“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1994

Decoupling Approximations Applied to an
Infinite Array of Fluid Loaded Baffled Membranes

Scandrett, C. L.; Kriegsmann, G. A.

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/35057

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
lﬂ“‘ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library



Decoupling Approximations Applied to an Infinite
Array of Fluid Loaded Bafled Membranes

C. L. Scandrett
Department of Mathematics, Naval Postgraduate School, Monterey, CA

G. A. Kriegsmann
Department of Mathematics and the Center for
Appliecd Mathematics and Statistics, New Jersey Inst. Tech., Newark, NJ
O.N.R. contract number N0O0014-92-J-1261

Classification: 65N Partial Differential Equations, boundary value problems
76() Hydrodynamic sound. acoustics
Keywords: Finite Difference Methods, Waveguides
Nonlocal Radiation Boundary Conditions



Abstract

Application of a titne dependent nonlocal radiation boundary condition. used in con-
junction with the finite difference techmique is applied to the acoustic problem of seattering
from an infinite array of baffled, fluid loaded mnembrancs. The new boundary operator is
compared with the second order Engquist and Majda boundary operator, and with several
fluid/structure decoupling approximation techniques in the determination of scattering
amplitudes.

Introduction

The scattering of a plance acoustic wave by a periodic array of batfled membranes is
studied in this paper. This scattering problem is not only mathematically and physically
interesting in its own right, but it also a critical component for an analysis of a large finite
array [1.2]. In the paper by Crighton et al[3], the example of scattering from an array of
fluid loaded membranes is reviewed as a sitnple model which displays many of the features
foumnd in scattering from more complicated arrays, such as scattering and radiation from
transducer arrays[4]. and periodically stiffened plates used in hull construction[5). This
paper addresses the numerical problem of solving such scattering problems, and exploves
the usefulness of recent approximate techniques.

Floquet theory is first applied to reduce the physical domain above the array into a
fundamental cell which is a waveguide-like region above a single membrane. The solution in
this cell is commposed of propagating and cvanescent modes which carry the scattered energy
away from the membrance. Next., a new radiation boundary operator is derived which
cssentially annihilates all the propagating modes when applied at an artificial boundary
y = R, which is several wavelengths above the array. Using this operator and finite
differences provides an accurate numerical approximation to the scattered field in the
truncated fundamental cell.

In addition to developing an accurate finite difference scheme to study the scattering
problem, three approximate methods are proposed and implemented. The first two are
derived from a a pseudo-differential equation formmlation of the problem whercin the back
pressure from a single membrane is expressed as the square root of a differential operator.
Approximations relating the membrane displacement to the pressure are obtained by ap-
proximating the square root by its truncated Taylor series or a rational function. Using
the first term in the Taylor series gives the plane wave approximation [6] while using the
first two terms gives an approximation derived clsewhere by Kriegsmann and Scandrett,
and Miksis and Ting (KSMT) [7.8.9] for a single baffled membrane. Both these approx-
inations yield simple analytical results for the ficld within the fundamental cell. Finally,
the third approximation comes about by truncating the Green's function to incorporate
only the propagating modes of the cell. Then the integro-differential equation for the
membrane motion is solved using finite differences. This is called the propagating mode
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approximation {PM} or NLRB (Nonlocal Radiation Boundary Condition) approximation.

Results using these three approximations are compared against those of the full fi-
nite difference scheme (FFD). Except for frequencies near resonance, the plane wave and
KSMT approximations agree very well with the FFD results - the KSMT approximation
being slightly superior. Near resonant frequencies the plane wave approximation becomes
inaccurate while the KSMT approximation is still quite good. In both cases the PM ap-
proximation gives excellent results although it requires considerably more numerical effort.

An outline of the paper follows. In section 1, the formmlation of the problem is given;
followed by scetion 2, which gives a description of the finite difference scheme and the
radiation operator. In this scction. comparison of the new operator to the second order
radiation operator of Engquist and Majda[10] is done. Scction 3 outlines the derivation of
the approximate techniques used. and the paper concludes with several examples.

1. Formulation

A periodic array of identical membranes, each of length A. is held in place by an
acoustically rigid infinite baffle. The uniform spacing between membrances is B, resulting
in a periodic geometry of period 2a, where 26 = A4+ B. Above the array is a homogencous
and isotropic acoustic Huid and below it a vacuum. The batfled structure is insonified by
a plane time harmonic pressure wave of radial frequency w (See Fig. la).

In dimensionless variables # = (&, y), the equation governing the pressure in the fluid

is

ViP+kEP=0 (1)

where k = wA/e, and ¢, is the sound speed in the fluid. The spatial variables were made
dimensionless by scaling with respecet to Al

The equation for the lateral displacement of the j* membrane after scaling is
d? Wj ) 2492 .
3 + kW, = ec” k" Ple, 00 k), x €y lF] = 12 ; so (2)
.

where the dimensionless paramcters ¢ and € are ratios of fluid to memnbrane wave specds
(Ca/Cm) and densities (paA/pm) respectively. The € ; denote the set of points oceupied
by the j% membrane. The ratio of pressure to membrane displacenient scale factors is
Aw? Dips

The presence of the acoustically hard batfle introduces the boundary condition

((;;(:r;.,(]) =0. z4Q {3a)

where £ is that portion of the plane ocenupied by the baffles, while fixing the membrancs’
endpoints on the baffle requires

W, =0, zed ] = el o 000 (3b)



where 94; denotes the end points of the 7" membrane. Equating the time harmonic

normal velocities of the fluid and membrane at their points of contact yields
ar

oy =W wE0. y=0 (4

The plane incident time harmonic pressure P? is a solution of (1) and is given by

juba ]

PI(ZII, y: i{) — ;e—ik(:rz cos B rtysin@r) (

where ©; is the angle the incident wave makes with the positive x axis and the time
dependence is assumed to be e=** If the line y = () were entirely rigid, then the incident
wave would be reflected as PT (e, —y, k). Accordingly, the total pressure is decomposed as

Pz, y: k) = P(z.yi k) + Plo,—y: k) + plz.1s k). 0<y, (6)

where the effeet of the periodie array is manifest in p. the scattered field.
Inserting (6) into {1)-(4) it is found that p satisfies

Vip+kp=0, 0<y, (Ta)
o, 0, z€Q
P _ { x & (7h)
dy W, =€
W 21,2 21219 pl
(i:{’z' + kW, = ec* 2P (2. 0: k) + p(x. 0: &)}, 2 € Q; {(Tc)
Wi=10, zedQ (7d)

The formulation of the scattering problem is completed by requiring p to behave as an
outgoing wave at oc.
The formal solution of (7a) is given by

x5

plz.y k) = Z a0, e T iy y >0 (8a)
)G'n, — ];;2 — 771,2 (8}))
Yo = —hcos©Of 4+ nw/a. {8¢)

where the reflection coeflicients a,, are to be determined. This solution is formally valid
for all (x.y) above the baflled membranes. The munbers /3, in (8h) are the propagation
constants of the reflected waves scattered by the surface. For given &, ©7, and a, there are
only a finite number of these that are purely real. That is, there are muubers N(h, ©7.a)
and M{k. O, a) such that (7 is real for —M < j < N and is purcly imaginary for j > N
and j < —M. The latter modes represent surface waves which decay exponentially for
y > (), while the former correspond to radiating waves. Finally, using conservation of flux
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(or power )} arguments it is readily found that the coefficients «a,,. for the propagating waves,
satisfy the relationship

1/2 N N
23 / PWolx) du = 20 Z B || anll” (9)
: M

] 12

where the overbar denotes complex conjugation and the ¥, the imaginary part of a complex
number.

2. Finite Difference Scheme

The finite difference scheme which is used to solve the coupled fluid structure problem
is very similar to that presented in Kriegsmann and Scandrett][7]. It iz an explicit time
marching scheme which is second order accurate in both time and space. The solution of
the time harmonic problem is obtained from the explicit time domain calculations as a
result of the limiting amplitude prineiple [11], which guarantees the approach to a steady
state.

il

< o and 0 < y < I. Unlike the single baffled
meinbrance problein, wherein a radiation boundary condition nceded to be applied in the
fluid surrounding the membrane, the periodic array requires a radiation boundary condition
only at ¥ = R;,. (Along © = +a, periodic boundary conditions are required). In order for
the radiation boundary condition to successfully model the infinite Huid. it must prevent
reflection of the radiating modes generated by the tluid/membrane interaction.

Becanse the mumber of existing radiating modes and their direcetions of propagation
arc dependent upon the incident angle (©7), frequency (k) of the insonifying plane wave,
ardl a separation parameter (o). the radiation boundary condition applied at R must be
flexible. Tncorporated into the finite difference code is a time dependent nonlocal radiation
boundary condition which effectively inhibits reflections from the boundary of all radiating
modes. The radiation condition is similar to that used in the work of Fix and Marin[12],
except that it is applied in the time domain rather than the frequency domain.

Development of the radiation condition follows from the time harmonic form of eq.
(8a). For large valucs of y, evanescent modes are neglected, and the scattered pressure is

The spatial domain used is:

N

plz.y. b k) = Z a,, eIt y—it (10)
n=—2AM

A radiation boundary condition which annihilates the n® propagating mode is:

o Jb
Bo(¢) = 0_// + f-fn,a—f.

Applying boundary operators to each of the several modes yields:
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T

> Bu{oa(t)e et} 50 (12)
n—=——M

where the time dependence of the modes has been incorporated into the coefficients a,,.
The time dependent coefficients a,(2) can be found from the time dependent form of
cquation cq. (8a) as:

1 “ O
oy (t) = —

! _,L.U_»;ny+~,f,,,c)p(é_‘ y. t)dé (13)

—it

Inserting (13) into {12}, applying (11). taking the partial with respect to y outside
of the summation, and writing explicitly the a, (£) coctlicient in the summation yields the
boundary opcerator:

Op oiva(a— 0[
2 _Z [;,1/ 2Ry, ) (14)

The above boundary operator is then center differenced and combined with the center
differenced form of the wave equation resulting in a matrix equation for the unknown
values of the pressure at the artificial boundary, ¥ = Ry.

While application of the boundary operator does require a matrix factorization re-
quiring O(n?) operations, the factorization need be done only once before advent of the
time domain difference calculations. Subsequent solutions of the unknown pressures at the
artificial boundary are found using the factored form of the matrix which requires only
O(n?) operations, and therefore is relatively quick.

A stopping criterion is applied to halt the calculations when solutions to the problem
at two different times differ by less than a prescribed tolerance level. In all of the results
given, the iterations were stopped when the integrated membrane displacement and the
mtegrated pressure at the artificial boundary differed in suceessive time levels by less than
00005.

A comparison was made with the current radiation boundary condition and the second
order Engquist and Majda boundary operator [Ref. 10 equation (9)]. The Engqguist and
Majda operator was finite differenced in time and space; combined with the discretized
form of the wave equation and periodic boundary conditions leading to a cireulent Jacobi
matrix: which is in turn solved repeatedly {as is NLRB) for the values of the nunknown
pressures at the artificial boundary of the numerical domain. Physically, this operator
was designed to handle scattering problems for which the scattered wave should strike the
artificial boundary at near normal incidence (a condition not always met in waveguides).
A more appropriate boundary operator for waveguides is derived in Kriegsmanu [13], but
it becomes cumnbersomne if more than two modes of the waveguide are propagating. For
this reason, the Engquist and Majda operator was chosen for the comparison. The two
methods were tested on a waveguide problem for which analytical solutions were known.
In particular, the waveguide was forced at one end {x = 0) by known propagating and

6



evanescent modes. The side boundary conditions for this example were homogeneous
Dirichlet at y = 7 and homogeneous Neumann at y = (0. Exciting the first three modes:
e —
it 2n—1

Uy, = cos{s,ye” wTH Sy = — T W S

with amplitudes of one and running the finite difference codes which were identical except
i their radiation boundary condition for 4000 iterations produced the mode amplitudes
as functions of x shown in figure 1b. As can be seen. the Engquist and Majda operator
does significantly better with the evanescent modes than does the non local radiation
condition. However, in determining the amplitudes of the propagating modes. the Engquist
and Majda operator produces an unwanted standing wave pattern. This type of pattern
is less noticeable with the first mode compared to the second. due to the fact that the
first mode’s direetion of propagation is more nearly normal to the artificial boundary, and
therefor the Engquist and Majda boundary operator introduces only a negligible reflection.
For this simple problem, it is possible to analytically calculate the amplitude of the standing
wave pattern. Doing so for the second propagating mode at x = 37/8 the theoretical value
is found to be 1.085 while the numerical solution yields 1.094. The incident angle of the
second propagating mode measured from the boundary normal is tan—! 5~ 48.6 degrees.
For problems in which incident angles are in excess of this value. runph*rud(‘s of the standing
wave patterns get considerably larger. Tt is also frue that the amplitude of the standing
wave is a function of where the artificial boundary has been placed and upon which mode
and what value of k has been used.

For the fluid membrane coupled problem, it is difficult to know where to “hest” de-
termine the amplitudes of the propagating modes it one uses the Engquist and Majda
radiation condition. Omne must also be concerned with spurious evanescent waves in ap-
plying the nonlocal boundary operator. For these reasons, both boundary conditions are
used and compared. The results presented in the sequel demonstrate that the nonlocal
boundary operator gives membrane displacement shapes very similar to those using the
Engquist and Majda boundary operator. Furthermore in cases where there is a significant
amount of radiated energy, the nonlocal boundary operator more nearly satisfies the energy
conservation condition {eq. 9).

It shonld be noted that the Engguist and Majda radiation condition produces a matrix
type operator just as the nonlocal boundary operator method does. In problems where
Neumann, Dirichlet, or mixed B.C. are imposed on the sides of the waveguide, the Engquist
and Majda operator is tridiagonal in form which is of course easier to handle than the
full complex matrix produced by the nonlocal radiation condition. However, for periodic
boundary conditions, the matrix for the Engquist and Majda condition remains sparse,
but is no longer tridiagonal.

3. Approximate Techniques

y . . . : n ;
In this scetion three approximations relating plx, 0) to 0—(:[;.,0) are given. Two of
g

these are derived from the Kriegsmann and Scandrett[9] method, while the third is a
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result of applying the time harmonic version of the radiation houndary operator (eq. 14)
on the surface of the membrane.

When the Kriegsmann and Scandrett approximation for a single membrane is inserted
into (7¢) an equation for W;(x) alone is obtained. From (8a)

a X
i LY
— (@ 0 = E A, et (1ba)
dy
5
i &
. An i
ple.0) = —i E g (15b)
n
—
where A,, = ¢J,0,,. By cxpanding — in a power series in terms of ——. inserting this
T IS
expansion into (15b), interchanging the orders of summation. formally replacing terms of
2m.
the form ~,2"e"»* hy (—1)”*W8“”’"-”‘, resumming the infinite series, and using (10a)
dmm
equation (15b) becomes
i 1 ap
Pl 0) = —— {2.0) (16)

k11 D2JR2 Oy

where D = d/de. Inserting (16) iuto (7¢) and using (7h) gives the pscudo-differeutial
cquation

W5 | a9 21210 pl i 1 \
d.’IZZ +c k W], = ac*k {QP (TO, Jlb) — EH—DWW](T) IE T & Q, (17)

Pseudo-differential equations involving square roots of differential operators occur in
other branches of wave propagation and in particular, underwater acoustics [14]. There,
theories such as the parabolic approximation and the wide angle paraholic approximation
arisce by replacing the square root by a polynomial or a rational fimetion in the differential
operator. In an analogous fashion an approximate differential equation for the displacement

. D] D] .p . .. . .
in D2 /k*. For example, if only the first term of its Taylor series is used, then

Jth

of the 7** membrane is deduced from (17) by approximating by a polynomial

d2W; i :
7 L+ PR {1 + 1—1 W, = 2:2R2 P (2,0:k), =€ Q. (18)
(38 "

This is just the “plance wave approximation”, hecause the same approximation gives
PlE0) = —p - (0) = — VELB). {19}

A more uscful and accurate approximation results when the first two terins of the Taylor
series are used. Then, the approximate equation becomes

iec? | d2W; ie :
[1 = !;;‘ ] ARy + 2k2 [1 + %} W, = 2ec?12PH (2,00 k), z€Qy, {20)

di?
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and the corresponding result for p(x,0) is

z 2

i D

pl.0) = == |1 = —= | W;{x). 21

1 9.2 J( ) ( )

These are the same expressions derived in Kriegsmann and Scandrett[7] for a single mem-

brance and Miksis and Ting[8] for a single membrane under a different limiting process.
The third approximation for the surface pressure in terms of the membrane displace-

ment is found in the following manner. Set eq (15a) equal to W, and the coefficient «,,

(= A,./if3,) can be found in terms of the j** membrane’s displacement:

1 1/2
= ———— WV 29
(hy Sl '/_1/2( W (&3¢ {22)

Upou substitution of cq. {22) into eq.(15D), and negleeting evancscent modes, one obtaing
the third approximation uscd in this paper.

i o= 1 Y2 .
ple,0) = —— Z — Wj(ﬁ)(:”"”(mf'g)d{' (23)
2a = — M [jn J—1/2
This final approximation yields an intogro-differential equation for the §7 membrane

displacement and is therefor ncarly as hard to solve as the fully coupled problem except
that the mumber of modes has been reduced from infinite to only those which involve
radiation of energy from the surface.

4. Numerical Results

A series of graphs will be presented to show the applicability of the three impedance
approximations, as well as some confirmation of the finite difference scheme used. In cach of
the examples, the following values are fixed: ¢ = 0.5, e = 0.2, A = 1.0. Ax = 1/30 {except
for the final figure for which it’s 1/50), and At = .9kAz/+/1 + 1/¢2. The three parameters
k. I, and Of are varied to determine their effect on the solution of the scattering problem.

In fig. 2 a plane wave of frequency other than an n vacuo eigenfrequency strikes the
array at two different angles. In cach case, it would appear that all of the approximate
methods give results equivalent to the finite difference solutions. For the case @7 = 117/18
four radiating plane waves are excited (e, [, is real for —2 <n < 1), while for ©; = 57/6
the four radiating plane waves are associated with 3, where —3 < n < 0. In each case
the modal coefficients a,,, found using the values of the membrane displacement {(whose
magnitudes are plotted in fig. 2), are given in Table [ and can be seen to be in excellent
agreement. For this example, the conservation equation (9) is nearly satisfied by both of
the finite difference solutions. The relative error in trying to satisfy eq. (9) is given by

hod ‘]. 2 o
S M W) de — 20 N Bl

R
¥ Jiﬁz PWola) du

(21)
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For the cases @; = bm/6 and &; = 117/18. the values of R were (NLRD): -.0715 (.0039).
(EM - Engquist and Majda Boundary Condition): -.0076 (.0041); and NLRIB:-.0253(.0253),
EM: .0607{.0265), respectively. The values in parenthesis are the mumnerical values of the
imaginary part of the integrals. In subsequent discussion, the values of A and of the
imaginary parts of the corresponding integrals arc given in Table IIT at the end of the
paper.

In figs. 3 and 4, the frequency associated with A = 27 corresponds to the first in vacuo
cigenfrequency of the membranes. In fig. 3 two plots are shown in which the value of Gy is
different while fig. 4 shows the effect of varying the spacing hetween membranes. In both
figures the third approximation matches very well with the finite difference calculation
whereas the PWA and KSMT approximations are off. The relative errors made at the
point of maximwmn deflection of the membrane are approximately 7%. b%, and < 1%
for the PWA, KSMT and NLRB approximations with ©; = 11x/18. The relative crrors
icrease for © = 5w /6 where again the PWA approximation is worst, while the NLRB
approximation is best with a relative error < 1%. In comparing the finite difference codes
ciploying the values of R given from the table, one might assume that the nonlocal
boundary operator is doing much better than the Engquist and Majda operator. The
worst case for the latter operator being fig 3 with ©®; = 117/18 with an R value of .44
compared to .0041 for the nonlocal operator. A possible explanation for the large value
of R in the Engaquist and Majda solution is that the pressure and membrane displacement
arc incorrectly phased at the fliid membrane interface, cansing some error in calculating
the pressure-displacement integral.

Because the PWA and KSMT approximations derived in section 3 are the same as
those presented in Kricgsmanu and Scandrett[9] for a single baffled membrance, one might
expect that these approximations are unable to account for interactions between mem-
branes. Figure 4 shows the results of varying the value of IF and in fact, the KSMT
and PWA solutions are found to be identical. One would conclude that these approxima-
tions are therefor of limited value in problems where interactions between membranes are
presumed to be strong.

Figure 5 is included to show what happens at “cutoff”, which occurs when one of the
i equals zero. At this frequency it is hard to assess which if any of the methods is doing
a good joh. For this case the finite difference code using the Engquist and Majda operator
1s presunably the *best”™ since it has a lower R value than the noulocal fimte difference
solution, Its K value is still however, relatively high (.2543). For the case just above
cutoff, it can be seen that none of the approximate methods do very well nor does the
finite difference code with the Engquist and Majda operator. The reason for their failure
lies in the fact that as significant amount of cnergy is being radiated away at an angle of
~82 degrees from the nornal to the boundary (sce the amplitude of A_g in the tables).
Just as the Engquist and Majda require near normal incidence to climinate unwanted
reflections, so too can the PWA and KSMT approximations be thought of as valid for
cases of near normal scattering from the radiating membranes.

Figure 6 is similax to fig. 4 in that the spacing between membrances is allowed to vary,
while holding ®; and k fixed. The second in vacuo eigenfrequency of the membrane is at
k= 4m. It is shown in fig 6 that in fact the difference in spacing between membranes has
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very little effect on the actual membrane displacement. It does however effect which and
how many modes will radiate energy. For I = 1, there are eight radiating plane waves
—7 < n <0, while for B = 2/3 there are only five —4 < n < 0.

The final figure compares the results of exciting the membranes at their second and
third in vacuo cigenfrequencies with separation and incident angle fixed. At higher fre-
quencies, it can be seen that the KSMT approximation does a “better” job in mimicking
the correct membrance displacement and hence the coetficients of the radiated plane waves.
All approximations can be shown to approach the PWA for large frequencies since in that
limit the &, — k. and the egs. 21 and 23 collapse to eq. 19. Results for the computed
coefficients can be found in table II.
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TABLE 1

ty, FD PWA | KMST | NLRDB Ly, FD PWA | KMST | NLRDB
Figure 2
©; =57/6 ©; = 11n/18
a_s | 02812 | .02795 | 02794 | 02792 a_gz | 01614 | .01590 | .01590 | .01597
a1 | 03704 | .03670 | .03668 | .03662 a_o | 01506 | .01485 | .01484 | .01488
ag | -02860 | .02827 | .02826 | .02818 a1 | 00738 | .00727 | .00727 | .00727
ap | 00928 | .00906 | .00908 | .00901 ag | 00843 | 00828 | .00829 | .00837
Figure 4
B=2/3 B=1
a_g | 19058 | .24477 | 21755 | 19280 a_g | 14007 | 16089 | .14289 | .14160
a_o | 16436 | 21172 | 18818 | .16666 a_go | 15914 | 18336 | .16299 | .16131
a—_1 | 16686 | .21526 | .19135 | .16941 a_p | 15140 | 17493 | 155561 | .15381
ag | 15726 | 20317 | .18068 | .15989 ag | 14597 | (16931 | (15057 | .14876
Figure 5
®; =27/3 ®; = 2.01x/3
a_gz | cutofl | cutofl | cutoff | cutoff a_gz | 9231 | 80478 | .71529 | .60270
a—_s | 12081 | .28866 | .2H657 | .29394 gy | 21231 | .28689 | .25500 | .21480
a_1 | 13465 | .31802 | .28268 | .32375 a_p | .23438 | .31512 | .28010 | .23598
ag | 12317 | 28871 | .25665 | 29383 ag | 21363 | 28523 | .253H6 | .21369
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TABLE I1

iy, FD PWA | KMST | NLRDB y FD PWA | KMST | NLRDB
Figure 7
k= 6m k=d4m

a—11 | 00732 | .00947 | 00843 | .00785 n_11 | NR NR NR NR
a_19 | 00212 | .00223 | .00199 | .00191 a_11 | NR NIR NIk NRR
a_g | .01160 | .01392 | 01238 | .01161 g NRR NIR NIR NIRR
a_g | 01535 | .01856 | .01651 | .01544 g NRR NIR NIR NRR
a_r7 | 00884 | .01069 | .00951 | .00887 a7 | 02188 | .02544 | 02262 | .02236
a_g | 00185 | .00226 | .00201 | .00192 a_g | 05165 | .06004 | 05337 | .05257
a_g | 00539 | .00652 | .00580 | .00546 a_5 | 05716 | .06642 | .05904 | .05808
a_q | 00206 | .00252 | 00225 | .00214 a_q | 02637 | 03062 | 02722 | .02672
a_g | .01244 | .01505 | .01338 | .01280 a_3 | .02301 | .02673 | .02376 | .02336
a_o | .01512 | .01819 | .01618 | .01580 a_p | 05622 | 06522 | .05798 | .05682
a_q | 00879 | .01022 | .00923 | .00964 a—1 | 05352 | 06190 | 05507 | .05375

ag | 00556 | 00568 | .00560 | 00526 ag | 02570 | 02922 | 02621 | .02522
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TABLE III

case R(NLRD) | [ (NLRB) R(EM) | [ (EM)

Figure 2

O; =bm/6 -0715 0039 -0076 0041

©; = 117/18 -.0253 0253 0607 0265
Figure 3

O = b /6 -.0011 8417 -.0510 8830

Oy = 117/18 3.780 -.4429 4.973
Figure 4

B=2/3 8207 -.1646 9391

B=1 9191 .0549 8726
Figure 5

O =2x/3 1.242 2543 2851

O =2.01ln/3 -.0001 2.269 -.2281 2.573
Figure 6

B=1 3096 1313 2670

B=1/5 3093 0122 3090
Figure 7

k= 6m 0325 0058 0322

k=dm 3043 0883 2778
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Figure Captions

Fig 1a: Problem Configuration

Fig 1h: Comparison of the Nonlocal(NLRB) and Engeuist and Majda (EM) Radiation
Boundary Operators. Boundary conditions for the waveguide are homogeneous Dirichlet
(y=m) and homogeneous Neumann (y=0), resulting in 2 propagating modes. Amplitudes
of the two propagating, and one of the evanescent modes arve plotted as a function of the
position along the waveguide (x). The exact answer should be one for each propagating
mode, and cxponentially decreasing for the evancscent mode.

Fig 2. Comparison of solutions displaying membrance displacement at a nonresonant
(in vacuo) frequency, for two different incident angles.

Fig 3: Same as fig.2 except that the membranes are being excited at the their first in
vacuo resonant frequency, again for two different incident angles.

Fig 4: Same as fig. 3. except that results are displayed at the first in vacuo resonant
frequency of the membranes for two different inter-membrane spacings.

Fig 5: Comparison of solutions at and ncar the wavegnide cutoff frequency. Cut off
oceurs at O = 2%,

Fig 6: Comparison of solutions showing membranc displacement at the sccond in
vacuo resonant frequency of the membranes, for two different inter-membrane spacings.

Fig 7: Comparison of solutions showing membrane displacement at the second and
third in vacuo resonant frequencies of the membranes.
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