
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2012

Reflections on a Symposium on Computation

Denning, Peter J.

Reflections on a Symposium on Computation. 2012. PJD reflects on the Ubiquity
symposium (see next item) and adds two more questions to the unsettled list --
What is Information? What is an algorithm?
http://hdl.handle.net/10945/35463

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxs064

Reflections on a Symposium on
Computation

Peter J. Denning
1,2,∗

1Naval Postgraduate School, Monterey, California
2Editor in Chief, ACM Ubiquity

∗Corresponding author: pjd@nps.edu

ACM Ubiquity hosted a symposium in 2010–2011 on Turing’s question, ‘What is computation?’ The
editor reflects on how the symposium was organized and what conclusions it reached. The authors
showed strong consensus around the propositions that computation is a process, computational
model matters, many computations are natural, many important computations are continuous, many
important computations are nonterminating and computational thinking has emerged as a core
practice of computing. They left open the questions of whether the Turing model is the best reference
model, is computational necessarily a physical process, what is information and what is an algorithm.

Keywords: algorithm; computation; computational model; computational process; computational thinking;
information; information process; interactive computation; natural computation; nonterminating

computation; physical computation; reactive computation; turing; turing computability; turing machines

1. TURING’S QUESTION

1.1. What numbers can be calculated by a machine?

That was Alan Turing’s question when he wrote his
famous 1937 paper about computable numbers and the
Entscheidungsroblem [1]. Written at the dawn of the electronic
digital computing age, his paper defined the field and dominated
much of its thinking ever since.

Turing wrote with the cloud of WWII hanging over Europe.
At the time, machines that would automatically calculate
complicated equations were a military priority: artillery officers
could not properly aim their sophisticated guns without ballistic
tables. His question was timely. In Britain, an even higher
priority was breaking the German Enigma code; he helped them
build a machine to do that.

After the war, the business world wanted computers not only
to process numbers, but to tabulate lists of names and other texts.
Turing’s question was transformed: What can be calculated by
a machine?

Behind this question was an implicit assumption that machine
processes for computation are different from human processes.
Machines are mechanical; they can do some things very fast, and
they operate by rigid rules. Turing’s question was also trying to
draw a line between machines and humans. Initially, it seemed
obvious that machines were less powerful. Over time, however,

we learned how to automate more human processes; and we
became less sure.

Thus Turing’s question was transformed to: What is
computation?

The field of computer science began in the 1940s to study
this question. As our understanding of computation grew and
matured, we progressed to ever more sophisticated definitions
of computer science:

Study of automatic calculation (1940s)
Study of information processing (1950s)
Study of phenomena surrounding computers (1960s)
Study of what can be automated (1970s)
Study of computation (1980s)
Study of information processes, natural and artificial
(2000s)

Even today, 75 years later, Turing’s question has not been
settled. Each generation tried to understand what can and
cannot be computed and thought it had an answer, only
to be challenged by new thinking and new developments
in the next generation. The initial notion that computation
is the action of a digital computer was too narrow to
deal with new fields like artificial intelligence and software
engineering, which examined interactions between computer
programs and humans. That led to the expanded idea

The Computer Journal, Vol. 55 No. 7, 2012

 at N
aval Postgraduate School on June 29, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


800 P.J. Denning

that computation is the phenomena surrounding computers.
Eventually that transformed into a generic question—what can
be automated?—that encompassed the workings of computers
as well as the human processes that used computers. In recent
times, new questions about whether DNA translation is a natural
computation have undermined the idea that computation is done
solely by machines. Where is the machine in DNA translation?

Given that the question is never fully settled, the evolution of
answers to the question at different times also gives an excellent
overview of the evolution of computing as a field.

2. AN ANOMALY AND A SUMMIT

Computer science boomed for many years as the use of
computers spread into every aspect of society and work. Starting
suddenly in 2000, computer science enrollments began to drop,
declining 50% over the next 6 years. All the while, the number
of jobs for computing professionals kept growing. Many people
became concerned about the widening gap between graduates
and industry needs. Surveys among young people showed that
computer science was seen as a low-level coding profession.
How could a field with such an impact have such a poor
reputation?

In 2008, with the help of an NSF grant, I organized a summit
meeting called ‘Rebooting Computing: The Magic and Beauty
of Computer Science’. My steering committee believed that
we needed to take a fresh look at what the computing field is
about: we had a crisis of identity rather than a cyclical decline
of interest. We wanted to regain the sense of magic and beauty
that had enticed us to the field, and learn how to transmit that
sense to the next generation.

The summit, held in January 2009, brought together 220
people from all sectors of the computing field, including
educators and students from all grade levels. They included 30
international attendees from a dozen countries and three Turing
Award winners.

There was a clear consensus in the group that we as a field
lacked a clear conception of what computing is about. Without
self-understanding, we cannot expect others to understand who
we are. Over half of the attendees allied themselves with one
of the 10 action groups concerned with the question, What is
computing?

That led to a new wave of interest in the fundamental
principles of computing. The words ‘magic’, ‘joy’ and ‘beauty’
made it into the vocabulary of professionals describing the
principles of their field and into the titles of new (and very
popular) courses at some universities.

3. THE UBIQUITY SYMPOSIUM

Inspired by the summit, Peter Wegner asked me, in my role
as editor of ACM Ubiquity, whether Ubiquity could host a
symposium on the summit question, what is computing? We

created a plan to gather essays from a dozen leading educators,
scientists and engineers to re-examine Turing’s question, What
is Computation?

We told our authors that a thoughtful, contemporary response
to the question would help others understand why computing
is so important to their lives and work. It could help rekindle
the lost sense of magic and beauty of computing. We also
asked them to consider how three new developments might
have affected the traditional answers to the question. The three
developments are:

Interactive computation. Turing’s definition of compu-
tation was based on computing functions. The input was
presented before the computation started, and the out-
put was available after the finite computation finished. In
contrast, operating systems and networks are based on
computations that do not terminate and regularly inter-
act with their environments.
Natural computation. Since Turing’s time, computation
was seen as the action of computing machines. In
recent years, other fields have claimed to study
information processes found in nature, and they entered
into collaboration with computer scientists. Computer
science is no longer a ‘science of the artificial’.
Continuous computation. The new field of compu-
tational science relies on continuous models of the
physical world, which are then discretized for computa-
tion.Analysts make better performance prediction when
starting with their continuous models than when apply-
ing traditional discrete complexity models.

We released the symposium papers over a 14-week period
beginning October 2010 and ending February 2011 [2].

4. CONCLUSIONS OF THE SYMPOSIUM

The symposium participants agreed on these points:

Computation is a process. Computation is an infor-
mation process evolving from the actions of a host
‘machine’ under the control of an ‘algorithm’. By
allowing flexibility in the definitions of machine and
algorithm, we can include DNA translation, and other
natural information processes, in this definition.
The computational model matters. Designers seek
algorithms that get the most efficient computations
within the host environment. Performance predictions
depend on the computational model. Some models
are more suitable than others for particular problems.
The Turing model, even though universal, is often
not the most convenient for many domains. Different
computation models lead to different approaches to
design and performance prediction.
Many computations are natural. Many authors
acknowledged that some natural processes behave like

The Computer Journal, Vol. 55 No. 7, 2012

 at N
aval Postgraduate School on June 29, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Reflections on a Symposium on Computation 801

computations, including DNA translation, neuronal
brain function and social interactions in networks. This
is a huge shift from the past, where, as recently as two
decades ago, almost everyone insisted that computations
were the state sequences of computing machines.
Many important computations are nonterminating.
Most computations in operating systems and networks
are designed to never halt. Their high-availability
services interact continually with their environments.
There is an emerging consensus that interactive models
are fundamentally different from Turing machines. The
combination of humans and machines working together
can be far more powerful than either one working alone.
Many important computations are continuous. Many
authors acknowledged that computations to solve
continuous models of physical processes are better
analyzed in terms of the continuous model rather than
a discrete model. Error management resulting from
discretizing the model is an important part of design.
Computational thinking had emerged as a central
practice of computing. The term ‘computational
thinking’ was first used during the 1980s computational
science movement. This mode of problem solving
had previously been called ‘algorithmic thinking’ by
computer scientists. In the past decade, it has become
popular in many fields as a way to describe the problem-
solving processes people regularly use.

The symposium authors did not show agreements on three more
questions:

Is the Turing machine the only acceptable reference
model? Other, non-Turing, models of computation
include recursive functions, rewriting rules, parallel-
processor systems, cooperating sequential processes,
dataflow graphs, neural networks, Petri nets, finite-
state machines, pushdown machines and more. They
are all ‘Turing equivalent’, meaning that the same
set of functions is computable in each model. At the
same time, the Turing model does not fit with many
problem domains. Why are we wedded to the notion
that the Turing machine is the best reference
model?
Is information observable? Now that we agree
computing is concerned with information processes, we
must confront the fact that we do not have a consistent
definition of information. What is information?
How do we observe it? How can we measure it?
Is all computation physical? Many wonder if
computation, like a mathematical abstraction, exists
independently of the physical world. All the known
examples of computation depend on some underlying
physical medium that represents bits and patterns of
bits. Computational state changes correspond with
physical state changes. Does the power of computing

machines come from the physical connection? How do
the physical aspects constrain computation?

5. TWO QUESTIONS SINCE THE SYMPOSIUM

Two questions that were brought into sharper focus during the
symposium remain open and are the subjects of continuing
inquiries. What is information? What is an algorithm?

With respect to the first question, if computing is
fundamentally the study of information processes, what is
information? We have ignored this problem by concentrating
on computers, but we cannot ignore it any more. Is DNA a
code? What does it encode? Who is it a message from? Who is
it a message to? When a computation gives a surprising result,
has it generated new information or simply revealed information
hidden in a sea of bits and signals?

Two recent books make some progress toward answering
this question. James Gleick aims to make information real and
tangible [3]. He begins with a history of humans transmitting
signals with codes that include enough redundancy that the
receiver can recover the original information. He dwells on
how Claude Shannon in 1948 pulled all this practical wisdom
together into a mathematical ‘information theory’. A key tenant
of the theory is that codes, senders and receivers do not
need to understand the meaning of the signals and bits they
are transmitting. Meaning is irrelevant to the workings of
communication systems. This gives a nice, clean division of
labor: the communication system gets signals to people, and
the people figure out what the signals mean to them.

Gleick then follows the consequences of a theory that
separates meaning from transmission in a new world of
digital devices. Moore’s Law shows that the relentless trend in
computer and communication chips has been to increase speed
and capacity by 100-fold per decade. The resulting information
flood has brought on a crisis of meaning. We struggle with the
frustration of too much information and search for tools to help
us make sense of it.

Although Gleick was unable to offer a precise definition
of information, he clearly does not agree with Shannon that
meaning is irrelevant. Trying to find the meaning of information
and our lives in a computational world is a very important
question.

The other notable book on information is by Paolo Rocchi [4].
He inventoried and interpreted a huge variety of analog and
digital devices, all designed to process information. He wanted
to see what consensus they might have on what is information.
He eventually found it impossible to draw a sharp dividing line
between analog and digital computation. It is all processing
and transmission, he concluded, regardless of whether it is
continuous signals or digital signals.

But he did find a useful common factor about information.
Despite many differences, everyone agreed that information
includes ‘signs’ and ‘referents’. A sign is a physical inscription
or object that stands for something. A referent is an object or

The Computer Journal, Vol. 55 No. 7, 2012

 at N
aval Postgraduate School on June 29, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


802 P.J. Denning

concept that gives the meaning to a sign. Computational systems
do not need to know the referents in order to process signs.
Humans judge computations useful if the referents of the results
make sense to them and guide them toward useful actions.

These two authors show us that the traditional answers are
incomplete and there is still much to learn. Can we find a
model for information that unifies sign and referent? How
do the common functions of sensing and recording fit into a
definition of information? What is the role of human or machine
interpretation of some else’s sign?

The other big open question is ‘What is an algorithm?”
Moshe Vardi recently called attention to new thinking on this
question [5]. He challenged the folklore that Turing offered the
Turing machine as a model of algorithms. Turing was interested
in computability, not algorithms. He showed what it meant for
a machine to compute a function, and he argued that Turing
machines could calculate any function that a human computer
could.

Vardi cites recent works of Yannis Moskovakis and Yuri
Gurevich for new thinking. Moskovakis argues that an algorithm
is defined in terms of a recursor, which is a recursive
description built on a set of primitive operations. This definition
would appeal to those who design algorithms as methods
to calculate functions. Gurevich argues for a more machine-
oriented approach. An algorithm is a description of an abstract
state machine, where states can be any data structure, and each
operation can cause only a bounded change of state. I find this
definition particularly intriguing because it pulls the principle of
locality into a fundamental definition of computation. Locality
has long been accepted as a fundamental principle of memory
behavior, but it has never been so clearly linked to effective
computation.

These three authors show us that traditional answers are
incomplete and there is still much to do to get us to a much
more precise definition of algorithm than we now have.

6. CONCLUSIONS

Not everyone will have the time to look into these fundamental
questions. In the symposium, Peter Freeman noted an analogy:
not everyone has the time to consider the question of ‘What is
democracy’ but it is comforting to know that some are looking
at this and occasionally sharing their findings with the rest of
us. That we in computing keep making new discoveries by re-
examining our fundamental questions is healthy and a sign of
depth. We may struggle with these questions; but the struggle
is perhaps more important than finding final answers. Through
the struggle, we learn more not only about Turing’s question,
but also about ourselves.

ACKNOWLEDGEMENTS

We are grateful toACM, and to the contributing authors, for their
agreements to include the papers from the Ubiquity symposium
as an appendix to this reflection. The appendix is copyright by
ACM, Inc., 2010–2011, and is included here by permission of
ACM.

REFERENCES

[1] Turing, A.M. (1937) On computable numbers, with an
application to the Entscheidungsproblem. Proc. Lond. Math. Soc.
Ser. 2, 42, 230–265.

[2] Association for Computing Machinery. Ubiquity, the online peer-
reviewed magazine about the future of computing. http://ubiquity.
acm.org/symposia.cfm

[3] Gleick, J. The Information: A History, A Theory, A Flood. Vintage
(2012).

[4] Rocchi, P. Logic of Analog and Digital Machines. Nova Science
(2010).

[5] Vardi, M. (2012) What is an algorithm? ACM Commun. 55, 5.

The Computer Journal, Vol. 55 No. 7, 2012

 at N
aval Postgraduate School on June 29, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://ubiquity.acm.org/symposia.cfm
http://ubiquity.acm.org/symposia.cfm
http://comjnl.oxfordjournals.org/

	1 TURING'S QUESTION
	1.1 What numbers can be calculated by a machine?

	2 AN ANOMALY AND A SUMMIT
	3 THE UBIQUITY SYMPOSIUM
	4 CONCLUSIONS OF THE SYMPOSIUM
	5 TWO QUESTIONS SINCE THE SYMPOSIUM
	6 CONCLUSIONS

