonic problem is obtained from the explicit time domain calculations as a 
result of the limiting amplitude principle [11] , which guarantees the approach to a steady 
state. 

The spatial domain used is: 1:1:1 S a and 0 S y S fl11. Unlike the single baffled 
membrane problem, wherein a radiation boundary condition needed to he applied in the 
fluid surrounding the membrane: the periodic array requires a radiation boundary condition 
only at :i; = R 1,. (Along x = ±a, periodic boundary conditions are required). In order for 
the radiation boundary condition to successfully model the infinite fluid: it must prevent 
reflection of the radiating modes generated by the fluid/membrane interaction. 

Because the nmnhcr of existing radiating modes and their directions of propagation 
arc dependent upon the incident angle ((.:.)I), frequency ( /,;) of the insonifying plane wave, 
and a separation parameter ( o, ), the radiation boundary condition applied at fl11 must be 
flexible. Incorporated into the finite difference code is a time dependent nonlocal radiation 
boundary condition which effectively inhibits reflections from the boundary of all radiating 
modes. The radiation condition is similar to that used in the work of Fix and Marin[12]. 
except that it is applied in the time domain rather than the frequency domain. 

Dcvclopn1ent of the radiation condition follows from the time harmonic form of eq. 
(8a). For large values of y, evanescent n10des arc neglected, and the scattered pressure is 

N 

p( :z:,y,t;/..;) ~ 2= (I t
_yy,, ~: + ifJ,, y- it 

'fl.' • (10) 
n =-M 

A radiation boundary condition which annihilates the nth propagating mode is: 

D</> . Dcp 
Bn ( </J) = -;-- + Pn -

0 
· 

uy t 
( 11) 

Applying boundary operators to each of the several modes yields: 
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n 

L Bn { o,1i. ( t )ci1,, ~+i/J,, Y} ::::::: 0 (12) 
n=-M 

where the time dependence of the modes has been incorporated into the coefficients an. 
The time dependent coefficients o,n ( t) can he found from the time dependent form of 
equation eq. (Sa) as: 

(13) 

Inserting (13) into (12). applying (ll)l taking the partial with respect to y outside 
of the smrnnatimL and writing explicitly the o,n ( t) coefficient in the sunmrntion yields the 
boundary operator: 

Dp ::::::: 
Dy 

l N ;·a [) 
"'""' (i. e11,,(x-o_E(t. 1'J.t)dt 2a ~ f- fl at ',, , .. ,· "' 

n=-M ·-a 

(14) 

The above boundary operator is then center differenced and combined with the center 
differenced form of the wave equation resulting in a matrix equation for the unknown 
values of the pressure at the artificial boundary, y = R 0 . 

While application of the boundary operator docs require a nrntrix factoriy;ation re­
quiring 0 (n3 ) operationsl the factorization need be done only once before advent of the 
time domain difference calculations. Subsequent solutions of the unknown pressures at the 
artificial boundary are found using the factored form of the matrix which requires only 
() (n2 ) operationsl and therefore is relatively quick. 

A stopping criterion is applied to halt the calculations when solutions to the problem 
at two different times differ by less than a prescribed tolerance level. In all of the results 
givenl the iterations were stopped when the integrated membrane displacement and the 
integrated pressure at the artificial boundary differed in successive time levels hy less than 
.00005. 

A comparison was made with the current radiation boundary condition and the second 
order Engquist and Majda boundary operator [Ilcf. 10 equation (9)]. The Engquist and 
Majda operator was finite differenced in time and space; combined with the discrctiy;cd 
form of the wave equation and periodic boundary conditions leading to a circulcnt Jacobi 
matrix: which is in turn solved repeatedly (as is NLRD) for the values of the unknown 
pressures at the artificial boundary of the numerical domain. Physically, this operator 
was designed to handle scattering problems for which the scattered wave should strike the 
artificial boundary at near normal incidence (a condition not always 1nct in waveguides). 
A more appropriate boundary operator for waveguides is derived in Kricgsmann [13], but 
it becomes cumbersome if more than two n10des of the waveguide arc propagating. For 
this reason, the Engquist and Majda operator was chosen for the comparison. The two 
methods were tested on a waveguide problem for which analytical solutions were known. 
In particularl the waveguide was forced at one end (;z; = 0) by known propagating and 
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evanescent modes. The side boundary conditions for this example were homogeneous 
Dirichlet at // = 7r and homogeneous Neumann at // = 0. Exciting the first three modes: 

11 = c·o··(" ·y) .J:r-Jk:~-8~1 -i.t ·n · :-; ·"n. f:, '. 
2n -1 

Sn= ---
2 

n = 1.2, ... 

with amplitudes of one and running the finite difference codes which were identical except 
in their radiation boundary condition for 4000 iterations produced the mode amplitudes 
as functions of :z: shown in figure 1 b. As can be seen'. the Engquist and Majda operator 
does significantly better with the evanescent modes than does the non local radiation 
condition. However'. in determining the amplitudes of the propagating modes'. the Engquist 
and Majda operator produces an unwanted standing wave pattern. This type of pattern 
is less noticeable with the first mode compared to the second, due to the fact that the 
first mode's direction of propagation is more nearly nornrnl to the artificial boundary, and 
therefor the Engquist and Majda boundary operator introduces only a negligible refiection. 
For this simple problem, it is possible to analytically calculate the amplitude of the standing 
wave pattern. Doing so for the second propagating mode at x = 3n / 8 the theoretical value 
is found to be 1.085 while the numerical solution yields 1.094. The incident angle of the 
second propagating mode n1casured from the boundary normal is tan- 1 ft ~ 48.6 degrees. 
For problems in which incident angles arc in excess of this value .. amplitudes of the standing 
wave patterns get considerably larger. It is also true that the amplitude of the standing 
wave is a function of where the artificial boundary has been placed and upon which mode 
and what value of k has been used. 

For the fiuid membrane coupled problem, it is difficult to know where to "best'' de­
termine the amplitudes of the propagating modes if one uses the Engquist and Majda 
radiation condition. One nmst also he concerned with spurious evanescent waves in ap­
plying the nonlocal boundary operator. For these reasons, both boundary conditions arc 
used and compared. The results presented in the sequel demonstrate that the nonlocal 
boundary operator gives membrane displacement shapes very similar to those using the 
Engquist and Majda boundary operator. Furthermore in cases where there is a significant 
amount of radiated energy, the nonlocal boundary operator more nearly satisfies the energy 
conservation condition (cq. 9). 

It should be noted that the Engquist and Majda radiation condition produces a matrix 
type operator just as the nonlocal boundary operator method docs. In problen1s where 
Neumann, Dirichlet, or mixed n.C. are imposed on the sides of the waveguide, the Engquist 
and Majda operator is tridiagonal in form which is of course easier to handle than the 
full complex matrix produced by the nonlocal radiation condition. However'. for periodic 
boundary conditions, the matrix for the Engquist and Majda condition remains sparse, 
but is no longer tridiagonal. 

3. Approximate Techniques 

In this section three approximations 

these are derived from the Kriegsmann 

Dp 
relating p(:r:.O) to -(:D,0) arc gIVcn. Two of 

[)y 
and Scandrett[9] method, while the third is a 
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result of applying the time harmonic version of the radiation boundary operator ( eq. 14) 
on the surface of the membrane. 

When the Kriegsmann and Scandrett approximation for a single membrane is inserted 
into (7c) an equation for Wi(x) alone is obtained. From (8a) 

ap x . 
~(:z:,O) = LA.nei1,,~: 
uy -= 

(15a) 

x 

( 0) . ~An i.-.. x 
p ;i;, = -t ~ -J-c·1n 

f n -oo 

(15h) 

1 A 'fJ B i· l . . f In . . l . w icre n = l .·nan. y expanc ing n1 a power senes n1 tenns o -, msertmg t ns 
~ k 

expansion into ( 15b), interchanging the orders of sunm1ation, formally replacing terms of 
. d2m . 

the form /n 2me11nx by (-l)"n--.-e 11nx, resumming the infinite series, and using (lOa) 
rfa:2rn 

equation (15b) becomes 

i 1 Dp 
p(:r;,O) = -- . -

8 
(:1:,0) (16) 

k y'l + D 2 /k 2 i! 

where D = d/rfa:. Inserting (16) into (7c) and usmg (7b) gives the pseudo-differential 
equation 

Pseudo-differential equations involving square roots of differential operators occur in 
other branches of wave propagation and in particular, underwater acoustics [14]. There, 
theories such as the parabolic approximation and the wide angle parabolic approximation 
arise hy replacing the square root by a polynomial or a rational function in the differential 
operator. In an analogous fashion an approximate differential equation for the displacement 

1 
of the _;th membrane is deduced from ( 17) by approximating by a polynomial 

y/1 + D2/J,;2 
in D 2 / k2 . For example, if only the first term of its Taylor series is used, then 

d
2 
W 1· 2 ') [ ic] ') ? 1 -.-

2
-· + c J,;~ 1 + - Wj = 2c:c~k~ I' (:1:, O; A:), 

d;i; };: 
(18) 

This is just the "plane wave approximation", because the same approximation gives 

i Dp i 
p(:r:. 0) = - - -

8 
(:1:, 0) = --. Wj(:1:). 

k i! k 
(19) 

A n10re useful and accurate approximation results when the first two terms of the Taylor 
series are used. Then, the approximate equation becomes 

(20) 
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and the corresponding result for p( ;z;, 0) is 

-i [ n2] p( :r:, 0) = -- 1 - -;---
2 

Wj(:1:). 
!,; 2k 

(21) 

These arc the san1e expressions derived in Kricgsniann and Scandrett[?] for a single mem­
brane and Miksis and Ting[8] for a single memlm-mc under a different limiting process. 

The third approximation for the surface pressure in terms of the membrane displace­
ment is found in the following manner. Set eq ( 15a) equal to W 7 and the coefficient an 
( = An/'i/ln) can be found in terms of the /h membrane's displacement: 

o,n = ~] [1l
2 

c-q(Wj(()d~ 
2wf n .J-112 

(22) 

Upon substitution of eq. ( 22) into cq. ( 15h), and neglecting evanescent modes, one obtains 
the third approximation used in this paper. 

(23) 

This final approximation yields an intcgro-diffcrcntial equation for the /h membrane 
displacement and is therefor nearly as hard to solve as the fully coupled problem except 
that the number of modes has been reduced frmn infinite to only those which involve 
radiation of energy from the surface. 

4. Numerical Results 

A series of graphs will be presented to show the applicability of the three impedance 
approxiniations, as well a .. '-> some confirmation of the finite difference scheme used. In each of 
the examples, the following values arc fixed: c = 0.5, E = 0.2, A= 1.0, l:!.:r: = 1/30 (except 
for the final figure for which it's 1/50), and !:!.t = .9ki0.:z: / -/1+1/ c2 .The three parameters 
k, fl, and(-) 1 are varied to determine their effect on the solution of the scattering problem. 

In fig. 2 a plane wave of frequency other than an in vacuo eigenfrequency strikes the 
array at two different angles. In each case, it would appear that all of the approximate 
methods give results equivalent to the finite difference solutions. For the case 8 I = l br / 18 
four radiating plane waves arc excited (i.e. Pn is real for -2::; n::; 1) , while for 81 = 51f/6 
the four radiating plane waves are associated with f-Jn where -3 ::; n ::; 0. In each case 
the modal coefficients an , found using the values of the membrane displacement (whose 
magnitudes are plotted in fig. 2), are given in Table I and can be seen to be in excellent 
agreement. For this example, the conservation equation (9) is nearly satisfied by both of 
the finite difference solutions. The relative error in trying to satisfy eq. (9) is given by 

(24) 
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For the cases (-)1 = 5n/6 and (-)1 = lln/ 18: the values of R were (NLRD): -.0715 (.0039): 
(EM- Engquist and Majda Doundary Condition): -.0076 (.0041); and NLRD:-.0253(.0253) : 
EM: .0607( .0265) , respectively. The values in parenthesis are the numerical values of the 
imaginary part of the integrals. In subsequent discussion, the values of R and of the 
imaginary parts of the corresponding integrals arc given in Table III at the end of the 
paper. 

In figs. 3 and 4, the frequency associated with /.,; = 2n corresponds to the first in vacu.o 
eigcnfrequency of the membranes. In fig. 3 two plots arc shown in which the value of(~) 1 is 
different while fig. 4 shows the effect of varying the spacing between membranes. In both 
figures the third approximation matches very well with the finite difference calculation 
whereas the PWA and KSMT approximations are off. The relative errors made at the 
point of maximum deftection of the membrane are approximately 7%: 5%, and < 1 % 
for the PWA, KSMT and NLRB approximations with e 1 = 11nI18. The relative errors 
increase for (.:.) = 57f / 6 where again the PWA approximation is worst, while the NLRB 
approximation is best with a relative error < 1 %. In comparing the finite difference codes 
employing the values of R given from the table, one might assume that the nonlocal 
boundary operator is doing much better than the Engquist and Majda operator. The 
worst case for the latter operator being fig 3 with (-) 1 = 117f / 18 with an R value of .44 
compared to .0041 for the nonlocal operator. A possible explanation for the large value 
of R in the Engquist and Majda solution is that the pressure and membrane displacement 
arc incorrectly phased at the fluid n1cmhrane interface, causing sonic error in calculating 
the pressure-displacement integral. 

Because the PWA and KSMT approximations derived in section 3 arc the same as 
those presented in Kricgsmann and Scandrett[9] for a single baffled membrane, one might 
expect that these approximations are unable to account for interactions between mem­
branes. Figure 4 shows the results of varying the value of fl and in fact: the KSMT 
and PWA solutions are found to be identical. One would conclude that these approxima­
tions are therefor of limited value in problems where interactions between membranes are 
presumed to he strong. 

Figure 5 is included to show what happens at "cutoff", which occurs when one of the 
/J.i equals :.i:ero. At this frequency it is hard to a .. '-Jsess which if any of the methods is doing 
a good job. For this case the finite difference code using the Engquist and Majda operator 
is presumably the "best" since it has a lower fl value than the nonlocal finite difference 
solution. Its R value is still however: relatively high (.2543). For the case just above 
cutoff it can be seen that none of the approximate methods do very well nor does the 
finite difference code with the Engquist and Majda operator. The reason for their failure 
lies in the fact that as significant amount of energy is being radiated away at an angle of 
~82 degrees from the normal to the boundary (sec the amplitude of A_3 in the tables) . 
.Just as the Engquist and Majda require near normal incidence to eliminate unwanted 
reflections, so too can the PWA and KSMT approximations be thought of as valid for 
cases of near normal scattering from the radiating membranes. 

Figure 6 is similar to fig. 4 in that the spacing between membranes is allowed to vary, 
while holding (-) 1 and k fixed. The second in vacuo eigenfrequency of the membrane is at 
k = 47f. It is shown in fig 6 that in fact the difference in spacing between membranes has 
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very little effect on the actual membrane displacement. It does however effect which and 
how many modes will radiate energy. For fl = 1, there are eight radiating plane waves 
-7::; n::; 0: while for fl= 2/3 there are only five -4::; n::; 0. 

The final figure compares the results of exciting the membranes at their second and 
third in vacuo eigcnfrequencics with separation and incident angle fixed. At higher fre­
quencies. it can be seen that the KSMT approxiniation docs a "better:: job in n1irnicking 
the correct membrane displacement and hence the coefficients of the radiated plane waves. 
All approximations can be shown to approach the PWA for large frequencies since in that 
limit the Pn --+ k: and the eqs. 21 and 23 collapse to eq. 19. Results for the computed 
coefficients can be found in table II. 
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TABLE I 

an FD PWA KMST NLRD an FD PWA KMST NLRD 
Figure 2 

(•)I = fm /6 (~)I = l br / 18 

a_2 .02812 .02795 .02794 .02792 a_3 .01614 .01590 .01590 .01597 

(/,_l .03704 .03670 .03668 .03662 (/,_2 .01506 .01485 .01484 .01488 

ao .02860 .02827 .02826 .02818 (/,_l .00738 .00727 .00727 .00727 

a1 .00928 .00906 .00908 .00901 no .00843 .00828 .00829 .00837 

Figure 4 

B = 2/3 B = 1 

(1,_3 .19058 .24477 .21755 .19280 (1,_3 .14007 .16089 .14299 .14160 

(/,_2 .16436 .21172 .18818 .16666 (/,_2 .15914 .18336 .16299 .16131 

(/,_l .16686 .21526 .19135 .16941 (/,_l .15140 .17493 .15551 .15381 

ao .15726 .20317 .18068 .15989 no .14597 .16931 .15057 .14876 

Fio·ure 5 b 

(·)1 = 27r/3 (-)I = 2 . 0 1JrI3 

a_3 cutoff cutoff cutoff cutoff a_3 .59231 .80478 .71529 .60270 

a_2 .12081 .28866 .25657 .29394 a_2 .21231 .28689 .25500 .21480 

a_1 .13465 .31802 .28268 .32375 a_1 .23438 .31512 .28010 .23598 

ao .12317 .28871 .25665 .29383 ao .21363 .28523 .25356 .21369 
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TABLE II 

an FD PWA KMST NLRD an FD PWA KMST NLRD 
Figure 7 

k = 6n /;, = 41f 

a_11 .00732 .00947 .00843 .00785 a_11 NR NR NR NR 
(J,_10 .00212 .00223 .00199 .00191 (/,_11 NU NU NU NU 
(l,_9 .01160 .01392 .01238 .01161 (J,_g NU NU NU NU 
n_s .01535 .01856 .01651 .01544 (J,_3 NU NU NU NU 
n_7 .00884 .01069 .00951 .00887 (J,_7 .02188 .02544 .02262 .02236 

(l,_5 .00185 .00226 .00201 .00192 (J,_5 .05165 .06004 .05337 .05257 

(l,_5 .00539 .00652 .00580 .00546 (J,_5 .05716 .06642 .05904 .05808 

(l,_4 .00206 .00252 .00225 .00214 (J,_4 .02637 .03062 .02722 .02672 

(l,_3 .01244 .01505 .01338 .01280 (J,_3 .02301 .02673 .02376 .02336 

n_2 .01512 .01819 .01618 .01580 (J,_2 .05622 .06522 .05798 .05682 

a_1 .00879 .01022 .00923 .00964 a_1 .05352 .06190 .05507 .05375 

ao .00556 .00568 .00560 .00526 ao .02570 .02922 .02621 .02522 
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TABLE III 

case R(NLRB) J (NLRB) R(EM) I (EM) 

Figure 2 

(~)I = 57r / 6 -.0715 .0039 -.0076 .0041 

(~) 1 = l17r / 18 -.0253 .0253 .0607 .0265 

Figure 3 

81 = 57r /6 -.0011 .8417 -.0510 .8830 

(.:.) 1 = lln /18 .0041 3.780 -.4429 4.973 

Figure 4 

B=2/3 .0093 .8207 -.1646 .9391 

B=l .0121 .9191 .0549 .8726 

Figure 5 

81=2n /3 .5559 1.242 .2543 .2851 

81 = 2.0ln/3 -.0001 2.269 -.2281 2.573 

Figure 6 

Il=l .0105 .3096 .1313 .2670 

Il=l/5 .0163 .3093 .0122 .3090 

Figure 7 

k = 6'7r .0168 .0325 .0058 .0322 

k = 47!' .0050 .3043 .0883 .2778 
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Figure Captions 

Fig la: Problem Configuration 
Fig lb: Comparison of the Nonlocal(NLRB) and Engquist and Majda (EM) Radiation 

Dounda.ry Opera.tors. Boundary conditions for the waveguide are homogeneous Dirichlet 
(y=7r) and homogeneous Neumann (y=O), resulting in 2 propagating modes. Amplitudes 
of the two propagating'. and one of the evanescent modes a.re plotted a.s a. function of the 
position along the waveguide (x). The exact answer should be one for each propagating 
mode, and exponentially decreasing for the evanescent mode. 

Fig 2: Comparison of solutions displaying membrane displacement at a nonresonant 
(in vacuo) frequency, for two different incident angles. 

Fig 3: Sa.me as fig.2 except that the membranes are being excited a.t the their first in 
vacuo resonant frequency, again for two different incident angles. 

Fig 4: Same a.s fig. 3, except that results a.re displayed a.t the first in vacuo resonant 
frequency of the membranes for two different inter-membrane spacings. 

Fig 5: Comparison of solutions at and near the waveguide cutoff frequency. Cut off 
occurs at 8 I = 2

;. 

Fig 6: Comparison of solutions showing membrane displacement at the second in 
vacuo resonant frequency of the membranes, for two different inter-membrane spacings. 

Fig 7: Comparison of solutions showing membrane displacement a.t the second and 
third in vacuo resonant frequencies of the membranes. 
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