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Abstract 
 
Military plans validation is typically a long and costly process requiring planners to 
validate their plans using anticipated scenarios or through military exercises. While 
military exercises provide realistic simulation of the plan, it is often the most 
expensive way of validating a plan. On the other hand, although using anticipated 
scenarios is relatively cheaper, the robustness of the validated plans is dependent on 
the scenarios against which they are validated. This, in turn, depends on the 
experience of the planners that crafted the scenarios.  
 
This paper describes research on an alternative way of plans validation in the context 
of air defence done at Naval Postgraduate School as part of a postgraduate course of 
study. It explores the possibility of using a multi-agent system (MAS) to analyse air 
defence plan and generate potential air strike plans that exploit weaknesses in the air 
defence plan. The resulting plans are fed into a low resolution Discrete Event 
Simulation (DES) based air defence simulator to simulate the effects of the air strike 
plan against the air defence plan. A prototype was developed and has demonstrated 
the ability to validate air defence plans using MAS-generated strike plans and a low 
resolution DES-based simulator successfully.  
 



1. Introduction 
 
Much of military planning today, whether offensive or defensive, is based on 
expected adversary course of action, tactics and doctrine. If the adversary manages to 
produce an unexpected course of action which is not anticipated in the plan, this will 
lead to the adversary gaining a tactical advantage, and in the worse scenario, allow the 
adversary a strategic edge.  

Military plans are often difficult to validate and verify. Unless they are put to use in a 
live exercise or operation, it is difficult to know the actual effectiveness of the plan. 

This paper describes research conducted in Naval Postgraduate School to explore the 
feasibility of using software agents modelled after hypothetical adversary's behaviour 
to validate against military plans through discrete event simulations. A prototype 
based on an air defence scenario was developed to demonstrate the concept. 
 
2. Methodology 
 
This section describes the overall design of the system comprised of the agent-based 
strike plan generator and the Discrete Event Simulation (DES) based simulator.  
 
2.1 Overall System Design 

 
The plans validation system is comprised of a DES engine, an agent-based strike plan 
generator, a display interface, and other supporting components. The DES engine 
models the abstract behavior of air defence assets, air strike aircraft, and the 
interaction between them.  

 
The DES engine serves as a platform for validating air defence plans. The plans are 
evaluated by simulating the effects of agent generated strike plans against the defence 
plans. In other words, the DES engine forms the environment in which the aircraft 
agents operate. Environmental updates are communicated to the aircraft agents 
through User Datagram Protocol (UDP) messaging. Similarly, when the aircraft 
agents perform evasive maneuvers, they communicate their new waypoints back to 
the DES engine via UDP messages. Such communication allows real time interactions 
between the agents and the environment. The overall system design is shown in 
Figure 1. 

 

 

Figure 1: Overall Architecture of the System 



 
 

2.2 Agent-based Plan Generation 
 

The Agent-Based plan generator exploits the weaknesses in the air defence plan to 
generate potential adversary plans that are used to support the validation of the 
defence plans through the use of DES-based simulator. In this section, we will 
describe the agent architecture that was designed to mimic the command and control 
structure of a hypothetical air strike group.  

 
Agent-Based Model Architecture 
The goals of the agent based model are to generate appropriate strike plans for the 
agents representing strike aircraft, and to implement a behavior model for the agents 
in the simulation environment. The architecture of the Agent-Based Model is based 
on a hierarchical decision making process similar to the Hierarchical AI approach [1, 
2]. Instead of having a single agent making plans, deciding where to strike, and 
determining how many aircraft formations should be created, the idea is to breakdown 
the decision-making process into levels. This is roughly analogous to the chain of 
command in an army where broad mission objectives at the strategic level are broken 
down into specific tasks at tactical levels, with tactical commanders making decision 
on the best approach to carry out such tasks to achieve the larger mission objectives.  

 

 
   Figure 2: Agent-Based Model Architecture 
 

In Figure 2, the agent-based model architecture consists of three levels of decision-
making processes. At the highest level is the Central Tasking Agent, which is 
responsible for generating the number of participating air formations and assigning 
area of operations and targets to them. The assignment is based on intelligence 
information gathered on the target’s air defence and the number of aircraft that are 
assigned to the strike operation. 

 
At level two of the hierarchy is the Evaluation Agent which receives information on 
air formations, assigned area of operation and targets from level one agent. It will 
generate the participating aircraft in the air formation and also generate a suitable 
course of action for the air formation.  

 



At level three of the hierarchy is the Executing Agent which is the lowest level in the 
agent architecture. The Executing Agent is like the foot soldier in the army, receive 
specific tasking orders from the Evaluation Agent, such as target objective and 
approach to the objective. This agent will receive real-time information from the 
simulation environment, and based on the information received, it will act on it and at 
the same time relay the information back to level two of the decision-making process 
so that the decision making agent at level two can re-evaluate the course of action. 

 
The concept of how the agents exploit an air defence plan will be discussed later in 
this paper.  

 
2.3 DES-Based Simulator Design 

 
The DES-Based simulator provides a platform for evaluating air defence plans against 
the strike plans generated by the agent-based plan generator. It takes in the air defence 
plan crafted by human planners and the air strike plan generated by the agent-based 
generator. The DES simulator would then construct models of the components before 
starting the simulation. The DES simulator was designed based on the concept of 
Listener Event Graph Objects (LEGOs) framework [3], which allows a more complex 
model to be built in phases by linking smaller components together in a loosely 
coupled manner. The LEGO model of the DES simulator is shown in Figure 3. The 
DES simulator was developed based on Simkit [4]. The main elements in the DES 
simulator are: Surface-to-Air Missile (SAM) system and missiles, anti-aircraft guns 
and aircraft. Other supporting components include: mediators, adjudicators and 
adapters. Details on how various components are modelled will be described in later 
part of this paper. 

 

 
  Figure 3: LEGO Model of the DES Engine 
 



3. Prototype Implementation  
 
3.1 DES-Based Simulator 
The DES-Based simulator provides a platform for evaluating the air defence plan 
against the strike plan generated by the agent-based plan generator. The main models 
in the DES engine are: SAM system, Anti-Aircraft gun and aircraft. Other supporting 
components include: mediators, adjudicators, adapters and communications.  
 

Modeling the SAM System 
In the model, there is only one SAM system, which is the command and control unit 
of all the SAM sites in the DES engine. The SAM system has the overall situation 
awareness of the defended area and performs target handover from a SAM site to the 
other whenever a target gets out-of-range of a SAM site. The system ensures that at 
any one time, a target is engaged by only one SAM site. The firing option adopted in 
the model is the SHOOT-LOOK-SHOOT, which means, firing a missile once locked-
on, observe the result, and fire another missile if the earlier missile missed the target. 
 
Modeling the SAM Site 
Each SAM site is comprised of a sensor and a missile launcher. In the model, a SAM 
site is only capable of locking and engaging one target at a time. A simple target 
selection algorithm is implemented based on the first-come-first-serve principle. 
Thus, when more than one target enters the sensor range, the first target will be 
locked-on, while subsequent targets will be put on the watched list. Whenever the first 
target is destroyed or gets out-of-range, the next target on the list will be acquired and 
locked. The missile launcher is loaded with a configurable number of missiles. The 
number of missiles in the launcher is decremented whenever a missile is fired. When 
all the missiles in the launcher are expended, a reload time will be incurred to reload 
the missile launcher. The model assumes perfect command and control so that a target 
is always handed over to the next SAM site that has the target in its sensor range. 
 
Modeling the SAM Sensor 
The use of DES for simulation of sensors and movers is not new. Buss and Sanchez [5] 
detail how movement and sensing can be modelled using DES. While the Gun sensor 
is modelled after the concepts presented in that paper, the SAM sensor is developed 
by extending the concept for sensing mover at multiple ranges.  

 
A typical SAM sensor is capable of sensing targets that enter or exit its sensor range 
(lock-on range), weapon range (firing range) and the weapon’s no-firing zone. In the 
SAM sensor model, three different sensors are used to model the various sensor 
ranges with their center aligned to the same static mover, which simulates the 
platform that the SAM sensor is installed physically. Figure 44 depicts how the SAM 
sensor is modelled, with the blue triangle indicating the location of the common 
platform. 
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Figure 4: Various SAM Ranges 

 

When an aircraft enters the “Lock-on Range” sensor, it will be detected and locked by 
the SAM system after a fixed amount of delay (SAM reaction time). Upon entering 
the “Firing Range”, a missile will be fired at the target after a certain amount of delay 
(SAM engagement time). When a target enters the “No-firing Range”, the SAM will 
not engage the target as there is too little time for the missile to be launched and catch 
up with the target. 

 
The same “EnterRange” event triggered by the three sensors creates an issue as all 
“EnterRange” events are to be handled by the same mediator. The mediator is unable 
to differentiate which sensor initiated the event, since they have the same event name. 
Buss [6] proposes a simple but elegant way of overcoming such situation with the use 
of an “adapter” class. The “adapter” class listens to an event and triggers a new event. 
The same mechanism is used to overcome our problem as shown in Figure 5. The 
adapter works by adapting the same “EnterRange” event produced by the three 
sensors into specific events: EnterLockOnRange, EnterNoFiringRange and 
EnterFiringRange. 
 

      
Figure 5: Use of Adapters to Differentiate EnterRange Events 

 
Modeling SAM Trajectory 
A simple path mover manager, which moves the SAM to an extrapolated interception 
point, is insufficient to model the trajectory of a SAM realistically, as a missile needs 
to respond to its target's manoeuvre by changing its own trajectory. The SAM model 
is built based on the concept of the intercept mover manager by Buss and Ahner [7]. 



The strength of an intercept mover manager is that it tracks the location and velocity 
of its target at regular time interval, re-computes the projected interception point and 
moves the missile towards the revised interception point. The intercept mover 
manager continues to track and re-project new interception point, until the mover is 
within certain proximity of the target.  
 
In the event that a SAM flies out of its maximum range, the DES engine simulates a 
loss of command link and the SAM will be self destructed after a certain delay. This 
is a common feature available in current SAM systems. 
 
SAM Probability of Kill 
Instead of using a single-valued kill probability for SAM interception, a triangular 
Probability of Kill (Pk) contour was used, making Pk a function of the range of the 
target, as shown in Figure 6. This Pk contour could be easily substituted with any 
other more accurate Pk contours in the future when they become available. In the 
model, it is assumed that the highest Single-Shot Kill Probability (SSKP) is usually 
achieved at around 70% of the maximum weapon range. As such, the vendor supplied 
Pk becomes the height of the triangle in the Pk contour.  
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Figure 6. Triangular SAM Pk Contour 

During simulation, a target is considered hit when the SAM is within certain 
proximity of the target. A uniform(0, 1) random number is generated using the 
Mersenne Twister (MT) random number generator. MT was chosen due to its long 
period of 219937 – 1 and a low working memory of 624 words [8]. The random number 
is then compared against the Pk value corresponding to the range of the target. Any 
number smaller than the Pk value is considered as a kill. Otherwise, it is considered as 
a miss and another missile will be scheduled to engage the target again. 
 

Modeling the Anti-Aircraft Gun 
According to the Field Manual 44-43 [9], a high volume of fire is desired to increase 
the probability of kill when engaging aerial targets with guns. Thus, unlike the SAM 
system, there is no restriction on the number of anti-aircraft guns allowed to engage a 
target simultaneously. The guns will engage any targets that get within the weapon 
range of the gun. As in the SAM system’s case, the gun will engage its targets on a 
first-come-first-serve basis. Subsequent targets that enter the weapon range of a gun 
will be kept on a list. When the first target is destroyed, the gun will engage next 
target on the list sequentially. 
 



As in the case of SAM system, the anti-aircraft gun also adopts the SHOOT-LOOK-
SHOOT option. When a target enters the weapon range of a gun, the gun will release 
a burst of 50 to 100 rounds of munitions at the target. If the target is killed, the gun 
will move on to engage other targets in its target list, otherwise it will release another 
burst. The number of rounds to be released in each burst is based on a uniform(0, 1) 
generated by the MT random number generator and scaled to a number between range 
of 50 to 100. For each round of munitions released, the ammunition count is 
decreased by one. When the munitions run out, a delay is incurred for the reload event. 
 
As the anti-aircraft gun in the model is not associated with any fire control radar, their 
target detection event could be modeled simply using a constant time sensor [5] as 
shown in Figure 7.  
 

 
Figure 7: Anti-Aircraft Gun's Sensor 

 
The trajectory and the probability of kill for each round of gun munitions are not 
modelled explicitly in the resolution if this model. Instead, the probability of kill for 
each burst of bullets is used to adjudicate the effects of the munitions on the target. In 
the gun's Pk contour shown in Figure 8, it is assumed that the number of rounds 
released at the target directly affects the Pk. When the number of rounds released 
exceeds 50, the Pk will be capped at the vendors's specified SSKP. As in the SAM 
system, the Pk contour could be substituted with more accurate ones when they 
become available. 

P
k

V
e
n
d
o
r 

S
p
e
c
if
ie
d
 

S
S
K
P

 
Figure 8: Pk Contour of Anti-Aircraft Gun 



Modeling the Strike Aircraft 
Strike aircraft are simply modelled using Uniform Linear Movers which are 
controlled by Path Mover Managers. In the current DES model, the aircraft are able to 
vary their speed at each waypoint. However, acceleration and deceleration are not 
modelled currently.  
 
3.2 Agent-Based Strike Plan Generation 

Approaches for Planning and Control 
In the earlier section, the agent architecture model described a hierarchical approach 
for making decisions. The central tasking agent decides how to best conduct a strike 
into the strike area, the evaluation agents plan the actual movement of strike aircraft 
with this information, and the executing agents execute the movement plan 
accordingly. In the following paragraph, the algorithms that were used by these agents 
will be discussed. 

 
When determining how to best approach the strike area, a proposed technique similar 
to position evaluation function described in KillZone AI [10] was used. Position 
evaluation functions are well known in computer chess, where the (Artificial 
Intelligence) AI generates possible board positions and evaluates these board 
positions to select the strongest series of moves.  

 
In this technique, there is a need to find out the best approach vectors to the strike area. 
The various factors that have to be considered include the air defence coverage, 
overlapped air defence coverage, exposure time to the air defences, exposed distance 
to air defence before reaching the strike area and the speed of the aircraft. The number 
of approach vectors also depends on the various types of tactics to use. To generate a 
suitable approach vector, the strike area has to be determined first. From the strike 
area, straight lines are generated for every 10 degrees. The eventual result will look 
like a spokes of a wheel as shown in Figure 9. For every spoke line, the total expose 
distance to the air defence was determined. The normalized value will be used as a 
score. The exposed distance calculation is based on the line-intersection of the air 
defence coverage. The total exposed distance of a single spoke line is obtained by 
adding the exposed distance that a spoke line intersected with individual air defence 
coverage: 

  

∑= coverage defenseair  ngintersecti spoke of Distance  spoke single a of distance Expose  

 
The exposed distance is normalized by the following formula: 

 

 spokes of distance Exposed

spoke single a of distance Exposed
  distance Exposed Normalized
∑

=  

 
Secondly, there is also a need to determine the exposure time to the air defence 
coverage for each of the spoke lines. This is due to the fact that the exposed distance 
alone is not good enough to determine the best approach for overlapped air defence 
coverage as this also depends on the exposure time over this composite air defences 



coverage. The strike aircraft is required to cross this exposed distance as quickly as 
possible. Therefore, the exposure time calculation is based on the following formula: 

 

aircraft strike  theof Speed

coverage defensesair  composite  theof distance Exposed
  Time Exposure =  

 
The exposed time over the composite air defences coverage has to be normalized and 
this is obtained by: 

 

∑
=

spokes  theof  timeExposure

spoke single a of  timeExposure
  Time Exposure Normalized  

 
The normalization of these 2 scores is to create a unified metric for selecting the best 
approach. These 2 normalized scores are then added together to represent the weight 
of the approach vector and the best approach will be the vector that has the highest 
scores. 

 

Figure 9: Position Evaluation for Approach Vectors 

 

In the approach for movement planning, the cell decomposition approach is chosen as 
describe in Movement Behavior for Soldier Agents on a Virtual Battlefield [11]. The 
idea is to represent free space and air defence coverage as a grid of small uniform 
cells that are square in shape as shown in Figure 10. Although the cell cannot 
represent the shape of the air defence coverage exactly, it is possible to vary the size 
of the cell to either increase or decrease the details of the representation. The size of 
the cell is always inversely proportional to the detailed level of the representation. The 
movement planning on the grid is by searching through the cells.  

 

Figure 10. Cell Decomposition Search space 

 



Once the area of operation is represented in a grid, which can also be known as the 
threat map, the A* algorithm is typically used to control the search from start to 
destination, with the straight line distance to the destination as a heuristic function. A 
simple A* search is not used; instead a technique described as Tactical Path-Finding 
with A* [12] was used. This search algorithm still follows the generic function of the 
A* search algorithm where Gx is the cost function, Hx is the heuristic function and Fx 
is the sum of the cost functions and the heuristic given by: 

xxx HGF +=  

In this technique, additional considerations are factored in the cost function, Gx, of the 
algorithm which include the exposure to air defences. The exposure cost is based on 
the type of air defence unit covering the area. For overlapping coverage of two or 
more air defence units, the total exposure cost is computed by adding the exposure 
cost of the overlapping air defence unit together. The heuristic, an estimate of the 
minimum distance from start to end, uses the Euclidean distance function which is an 
application of Pythagorean Theorem between start point, (Sx, Sy) and end point (Ex, Ey) 
is given as: 

Euclidean distance = )()(
22

yyxx ESES −− +  

Hence, the costing structure of the air defence type that is deemed to be suitable is as 
follow: 

 

Table 1: Cost Structure for path planning algorithm 

Lastly, behavior mechanisms for responding to the state changes in the environment 
are added to the individual agent. This behavior mechanism includes a set of actions 
and a steering behavior. The typical states convey back to the agent from the 
environment with reference to the air defence system are "Lock-on", "Lock-off", 
"Incoming missile" and "Gun firing". The current actions implemented, which can be 
taken by the agent include evasive process and strike process in response to the state 
of the environment. Each of the agents keeps track of its own current action and 
process an action if the current action is not suitable of the change of state received 
from simulation environment. The current action of the agent can be the following 
"Lock-on Action", "Lock-lost Action" and "Evasive Action" actions.  
 
The process action of “Evasive Action” is undertaken when the agent received a state 
change message from “Lock-on” state to “Incoming missile” state from the simulation 
environment and the action of the agent is not ‘Evasive Action”. The agent will 
initiate an evasive process when its action is “Evasive Action”, and will generate a 
series of waypoints out of the strike area based on its current heading, and the 
direction away from the target area, the waypoints are then sent to the simulator 
which will reflect the agent steering behavior. 
 



The process action of “Lock-lost Action” occurs when the agent received a state 
change message from “Incoming missile” state to “Lock-off” state from the 
simulation environment and the agent action is not “Lock-on Action” and “Evasive 
Action”. The agent will initiate a strike process when its action is “Lock-lost Action” 
and will generate waypoints back to the target area. The waypoints will be sent to the 
simulator which will reflect the agent steering behavior 
 
4. Experiment and Results 
 

A scenario was crafted as a basis for the conduct of an experiment. The scenario 
assumed that the attacker has good intelligence on the locations and types of weapon 
systems deployed, and has planned an attack route using the agent-based strike plan 
generator that has selected the safest route of approach. A graphical representation of 
the scenario is shown in Figure 11. The question posted is: “How sensitive is our 
current attack plan to the variation in the weapon systems?” Such variations are 
caused by imperfect intelligence which is common in any intelligence gathering 
process. The Measure of Effectiveness (MOE) is based on the number of leakages. 
Number of leakages refers to the number of enemy aircraft that are successful in 
reaching the Bomb Release Line (BRL). In the simulation, it is assumed that any 
aircraft that reaches the BRL will be able to launch its bomb without fail.  

 

Figure 11: The Attacker's Scenario 

Based on the current model, there are a total of 15 potential main effects that could 
affect the effectiveness of the air defence plan. The 15 potential main effects and the 
range over which each effect could be varied are shown in 02. 

 

Table 2: Potential Main Effects of the Model 



To conduct an experiment with 15 potential effects which has continuous values for 
most of the effects will be very time consuming using traditional experimental design. 
For instance, using a conservative estimation of full factorial 2 level design, there will 
be 2^15 = 32768 design points. If 50 runs are conducted for each design point, a total 
of 32768 x 50 = 1,638,400 runs will be required. 
 
This experimental design has adopted the Nearly Orthogonal Latin Hypercube 
(NOLH) by Cioppa & Lucas [13]. Using the NOLH spreadsheet [14], a total of 65 
design points were identified, which has drastically reduced the number of runs 
required from 1,638,400 runs to 3250 runs (65 x 50).  
 
The values in the design points proposed by the NOLH spreadsheet were fed into the 
model. For each design point, the model was run 50 times to get an unbiased mean 
value for the number of leakages.  
 
The data collected was fit into a partition tree as shown in 02. It can be observed that 
the mean number of leakages is quite close to 4 with small variances. 
 

 
Figure 12: Partition Tree for Attacker's Scenario. 

 
There are two branches that would guarantee with certainty (standard deviation of 0) 
that 4 aircrafts will complete their mission. For instance, if the attacker feels his 
intelligence knows the SAM range and SAM reaction time accurately, and it says 
those are below 109 (10.9km) and above 37.7 (37.7s) respectively, then the attacker 
should feel very confident that four of his aircrafts will definitely breach the MRL.  
 
A worst-case scenario from the attacker’s point of view, is the lower left branch with 
a mean of 3.132 (on average, close to two aircraft is lost). However, since the 
variability is not too big (standard deviation of 0.12), the attacker knows that even 
under this worst case scenario there is a high probability of at least three out of five 
aircraft would achieve their goal. 



 
If the attacker’s only consideration is to get at least one plane to the target, the data 
analysis clearly shows that this objective is highly achievable, although the attacker 
might lose some aircraft while doing so. 
 
The regression model of the data collected is shown in 0. The regression model is 
described by the following equation: 
 

...31132112443322110

^

+++++++= XXbXXbXbXbXbXbbY  

 
where: 

 
^

Y   – Number of breaches of the BRL (dependent variable) 
b0   – Intercept 
b1, b2, b3, b4…  – Coefficient for the independent variables  
X1  – SAM Reaction Time (independent variable) 
X2  – SAM Max Range (independent variable) 
X3  – SAM SSKP (independent variable) 
X4  – SAM Max Speed (independent variable) 
 

The main effects showed up in the regression model are inline with that of the 
partition model, confirming the importance of these key SAM parameters when 
planning for airstrike operations.   
 

 

 

Table 3: Regression Model of Attacker's Scenario 

5. Conclusions and Recommendations 
 

This paper has described research that has demonstrated the ability of agent-generated 
air strike plans to exploit weaknesses in air defence plans which makes it a valuable 
tool for foreseeing the action, reaction and counteraction dynamics between the attack 
and defence plans.  In addition, the experiment has also shown potential ways of using 
both the DES engine and plans generator in answering operations research questions. 
It is hoped that the tools developed in this research could be further refined to assist 
air defence planners in creating consistent and highly robust defence plans.  
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The LEGO framework adopted in the design of the DES engine allows individual 
components to be further refined with little or no impact to other components in the 
system. The sensors used in this research are mainly constant time based or simple 
cookie-cutter based. While they have served well to facilitate the rapid construction of 
a proof-of-concept (POC) model for this research, the sensors should be refined to 
reflect more realistic sensor characteristics in an actual air defence setup. Potential 
enhancements include, modeling sensor footprint of irregular shapes and modeling 
sensor detection/undetection time using the glimpse model. With the framework, the 
sensors could be replaced with minimal effort. 
 
To keep this POC model simple, the altitude of aircraft and terrain were not 
considered in the model. While modeling altitude as a continuous variable is more 
realistic, the introduction of a third dimension is likely to make the model much more 
complex. Depending on situation, it might be worthwhile to consider abstracting the 
altitude into discrete height intervals instead of a continuous variable to reduce the 
complexity of the model. In addition to altitude, acceleration was not considered 
explicitly in the model. Before the model is extended, one might want to consider if 
acceleration is necessary for a low resolution model. It is always a good practice to 
keep the model simple. 
 
For simplicity, the SAM sensors in the current model, acquire a lock on incoming 
aircraft based on first-come-first-served principle. The sequence of aircraft entering 
the lock-on range determines the order of how the aircraft are being locked. Although 
simple, this behavior might not represent air defence doctrines accurately.  The model 
could be enhanced to assess the threat level of incoming aircraft before deciding to 
lock-on to it or to switch its lock to another more threatening aircraft. For example, if 
an aircraft is in the lock-on range but not heading towards the BRL, while another 
aircraft is heading towards the BRL at a high velocity, the sensor might want to lock-
on to the later aircraft instead of the first, even though it is in the lock-on range. 
 
For the agent-based model, the path finding algorithm can be improved further by 
including the additional cost factor such as duration of exposure to air defences which 
is not currently taken into consideration. In addition, the cost of using A* algorithm 
can be very expensive as the area of operation for the air formation is expanded. 
Therefore, a dynamic area of operation should be used for each air formation; this will 
allow each formation to focus on its own area of operation. Hierarchical path-finding 
can also be use to reduce the search complexity of the path finding, this is where the 
entire map of the area of operation is abstracted in several levels and into linked local 
clusters, where, at the global level, path finding through clusters is traversed in a 
single big step and the search path is further refine at the cluster level of the abstracted 
map, which has more details, as it approach its goal. 
 
The agent application can also take in terrain information such as Digital Terrain 
Elevation Data (DTED) map or vegetation information in form of Shape files for its 
path finding algorithm. This will make the path planning more viable for use in 
modeling a real-world environment. 
 
For the individual agent aircraft behavior model, the current implementation only 
caters to a few actions that the agent can do. Improvement can be made by expanding 
more actions to allow more dynamic agent behavior. Furthermore, sophisticated 



behavior can be implemented to consider information of current position, air-defence 
site position or even additional incoming threats by using techniques such as a neural 
network to learn from past actions or Bayesian network to perform inference. 
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