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LOT

If we assume that i ation of elements is made up

of several subgroups, ea< w i under-

d istrlbut ion, and the several subgroups mixed together

according to cerl . , we would have an instance

of a mixture of distributions; i.e., the underlying distri-

bution for the entire population would be a mixture of the

distributions for each subgroup.

A study is made of the more recent developments in the

theory of mixtures of distributions. The problem of

ident if lability in mixtures is considered in some detail.

The special cases of linear mixtures and the distribution

of sums of independent random variables are also considered.

Finally, the problems encountered in estimation of parameters

in mixtures are discussed.
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MIXTUR . .

1 . Introduction.

There exists a considerable body of literature relative

to the theory of mixtures of probability distributions, and

several results have been published relating to the statis-

tical estimation of parameters when the underlying distribu-

tion has been assumed to be a mixture of distributions.

There seems to be a growing interest in this problem, and

one is certainly justified in studying it in its general form

inasmuch as the general theory includes as a special case the

classical statistical assumption of a single underlying dis-

tribution function for the population under study.

By way of introduction, we will consider some specific

examples to show how mixtures of distributions come up quite

naturally in statistical investigations.

Historically, the problem seems to have been studied

first by Karl Pearson about 1894 [8] . He noticed that data

(measurements) taken on various collections of biological

specimens did not agree too well with the Gaussian distribu-

tion when plotted in histogram form. It was quite apparent

in many instances that a definite bimodality existed where

one would have expected unimodality. Pearson postulated that

the underlying density function was of the following form

1'umbers in square brackets refer to bibliography.





f(x) = T^expf- \ ^|+is4 expf- | ~^f

and he tried to estimate the parameters ot, /^-,
, /-/ g , CT^, and

(7*2 using the method of moments. He was led to an equation

of ninth degree and had considerable iifficulty calculating

the roots of the polynomial. Pearson called this a problem

of "dissection." Kis aim was to "dissect" the mixture of

these two normal density functions into its components and

then try to infer what could have caused such a mixture.

As a second example of mixtures of distributions, we

draw on a familiar problem in life testing or reliability

theory. It has been observed that in life tests of electron

tubes the initial failure rate is relatively high and

decreases as the population under test ages. In general,

the failure rate becomes constant for a time and then

increases with age. Such a behavior suggests that the popu-

lation might be a mixture of several subpopulations and that

the underlying distribution function might be a linear sum

of several distribution functions.

Of further interest in devices such as electron tubes is

the phenomenon that devices fail for different reasons and

such a population of elements could be classified according

to cause of failure. Then, assuming the underlying popula-

tion is composed of such a mixture, one might try to estimate,

from a sample of failures classed as to cause of failure, the

proportion which will fail due to each cause in order to





determine an allocation of effort in improving the

device.

In statistical decision theory, as developed by tfald,

we find, for example, in the case of a stochastic process

where the random variables are assumed to be identically

and independently distributed according to F(x;6), that 6

is also assumed to be a random variable with its own prob-

ability law G(0). Under this assumption, the random var-

iables are in reality assumed to be distributed according to

/p(x;0)dG(H(x) = / P(x;6)dG(e),

A special case of the mixture problem may be viewed as

follows: suppose we assume that the population under inves-

tigation has an underlying distribution of known form F(x;0)

and that the parameter is also a random variable with distri-

bution G(0). If we further postulate that G(0O ) = Pr[e=6 ]=l,

then the underlying distribution is

;F(x;6)dG(9) = F(x;0 ).

What we have done here is tantamount to assuming that the

underlying distribution is of a specified form, with 8 a

fixed value not subject to variation (in a probabilistic

sense), and this amounts to assuming that the distribution

is, say, normal with mean // Q and standard deviation CT , or

exponential with parameter 9 .

In this paper we propose to discuss the theory of mix-

tures of distribution from a far less general point of view





usi; rate the

iseful results. ie

then consider the problem of ident ifiability some

of the results in this area determine specifically which of

the moi rd distributions are identifiable. We then

look cial class of mixing distributions and determine

some algebraic properties of iced class of mixtures.

A result analogous to the classic.':;.! reproductive property

of certain distributions is presented for a certain class

of mixtures in Section 7. We then take up the problem of

estimation of parameters in mixtures of distributions.

2. Theory.

B ir 'iv oi )tation we let h - ?(";^): oifcS j

a family al distribution functions indexed

by a real m-dimensional vector ot.,
^'

L

denotes Euclidean

m-space. Alt . 1 . bricted to one-,

dimensional distribution functions, the extension to

n-dimensional distribution functions In bin

usual manner. Let x be a point in 2
L and let B denote

(T-field of 3orel ^exs in E
1

. Define 3:. =
j

. i
J

let

// be any pr i iure on B c Ihe . t - ction

( )= /*<Sx).

is the distributioi H -

if F(x) E
1

,





that

F(x) = A*(3x).

We denote the operation of Lebesque-Stielt jes integration

relative tc jure// by

CO

J^ f(x)d// = Jf(x)d?(x).
^3

However, all the results that follow may be . inte-

gration in the Riemann-Stielt jes sense with little or no

modification to the hypotheses of the theoi

To illustrate this notation, we might consider the

family of exponential distribution functions (d.f. ! s)

<?f =JF(x;ol)= l-expf-ocxj :d>0 x>o|.

In this case oL is one-dimensional and restricted to o

values. Each value of o(. determines one specific d.f . in the

family and £\ consists of all such d.f.'s.

Definition 1. If G is a d.f. defined over E
133

, then

= JF(x;o0dG(cO

is called a mixture of the family ^ = \i? (x ;ct)| , and more

specifically a G-mixture of £i .

Definition 2. A G-mixture of 3* , say H, will be called

identifiable if, for any d.f. G* we have

H(x) = jF(x;oL)dG(d) = [j?{x',0L)dG (<k)

implies that G*G*.





&=Vj| fcributions

'f i family of mixtures of the form H=
J

FdG

.' & .')» i G a «& , then °ft will be called identifi-

able i: =mber H of ^ is identifiable. The mixing

distribution G may be either discrete, continuous or a com-

bination of both. In general, the cases which are useful in

statistics are those where G is either entirely discrete or

continuous; and in what follows, we have these cases in mind.

Definitions 1 and 2 really form the basis of this dis-

cussion inasmuch as they delineate the two general areas of

interest in the theory of mixtures of distributions. From

sal-probabilistic point of view, properties of

the mixtures H are studied when special properties are

attributed to the class /» or the class of mixing distribu-

tions <§£ , or both. The question of ident if lability must be

answered before meaningful statements (statistical) can be

made relative to the parameter o(. . Proofs of the results

cited in what follows may be found in the indicated ref-

erences. Proofs will be given when it is thought useful

and in those cases where theorems have been modified or ex-

tended.

3. General Results.

If we let p denote the space of all probability distri-

bution functio . lay consider the definition of a mixture

to be a tr 1 ion of an element F a P , relative to





$ [ = j
FdG. To

be useful in probability .

be desirable to have the range of such a transformation be a

subset of P . Robbins [l2] proves, in general, that this is

indeed the oase, and we bi

Theorem 1. Let %i = }F(x;ec) : oi t Emj be a family of

n-dimensional d.f.'s and let G be a d.f. defined

in l
,i!1

. Then the function H(x) =
J

F(x;«t)dG(<i)

is a distribution function in

As noted in the introduction, when a certain form is

assumed for the underlying probability distribution in a

statistical investigation, the idea embodied in definition 1

is really occurring. Such as assumption amounts to speci-

fying a mixing distribution G relative to a family 5/ .

When one assumes that the underlying distribution is normal

with mean // , and standard deviation <r , one is choosing

from the class of all mixing distributions a d.f. G which

concentrates all its mass at a single point (# »0^) in S
,

and we have

H(x)
=J J(^,(T)dG =

J(^ ,(T )

where <£(f,(r) is a generic element from the family of normal

d.f.'s. Theorem 1 assures us that under more general condi-

tions (i.e., more general mixing distributions) the closure

>lds.





(c. f . ) corre to any

d.f. is defined by

l/T(t) - /
s
dP(x)

where P is defined in

the Fourier integral, it is known that there is a one-to-one

correspondence between distribution functions and character-

istic functions.

next present some theorems concerning the structure

of the characteristic function, moment;";, Lsity func-

tion of a mixture.

Theorem 2. If H is a G-mixture of 2* =
j
F(x ;«.)] and \J/(t)

,

Xpit',0.) are the c.f.'s of H and F(x;«.), respec-

tively, then H(x) = / P(x;ot)dG(oL) if, and only

if, \ff{t) - J \ff{t ;*)&{*).

Proof: Suppose H(x) =
J
P(x;oL)dG(dL) . Then, since

le Kl we can use theorem 5 from Robbins [l2J

to ensure the following steps are valii:

\ff(t) = JVtx
>::(,) = fa«*dxj/'»(xi*)dG«)j

-«» _„, (.Zoo

-CD v
~£rv

e
lxxdTP(x;d) (dG(oi)

(t;*)dG(*).





If lf/{t) =
j t/f(t;cc)dG(oQ then, usj

J )J
" F( J*)]dG(oL)

= Je itxdx jj

r

p(x;^).dGU)|

Je
itxdH(x) = |/T(t)

this shows that H(x) = / F(x; oc)dG(ot) on allhut

hut sets of measure zero.

= /f(x;cTheorem 3. If H(x) = / F(x;ot)dG(aO then any existing moment

of H is a G-mixture of the family of moments

(of the same order) of 5* .

Proof: Let mr be the r^± moment of H and mr (d.) the r^

moment of F(x;o.) and assume mr exists. Then

= fxrdH(x) =/xr
dx j

fp(x;*)dG(«l)
•Zaa -CD * -Qo

= /|xr
dx?(x;cc)|dG(oc) = Jmr

H(x) -JP(x;oi)dG

nr (*)dG(<0

.

Theorem 4. Let H(x) = /F(x;oOdG(cO and suppose F(x;oc) is

absolutely continuous. Let f(x;oc) = dF(x;&)
t

3 x

Then the density function h(x) = JLw(x) is given
^x

' Jf(x;aby /f(x;a)dG(<).





. . Lability.

Suppose we consider the ca the underlying distri-

bution is a mixture of two binomial distributions. We assume

the probability of success in the first population is p-j_ and

in the second, p2 and that each population is well mixed

with the other to form the total population. We assume that

the proportion of elements from the first population is cL

where 0<.oc<l. The probability of success from such a mix-

ture is ck P]+ (1-<*.)P2 — P» and if n independent trials are

made, we have

Pr[k successes] = (£)p
k
(l-P

n-k

where the distribution is again binomial. As will be shown

later, such a mixture is not identifiable. Using a sample

from this mixture, we could estimate the parameter p, but

not the parameters p]_, P2, and «*. . The sampling scheme can

be reformulated in some cases and estimators constructed for

the' individual population parameters (see Blischke [l] );

however, it is not immediately obvious how this could be

done in all cases of mixtures.

This leads us to the study of what properties a family

<^=\P(x;ol)J must possess to lead to identifiable mixtures.

We let D stand for an Abelian semigroup under addition and

use Ii(I) to mean the integers, D(I+) the positive integers,

and r and R to denote the rationals and reals, respectively.

10





£l =|F(x;ot) ; o^ e Dj is called closed if Cox

o<., P g, D vie have

F(x;*) * F(x;^) = F(x;*+/?)

where * denotes convolution.

Additively closed families of distributions occur quite

frequently in applications inasmuch as the normal, binomial,

Poisson, gamma, and other distributions have the property.

Of course, in random samplir ce lies in the fact

that the distribution function of the random variable

Z = X+Y, where X and Y are independent random variables, is

equal to the convolution of the distribution functions of

X and Y.

and i/z^t), \l/2
{t) , and \f/(t ) the corresponding

ch. fen's, then H(x) = F(x)*G(x) iff l/f(t) =

If/lit) fait)* (Robbins [12] )

.

One of the uses of theorem 5 is the determination of families

h are additively closed. As an example, we consider the

family of normal distribution functions j?(x;u, (T)t . The

corresponding class of characteristic functions is

J
e
it^ - ItV2

}. Then

H(x) = F(x;p1 ,(T1 )
••• F(x;p2 ,Qr2 )

1





-

•

'

^(c)= e
it^, r ^t 2

(R /, s e
it(M!+^2 )- |t 2 ((T1

2+r22 ).

which is again the characteristic function of a normal distri-

bution function. 3o H(x ;/<•]_+/* .<p + (T
""

) = F(x ;/<-, ,0^ )* F(x;/-»2 , (T2 )

and the class of normal d.f.'s is additively clo

Teicher [15] determined that the class of mixtures of a

one-parameter family of add it ively-elosed distributions is

identifiable, and he gave conditions under which a class of

scale or translation parameter mixtures is identifiable.

We summarize these results in what folio ..

Theorem 6. If m = 1 and D is D(I+), D(r+ ), or D(R+)

,

]
/ ,' (x;oL)dG(ol)l of an addi-

tively closed family JF(x;ol): «. t
13

J is identi-

fiable.

The class of scale parameter mixtures consists of mixtures

of the form
)
|F(x<0 (<*) ( md the class of translation

(Jo J
r .CO A

parameter rnixtu: . those of t 2 .

j
/ F(x-oOdG(oC)f .

Theorem 7. Let F be a d.f. wh rates a family lF(x;ot)|

via a scale cha F(0+ ) = 0. If

the Fourier transform of F(y) = F(e^
r

) is not

identically zero in some non-degenerate real

interval, the class of scale bures

is identifiable.

12





Let x = e < = e"' . Let H(x)~. ! -

F(y) = F(ey), G(f) = 1-G(e-^),

for -a><y
, /3 < o=»

2 = jF(y-/*)dG(£) =
-oo

jF(eye-'
S
)d(l-G(e">

3
)) = /*P(x*)dG(«« ) - B

:e, F*G] = F-»G2 => F ,;
-% = F*G- H(x); and since

F and Gi i « 1, 2 are d.f.'s, we have, 3orem 5,

ifo-^* ^ ^V aud sir-oe "Aft*'" £e ltxdT(x) is not

identically zero (except possibly on a set of measure zero),

then ^ « l/r^ and G^ * \ * l-G^e"**) - 1-Gg(e-^) *

G, («0 = G,_(<*.) and the class of scale parameter mixtures is

identifiable.

Theorem 8. Let F be a d.f. which generates a family

|F(x;ol)J via a location change such bh

F(C+) a= 0. If the Fourier transform of F(x)

not identically zero in some non-degenerat
of

interval, the classAtranslation parameter

tures is identifiable.

Proof: The proof is essentially the same as in theorem

7. Uote that we assume the mixing distribution

is on the translation parameter only.

When we consider the class of mixtures of a specific

family of d.f.'s, we can divide the class of mixing d.f.'s,

<gL , into two mutually exclusive classes. Let Pt
denote the

13





. & d Of 013

in ere

oc & 3
m

. S] •• it : o i . ite

m-dimen :

. ,

'
. s Lb $ , i.e.

,

<&-£,, yield, in the strict s .' ^ .

u a class <?* and the induced class of

P tifiable. Let G" £ ^ - P
t
and let

K(x) = /F(x;ot)dG'" (<*). If H is in the class # , say

H(x) = F(x;<t ), then the d.f, G e £, , which concentrates all

its mass at 06*% yields H(x) = / F(x;od)dG(ot) = Y(x;u). But

this means G = G , since *H- is identifiable, and clearly

is impossible. 3o we have

Theorem 9. Let ^4 be identifiable with respect to <?* . Then,

no non-degenerate mixture of 5* is an element

of *.

This result establishes a necessary condition for identi-

1 lability. If we can find a non-degenerat< of a class

such that the resulting mixture is again a member of the

class, we know the c tixtures is not identifiable.

Theorem 10. Let Kj_ be a Gj-iaixture of $\ = |f(x;°OJ, i =1,2.

I an, H1^H2 (^=jF(x;oL)d(G1 ;:G2 )(0C)if,and only if,

</f is additively closed.

Proof: Suppose H1*H2 = ho. (G1 -:-G2 ) . Let H = N^Ho and
'

G = G;j/;-G2 , and suppose ^ is not additively

14





3 ! < P
(

I :;* )*F( ;/*,)¥*! - */• ). : /% (* )
=

/^G2
(^) = 1, then ::-,(:•:) =F(x,o(

o ) and K2 (x)=

P(x^ ). 0-
Gl

(t) = c
Uoto, (/TG2 (t)=

B^O,

and "by theorem 2 l7fG
= e 1

"

1
' (^o+^o ) . Hence,

jF(;:;oe)da= PCxjolo+^o) but H(x)=H1 -Ho(x) =

F(x;«£)*y(x f^ ) £ P(x;c< -f/^) is clearly a c

diction, and $4 mu Ltively closed.

ise 3i is additively closed. Let \J/(t) , \jj\(t)
,

2̂ (t), and yf(t;oC) denote the c.f.'s of H, H-j_, H2 ,

F(x;ol), respectively. Using theorems 2 and 5, we have

*A(t) - #L(t) 2̂ (t) = j^( t ;0L)dG1 (d).Jl/r(t;/?)dG2 (/3)

*
J Jl/rCt^+^dG-LCoLjdGgf/

8
)

"//^(t;V)dG1 (r-«dG2 (P)

= J^(t;v)dG(v)

and this implies that H is a G = Gi*J G2-mixture of

TJe note that in our statement of this theorem, in order

to ensure $* is additively closed, we have required that

H1*H2(^=/ F(x;c0d(G]/;: G2)(*<-)hold for the entire mixing cla

<§ 2.
and <& 2 , fa " ;ringent conditions are necessary,

15





I j
: ; in

;

.

'-

Ltlon

of a G^-mixture of <2» with a Gg-^-ixture of %

is a ( G^*&2 ) -mixture of ^ , then <// is additively

closed.

5. Additively Closed and Identifiable Distributio

Using some of the foregoing results, we will determine

which of the more standard distributio \ . i additively

closed class and which are identifiable.

The Poisson distribution is given by

P(x;X) » £ e
"* ^ , X>0.

,=

The characteristic function for the Poisson is

|/r(t ) = fe" x dP(x) = £ e
itx 3~> 4 = eMe«-l).

x=o

Letting P 1 (x;\)^p2(x;X2 ) = H(x), we find, using theorem 5,

that

&o k:

which is Poisson with parameter Xj+^2, and hence the Poisson

is additively closed. 3y the same argument we can

16





!
,

. - ) = Y, (§)

.:: C(x;o<,^);£ __ dx, with respect to oL .. /3

j square
Jo

a§l(|:

l/T(t)= _1 _

n , x
o" p

" 2
Ix, with respect to n.

(l--2it)''

Negative binomial: B~(x;r,p) = £ (
r+1c" 1 )pr (l-.. ) ,

respect to r.

0<t .).[ !___]

is G(x;\,r)=f
X

X (X i

'

h TTFT
5t go r.

17





1: I (x;m,ct) = |
1 :" s

[ V J dx, wit - i ct to

Jul and <"T.

|^(t) = e
itM-*t 2 0- 2

In vie 1 -7 of theorem 5, we can also examine the products

of characteristic functions of two members of a given class

of distribution functions to determine that the class is not

additively closed. For example, in the exponential class

F(x;\) , f
X
Xe"Xx dx ana \jj{t ) = >L_ .

Jo A--»-t

Vi . k> _ XiX2 and this is not the
^-it >2 -it AlX2

-'b2- it (Xi+A2 )

the characteristic function for the exponential with >ara-

meter X-.+ X0. Using the same argument, we see that the

Bernoulli, geometric, and Uniform c] - re not additively

closed.

By using theorem 6, we note that since X t D(R+) the

Poisson family is identifiable. Similarly, mial,

chi-square, gamma, negative b' ' il , 3auc Z .".lies

are identifiable. By using theorem 9, we note that if we

can find a non-degenerate mixture of a certain class

is again a member of that cla e can conclude the

class is not identifiable. For example, if we consider a

mixture of two Bernoulli distributions of the followin

IS





4- (l-d)B(

t . . .

' lotion of Ld be

l//(t) = di[p
1
e
it+ l-P1]

+ (l-^fpge^+l-Pg]

= [otP1
+(l-oL)p

2 Je
it+oL(i-p

1
)+(i-.ou)(l-p2 )

pe^+d-p)

and I-I(x) is again Bernoulli with p = ocp-^ + (1-°0P2 a3 a

parameter. Kence , the class of Bernoulli distributions is

not identifiable.

We will now observe rt "ty is

not necessary to L2 ;j. 1

distribution is not additively closed, but in

LP(x;V) = / Ve"vx dx = l-o
"Yx

V is a scale parameter; and as in E [15] , theo]

shows that GC^) -mixtures of JF(x;V)l are identifiable.

Since the normal family is additively closed with respect

to each parameter (si ), nay theorem 6 again to

conclude the family is identifiable for G(p) and G(o*) -mixtures

For a discussion of mixtures on both parameters, see Teicher

[17]

.

The foregoing results are summarized in the folio

table.

19





'
'

-

'

> .

v SUMMARY

Ber]

lial (:-) Yes

Ghi-square Yes

3x pon ent ial No

(r) Yes

Geometric

Binomial Yes (r) Yes

Yes (yU,Q~)

Poisson (>) Yes

Uniform

1. Tl .

mixing distribution is over the parainet

2. 1
'

'

.

distril
only. (Same foi

3. For t
• is

r
j

6 . 1 3

.

Lxtures of distribution

.

Definit :
'

. H(x) = I H ;*) ' M

20





. i
'-.

G £ cC is f

/
if oC < cu

G(ol) = < - Lf oC-, £<*-^
3 -i- - 2

1 if oLo < oC

The mixture relative to a class <)* = j
F(x ; <*){ is

a( .-) = i P(x;<ii) + I F(x;4-_) .

We first consider the case of finite linear mixtures; i.e.,

H(x) = Y a i F(x;ot 1 ). Olearly, H is again a distribution
1=1

function; and letting \J/{t;&>) Laract eristic func-

tion for F( ^

)

\j/(t) = \\ff{t ;c*)dG(«L)- £ &1 ^(t;^)

as the characteristic function of H(x). Also, the moments

of H are giver as functions of the moments of F(x;oO by

mr = X a i -h-^i)

where mr (o(.^) is the r^h moment '( ;#^) . e results

21





rev j

some of its

ra1 co pert ies

.

itx>Ge i => l//(t) = fe"s dG(x) = £ p. a*
J k=l

By theorem 5 if (J^, G2 ^ t > - = &j*&2 wil1 have a

characteristic function of the form

where r^ = pkQ^ and z
fe ^

= x
fe+y^.

But this is precisely the form of character 5

! i bions

of distributions in £ . dlearly, (G]/-G2 )*&3 = &!*( 62*^3)

and G-^'Go ~ ^2*^1* ^° con3 ideriii,': ; <£ as an algebraic

system with convolution as the binary composition defined

in <£ , we have

Theorem 12. Under the operation of convolution, £ is an

Abelian semi-group.

(o x<0
We also note that I(x) = \ is of the required form

^1 Oix

to be a distribution function in £ . I(x) has character:'

function

t/T(t) = Je
itx dl(x) = l.e it0 = 1
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7. £3 >les.

It i functions en^cy

a certain reproducti 1

j
, that the distribu-

tion function of the sum, >n , > tndom vari-

Ly , is

again distributed according to tha For exam

if Xj_, i = 1, 2 , . . . , n tributed

according to Gauss butions, say i»(^i»0"i), '"

?n = X3+X2+. . .+Xn will be distributed according to

1 1 1 1

Definition 6. A family of distribution :

3i-JF(x;<0] is called reproductive if F(x; ol)*F(x;^) =

F(x;g(«,,£)).

note that this Is only a rop-

erty of being add it It; :"r
(<x ,/*)- ^-^ ^ ,

have the trivial result that additive";

are reproductiv , rest, irhaps, is

Theorem 13. Let % Ltively closed class of -

:

but ion fu "U- iced





- X . ,H Is

.

Proof: L = L
1
*Ig lots by \J/{t) ,

^(t), ^/2
(t), and l//"(t-,oO the characteristic

functions of H, H^, Hg , and P(x;ol). B

have

(/^(t) = J^(t;ot )dl1 (ot) l/T2 (t) = Jl/r(t;oL)dL2 (^)

and by theorem 5

tA(t)= #,.00 ' */MO= J^(t;d)dL1
(oL) . J\jnt;*)dL2 (dL)

m
J Jlj/{llcL+P)d.L1 (oL)ciL2 (P)

a!j/^(t;Y)dL1 (Y-^)dL2 (p)

= J^(t;V)dL(Y)

and this implies H =
J

PdL. But L = L-^Lg and

since & is c] in of con-

volution, we have H £ 'H* .

As an example of the fo issume

the underlying distribution of a population to be a mixture

of two normal distributions.

) + ( -01)13 (/J.
;

,0- 2
) CX*<1

is the d.f. Suppose we 1 aple to

determine the d.f. oi -
- + -_+.., +Xn .





-

-' =
! ) .

The chars c \Jj-(o) =

o^ll/i (t)+(l-oL) \jJAt) where ^ ( ) jharactei

tion of IT (f i,0~i ) , i = 1, 2. Using theorem 5, we get for

t he cha ra ct eris t i c fun ct ion of Fg
,
say 0" ( t )

,

0(t) = [0K (t)]
n
- [oC0i(t) + (l^)02

(t)]-

- I ( )
oC
k0!(t)( -<0 (t)

= I £ ,0f(t)0|"k (t) where

?k = (g)oL
k
(lH«)

n-
- 3, 1, ..., n.

The distribution bo 0^(t )^|"k (t ) is

: (kp^f (n-k)H2 , i^+(n-k)^) k=0, 1, ..., n.

Hence, Pg = A + /£, +...+fi ,
ere N, is the normal dis-

tribution function. This result is easily extended to

case where the u distribution function is a mixture

distributions by the multinomial

theorem.
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. . ids, ic]

of moments and d .ion

tions seemingly impossible to

rson [8] in

tion of the parameters (. otion)

mixture of two U

roots of a

will

derive the i
it be solved

to obtain est i. .... que.

-^kr"*^ l " 1,2

we nave [•(x) = 0Lf1 (x) + (1-oL)

and L (&,/*] ,0": ,/v
5 CT ) = 11 v j.) is '. lood equa-

1=1

tion for a sample of size n.

log L = £ lo S jocf
1
(x

1
) + (1-oOf (

L )]

ri\ '.al to zer
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> L n «&*
•-' V--La^i ifei

rrrTT+ri-cir

ition f]_(: \ '

'

involves t . A^ <o~ /f (T
: ,

in each of the equal' difficulty of f . solu-

tion for the above set of ' ot = ot(x),

A * A A

Pi = Pi(x), h = /M-K Tx
= 0"

1 ( ),
0"
2 = ^ ) — e

x = (x-j_, x2 , <• . . , xn ), r

lless to say, : more complex

distribution functions, the estimation problc

Increa Ifficult

.

[ ] rn-

eters
'

Lxture of t

it is also

r, Rao equ :

is and solved the re
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.

'

ree equa-

tion, rat ae3

here o - v of the e. ton may be

found in th - -' by

- >• •' /J- ,0") + (l-oi)f(x;^ ,0"}.

The estimators are given by

dou2
d.

ju-,- k-, + d-,

<T =k2 + 2

where we must compute

1 "^ ^

33= I |,
(xi" Sl

)3 S* = I X, ^i" 3!*

then = 3X kg - ^ o2

v - n2 _ n2 (n+l)3,
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1
:

rely.

: ibic

x3 + | h>
;

+ | k§ »

and d-j_ is the negative roc.'. quadratic

x^ + -*- x + y =
y

k
3and finally, dg — ~ "y" *" ^l* " ' ;ives

estimators for the same parameters in terms "led

version of t i ihood.

To further illustrate the difficulties inn : 3sti-

matioi

the resull [ .] bhe ., moments

to a linear mixt . ial distribute

If we let x^, X2, ..., xn be a random sample from a

lation with an underlying distribution P(x) inch:, d h, ". param-

eters, we ha'V iven by

HT = jxrdF(x) r = 1, 2, ... ,

bhe sample iven by

^ -





//-//'-.-
. . -

- -- - ' L = 1 2 , . . .

A
then &i Is cal] ;or of 6j_ obtained bj

Lett:
,

,.A.
e-V91+ il^L> e-^2

jl/ = ."iB
r In tin

xture

oc-. + (.; .. ot) - - -

ex- + a
1

- =

Lve

_ -_[2 j+V^ ~~ : '

;.; \ 2 : J





-[2 (id )] -V4( .
t .

;
|-m2 )(3m|-2m1m5 )

V

-

as estimators. These estimators have

i ' s results aents

:

/ v

A ^ A
(a) ©j , 02, and oc may turn out to bive or com-

plex numbers, contrary to hy;

.

(b) If 9]_ ^ 02, t

*[©1>°] — 1

Er[e2>o]
—

* i \ i
—

Pr

(c) If ©1=62, the estimators 9 - 10 con-

stant limits in probability, and t ]

not become arbitrarily small as >;-»«> . Also, the esti-

»rs are not consistent.

(d) If <x is known, the estimators are consistent, even
A A

when ©i= 02* However, the probability that ©^ and ©2 are

real does not approach 1 as n—»• <x> , alt

parts do converge to zero in probability.

(e) In the case where a.
" ©l ^ ^2 > cons J

ent estimators may be derived for ©^ &nd. ©2, provided it is

r->e2 or 6p>el- If> tlie relative magnitude of the





oted to be c

.ever,

many s he r t com in g _ 1 1 c e .

e that the problem of estimation in mixture 3 of

distributions is difficult, j

ture is linear and consists of two distributions. T',
r e can

well !| ;nt even

more difficult analytic, is. Basic.-...'.

)
=
J

P ( - " )

and observations on the random variable X are available to

estimate the d.f, H( of

F(x;6), the problem becomes one of est 4
, the form of

G(e), given the means of estimating H(x). Robbins [ll]

proposes this problem and indicates conceptually, t ]

how this probl roached.

From a practical point of view it might be worthwhile

to sample empirically from a mixed distribution and consider

differ Ltively satisfying) estimators of the param-

eters and observe their performance.

3al Method of Estimation.

.--'. <ractical approach to the estimation of

32
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I
I

Lite bimo-

dality.

lider a justification for the method.

Assume the data has been grouped and let

n - sample size

At - interval size in which data has been grouped

t< - midpoint of 3— interval

a. - number of observations in the j£^ interval.

The theoretical density function is

f(x) = * •-?loiJ + i^cLe-al^J

and assuming /^ and /*2 are sufficiently far apart and (T,

and ^2 small enough to gua] bimodality, we might have

f(x) looking like Figure 1. Each component of the mixture

.2
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. nilarly,

the left compo,. mixture contributes very little

to the right side of the mixture. So, the left porti

the mixture may be approximated by

WfTer

and the right i

i i*-/fei
2

In either case

^*M* 2[rs
-

|i £ Pr[t
3-fSX<t^

*nK
f

- 1 A Max ( = tf., l-oO .

c nk*t
e 2[ qt

J nd ta
,

, ,

e 1Q j
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b - H •

. - the :

w

h\> Mo* - erva-

tion

bive d 8s for eacl

0"
- (T 2

can be est:' . . ;d on

pages 155-

oted abov
, this graphical pi L whei

dality. T - [l8] special c

-i[2=£l
2 ,ir*-(e+k )i

f

(

X ) = * 8 2L o" J+ i ^ : I <r J

y^r <r -\f"ff(r

i.e.,. by

space for X and oL ( . i X = Mr) into t

f(x) 3 ] or binodal. Figure 2 o

from his unpublished notes.

10. Related Results and Observati
:

Blischke [l] t Lnear mix1 of

...





.50 -

.45

.40

/-a
.25

.20 -

.15

.10

.05

.00

aodal
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!

lixtures .

[•]
" "

i
tro

[l4] in a r

Burrau 1

B

operties o

it to .be equivalent

.

var-

iable , it . .0213

[

(spurious or maverick obse distort the results

statistical ' it ion, in partic ]

t

decisions.

Lmes t lit s of unforsee

or error

ing to the
.
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