


ABSTRACT

W ireless mesh networks are sys-
tems of interconnected wireless
access points that provide digital

services to client devices via radio trans-
mission. We consider the challenges of a
communications planner who must quickly
design a wireless mesh network, as might
be expected during combat operations or
in support of humanitarian assistance and
disaster relief operations. We seek a network
that maximizes client coverage area subject
to constraints on network service, the tech-
nical characteristics of the available access
points, and radio propagation over terrain.
We create a nondifferentiable, nonconvex,
nonlinear optimization problem and use a
sampling algorithm to quickly Þnd good
solutions. We validate our formulation and
solutions via numerical experiments and
several Þeld tests, and we demonstrate that
our technique can generate network topol-
ogies capable of functioning in real-world
scenarios.

We construct a corresponding decision
support tool that allows a communications
planner to design working wireless mesh
network topologies quickly, with no guess-
work, and requiring very little expertise.
The tool runs on a laptop, supports virtu-
ally any type of access point, uses terrain
information freely downloadable from the
Internet, and does not require any addi-
tional software or solver licenses.

INTRODUCTION

Description of Problem
A wireless mesh network (WMN) is

a communications network of Þxed access
points (APs) that exchange electronic mes-
sages via radio transmission to and from cli-
ent devices(such as computers, sensors, or
mobile devices). The Þxed position of its
APs differentiates a WMN from a so-called
ad hoc network, where the APs can be con-
stantly moving (Zhang et al. 2006, p. 565).

Military and civilian organizations can
beneÞt from the inherent advantages of
WMNs. During combat operations, WMNs
can quickly and securely relay time-critical
information such as intelligence reports,
tactical orders, and sensor readings to sep-
arated small units. During humanitarian

assistance and disaster relief (HA/DR) op-
erations, WMNs can provide maps, ßoor-
plans, video surveillance, emergency aid
requests, and other critical information to
Þrst responders.

In the system under consideration, each
AP uses two separate and conÞgurable ra-
dio devices to create a WMN with two
levels of connectivity. The Þrst level of con-
nectivity supports client-to-AP communi-
cation within a client coverage area, whereas
the second level consists of abackhaul radio
networkthat routes trafÞc between APs. Cli-
ent devices may roam within the coverage
area and communicate with one another
or to an outside network, such as the Inter-
net, through a gateway (e.g., via a satellite
uplink). We assume that wireless APs alone
provide trafÞc routing services, thus form-
ing an infrastructure meshtype of WMN
(see Nicholas 2009, pp. 2Ð4). Additionally,
we assume client devices communicate with
a single AP at a time, and hence do not serve
as intermediate relay points (Zhang et al.
2006, pp. 564Ð567).

The physical topology of a WMN, as de-
Þned by the locations of the wireless APs, is
critical to its performance. We consider the
challenge of a communications ofÞcer or
anetwork designerwho must choose the loca-
tions and conÞgurations of wireless APs to
provide service to clients in desired cover-
age areas while meeting restrictions on the
quantity, placement, and characteristics of
the APs and also satisfying any require-
ments for coverage, bandwidth, and other
service standards. The designer must also
consider the effects of terrain and other as-
pects of the operating environment on ra-
dio wave propagation. Because combat
and HA/DR operations are time-sensitive,
the designer must build the WMN quickly
and with as little guesswork as possible.

We focus on designing a WMN topol-
ogy that maximizes client coverage while
considering network ßow requirements.
There is a fundamental tension when de-
signing such a WMN: maximizing client
coverage tends to place APs far apart,
whereas the requirements for backhaul net-
work throughput tend to keep APs relatively
close. The challenge is to balance this trade-
off for a Þxed number of APs while re-
specting their technological details and the
physics of radio propagation over terrain.

We evaluate the performance of a given
WMN topology in two steps. First, we
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calculate the value of client coverageas dictated
by speciÞc AP locations and their conÞgura-
tion, ground terrain, and environmental data.
We then calculate the value of network ßow
according to the Simultaneous Routing and
Resource Allocation (SRRA) techniques of Xiao
et al. (2004). We combine these two subprob-
lems to formulate SRRA1 C, a nondifferentiable,
nonconvex, nonlinear optimization problem. We
implement the DIviding RECTangles (DIRECT)
sampling algorithm of Jones et al. (1993) to
quickly Þnd good solutions to SRRA 1 C.

To validate the quality of the network topol-
ogies generated by our technique, we conduct
numerical experiments and Þeld tests using com-
mercial equipment. As an aid to the network
designer, we create a customized graphical de-
cision support tool to solve the SRRA1 C prob-
lem. The standalone tool reads and graphically
displays digital terrain elevation information,
obtains its best solution to the SRRA1 C prob-
lem, and displays the resulting network and
client coverage regions. We demonstrate that
our technique can quickly create WMN topolo-
gies that function in realistic scenarios, and that
our decision support tool can assist communi-
cations ofÞcers or network designers in build-
ing WMNs in support of combat or HA/DR
operations.

Previous Work
He et al. (2004) use the DIRECTsampling al-

gorithm of Jones et al. (1993) to Þnd good AP
placements in indoor wireless networks, using
very accurate (and computationally expensive)
ray-tracing techniques that predict radio prop-
agation. We build on this general idea to cal-
culate the value of client coverage, and use
the DIRECT algorithm similarly for outdoor
environments.

Xiao et al. (2004) solve the SRRA problem
via dual decomposition to identify optimal traf-
Þc routes and allocation of AP transmission
power within a wireless network. As noted
above, we use SRRA to calculate the value of
network ßow.

Shankar (2008) uses the SRRA formulation
to determine network ßow among preposi-
tioned wireless nodes, and then adopts the
attacker-defender techniques of Brown et al.

(2006) to calculate optimal jammer locations
that maximally disrupt network ßow. Our
work complements ShankarÕs research, pro-
viding the initial design of a WMN.

To our knowledge, ours is the Þrst tech-
nique for designing WMN topologies that
maximize client coverage while considering
backhaul network service requirements on real
terrain. See Nicholas (2009, pp. 6Ð9) for a de-
tailed literature review.

This paper is organized as follows. In the
next section, we describe each element of the
SRRA1 C formulation along with our technique
to solve it. We then consider several notional
and real network design problems, contrast our
solution to what we obtain from brute force
enumeration, and brießy summarize the results
of our Þeld tests. We conclude with suggestions
for follow-on research.

MODEL FORMULATION
Our goal is to position APs in locations that

maximize client coverage, subject to restric-
tions on network service, AP characteristics
and placement, and radio propagation over
terrain. As noted earlier, there is an inherent
tension between maximizing client coverage
and network trafÞc ßow. The crux of the
SRRA1 C formulation is to capture and quan-
tify this tension.

We represent each AP as anodein a net-
work. Let N denote the set of all AP nodes,
indexed by i ¼ 1, 2, . , n, where n 5 jNj. Let
l 5 l 1; l 2 � l nð Þrepresent the locations of the
nodes. Although the mathematics support
any coordinate system to represent location,
in our implementation each node location l i

is itself a two-dimensional coordinate repre-
senting the northing and easting for node i.
We assume that node locations areÞxedin the
sense that nodes will remain in position once
placed. In what follows, we use the terms AP
and node interchangeably.

We deÞne theoperating regionas the topo-
graphic area where an AP may be physically
located. We partition the operating region
into a set of discrete regions R, indexed by
r ¼ 1, 2, . jRj. Although our formulation al-
lows the use of any discretization scheme,
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our implementation assumes rectangular re-
gions arranged in a grid (see Figure 1).

Each AP has two radio devices. The Þrst
provides client coverage in the immediate vi-
cinity of the AP; the speciÞc coverage obtained
(e.g., shaded area in Figure 1) depends on sev-
eral factors including the local terrain. The
second radio creates a backhaul network be-
tween nodes (e.g., dashed lines in Figure 1).
Let A4 N 3 N denote the set of directed back-
haul arcs between nodes, with ßow along arc
i; jð Þ 2A representing the directed transmission

from node i to node j. In general, the wireless
nature of this network means that transmis-
sion along any of the backhaul arcs is possible,
although distance, terrain, and background in-
terference will dictate which of these arcs has
the transmission capacity to be useful. Follow-
ing Xiao et al. (2004), we assume APs are not
subject to self-jamming or interference from
other APs.

We identify a single node d 2 N as thehead-
quarters(HQ) node(see Figure 1), and assume

the network designer predeÞnes the location
of this node. (In what follows, we will assume
that node d is always the Þrst node in the set N.)
We assume the vast majority of client network
trafÞc will be directed to or received from the
HQ node, as this location will connect to the
Internet or other outside network, as well as
host email, domain, and storage servers. Hence,
we optimize our network for trafÞc ßow from
client service areas to the HQ node, though
our formulation is more general and allows
any number of APs to serve as the destination
for network trafÞc.

Calculating Client Coverage
The client coverage provided by a particu-

lar WMN topology is a function of its AP loca-
tions. We calculate the received signal strength
(RSS)r ir (measured in dBm) from the trans-
mitter at node i to the center of region r using
the standard link budget formula (Olexa 2005,
p. 79):

Figure 1. Discretized operating region and wireless mesh network (WMN). Circles denote the location of
access points (APs), shaded regions denote the areas with sufÞcient client coverage (i.e., zero coverage
shortfall), and dashed lines denote the backhaul network. In this example, there is a single headquarters
(HQ) node (labeled d) and four APs (labeled 2, 3, 4, 5). The locations of the APs are represented by the vector
l 5 l d; l 2; l 3; l 4; l 5ð Þ.
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r ir 5 poweri 1 gaini 2 lossi 2 losspath

2 lossmisc1 gainr 2 lossr (1)

where poweri is transmitted power (in dBm)
from node i; gaini and gainr are respectively
the gains (in dBi) of the transmitter at node i
and receiver in region r; lossi and lossr are re-
spectively the losses (in dB) from cables, con-
nectors, etc., of the transmitter and receiver;
losspath is total path loss (in dB) from l i to the
center of region r; and lmiscis miscellaneous loss
(in dB), such as fade margin. All of the terms
in Equation (1) are input data, determined by
the equipment and environment, except for the
total path loss losspath, which depends on the
position of the transmitter and receiver in
question.

Our formulation allows any model for com-
puting losspath, including the Irregular Terrain
Model (ITM) (Longley and Rice 1968) and
Hata-COST 231 (COST 1999). Our preferred
model is the Terrain Integrated Rough Earth
Model (TIREM) of Alion Science & Technology
Corporation (http://www .alionscience.com). This
model samples terrain elevation to compute path
loss, and considers the effects of free space loss,
diffraction around obstacles, atmospheric ab-
sorption and reßection, and other factors.

We adopt and modify He et al.Õs (2004) con-
cept of power coverage to quantify the value of
client coverage. We specify for each region
r 2 R a minimum coverage thresholdt r in dBm;
any received signal r ir above this threshold
from AP i to region r qualiÞes as adequate cli-
ent coverage. The difference between r ir and
t r represents a quantity we deÞne as coverage
shortfall at region r from node i. Summarizing,
for each location r 2 R and each node i 2 N,
we have

ðCoverage ShortfallÞir [ ðt r 2 r ir Þ1

where ()1 denotes the projection onto the non-
negative real line. Because a positive differ-
ence represents inadequate client coverage,
we wish to minimize this quantity. We need
consider only the minimum coverage shortfall
from each node i, as we assume each client
device can connect to only one AP. We sum
over all r 2 R to calculate total coverage short-
fall, denoted Zcoverage:

Zcoverageðl Þ5 ðTotal Coverage Shortf allÞ

[
X

r2R

min
i2N

ðt r 2 r ir Þ1 : (2)

The total coverage shortfall is a function of
node locations l . By allowing only positive
terms, we disallow the beneÞt of transmitting
excessive power to any given coverage location.
This method also limits the amount any cover-
age location can be penalized: no more than
t r. Note it is possible to increase the relative im-
portance of any region r by multiplying the re-
gionÕs coverage shortfall by a positive scalar.

Calculating Network Flow
Given Þxed AP locations l i ; i 2 N, we use

the Shannon capacity formula (1949) to calcu-
late the transmission capacity along each arc
i; jð Þ 2A. This formula establishes a theoretical

upper bound on transmission capacity in bits
per second (bps). Following Xiao et al. (2004),
the capacity from node i to node j is:

ðCapacityÞij 5 bandwidthlog2 11
gainij

noiseij lossij
Pij

� �

" ði; jÞ2A (3)

where bandwidthis channel bandwidth in Hertz;
gainij is the sum of the antilog gain terms ( gaini

and gainj from Equation 1); noiseij is the back-
ground noise power in watts from node i to node
j; and lossij is the sum of the antilog loss terms
(lossi, lossj, losspath, and lossmisc from Equation 1).
Again, these input data depend on the place-
ment of APs, which we assume are at known,
Þxed locations. In theory, we assume that all
backhaul arcs are possible (i.e.,A 5 N 3 N).

We assume each AP has limited total trans-
mission power denoted pi (in watts), and we
deÞne Pij to be the amount of pi used to trans-
mit from i to j. Thus, each AP is additionally
constrained by

X

j:ði;jÞ2A

Pij # pi : (4)

Here, Pij is a decision variable representing the
AP-to-AP transmission power from node i to
node j, whereas the transmission power for
AP-to-client communication poweri is a (con-
stant) input parameter.
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We measure each individual trafÞc ßow
in bps. We adopt the approach of Xiao et al.
(2004) to quantify the value of total network
ßow according to a log-utility function that
places a zero value on unit ßow, positive values
on ßows greater than one, and negative values
on ßows less than one. We note that a zero
ßow has an inÞnite penalty and therefore there
is strong incentive to ensure that each origin-
destination pair receives some ßow. DeÞning
Sd

i to be the total ßow originating at node i and
destined for node d, we have

ðUtility of Total Network Flow Þ[
X

d

X

i6¼d

log2ðS
d
i Þ:

(5)

Collectively, we obtain our version of the Xiao
et al. (2004) SRRA problem for given AP loca-
tions l as shown in Figure 2.

Given AP locations l , this is a multicom-
modity network ßow problem. The objective
function (S0) maximizes the total utility of
trafÞc ßow between each origin-destination
pair. Constraints (S1) ensure balance of ßow
at each node. Constraints (S2) deÞne the total
ßow along any arc as the sum of all trafÞc
ßows along that arc. Constraints (S3) ensure
that total ßow along any arc is less than
or equal to its capacity. Constraints (S4) en-
force a budget on the total transmission
power at each AP. Constraints (S5)-(S8) ensure
nonnegativity.

Xiao et al. (2004) observe that the SRRA
problem can be solved via dual decomposi-
tion because of its layered structure. SpeciÞ-
cally, by introducing the Lagrange multipliers
aij " i; jð Þ2 A for the capacity constraint (S3),
we obtain the partial Lagrangian

Figure 2. Formulation SRRA.
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LðS; F; T; P; aÞ5
X

d

X

i6¼d

log2ðSd
i Þ

2
X

ði;jÞ2A

aij

�
Tij 2 bandwidth

log2 11
gainij

noiseij lossij
Pij

� ��
:

(6)

The objective function of the dual problem is:

VðaÞ5 max
S;F;T;P

LðS; F; T; P; aÞ: (7)

One immediate observation is that this dual
function can be evaluated separately in the net-
work ßow variables S, F, and T and the com-
munications variable P. Thus, the problem of
evaluating the dual function separates into
a network ßow(net) subproblemand a resource allo-
cation(comm) subproblem, that is:

VðaÞ5 VnetðaÞ1 VcommðaÞ (8)

where

VnetðaÞ5 max
S;F;T

X

d

X

i;i6¼d

log2ðSd
i Þ2

X

ði;jÞ2A

aij Tij

s:t:
X

i:ðj;iÞ2A

Fd
ji 2

X

i:ði;jÞ2A

Fd
ij 5 Sd

j " j 2 N; " d2 D

Tij 5
X

d

Fd
ij " ði; jÞ2A

Sd
i $ 0 i 6¼ d

Fd
ij $ 0 " ði; jÞ 2A;

" d2 D

Tij $ 0 " ði; jÞ 2A

VcommðaÞ5 max
P

X

ði;jÞ2A

aij bandwidth

log2 11
gainij

noiseij lossij
Pij

� �

s:t:
X

j:ði;jÞ2A

Pij # pi " i 2 N

Pij $ 0 " ði; jÞ 2A:

The Lagrange dual problem is thus:

min
a

VðaÞ5 VnetðaÞ1 VcommðaÞ

s:t: a $ 0:

(9)

The dual function V(a) is always convex. Xiao
et al. (2004) assume that a feasible solution
(S,F,T,P) exists such that the nonlinear capacity
constraints hold with strict inequality (known
asSlaterÕs condition, see Boyd and Vandenberghe
2004, Sec. 5.2), and therefore conclude strong
duality holds and the optimal value of this dual
problem is equal to the optimal value of the pri-
mal problem. However, they also note that the ob-
jective function of the primal problem is not
strictly concave in the variables F and T, and thus
the dual function is only piecewise differentiable.
As a result, the dual problem is a nondifferentiable
convex optimization problem, to which they ap-
ply the subgradient method to obtain a solution.

We also apply the subgradient method to
solve this problem, running it only a Þxed
number of iterations (typically 500) to obtain an
approximate solution. Each iteration of the sub-
gradient method might not necessarily improve
the dual objective value, but each iteration re-
duces the optimality gap (Bertsekas 1999, p. 621).

As noted by Xiao et al. (2004), both subprob-
lems are convex optimization problems with
special structure lending themselves to very ef-
Þcient computational techniques. We solve the
network ßow subproblem as a multicommodity
network ßow problem, and use an algorithm
described by Luss and Gupta (1975) to solve
the resource allocation subproblem. Further de-
tails of the subgradient algorithm and its imple-
mentation to solve this problem are available in
Nicholas (2009, pp. 35Ð45). We use the approxi-
mate solution to the SRRA problem as a quanti-
Þcation of the value of network ßow.

SRRAD C Formulation
The overall SRRA1 C problem minimizes

Zðl Þby choice of AP locations l i ," i 2 N. We cal-
culate the overall performance of a WMN as:

Zðl Þ[ Zcoverageðl Þ2 wZf lowðl Þ: (10)

That is, the overall objective function is a linear
combination of client coverage (calculated as
client coverage shortfall) and network ßow.
The objective function is in units of dBM, al-
though the objective value has no direct practi-
cal interpretation. Rather, the objective value
serves as a relative method of comparing differ-
ent network topologies.
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We use w as a positive scalar (in units of
dBm/log 2 bps) representing the relative weight
placed on network ßow. Larger values of w in-
crease the value of network ßow, and in general
increase the appeal of more compact network
topologies. We typically use w ¼1, meaning that
we weight these terms equally. See Nicholas
(2009, pp.78Ð80) for a detailed sensitivity analy-
sis of w.

Solving the SRRAD C Problem
One method of solving the SRRA1 C prob-

lem is simply to restrict APs to a discrete set of
Þxed locations (e.g., the center of each location
r 2 R) and then try all possible network solu-
tions via complete enumeration. This requires
that we calculate the overall objective value for
each unique topology and keep track of the
best one(s). Recall that there arejRj operating re-
gions and n APs, with the position of the Þrst AP
(i.e., the HQ node) already Þxed. Hence, the to-

tal number of unique topologies is
jRj

n 2 1

� �
,

and the solution space grows exponentially in
both jRj and n. Clearly, we need a more efÞcient

method of solving SRRA1 C if it is to be used for
fast design of WMNs. We show how to use the
DIviding RECTangles (DIRECT) algorithm of
Jones et al. (1993) to meet this need.

Let l k 5 l k
1; l k

2; � ; l k
n

� �
denote the positions

of the APs in iteration k of the algorithm. We
follow the algorithm in Figure 3 to iteratively
select l k for increasing k until we reach a speci-
Þed stopping criterion (number of iterations).

This iterative scheme is a modiÞed version
of DIRECT, which is a sampling optimization
algorithm based on Lipschitzian optimization
(Horst and Hoang 1996, pp. 43Ð46) that iteratively
divides the multidimensional solution space
of AP locations into smaller hyper-rectangles
(hence the name DIviding RECTangles). Un-
like Lipschitzian optimization, DIRECT does not
require a priori speciÞcation of the Lipschitz con-
stant, nor knowledge of the objective function
gradient, which makes it appealing in solving
this non-differentiable, non-convex, nonlinear
problem.

In this implementation, DIRECT samples
candidate solutions within a unit hypercube
deÞned by the multidimensional SRRA 1 C so-
lution space. The dimensionality of this space

Figure 3. Algorithm DIRECT for SRRA 1 C.
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is based on the number of APs n and the number
of variables necessary to deÞne the location
of each AP (in our case, a pair of variables for
northing and easting). The vector l k represent-
ing the locations of all APs at iteration k is a
single point in this multidimensional solution
space.

The initial solution l 1 is chosen as the exact
center of the solution space. During each itera-
tion, DIRECT divides the solution space into
smaller hyper-rectangles, based on the unex-
plored territory in the solution space and pre-
viously calculated objective function values.
From any incumbent solution, the algorithm
samples other locations in the solution space
along each dimension, computing the corre-
sponding objective function value for each. The
largest hyper-rectangles are placed around
those sampled points with more desirable ob-
jective values because they have more unex-
plored territory and hence greater potential for
improvement. During each iteration, the next
candidate solution l k depends on the previously
stored solution values and the size of their asso-
ciated hyper-rectangles. See Nicholas (2009, pp.
49Ð63) for more details on our implementation
of DIRECT.

The DIRECT algorithm is guaranteed to
converge eventually to a global optimum if the
objective function is continuous (Jones et al.
1993). To meet this requirement, we use bilinear
interpolation on the discrete elevation points
within our map data to smooth the terrain
surface.

One drawback of the DIRECT algorithm is
that the optimality gap at any iteration is not
known. Given the Lipschitz constant, we can
calculate a lower bound, but in our application
Þnding this constant would be as difÞcult as
solving the problem to optimality. Another
drawback is that the rate of convergence cannot
be calculated exactly. That is, while DIRECT
is guaranteed to converge, we do not know a
priori how long this will take. In general, this
is a serious concern, and it could mean that
our algorithm runs too slowly to be of practical
help. Fortunately, we observe in practice that
it quickly yields solutions that are very good
when compared to those obtained by simple
techniques like exhaustive enumeration over a
Þnite grid of candidate solutions. Though there

is no guarantee our technique will always pro-
vide good solutions, it is a signiÞcant advance
over the kind of trial and error currently used
by network designers in the Þeld.

As a crude means of estimating an optimal-
ity gap for a given solution, we can calculate
a lower bound to the SRRA1 C objective value
by considering an idealized network with zero
coverage shortfall and no propagation loss be-
tween APs. Such an idealized network does
not reßect the main tension in our model: the
need to spread APs to get good coverage versus
the need to keep APs close together to get good
backhaul capacity. The laws of physics and tech-
nical limitations of the APs prevent us from
being able to build this idealized network in
practice, so this lower bound is weak, but the
value provides a point of reference against which
to gauge the progress of the DIRECT algorithm.

SRRAD C Decision Support Tool
We implement the algorithm DIRECT for

SRRA1 C in a decision support tool built us-
ing Microsoft Visual C 11 . The standalone pro-
gram displays terrain data, which can be of
any scale and any grid-based format, such as
Universal Transverse Mercator (UTM) (Defense
Mapping Agency 1989). The user can input all
required variables, including drawing the de-
sired coverage region(s) directly on a graphical
display of the terrain. The program supports
three different modes of calculating path loss
(inverse-square, Hata COST-231, and TIREM).
After solving the problem, the Þnal AP loca-
tions, connections between APs, and coverage
areas are depicted atop the map. Note our im-
plementation does not require any third-party
solvers or additional software.

ANALYSIS AND RESULTS
As case studies for our analysis, we con-

sider two different operating regions in Fort
Ord, California. These regions are respectively
45 acres and 145 acres, and the terrain consists
of gently rolling hills, grass Þelds, pavement,
and some buildings. We use terrain information
from the United States Geological Survey (USGS)
via MapMart (http://www.mapmart.com).
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Case Study 1: 3-node network
on 45 acres in Fort Ord, California

We begin with a 45-acre region (see Figure 4),
which we divide into a grid of size jRj ¼ 653 33¼
2,145 rectangles. We place the HQ AP directly
in the middle of the operating region and solve
SRRA1 C for a network of three APs using
complete enumeration. Enumeration guarantees
that we will Þnd the optimal solution to this
restriction of the original problem (in discrete
space), but the method is extremely resource-
intensive as the number of unique solutions
grows exponentially in both locations jRj and
number of APs n. Recall the HQ node location
is determined in advance, so building a network
of n nodes means that we need to locate n2 1

APs. We enumerate all
2145
32 1

� �
¼ 2,299,400

unique solutions in eight hours, 38 minutes,
and 55 seconds. Figure 5 ranks the solutions by
their objective value.

Figure 5 shows that a small number of solu-
tions are signiÞcantly better than the others.
SpeciÞcally, about 0.29% are within 50% of
the best solution obtained, 1,834.8. Again, this
solution value has no absolute physical inter-
pretation and serves only to allow relative com-
parison. However, this shows that the best
solutions are rare among the possible solutions.

We then run DIRECT on this problem (see
Figure 6) and stop it at each iteration 1, 2, . , 10

to record the current overall objective value.
These values are compared to our lower bound
for this network (dashed line) and the best
value found by enumeration (solid line).

In only 2.05 seconds, the DIRECT algo-
rithm obtains a bettersolution than was found
by enumeration in 8 hours and 39 minutes.
This is possible because enumeration considers
only discrete locations within the operating re-
gion, while DIRECT places APs continuously
at any location in the region. Because it is con-
tinuous, DIRECT is guaranteedto Þnd a solu-
tion at least as good as enumeration as the
number of iterations approaches inÞnity. In
this limit, DIRECT will almost certainly Þnd a
better one, because it considers an increasingly
dense subset of solutions and will eventually
sample to within an arbitrary distance of any
point (to include the global optimum) within
the solution space.

In practice, networks with more APs have
more dimensions and a corresponding greater
number of sub-hyper-rectangles. Hence for larger
networks the DIRECT algorithm must be run
for more iterations to Þnd good solutions.
There is no clear way to avoid this when com-
paring networks of varying numbers of APs.
However, by running it until we reach the com-
putational limit of our implementation of the
algorithm, we provide the best answer possi-
ble. In this case, running DIRECT for up to 15
iterations does not result in a better solution.

Figure 4. Elevation proÞle of 45-acre Ford Ord region.
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Case Study 2: 5-node network
on 145 acres in Fort Ord, CA

We next examine a network of Þve APs
over a 145-acre section of Fort Ord. This net-
work is too large to consider using enumera-
tion, so we solve only using DIRECT. We again
stop the algorithm at each iteration 1, 2, . , 30
to record the current overall objective value.
Figure 7 presents the results.

The best solution value is computed by
DIRECTafter 30 iterations (796.02) and is within
an order of magnitude of the lower bound
(71.413). Although we cannot certify optimality,
this boundary places a limit on how far we are
from the global optimum. Here, we are willing
to exchange optimality for speed: we obtain this
solution after 22 iterations of DIRECT in slightly
more than 17 seconds; to solve this problem
using our enumeration technique would take

Figure 6. Comparison of solutions obtained by enumeration and DIRECT on actual terrain.

Figure 5. Rank-ordered solutions for a 3-node network in 45-acre Fort Ord region obtained using enumeration.
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more than 104 years. Of course, making this
tradeoff makes sense only if the solutions we
obtain are useful.

SRRAD C Validation: Does It Work
in Practice?

The validity of solutions to the SRRA 1 C
formulation, speciÞcally our evaluation of net-
work performance, rests on the accuracy of
radio wave propagation and network through-
put predictions. To validate our use of TIREM
to predict received signal strength over real ter-
rain, we conducted several Þeld experiments
in collaboration with the Hastily-Formed Net-
works (HFN) Research Group at the Naval Post-
graduate School.

First, we conducted two point-to-point
network tests in Ford Ord over generally ßat
terrain consisting of pavement and packed
gravel, with no trees or other obstructions to
the line of sight (LOS) path. We deployed
Cisco AP1000-series Aironet WMN access points
(Cisco 2009) broadcasting at the 5.8 GHz and
2.4 GHz operating frequencies (Figure 8 left and
right, respectively) and used a laptop computer
with an internal Intel wireless transceiver to
measure the received signal strength. We com-
pared these observations with TIREM predic-
tions at ranges from 0 to 465 meters.

We observe that the measured values are
reasonably close to the predicted ones, with the
exception of measurements at 2.4 GHz from
300 meters and beyond. This is likely due to the

presence of nearby buildings at that end of our
testing range: the radio waves may have re-
ßected off the buildings and provided a stronger
signal than would have otherwise been re-
ceived. This suggests a potential weakness in
the use of TIREM for urban environments. Over-
all, however, these two tests demonstrate that
TIREM is capable of making very reasonable
received signal strength predictions using our
testing equipment in a real-world environment.
See Nicholas (2009, pp. 69Ð75) for detailed testing
results. In particular, these results are relatively
accurate over ranges (i.e., up to 250 m) consistent
with having Þve APs located uniformly across
a 145-acre area.

However, the most important form of de-
sign validation is whether you can actually build
and operate the system of interest. To determine
if the topologies obtained from SRRA 1 C actu-
ally function in realistic environments, we con-
ducted another network Þeld test in the 45-acre
rectangular region in Fort Ord, mentioned ear-
lier. Elevation here ranges from 143 to 226 feet
above sea level. The left side of Figure 9 is a
Google Maps image of the operating region.

We used the SRRA1 C Decision Support
Tool to generate network topologies of three,
four, and Þve APs. We deployed the same Cisco
AP1000-series Aironet WMN APs, which use
the 802.11b/g protocol (2.4 GHz) to provide cli-
ent coverage and the 802.11a protocol (5.8 GHz)
to provide the backhaul network. We posi-
tioned each AP using a Global Positioning Sys-
tem (GPS) device, and placed atop a two meter
mast. The right side of Figure 9 depicts our setup.

Figure 7. Example comparing DIRECT solutions to a lower bound.
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When required, we made small adjustments
(within Þve meters) to AP position to avoid
transmitting directly into trees, etc. We used
small portable generators and car batteries as
power sources.

Figure 10 displays the topologies prescribed
by the SRRA1 C Decision Support Tool for the
4-node and 5-node networks. After building
each network, we used a laptop to measure the
actual throughput from each AP to the HQ
node (d). The results appear alongside each
node in Figure 10.

The network topologies in Figure 10 worked
similarly to our theoretical predictions. The
backhaul network trafÞc from each AP to the
HQ node followed exactly the routes predicted
by SRRA1 C. The actual throughput from each

AP to the HQ node was within an order of
magnitude of our predictions, but typically
exceeded them. While the throughput values
predicted by SRRA1 C were based on the as-
sumption that all APs were transmitting con-
currently, in our experiments we were limited
to measuring the throughput from each AP in-
dividually. Because a lone transmitting node
does not have to compete for backhaul network
resources, it is natural that observed through-
put should exceed prediction. Given our sim-
plifying assumptions about the way the APs
work (e.g., ignoring the signal processing tech-
nologies that try to compensate for environ-
mental conditions), the level of correspondence
between the predicted and observed values
exceeded our expectations.

Figure 8. Validation of TIREM as a model for received signal strength. At 5.8 GHz (left) and 2.4 GHz (right), we
observe that our implementation of TIREM reasonably predicts actual received signal strength in point-to-point
Þeld tests.

Figure 9. Field testing in Fort Ord, California. Left: Aerial view of 45-acre Fort Ord operating region [image
courtesy Google Maps (http://maps.google.com)]. Right: Wireless mesh access point, mast, and portable generator
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Not all of our Þeld tests were successful.
In the three-AP scenario (not shown), a node
was unable to connect with the HQ node and
the throughputs were lower than expected. We
attribute this to the presence of intervening fo-
liage and man-made obstructions, which are not
considered by the TIREM model. Nonetheless,
our Þeld testing results show that SRRA1 C
solved with DIRECT can quickly provide work-
ing network designs with no guesswork. See
Nicholas (2009, pp. 92Ð102) for a detailed de-
scription of these tests and results.

How Many APs Do We Need?
The SRRA1 C problem allows us to deter-

mine where to place a known number of APs
within a given operating region. But an equally
important question is: How many APs do we
need?

To address this question, we again consider
the 45-acre section of Fort Ord and we use
DIRECT to solve for networks of 2, 3, . , 8
APs using weight w ¼ 1, running the algorithm
until we reach the computational limit of 32
hyper-rectangle divisions (the maximum possi-
ble using double-precision ßoating point num-
bers). We plot the best solution obtained for
each network as a function of the two competing
terms in the overall objective function (Equation
10). The information presented in such a plot
serves two purposes. First, it provides informa-

tion on the relative ÔÔgoodnessÕÕ of a particular
solution by comparing it to the bounds of net-
work ßow and coverage shortfall. It also
provides a quantiÞcation of the value of addi-
tional APs and the appropriate number of APs
for a particular scenario.

Figure 11 presents the best solutions to net-
works having two to eight APs in the 45-acre
Fort Ord region and illustrates the relative
contribution of client coverage and network
ßow to the overall objective value. We observe
a decreasing gain in coverage with more than
four APs, which we interpret to mean that four
APs are sufÞcient to provide coverage to the
majority of that region. As expected, additional
APs provide greater network ßow.

Observe the main improvement from the
optimal 2-node network to the optimal 3-node
network is a decrease in coverage shortfall
(and in fact there is a slight decrease in delivered
network throughput). The optimal 4-node net-
work provides signiÞcantly higher delivered
network throughput while also reducing the
coverage shortfall. For networks of size Þve
and larger, additional APs primarily increase
delivered network throughput. Interestingly, it
appears that only after achieving adequate cli-
ent coverage does it make sense to use addi-
tional APs to enable greater network ßow.

This chart helps answer the questions
ÔÔHow good is our network?ÕÕ and ÔÔHow much
better can we do?ÕÕ This information is of

Figure 10. Network topologies and their measured performance during Þeld tests. Circles denote position of
each AP during Þeld tests of 4-node (left) and 5-node (right) networks. For each node, we report the actual
(and predicted) throughput from that node to the HQ node, denoted d. Arrows represent the direction of actual
point-to-point wireless transmissions along the backhaul network, which exactly matched the predicted ßows.
For the 5-node network, SRRA1 C predicted that node 5 should split its transmission in two directions; we ob-
served that this node alternatively sent ßow in two directions.
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considerable value to a decision-maker, and the
speed of our SRRA1 C algorithm makes this
analysis possible.

CONCLUSION AND
RECOMMENDATIONS
FOR FUTURE WORK

In this paper, we present a technique for de-
signing WMNs that maximizes client coverage
area while considering network service and ra-
dio propagation over terrain. Our SRRA 1 C for-
mulation does not require information about
device-speciÞc characteristics such as radio
wave modulation scheme or network routing
protocol. Although these simpliÞcations may
reduce the predictive power of the formula-
tion, it is possible to add such considerations.
Further, this general approach makes it very
easy to quickly model networks of diverse de-
vices and capabilities.

Using our decision support tool, we com-
pare the performance of enumeration and the
DIRECTalgorithm in solving the SRRA 1 C prob-

lem. We show that the DIRECT algorithm can
Þnd good solutions much faster than complete
enumeration, and is capable of Þnding better so-
lutions than enumeration because DIRECT con-
siders a continuous solution space. DIRECT is
guaranteed to Þnd the optimal solution to the
SRRA1 C problem as the number of itera-
tions goes to inÞnity, and each iteration of
DIRECT provides a solution at least as good
as the previous.

Although we cannot provide certiÞcates
that guarantee the optimality of any SRRA 1 C
solution, proof of optimality in this domain is
not necessary and in fact wastes critical time.
In practice, operators need good working WMN
topologies quickly, and our technique provides
exactly this.

Our techniques and associated decision sup-
port tool can be used by HA/DR personnel and
combat communications planners to quickly de-
sign WMNs to support their speciÞc operations.
The software runs on a laptop computer, does
not require any additional software or solver
licenses, accepts map data in a generic Þle for-
mat that is widely available on the Internet,
and creates network topologies for virtually

Figure 11. Example bi-objective plot of SRRA1 C for the 45-acre Fort Ord region. Each point represents our best
solution to Zðl Þfor the speciÞed number of APs, solved with equal objective weight given to the coverage and
ßow terms (w ¼ 1). Beyond four APs, we observe decreasing beneÞt in coverage shortfall and increasing beneÞt
in delivered network ßow.
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any type of terrain and mesh AP device. This
technique requires very little technical expertise
and no guesswork.

Future work could investigate the use of
higher-Þdelity radio propagation and network
trafÞc models, and compare the beneÞt of
increased accuracy to any additional computa-
tional workload. In particular, we anticipate the
need to investigate radio propagation models
that consider vegetation and man-made obstruc-
tions, which are critical in calculating radio prop-
agation in urban environments.

We have shown that complete enumeration
has limited usefulness as a solution technique
for comparison to DIRECT. Future work could
compare DIRECT to other sampling algorithms
or heuristic approaches. Future work could
also explore the use of DIRECT in a parallel-
or multiple-processor architecture as DIRECT
naturally lends itself to this type of computa-
tion (see, e.g., He et al. 2004).

We are currently exploring the use of
SRRA1 C with DIRECT to build larger net-
works (of 100 APs and more) and networks
with more than one trafÞc destination. Assessing
the impact of disruptions (accidental or inten-
tional) on the design of WMNs (e.g., Grotschel
et al. 1995, and Shankar 2008) is a topic that also
warrants additional study.
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