
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2006-11

Using NetLogo in the Data Farming Environment

Koehler, Matthew

https://hdl.handle.net/10945/35598

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Using NetLogo in the the

Data Farming Environment

Matthew Koehler
The MITRE Corporation1

NetLogo is a freely available agent-based modeling
environment being developed by Northwestern University’s
Center for Connected Learning (ccl.northwestern.edu/
netlogø). NetLogo is an excellent environment for creating
simpler or smaller-scale agent-based models or prototyping
more complex models. NetLogo’s strengths include using a
very easy to learn and flexible scripting environment, a GUI
interface that handles all the necessary code for you, and a
section dedicated to documenting your model, and a very
large sample model library with very good documentation.
The down side of NetLogo is that you must create all
functionality you desire to have in the model, which can be
time consuming if you have a great deal of complicated
behaviors. Furthermore, NetLogo is written in Java and its
scripting language is only semi-compiled (some primitives
are compiled into Java byte-code, other primitives are
interpreted), which can lead to some performance issues if
your models is very large or involves a great deal of
computation. Finally, NetLogo is compatible with the Data
Farming and cluster computing methods and tools created
by Project Albert and its collaborators.

Structure & Features of NetLogo
NetLogo contains three basic types of entities within it:
turtles (agents), patches (the landscape), and the observer.
Turtles can be subdivided into different classes (called
breeds). All of these entities can run code and interact with
each other and with other types of entities. Variables can be
assigned globally, all entities having access to them, or
specifically (in which case only the specified group has
access to that variable).

This structure gives modelers a great deal of flexibility
when creating a model. Different types of agents can have a
common set of variables as well as unique sets used to
create specific behaviors. For example: all agents that move
around on the ground could have a common set of variables
used for movement, however, they could all have unique

variables associated with other capabilities. Discretizing the
landscape into autonomous regions (patches) all of which
can execute code and maintain a unique internal state
presents many opportunities to the modeler. For instance,
one can import a .bmp image file (perhaps created with GIS
data) which the patches can use to set internal parameters.
Then the agents moving around on the patches can query
the patches for the values of the parameter and then behave
appropriately.

The NetLogo user’s interface is also fairly flexible and
very easy to use. You can create sliders, buttons, switches,
and monitors with drag-and-drop convenience. Plots can
also be created very easily; however, they will require a few
lines of code in the procedures also. NetLogo can also print
output to a window on the user interface or print to a file.
Finally the entire NetLogo state (the value of all parameters
and the states of all agents, patches, etc.) can be saved and
reloaded.

Although the NetLogo scripting language is not
extensible per se, NetLogo can be setup to access external
Java programs so one could create external programs to
handle particularly computationally intensive procedures or
create NetLogo models that update themselves based upon
a web service or database call. NetLogo also has the ability
to act as a server and receive input from Texas Instrument
calculators or other computers. This gives modelers the
ability to create human-in-the-loop models. The next section
contains details on how to create a NetLogo model that is
compatible with the Data Farming Environment (DFE). Full
detail can be found in Koehler (2005).

Flow of the DFE with NetLogo
The general flow of the system is as follows: 1. create a
NetLogo model following a set of conventions; 2. parse the
NetLogo file into an input XML file; 3. using the XStudy
tool, pick the sliders, choosers, or switches that will be
varied during the runs; 4. use Old McData (OMD) and
Condor to kick-off the runs and collect the data (this can de
done on a single machine or multiple machines). All of the
software is written in Java and should work on any machine

35 - The Scythe - Issue 1 - netLogo

1 The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply
MITRE's concurrence with, or support for, the positions, opinions or viewpoints expressed by the author.

with a Java Virtual Machine. This system, though not
perfected, is robust enough to handle the pressure of
workshop demands—including thousands of runs done
remotely on clusters in different countries. We have
successfully run Netlogo in two different cluster computing
environments: the Maui High Performance Computing
Center and on a cluster maintained by the Singapore
Defense Science Organization. The system is capable of
handling any sort of experimental design from full factorial
to Nearly Orthogonal Latin Hypercube. Furthermore, OMD
has post-processing capabilities that can be used with
evolutionary programming algorithms and other types of
user defined algorithms to create a more dynamic study.

In the following discussion we will examine the
conventions necessary when putting together a Netlogo
program, as well as general instructions for the use of the
other software used for the multiple runs; however, it is
assumed the reader is familiar with Condor. The software
discussed in this paper is, or soon will be, available on
SourceForge. Alternatively, the software is available from
the authors. Condor is available from its developers at:
http://www.cs.wisc.edu/condor/. NetLogo is available
from its developers at: http://ccl.northwestern.edu/
netlogø.

Setting up the NetLogo Model
The current system requires certain features within the
NetLogo model.1 These requirements will be discussed
below. These requirements have minimal impact on the
structure of the program and on the speed of execution and
are designed to allow an external Java program to start the
model, set parameter values (sliders, choosers, and
switches), start and end a run, and collect output data (both
end of run and time series). In general, the wrapper starts
Netlogo and loads the model, and then it tells Netlogo to
iterate a certain number of times. At the end of the requisite
number of iterations, output data is collected and the
Netlogo run is terminated.

Global Variables
The model needs three global variables: stopped,
filename, and clock. These are used by the external
program to run NetLogo, keep track of output data, and
allow the modeler to control the behavior of their model
separately from the Java wrapper.

The Setup Procedure
First, the NetLogo model must have a procedure called
setup to instantiate the model and to prepare the output
files. At a minimum it will need the following lines of code:
to setup
set clock 0
set stopped false
setup-file
end

Every time the model is run it will be in a newly started
instantiation of NetLogo; therefore, one is not required to set
variables (unless they need to be something other than
zero). However, you may want to clear values and set
others so that you will know exactly how the model is
starting up. If you do clear values DO NOT use the
command clear-all or ca. If you want to clear values
use commands such as clear-turtles, clear-patches,
clear-all-plots, clear-output and then manually set
the variables. If you use clear-all you will set the
variable filename to 0. This will cause problems later on,
when the output from all the runs is collected because all the
files will have the same name. The batch version of
NetLogo is run by a Java program that will set certain
parameters, among those is filename. Once NetLogo is
started, the Java program will call the setup procedure. If
setup then resets the value of filename Condor and OMD
will have trouble keeping track of the output files because
they will all have the same name. A more comprehensive
version of the setup procedure that includes resetting of
values is below:
to setup
ct
cp
clear-output
clear-all-plots
;; manually set all variables
set clock 0
set stopped false
setup-file
end

The setup-file procedure is very short and could be
called from within the setup procedure. It is recommended
to keep them separate for clarity. A sample of this procedure
is below:
to setup-file
 ifelse filename = 0
 [file-open "Your_BackUp_Name_Here.csv"]
 [file-open filename]
end

36 - The Scythe - Issue 1 - netLogo

1 It should be noted that this system was created in 2005; the current version of NetLogo may require slight changes to the code described
herein. Please contact the author with questions.

This procedure allows you to run the NetLogo program
inside the cluster computing environment or in the standard
NetLogo program for testing purposes. This works because
it checks to see if the variable filename has been set by the
Java wrapper program. If it has not been set by the Java
wrapper, it will open a default file of your choosing.

The Go Procedure
All models must also have a go procedure. The go

procedure is a little different than the usual NetLogo
program. First of all, the procedure must be called “go.”
Second, the wrapper runs the NetLogo program by asking it
to step a certain number of times. Due to this structure, it is
important to “protect” your runtime code by nesting it
inside an if statement that returns true if stopped is false.
Sample code for the go procedure can be found below:
to go
set clock clock + 1
if not stopped
 [
 ;;runtime code goes in here

 if ‘stop condition is true’
[do-file-print close-files set stopped true]

]
end

By nesting the runtime code inside the if statement, the
wrapper can run the model any number of times without
any potential damage to the output after the stop condition
is met. For example, if you have set up the wrapper to run
your model 6000 times but you have a stop condition that is
triggered at time step 3500, the wrapper will continue to tell
your model to step another 2500 times. If you generate
output every time step and do not protect it, then you will
end up with another 2500 lines of output. As your stop
condition could be triggered at different times it could be
very difficult to fix your data post run. It is also important
to segregate any end-of-run printing procedures from the
file close procedure. Once the wrapper is done stepping the
NetLogo program, it will tell the program to close-files.
Therefore, you must have a procedure in your program that
is called close-files. If this procedure includes anything
other than file closing code, it may cause a problem as it will
be run anytime files are closed. If you close files anytime the
stop condition for your model is true, then any other code
will be run every time the wrapper steps your program once
the stop condition is met (this is not an issue if you protect
your runtime procedures in the aforementioned if
statement and make the close-files procedure
exclusively devoted to closing files). However, this does
require that your model have a stop condition that will be
triggered at least one time step before the wrapper ends the
run because the wrapper will simply stop telling the

program to step and then call the close-files procedure.
Sample code for the do-file-print and close-files
procedures can be found below:
to do-file-print
file-print "output goes here"
end

to close-files
file-close-all
end

Also, there is no post-processing currently associated
with NetLogo runs, so if you want something in the output
file, such as input parameters, you must write it there in the
program (in something like the do-file-print
procedure). This file will be a single line if you are only
collecting end of run data. If, however, you are collecting
time series data, this file may be very large.

The above represents all the requisite code for a
NetLogo program to set it up for cluster computing. Now,
part of the utility of cluster computing is being able to run a
model many times with different parameter values. The
system we have developed can run NetLogo programs
many times and change parameter values. However, the
parameters that will change need to comport with a set of
standards. First, they must be sliders, choosers, switches,
etc. and, therefore, must appear in the “Interface” tab of the
NetLogo environment. Second, these parameters may not
contain any special characters like ?, %, $, *, and so on.
Third, they may be set to numeric values only--no strings.
For example, a chooser with the values: High, Medium, and
Low would not be acceptable. The chooser should have
values such as: 1, 2, and 3 which could then be mapped to
High, Medium, and Low in the procedural part of the
NetLogo model. This does not preclude other parameters
from taking on any values you wish and having special
characters in their name…these standards only apply to
parameters values you wish to change in an automated
fashion.

References
Koehler, M. and S. Upton, B. Tivnan, Clustered Computing
with NetLogo and RepastJ: Beyond Chewing Gum and Duct
Tape. Proceedings of Agent 2005. Argonne National Lab,
Chicago, IL. (2005).

Wilensky, U. NetLogo. http://ccl.northwestern.edu/
netlogø. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL.
(1999).

37 - The Scythe - Issue 1 - netLogo

