
Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2010-06

Plans validation using DES and agent-based simulation

Soo, Andy Ong Kim; Hwee, Andrew Wong Teck; Darken,

Christian J.; Buss, Arnold H.

Proceedings of the 15th International Command and Control Research and

Technology Symposium (ICCRTS) 2010 "The Evolution of C2".

http://hdl.handle.net/10945/36611

Downloaded from NPS Archive: Calhoun

15th ICCRTS

"THE EVOLUTION OF C2"

Plans Validation using DES and Agent-Based Simulation

Topic: Modeling and Simulation

Mr. Andy Ong Kim Soo
Defence Science and Technology Agency

1 Depot Road,
Defence Technology Tower A, Singapore 109679

Telephone: +65 63736078
Andy_Ong@dsta.gov.sg

Mr. Andrew Wong Teck Hwee
Defence Science and Technology Agency

1 Depot Road,
Defence Technology Tower A, Singapore 109679

Telephone: +65 63736513
wteckhwe@dsta.gov.sg

Dr. Christian J. Darken
Naval Postgraduate School

WA-382
Monterey, CA 93943

Telephone: (831) 656-2095
cjdarken@nps.edu

Dr. Arnold H. Buss
Naval Postgraduate School

ME-380
Monterey, CA 93943

Telephone: (831) 656-3529
abuss@nps.edu

Abstract

Military plans validation is typically a long and costly process requiring planners to
validate their plans using anticipated scenarios or through military exercises. While
military exercises provide realistic simulation of the plan, it is often the most
expensive way of validating a plan. On the other hand, although using anticipated
scenarios is relatively cheaper, the robustness of the validated plans is dependent on
the scenarios against which they are validated. This, in turn, depends on the
experience of the planners that crafted the scenarios.

This paper describes research on an alternative way of plans validation in the context
of air defence done at Naval Postgraduate School as part of a postgraduate course of
study. It explores the possibility of using a multi-agent system (MAS) to analyse air
defence plan and generate potential air strike plans that exploit weaknesses in the air
defence plan. The resulting plans are fed into a low resolution Discrete Event
Simulation (DES) based air defence simulator to simulate the effects of the air strike
plan against the air defence plan. A prototype was developed and has demonstrated
the ability to validate air defence plans using MAS-generated strike plans and a low
resolution DES-based simulator successfully.

1. Introduction

Much of military planning today, whether offensive or defensive, is based on
expected adversary course of action, tactics and doctrine. If the adversary manages to
produce an unexpected course of action which is not anticipated in the plan, this will
lead to the adversary gaining a tactical advantage, and in the worse scenario, allow the
adversary a strategic edge.

Military plans are often difficult to validate and verify. Unless they are put to use in a
live exercise or operation, it is difficult to know the actual effectiveness of the plan.

This paper describes research conducted in Naval Postgraduate School to explore the
feasibility of using software agents modelled after hypothetical adversary's behaviour
to validate against military plans through discrete event simulations. A prototype
based on an air defence scenario was developed to demonstrate the concept.

2. Methodology

This section describes the overall design of the system comprised of the agent-based
strike plan generator and the Discrete Event Simulation (DES) based simulator.

2.1 Overall System Design

The plans validation system is comprised of a DES engine, an agent-based strike plan
generator, a display interface, and other supporting components. The DES engine
models the abstract behavior of air defence assets, air strike aircraft, and the
interaction between them.

The DES engine serves as a platform for validating air defence plans. The plans are
evaluated by simulating the effects of agent generated strike plans against the defence
plans. In other words, the DES engine forms the environment in which the aircraft
agents operate. Environmental updates are communicated to the aircraft agents
through User Datagram Protocol (UDP) messaging. Similarly, when the aircraft
agents perform evasive maneuvers, they communicate their new waypoints back to
the DES engine via UDP messages. Such communication allows real time interactions
between the agents and the environment. The overall system design is shown in
Figure 1.

Figure 1: Overall Architecture of the System

2.2 Agent-based Plan Generation

The Agent-Based plan generator exploits the weaknesses in the air defence plan to
generate potential adversary plans that are used to support the validation of the
defence plans through the use of DES-based simulator. In this section, we will
describe the agent architecture that was designed to mimic the command and control
structure of a hypothetical air strike group.

Agent-Based Model Architecture
The goals of the agent based model are to generate appropriate strike plans for the
agents representing strike aircraft, and to implement a behavior model for the agents
in the simulation environment. The architecture of the Agent-Based Model is based
on a hierarchical decision making process similar to the Hierarchical AI approach [1,
2]. Instead of having a single agent making plans, deciding where to strike, and
determining how many aircraft formations should be created, the idea is to breakdown
the decision-making process into levels. This is roughly analogous to the chain of
command in an army where broad mission objectives at the strategic level are broken
down into specific tasks at tactical levels, with tactical commanders making decision
on the best approach to carry out such tasks to achieve the larger mission objectives.

 Figure 2: Agent-Based Model Architecture

In Figure 2, the agent-based model architecture consists of three levels of decision-
making processes. At the highest level is the Central Tasking Agent, which is
responsible for generating the number of participating air formations and assigning
area of operations and targets to them. The assignment is based on intelligence
information gathered on the target’s air defence and the number of aircraft that are
assigned to the strike operation.

At level two of the hierarchy is the Evaluation Agent which receives information on
air formations, assigned area of operation and targets from level one agent. It will
generate the participating aircraft in the air formation and also generate a suitable
course of action for the air formation.

At level three of the hierarchy is the Executing Agent which is the lowest level in the
agent architecture. The Executing Agent is like the foot soldier in the army, receive
specific tasking orders from the Evaluation Agent, such as target objective and
approach to the objective. This agent will receive real-time information from the
simulation environment, and based on the information received, it will act on it and at
the same time relay the information back to level two of the decision-making process
so that the decision making agent at level two can re-evaluate the course of action.

The concept of how the agents exploit an air defence plan will be discussed later in
this paper.

2.3 DES-Based Simulator Design

The DES-Based simulator provides a platform for evaluating air defence plans against
the strike plans generated by the agent-based plan generator. It takes in the air defence
plan crafted by human planners and the air strike plan generated by the agent-based
generator. The DES simulator would then construct models of the components before
starting the simulation. The DES simulator was designed based on the concept of
Listener Event Graph Objects (LEGOs) framework [3], which allows a more complex
model to be built in phases by linking smaller components together in a loosely
coupled manner. The LEGO model of the DES simulator is shown in Figure 3. The
DES simulator was developed based on Simkit [4]. The main elements in the DES
simulator are: Surface-to-Air Missile (SAM) system and missiles, anti-aircraft guns
and aircraft. Other supporting components include: mediators, adjudicators and
adapters. Details on how various components are modelled will be described in later
part of this paper.

 Figure 3: LEGO Model of the DES Engine

3. Prototype Implementation

3.1 DES-Based Simulator
The DES-Based simulator provides a platform for evaluating the air defence plan
against the strike plan generated by the agent-based plan generator. The main models
in the DES engine are: SAM system, Anti-Aircraft gun and aircraft. Other supporting
components include: mediators, adjudicators, adapters and communications.

Modeling the SAM System
In the model, there is only one SAM system, which is the command and control unit
of all the SAM sites in the DES engine. The SAM system has the overall situation
awareness of the defended area and performs target handover from a SAM site to the
other whenever a target gets out-of-range of a SAM site. The system ensures that at
any one time, a target is engaged by only one SAM site. The firing option adopted in
the model is the SHOOT-LOOK-SHOOT, which means, firing a missile once locked-
on, observe the result, and fire another missile if the earlier missile missed the target.

Modeling the SAM Site
Each SAM site is comprised of a sensor and a missile launcher. In the model, a SAM
site is only capable of locking and engaging one target at a time. A simple target
selection algorithm is implemented based on the first-come-first-serve principle.
Thus, when more than one target enters the sensor range, the first target will be
locked-on, while subsequent targets will be put on the watched list. Whenever the first
target is destroyed or gets out-of-range, the next target on the list will be acquired and
locked. The missile launcher is loaded with a configurable number of missiles. The
number of missiles in the launcher is decremented whenever a missile is fired. When
all the missiles in the launcher are expended, a reload time will be incurred to reload
the missile launcher. The model assumes perfect command and control so that a target
is always handed over to the next SAM site that has the target in its sensor range.

Modeling the SAM Sensor
The use of DES for simulation of sensors and movers is not new. Buss and Sanchez [5]
detail how movement and sensing can be modelled using DES. While the Gun sensor
is modelled after the concepts presented in that paper, the SAM sensor is developed
by extending the concept for sensing mover at multiple ranges.

A typical SAM sensor is capable of sensing targets that enter or exit its sensor range
(lock-on range), weapon range (firing range) and the weapon’s no-firing zone. In the
SAM sensor model, three different sensors are used to model the various sensor
ranges with their center aligned to the same static mover, which simulates the
platform that the SAM sensor is installed physically. Figure 44 depicts how the SAM
sensor is modelled, with the blue triangle indicating the location of the common
platform.

Lock-on Range

Firing Range

EnterRange

EnterRange

No-firing

Range

EnterRange

ExitRange

ExitRange

ExitRange

Detection

Detection

Undetection

Undetection

EndMove

Figure 4: Various SAM Ranges

When an aircraft enters the “Lock-on Range” sensor, it will be detected and locked by
the SAM system after a fixed amount of delay (SAM reaction time). Upon entering
the “Firing Range”, a missile will be fired at the target after a certain amount of delay
(SAM engagement time). When a target enters the “No-firing Range”, the SAM will
not engage the target as there is too little time for the missile to be launched and catch
up with the target.

The same “EnterRange” event triggered by the three sensors creates an issue as all
“EnterRange” events are to be handled by the same mediator. The mediator is unable
to differentiate which sensor initiated the event, since they have the same event name.
Buss [6] proposes a simple but elegant way of overcoming such situation with the use
of an “adapter” class. The “adapter” class listens to an event and triggers a new event.
The same mechanism is used to overcome our problem as shown in Figure 5. The
adapter works by adapting the same “EnterRange” event produced by the three
sensors into specific events: EnterLockOnRange, EnterNoFiringRange and
EnterFiringRange.

Figure 5: Use of Adapters to Differentiate EnterRange Events

Modeling SAM Trajectory
A simple path mover manager, which moves the SAM to an extrapolated interception
point, is insufficient to model the trajectory of a SAM realistically, as a missile needs
to respond to its target's manoeuvre by changing its own trajectory. The SAM model
is built based on the concept of the intercept mover manager by Buss and Ahner [7].

The strength of an intercept mover manager is that it tracks the location and velocity
of its target at regular time interval, re-computes the projected interception point and
moves the missile towards the revised interception point. The intercept mover
manager continues to track and re-project new interception point, until the mover is
within certain proximity of the target.

In the event that a SAM flies out of its maximum range, the DES engine simulates a
loss of command link and the SAM will be self destructed after a certain delay. This
is a common feature available in current SAM systems.

SAM Probability of Kill
Instead of using a single-valued kill probability for SAM interception, a triangular
Probability of Kill (Pk) contour was used, making Pk a function of the range of the
target, as shown in Figure 6. This Pk contour could be easily substituted with any
other more accurate Pk contours in the future when they become available. In the
model, it is assumed that the highest Single-Shot Kill Probability (SSKP) is usually
achieved at around 70% of the maximum weapon range. As such, the vendor supplied
Pk becomes the height of the triangle in the Pk contour.

P
k

Distance from SAM Site

No-Firing

range
Weapon

range

70%

Weapon

range

V
e
n
d
o
r

S
p
e
c
if
ie
d

S
S
K
P

Figure 6. Triangular SAM Pk Contour

During simulation, a target is considered hit when the SAM is within certain
proximity of the target. A uniform(0, 1) random number is generated using the
Mersenne Twister (MT) random number generator. MT was chosen due to its long
period of 219937 – 1 and a low working memory of 624 words [8]. The random number
is then compared against the Pk value corresponding to the range of the target. Any
number smaller than the Pk value is considered as a kill. Otherwise, it is considered as
a miss and another missile will be scheduled to engage the target again.

Modeling the Anti-Aircraft Gun
According to the Field Manual 44-43 [9], a high volume of fire is desired to increase
the probability of kill when engaging aerial targets with guns. Thus, unlike the SAM
system, there is no restriction on the number of anti-aircraft guns allowed to engage a
target simultaneously. The guns will engage any targets that get within the weapon
range of the gun. As in the SAM system’s case, the gun will engage its targets on a
first-come-first-serve basis. Subsequent targets that enter the weapon range of a gun
will be kept on a list. When the first target is destroyed, the gun will engage next
target on the list sequentially.

As in the case of SAM system, the anti-aircraft gun also adopts the SHOOT-LOOK-
SHOOT option. When a target enters the weapon range of a gun, the gun will release
a burst of 50 to 100 rounds of munitions at the target. If the target is killed, the gun
will move on to engage other targets in its target list, otherwise it will release another
burst. The number of rounds to be released in each burst is based on a uniform(0, 1)
generated by the MT random number generator and scaled to a number between range
of 50 to 100. For each round of munitions released, the ammunition count is
decreased by one. When the munitions run out, a delay is incurred for the reload event.

As the anti-aircraft gun in the model is not associated with any fire control radar, their
target detection event could be modeled simply using a constant time sensor [5] as
shown in Figure 7.

Figure 7: Anti-Aircraft Gun's Sensor

The trajectory and the probability of kill for each round of gun munitions are not
modelled explicitly in the resolution if this model. Instead, the probability of kill for
each burst of bullets is used to adjudicate the effects of the munitions on the target. In
the gun's Pk contour shown in Figure 8, it is assumed that the number of rounds
released at the target directly affects the Pk. When the number of rounds released
exceeds 50, the Pk will be capped at the vendors's specified SSKP. As in the SAM
system, the Pk contour could be substituted with more accurate ones when they
become available.

P
k

V
e
n
d
o
r

S
p
e
c
if
ie
d

S
S
K
P

Figure 8: Pk Contour of Anti-Aircraft Gun

Modeling the Strike Aircraft
Strike aircraft are simply modelled using Uniform Linear Movers which are
controlled by Path Mover Managers. In the current DES model, the aircraft are able to
vary their speed at each waypoint. However, acceleration and deceleration are not
modelled currently.

3.2 Agent-Based Strike Plan Generation

Approaches for Planning and Control
In the earlier section, the agent architecture model described a hierarchical approach
for making decisions. The central tasking agent decides how to best conduct a strike
into the strike area, the evaluation agents plan the actual movement of strike aircraft
with this information, and the executing agents execute the movement plan
accordingly. In the following paragraph, the algorithms that were used by these agents
will be discussed.

When determining how to best approach the strike area, a proposed technique similar
to position evaluation function described in KillZone AI [10] was used. Position
evaluation functions are well known in computer chess, where the (Artificial
Intelligence) AI generates possible board positions and evaluates these board
positions to select the strongest series of moves.

In this technique, there is a need to find out the best approach vectors to the strike area.
The various factors that have to be considered include the air defence coverage,
overlapped air defence coverage, exposure time to the air defences, exposed distance
to air defence before reaching the strike area and the speed of the aircraft. The number
of approach vectors also depends on the various types of tactics to use. To generate a
suitable approach vector, the strike area has to be determined first. From the strike
area, straight lines are generated for every 10 degrees. The eventual result will look
like a spokes of a wheel as shown in Figure 9. For every spoke line, the total expose
distance to the air defence was determined. The normalized value will be used as a
score. The exposed distance calculation is based on the line-intersection of the air
defence coverage. The total exposed distance of a single spoke line is obtained by
adding the exposed distance that a spoke line intersected with individual air defence
coverage:

∑= coverage defenseair ngintersecti spoke of Distance spoke single a of distance Expose

The exposed distance is normalized by the following formula:

 spokes of distance Exposed

spoke single a of distance Exposed
 distance Exposed Normalized
∑

=

Secondly, there is also a need to determine the exposure time to the air defence
coverage for each of the spoke lines. This is due to the fact that the exposed distance
alone is not good enough to determine the best approach for overlapped air defence
coverage as this also depends on the exposure time over this composite air defences

coverage. The strike aircraft is required to cross this exposed distance as quickly as
possible. Therefore, the exposure time calculation is based on the following formula:

aircraft strike theof Speed

coverage defensesair composite theof distance Exposed
 Time Exposure =

The exposed time over the composite air defences coverage has to be normalized and
this is obtained by:

∑
=

spokes theof timeExposure

spoke single a of timeExposure
 Time Exposure Normalized

The normalization of these 2 scores is to create a unified metric for selecting the best
approach. These 2 normalized scores are then added together to represent the weight
of the approach vector and the best approach will be the vector that has the highest
scores.

Figure 9: Position Evaluation for Approach Vectors

In the approach for movement planning, the cell decomposition approach is chosen as
describe in Movement Behavior for Soldier Agents on a Virtual Battlefield [11]. The
idea is to represent free space and air defence coverage as a grid of small uniform
cells that are square in shape as shown in Figure 10. Although the cell cannot
represent the shape of the air defence coverage exactly, it is possible to vary the size
of the cell to either increase or decrease the details of the representation. The size of
the cell is always inversely proportional to the detailed level of the representation. The
movement planning on the grid is by searching through the cells.

Figure 10. Cell Decomposition Search space

Once the area of operation is represented in a grid, which can also be known as the
threat map, the A* algorithm is typically used to control the search from start to
destination, with the straight line distance to the destination as a heuristic function. A
simple A* search is not used; instead a technique described as Tactical Path-Finding
with A* [12] was used. This search algorithm still follows the generic function of the
A* search algorithm where Gx is the cost function, Hx is the heuristic function and Fx
is the sum of the cost functions and the heuristic given by:

xxx HGF +=

In this technique, additional considerations are factored in the cost function, Gx, of the
algorithm which include the exposure to air defences. The exposure cost is based on
the type of air defence unit covering the area. For overlapping coverage of two or
more air defence units, the total exposure cost is computed by adding the exposure
cost of the overlapping air defence unit together. The heuristic, an estimate of the
minimum distance from start to end, uses the Euclidean distance function which is an
application of Pythagorean Theorem between start point, (Sx, Sy) and end point (Ex, Ey)
is given as:

Euclidean distance =)()(
22

yyxx ESES −− +

Hence, the costing structure of the air defence type that is deemed to be suitable is as
follow:

Table 1: Cost Structure for path planning algorithm

Lastly, behavior mechanisms for responding to the state changes in the environment
are added to the individual agent. This behavior mechanism includes a set of actions
and a steering behavior. The typical states convey back to the agent from the
environment with reference to the air defence system are "Lock-on", "Lock-off",
"Incoming missile" and "Gun firing". The current actions implemented, which can be
taken by the agent include evasive process and strike process in response to the state
of the environment. Each of the agents keeps track of its own current action and
process an action if the current action is not suitable of the change of state received
from simulation environment. The current action of the agent can be the following
"Lock-on Action", "Lock-lost Action" and "Evasive Action" actions.

The process action of “Evasive Action” is undertaken when the agent received a state
change message from “Lock-on” state to “Incoming missile” state from the simulation
environment and the action of the agent is not ‘Evasive Action”. The agent will
initiate an evasive process when its action is “Evasive Action”, and will generate a
series of waypoints out of the strike area based on its current heading, and the
direction away from the target area, the waypoints are then sent to the simulator
which will reflect the agent steering behavior.

The process action of “Lock-lost Action” occurs when the agent received a state
change message from “Incoming missile” state to “Lock-off” state from the
simulation environment and the agent action is not “Lock-on Action” and “Evasive
Action”. The agent will initiate a strike process when its action is “Lock-lost Action”
and will generate waypoints back to the target area. The waypoints will be sent to the
simulator which will reflect the agent steering behavior

4. Experiment and Results

A scenario was crafted as a basis for the conduct of an experiment. The scenario
assumed that the attacker has good intelligence on the locations and types of weapon
systems deployed, and has planned an attack route using the agent-based strike plan
generator that has selected the safest route of approach. A graphical representation of
the scenario is shown in Figure 11. The question posted is: “How sensitive is our
current attack plan to the variation in the weapon systems?” Such variations are
caused by imperfect intelligence which is common in any intelligence gathering
process. The Measure of Effectiveness (MOE) is based on the number of leakages.
Number of leakages refers to the number of enemy aircraft that are successful in
reaching the Bomb Release Line (BRL). In the simulation, it is assumed that any
aircraft that reaches the BRL will be able to launch its bomb without fail.

Figure 11: The Attacker's Scenario

Based on the current model, there are a total of 15 potential main effects that could
affect the effectiveness of the air defence plan. The 15 potential main effects and the
range over which each effect could be varied are shown in 02.

Table 2: Potential Main Effects of the Model

To conduct an experiment with 15 potential effects which has continuous values for
most of the effects will be very time consuming using traditional experimental design.
For instance, using a conservative estimation of full factorial 2 level design, there will
be 2^15 = 32768 design points. If 50 runs are conducted for each design point, a total
of 32768 x 50 = 1,638,400 runs will be required.

This experimental design has adopted the Nearly Orthogonal Latin Hypercube
(NOLH) by Cioppa & Lucas [13]. Using the NOLH spreadsheet [14], a total of 65
design points were identified, which has drastically reduced the number of runs
required from 1,638,400 runs to 3250 runs (65 x 50).

The values in the design points proposed by the NOLH spreadsheet were fed into the
model. For each design point, the model was run 50 times to get an unbiased mean
value for the number of leakages.

The data collected was fit into a partition tree as shown in 02. It can be observed that
the mean number of leakages is quite close to 4 with small variances.

Figure 12: Partition Tree for Attacker's Scenario.

There are two branches that would guarantee with certainty (standard deviation of 0)
that 4 aircrafts will complete their mission. For instance, if the attacker feels his
intelligence knows the SAM range and SAM reaction time accurately, and it says
those are below 109 (10.9km) and above 37.7 (37.7s) respectively, then the attacker
should feel very confident that four of his aircrafts will definitely breach the MRL.

A worst-case scenario from the attacker’s point of view, is the lower left branch with
a mean of 3.132 (on average, close to two aircraft is lost). However, since the
variability is not too big (standard deviation of 0.12), the attacker knows that even
under this worst case scenario there is a high probability of at least three out of five
aircraft would achieve their goal.

If the attacker’s only consideration is to get at least one plane to the target, the data
analysis clearly shows that this objective is highly achievable, although the attacker
might lose some aircraft while doing so.

The regression model of the data collected is shown in 0. The regression model is
described by the following equation:

...31132112443322110

^

+++++++= XXbXXbXbXbXbXbbY

where:

^

Y – Number of breaches of the BRL (dependent variable)
b0 – Intercept
b1, b2, b3, b4… – Coefficient for the independent variables
X1 – SAM Reaction Time (independent variable)
X2 – SAM Max Range (independent variable)
X3 – SAM SSKP (independent variable)
X4 – SAM Max Speed (independent variable)

The main effects showed up in the regression model are inline with that of the
partition model, confirming the importance of these key SAM parameters when
planning for airstrike operations.

Table 3: Regression Model of Attacker's Scenario

5. Conclusions and Recommendations

This paper has described research that has demonstrated the ability of agent-generated
air strike plans to exploit weaknesses in air defence plans which makes it a valuable
tool for foreseeing the action, reaction and counteraction dynamics between the attack
and defence plans. In addition, the experiment has also shown potential ways of using
both the DES engine and plans generator in answering operations research questions.
It is hoped that the tools developed in this research could be further refined to assist
air defence planners in creating consistent and highly robust defence plans.

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.847953

0.801408

0.138296

3.836615

65

Summary of Fit

The LEGO framework adopted in the design of the DES engine allows individual
components to be further refined with little or no impact to other components in the
system. The sensors used in this research are mainly constant time based or simple
cookie-cutter based. While they have served well to facilitate the rapid construction of
a proof-of-concept (POC) model for this research, the sensors should be refined to
reflect more realistic sensor characteristics in an actual air defence setup. Potential
enhancements include, modeling sensor footprint of irregular shapes and modeling
sensor detection/undetection time using the glimpse model. With the framework, the
sensors could be replaced with minimal effort.

To keep this POC model simple, the altitude of aircraft and terrain were not
considered in the model. While modeling altitude as a continuous variable is more
realistic, the introduction of a third dimension is likely to make the model much more
complex. Depending on situation, it might be worthwhile to consider abstracting the
altitude into discrete height intervals instead of a continuous variable to reduce the
complexity of the model. In addition to altitude, acceleration was not considered
explicitly in the model. Before the model is extended, one might want to consider if
acceleration is necessary for a low resolution model. It is always a good practice to
keep the model simple.

For simplicity, the SAM sensors in the current model, acquire a lock on incoming
aircraft based on first-come-first-served principle. The sequence of aircraft entering
the lock-on range determines the order of how the aircraft are being locked. Although
simple, this behavior might not represent air defence doctrines accurately. The model
could be enhanced to assess the threat level of incoming aircraft before deciding to
lock-on to it or to switch its lock to another more threatening aircraft. For example, if
an aircraft is in the lock-on range but not heading towards the BRL, while another
aircraft is heading towards the BRL at a high velocity, the sensor might want to lock-
on to the later aircraft instead of the first, even though it is in the lock-on range.

For the agent-based model, the path finding algorithm can be improved further by
including the additional cost factor such as duration of exposure to air defences which
is not currently taken into consideration. In addition, the cost of using A* algorithm
can be very expensive as the area of operation for the air formation is expanded.
Therefore, a dynamic area of operation should be used for each air formation; this will
allow each formation to focus on its own area of operation. Hierarchical path-finding
can also be use to reduce the search complexity of the path finding, this is where the
entire map of the area of operation is abstracted in several levels and into linked local
clusters, where, at the global level, path finding through clusters is traversed in a
single big step and the search path is further refine at the cluster level of the abstracted
map, which has more details, as it approach its goal.

The agent application can also take in terrain information such as Digital Terrain
Elevation Data (DTED) map or vegetation information in form of Shape files for its
path finding algorithm. This will make the path planning more viable for use in
modeling a real-world environment.

For the individual agent aircraft behavior model, the current implementation only
caters to a few actions that the agent can do. Improvement can be made by expanding
more actions to allow more dynamic agent behavior. Furthermore, sophisticated

behavior can be implemented to consider information of current position, air-defence
site position or even additional incoming threats by using techniques such as a neural
network to learn from past actions or Bayesian network to perform inference.

6. References

[1] L. Andrew, “Hierarchical AI,” http://www-cs-

students.stanford.edu/~amitp/Articles/HierarchalAI.html, September 19, 2008.

[2] E. Mark, “The Clash of Civilizations,” http://clash.apolyton.net/models/Model-
AI.shtml, September 18, 2008.

[3] A. Buss, and P. Sanchez, “Building Complex Models with LEGOS,” in
Proceedings of the 2002 Winter Simulation Conference, 2002, pp.732-737.

[4] A. Buss, “Discrete event programming with Simkit,” Simulation News Europe,
(32/33), pp. 15-26, 2001.

[5] A. Buss, and P. Sanchez, “Simple Movement and Detection in Discrete Event
Simulation,” in Proceedings of the 2005 Winter Simulation Conference, 2005, pp.
992-1000.

[6] A. Buss, “Component-Based Simulation Modeling,” Proceedings of the 2000
Winter Simulation Conference, 2000, pp. 964-971.

[7] A. Buss, and D. Ahner, “Dynamic Allocation of Fires and Sensors (DAFS): A
Low-Resolution Simulation for Rapid Modeling,” in Proceedings of the 2006
Winter Simulation Conference, 2006, pp. 1357-1364.

[8] M. Makoto, and N. Takuji, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 8, (1), pp. 3-30, 1998.

[9] “US Army Field Manual 44-43: Bradley Stinger Fighting Vehicle Platoon and
Squad Operations,” http://www.globalsecurity.org/military/library/policy/army/fm/44-43/index.html,

November 2, 2008.

[10] R. Straatman, W. Sterren, & A. Beij. (2006), “Killzone’s AI: dynamic procedural
combat tactics,” http://www.cgf-ai.com/docs/straatman_remco_killzone_ai.pdf, September 18,
2008.

[11] D. Reece, “Movement Behavior for Soldier Agents on a Virtual Battlefield,”
Massachusetts of Technology Presence, Vol.12, (4), pp. 387-410, 2003.

[12] W. Sterren, “Tactical Path-Finding with A*,” in Game Programming Gem 3,
Boston: Charles River Media, 2002, pp. 294-306.

[13] T. Cioppa, and T. Lucas, “Efficient Nearly Orthogonal And Space-Filling
Experimental Designs For High-Dimensional Complex Models,” PhD’s
Dissertation, United States Naval Postgraduate School, Monterey, CA, September
2002.

[14] S. Sanchez, “NOLHdesigns spreadsheet,” http://harvest.nps.edu/, September 18, 2008.

7. Biographies

Mr. Andy Ong is a programme manager in Defence Science & Technology Agency,
managing the development of command and control systems for the Singapore Armed
Forces. Mr Andy has received the M. Sc in Modeling, Virtual Environment Systems
from Naval Postgraduate School, United States. He has previously received the M.Sc.
in Defence Technology Systems and M.Tech in Knowledge Engineering from the
National University of Singapore and the B.Eng. in Electrical & Electronic from the
Nanyang Technological University, Singapore. He has more than 10 years of
experience in the development and management of Army, Joint and Navy Command
and Control (C2) information systems.

Mr. Andrew Wong is a project manager in Defence Science & Technology Agency,
where he manages experimentation projects in the area of command and control
systems for the Singapore Armed Forces. Mr Wong has received the M.Sc in
Modeling, Virtual Environment Systems and M.Sc. in Defence Technology Systems
from the Naval Postgraduate School, United States and National University of
Singapore respectively. He also received his B.Eng in Electrical & Electronic from
University of Leicester, United Kingdom. He has more than 10 years of experience in
the development and management of Army and Navy Command and Control (C2)
information systems.

Christian J. Darken, Ph.D., is an Associate Professor of Computer Science at the
Naval Postgraduate School, where he also collaborates intensively with the MOVES
Institute. Previously he was Project Manager of the Decision Support Systems project
and Senior Member of Technical Staff at Siemens Corporate Research in Princeton,
NJ, where he was variously associated with the Learning Systems, Adaptive
Information and Signal Processing, and Software Engineering Departments. He was
also a programmer of one of the first commercial first-person perspective massively-
multiplayer games. He received his Ph.D. in Electrical Engineering from Yale
University in 1993, and previously received the M.S. and M. Phil. in Physics from the
same institution.

ARNOLD BUSS is a Research Associate Professor in the MOVES Institute at the
Naval Postgraduate School. He received a BA in Psychology from Rutgers University,
an MS in Systems and Industrial Engineering from the University of Arizona, and
a Ph.D. in Operations Research from Cornell University. His research interests
include simulation modeling and object-oriented software design. He is a member of
INFORMS and MORS. (Address: MOVES Institute, 700 Dyer Road, Naval
Postgraduate School, Monterey, CA, URL: http://diana.nps.edu/~ahbuss, E-mail:
abuss@nps.edu).

