

Calhoun: The NPS Institutional Archive DSpace Repository

Mixtures of distributions

Parent, Elias Alphonse

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/36964

MIXTURES OF DISTRIBUTIONS

ELIAS A. PARENT, JRs

$8 \mathrm{~m} 9 \mathrm{~F}=5 \mathrm{x}$
U.S. NAY LNerilit id SEHOOL

MONibath, CEnhDorsiA

MIXTURES OF DISTRIBUTIONS

* * * * *

ELIAS A. PARENT, JR.

AXTUR OF LIsTRIBUTICl.

$$
\begin{gathered}
\text { by } \\
\text { 2lias A. Parent, Jr. } \\
\text { Lieutenant, Supply Corps } \\
\text { United States Navy }
\end{gathered}
$$

Submitted in partial fulfillment of the requirements for the degree of

NASTMR OF SJI ENCE
with major in Mathematics

United States Naval Fostgraduate School Monterey, Califorria

962
Parert E

$$
\because+X I U H \angle S \text { UF DISTKIEUIIUNล }
$$

$$
\begin{gathered}
\text { by } \\
\text { Mias a. Pasent. TI. }
\end{gathered}
$$

This marte is cocented as fuli土illog the tiesis requirements for the aegree of
MAST:R OF SOISLJD
ich major is

Mathematics

from the
United States Maval Postधraduate Schoul

If he passoma that t qogulation of eloneluts is male up of several autgroups, uned zuseroup iith tita swn underIying distribution, and the several subgroupa mixed together according to certain pruportions, he vould lave an instance of a mixture of distributions; i.e., the underlying distribution for the eatire population would be a dlyxture of the distributions for each subgroup.

A study is made of the more recent developments in the theary of mixtures of distributions. The oroblom of identifiability in mixtures is considered in sone detail. The special cases of linear mixtures and the distribution of sums of independent random variables are also considered. Finally, the problems encountered in estimation of paraweter's in mixtures are disoussed.

PaB3：Ef JGATMIS

1．Intiomuction 1
2．Theory 4
3．General Results
4．Identifiability1.
5．Additively Closed and
Identifiable Distributions$2 E$
6．Iinear Mixtures 85
7．Distribution of Sums ofIrdependent Random Variablesع．Problem of Estimation inMixtures of Distributions
9．Graphical Method of Estimation32
10．Related Results and Observations －
11．Biblio raphy3 是

1. Introduction.

There exists a condlobrabza body of literature relative to the theory of mixtures of mobability distributions, and several results have been oublished relating to the statistical estimation of parameters when the underlying distribution has been assumed to be a nixture of distributions. There seems to be a growing interest in this problef, and one is certainly justified in studying it in its general corm inasmuch as the ceneral theory includez as a special case the classical statistical assumption of a sinme underlying distribution function for the population under study.

By way of introduction, we will consider some specific examples to show how mixtures of distributions come up quite naturally in statistical investiotations.

Historically, the uroblem seems to have been studied first bV Karl Pearson about 1894 [8]. 1 He noticed that data (measurements) taken on variovis collections of biological specimens did not agree too well with the Gaussian distribution when plotted in histogram form. It was quite apparent in many instances that a definite bimodality existed where one would have expected unimodality. Pearson postulated that the underlying density function was of the following form
Inumbers in square brackets refer to bibliography.

$$
f(x)=\frac{\alpha}{\sqrt{2 \pi}} \operatorname{es},\left[-\frac{1}{2} \frac{-\mu_{1}}{\sigma_{1}}\right]+\frac{2-\alpha}{\sqrt{2 \pi}}=x\left[-\frac{1}{c} \frac{x-\mu_{2}}{\sigma_{2}}\right]^{2}
$$

and ne tried to estimate the para eters $\alpha, \mu_{7}, \mu_{2}, \sigma_{1}$, and σ_{2} using the method of moments. He was led to an equation of ninth degree and had considerable iifficulty calculating the roots of the polynomial. Pearson called this a problem of "dissection." His aim was to "dissect" the mixture of these two normal density functions into its components and then try to infer what could have caused such a mixture. As a second example of mixtures of distributions, we draw on a familiar problem in life testing or reliability theory. It has been observed that in life tests of electron tubes the initial failure rate is relatively high and decreases as the population under test ages. In general, the failure rate becomes constant for a time and then increases with age. Such a behavior suggests that the population might be a mixture of several subpopulations and that the underlying distribution function might be a inear sum of several distribution functions.

Of further interest in devices such as electron tubes is the phenomenon that devices fail for different reasons and such a population of elements could be classified according to cause of failure. Then, assuming the underlying population is composed of such a mixture, one might try to estimate, from a sample of failures classed as to cause of failure, the proportion which will fail due to each cause in order to
determine wa ellocesion of waserch offort in improving the device.

In statisticul decision theory, as developed by Nald, we find, for emample, in the case of a stochastic process Where the random riables are assumed to be identically and independently distributed according to $F(x ; \theta)$, that θ is also assumed to be a random variable with its own probability law $G(\theta)$. Under this assumption, the random variables are in reality assumed to be distributed according to

$$
K(x)=\int F(x ; \theta) \partial G(\theta)
$$

A special case of the mixture problem may be viewed as follows: suppose we assume that the population under investigation has an underlying distribution of known form $F(x ; \theta)$ and that the parameter is also a random variable with distribution $G(\theta)$. If we Iurther postulate that $G\left(\theta_{0}\right)=\operatorname{Pr}\left[\theta=\theta_{0}\right]=1$, then the underlying distribution is

$$
\int F(x ; \theta) d G(e)=F\left(x ; \theta_{0}\right) .
$$

What we have cone here is tantamount to assumine that the underlying distribution is of a specified form, with θ a fixed value not subject to variation (in a probabilistic sense), and this smounts to assuming that the distribution is, say, nornal Wtth mean μ_{0} and standrud deviation σ_{0}, or exponential with grradeter θ_{0}.

In this paper we prooose to discuss the theory of mixtures of distribution from a far less peneral point of view

 then conslaer the urahleve of for thisbllity and using tome
 the moke itsadrif distributions whe ineatifiable. Ne then look ett a spocial cloas of mikin- illutributions and determine some almbraic poperties of t. ϵ indued class of mixtures. A result analocous to the classicil resrodictive proparty of certain distributions is presented for a certain class of mixtures in Jection 7. Ve then tase up the oroblem of estimation of paraneters in ixtures of alstributions.

2. Theory.

By way of otation we let $\mathcal{h}_{1}=\left\{\mathbb{F}(x ; \alpha): \alpha \varepsilon \mathbb{E}^{r}\right\}$ denote
a family of one-dinenstonal distribution functions indexed by a real m-diuensional vector α, there \mathbb{E}^{1} denotes molidean a-space. Althourlitis develadicent is restricted so onedimensional diutribltion functions, twe cate. sion to f-dimensional Sistribution fanctions my he olitained in the usual hanner. Let abe a point in J^{2} and let B denote the
 $\boldsymbol{\mu}$ be any probrbir ity caesure an B. Pres the livetion

$$
f(x)=\mu(3 x) .
$$

$$
F(x)=M(i k)
$$

We denote the sparation of Lebrsuue-jtieltjes interration selative to the reqzuis μ by

$$
\int_{E^{I}} I^{-}(x) \mu=\int_{-\infty}^{\infty} f(x) d T(x)
$$

However, all the results that follow may be zend witi integration in the Rienamm.-stieltjes serse with little ur no modification to the hypotreses of the theoreas.

To illustrate this iotation, we might consider the faully of exponextial Aistribution functions (d.f. ${ }^{\text {s }}$)

$$
g_{1}=\{F(x ; \alpha)=1-\operatorname{ex}[-\alpha x]: \alpha>0 \quad \geq 0\} \text {. }
$$

In this case α is one-dimensional and restrictea to goaibive values. Fech walue of α determines one specific d.f. In the family and or eoubists of all such d.f.'s.

Definition 2 . If G is a $\alpha . f$. defined over \mathbb{I}^{m}, then

$$
\ddot{H}(x)=\int F(x ; \alpha) J G(\alpha)
$$

is called a mixture of the family $\mathcal{H}_{1}=\{F(x ; \alpha)\}$, and fore specifically a G-aixtrive of g_{1}.

Definition 2. A G-mixture of $\mathcal{H}^{\text {, }}$ say H, will be called identifiable if, for $z^{2} y d_{\text {. }} . G^{*}$ we have

$$
E(x)=\int F(x ; \alpha) d G(\alpha)=\int F(x ; \alpha) d G^{*}(\alpha)
$$

implias that $G=G^{*}$.

 Whree ? \& go à ε \& , then of fill be called 1deutifiable tif evary enber it of is Sdentiflable. The mixing distriuntim G mey be eltinox di:crete, continuous or a combination of moth. In zeneral, the onses wich are useful in statistics tre those where G is either entirely Giacrete or continums; and iu mat Collows, we have these casas in mind. Definitions 1 and $2 r=a 17 y$ form the bayte of this disoussion in smach as they delineate the two goneral areas of interest in the theory of nixtures of distributions. Froa the aathematicgl-urobebill tic point of viev, oroperties of the mixtures if are studied wher soecial properties are attributed to the class g_{1} or the class of mixing distributions \& , or boti. The question of idertifiability must be ansvered before eemingful statenents (statistical) can be made relative to the parameter α. Proofs of the results cited in what follows give be found in tie indicated references. Proofs will be given wion it is thoucht useful and in those cases where theorems have been nocified or extended.
3. General Resuits.

If we let \mathcal{F} deate the space of all orodebility distribution functions, we may consider the definition of a mixture to be a transformation of an alensat $F \& \mathcal{D}$, relative to

 be ueeful in probuchility and tatistical theoris, et iould be desirable to have the fourt of such a trmaformation be a subset of \mathcal{P}. Robbins [12] proves, in general, that this is indeed the oase, and we have

Theorem. Let $\mathscr{g}_{\boldsymbol{1}}=\left\{F(x ; \alpha): \alpha \varepsilon \mathbb{E}^{\text {in }}\right\}$ be a family of n-dimensional $d . r . ' s$ and let G be a d. . defined in 3^{m}. Then the furction $H(x)=\int_{-\infty}^{\infty} F(x ; \alpha) d G(\alpha)$ is a distribution function in \mathbb{B}^{n}.

As noted in the introduction, when a certain form is assuned for the underlying pobability distribution in a statistical investigation, the idea embodied in definition I is really occurring. juch as assumption amounts to specifying a mixing distribution G relative to a samily \mathcal{H}_{1}. When one assumes that the underlying distributiol is normal with mean $\boldsymbol{\mu}_{0}$, and standard deviation σ_{0}, one is choosing from the class of all mixine distributions a d.f. G which concentrates all its mass at a single point $\left(\boldsymbol{\mu}_{0}, \sigma_{0}\right)$ in \mathbb{E}^{2}, and we have

$$
H(x)=\int \Phi(\mu, \sigma) d G=\Phi\left(\mu_{0}, \sigma_{0}\right)
$$

Where $\overline{(} \mu, \sigma)$ is a generic elenent from the family of norinal d.f.'s. Theorem I assures us that under more general conditions (i.e., more general ixins distributions) the closure property holas.

 Ait. is defthed by

$$
\psi(t)=\int_{-\infty}^{\infty} e^{1 t} d F(x)
$$

where F is defined in E^{1}. As a result w? the properties of the Fourier integral, it is known that there is a one-to-one corves oondence between distribution functions and characteristic functions.

We next present some theorems comer ing the structure of t le characteristic function, omerts, 3 d density funcion of a mixture.

Theorem 2. If H is a G-mixture of $\mathcal{H}_{1}=\{F(x ; \alpha)\}$ and $\psi(t)$,

$$
\psi(t ; a) \text { are the c.f.'s of } H \text { and } F(x ; a) \text {, cespec- }
$$

$$
\text { tively, then } H(x)=\int F(x ; \alpha) d G(\alpha) \text { if, and only }
$$

$$
\text { if, } \psi(t)=\int \psi(t ; \alpha) d G(\alpha)
$$

Proof: Suppose $H(x)=\int F(x ; \alpha) d G(\alpha)$. Thea, since $\left|e^{1 t x}\right| \leq 1$ we can use theorem 5 from Robbins [12] to ensure the following steps are valid:

$$
\begin{aligned}
\psi(t) & =\int_{-\infty}^{\infty} e^{1 t x_{d}} d(x)=\int_{-\infty}^{\infty} e^{1 t x_{\alpha}}\left\{\int_{-\infty}^{\infty} F(x ; \alpha) d G(\alpha)\right\} \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} e^{i t x_{d x}} F(x ; \alpha)\right\} d G(\alpha) \\
& =\int \psi(t ; \alpha) d G(\alpha) .
\end{aligned}
$$

 theorem

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} e^{i t x} d F^{\prime}(z ; \alpha)\right\} G(\alpha) \\
= & \int_{-\infty}^{\infty} e^{i t x} d x\left\{\int_{-\infty}^{\infty} E(x ; \alpha) I G(\alpha)\right\} \\
& \int_{-\infty}^{\infty} e^{i t x} d H(x)=\psi(t)
\end{aligned}
$$

Bat this slows that $H(x)=\int E(x ; \alpha) \alpha G(\alpha)$ on all but sets of measure zero.

Theorem 3. If $H(x)=\int F(x ; \alpha) d G(\alpha)$ then $d: y$ existing moment of H is a G-mixture of the family of moments (of the same order) of \mathscr{H}.

Proof:
Let m_{r} be the $r \underline{t h}$ nonet of and $\mathbb{a}_{r}(\alpha)$ the $r \underline{\text { th }}$ moment of $F(x ; a)$ and assume m_{r} exists. Then

$$
\begin{aligned}
m_{r} & =\int_{-\infty}^{\infty} x^{\Gamma} d H(x)=\int_{-\infty}^{\infty} x^{S} d_{X}\left\{\int_{-\infty}^{\infty} F(x ; \alpha) d G(\alpha)\right\} \\
& =\int_{-\infty}^{\infty}\left\{x^{r} x^{T}(x ; \alpha)\right\} d G(\alpha)=\int_{-\infty}^{\infty}(\alpha) d G(\alpha) .
\end{aligned}
$$

Theorem 4. Let $H(x)=\int \mathbb{P}(x ; \alpha) d G(\alpha)$ and suppose $\mathbb{F}(x ; \alpha)$ is absolutely continuous. Let $f(x ; \alpha)=\frac{\partial F(x ; \alpha)}{\partial x}$. Then the density function $h(x)=\frac{\partial}{\partial x}(x)$ is given by $\int f(x ; \alpha) d G(x)$.
4. IJe.tiljubilito.
 bution is a mixture ef two bino ilal ivtributions. Ve assume the probability of gucoess in the first population is pl and In the second, p_{2} and that each population is well mixed with the other to form the total population. We assume that the proportion of elements from the first population is Where $0<\alpha<1$. The probability of success from such a mixture is $\alpha p_{1}+(I-\alpha) p_{2}=p$; and if n independent trials are made, we have

$$
\operatorname{Pr}[k \text { successes }]=\left(\left.\begin{array}{l}
n \\
k
\end{array} \right\rvert\, p^{k}(I-p)^{11-k}\right.
$$

where the distribution is again binomial. As will be shown later, suci 2 sxture is not identifiable. Using a sample from this mixture, we could estimate the parameter p, but not the parameters p_{1}, Y_{2}, and d. Tie sampling scre ean be refor ulated in some cases and estimators constricted for the indiviaual population parameters (see Blischke [I]); however, it is not imnediately obvinus how this could be done in all cases of mixtures.

This leads us to the study of wit properties a family $\mathcal{H}_{1}=\{F(x ; \alpha)\}$ must possess to lead to identifiable ixtures. We let D stand for an Abelian semigroup under addition and use $D(I)$ to mean the integers, $D\left(I_{+}\right)$the positive integers, and r and R to denote the rationals and reals, respectively.

$\alpha, \beta \varepsilon D$ ire have

$$
F(x ; \alpha) * F(x ; \beta)=F(x ; \alpha+\beta)
$$

Where * denotes convolution.
Additively closed families of distributions occur quite frequently in applications ins much ms the normal, binomial, Poisson, gama, and other Qistrikutions have the property. Os course, in ramon sampan= the importance 7 is in the fact that the distribution function of the random variable $Z=X+Y$, whore X and Y are insenendent random variables, is anal to the convolution of the distribution functions of X and Y.

Theorem 5. If F, G, and \because are distribution functions in E^{1} and $\psi_{1}(t), \psi_{2}(t)$, and $\psi(t)$ the corresponding ch. for's, then $H(x)=F(x) * G(x)$ if $\psi(t)=$ $\psi_{1}(t) \psi_{2}(t) . \quad(\operatorname{lobbins}$ [12]).

One of the uses of theorem 5 is the determination of families Which are sdditivply closed. As am example, we consider the family of normal distribution functions $\{F(x ; \mu, \sigma)\}$. The corresponding class of characteristic Functions is $\left\{e^{\text {it } \mu-\frac{1}{2} t^{2} \sigma^{2}}\right\}$. Then

$$
\because(x)=F\left(x ; \mu_{1}, \sigma_{1}\right) * F\left(x ; \mu_{2}, \sigma_{2}\right)
$$

$\psi(t)=e^{i t \mu_{1}-2^{2}} \sigma_{I}+t \mu-\frac{1}{i} \sigma=e^{i t}\left(\mu_{1}+\mu\right)-\frac{1}{t}\left(\sigma_{1}+\sigma_{2}^{2}\right)$.

Which is again the characteristic function of a normal distribution function. ;o $H\left(x ; \mu_{2}+\mu_{2}, \sigma_{-}+\sigma_{c}^{c}\right)=\mathbb{F}\left(x ; \mu_{1}, \sigma_{工}\right) ; T\left(x ; \mu_{c}, \sigma_{2}\right)$ and the class of noma d.f.'s is additively closed. Teicher [15] determined that the class of mixtures of a one-parameter family of additively-closed distributions is identifiable, and he gave conditions mater which a class of scale or translation parameter mixtures is identifiable. We summarize those results in what follows.

Theorem 6. If $m=1$ id D io $D\left(I_{+}\right), D\left(r_{+}\right)$, Or $䒑\left(R_{+}\right)$, the 01\&33 $\left\{\int(x ; \alpha) d(\alpha)\right\}$ of an addstively closed forty $\{F(x ; \alpha): \alpha \varepsilon D\}$ is ioentifriable.

The class of scale pswadcter wivtluces consists of mixtures of the $\left\{\int_{0}^{\infty}(x \alpha):(\alpha)\right\} \quad \alpha \quad$ the $\quad=123 a$ of translation parameter mixtures ort of to s $\left\{\int_{0}^{\infty}(x-\alpha) d G(\alpha)\right\}$. Theorem 7. Let F bead.f. wink fan idly $\{F(x ; \alpha)\}$ Via a sole charms sic. that $F\left(0^{+}\right)=0$. If the Fourier transform of $\bar{F}(y)=F\left(c^{T}\right)$ is not identically zero in some mon-הen merate real interval, the class of som 1 m maneter mixtures ic identifiable.

 "ur $-\infty<y, \beta<\infty$

$$
\begin{gathered}
\bar{F} *: \vec{G}=\int_{-\infty}^{\infty} \bar{F}(J-\beta) d \bar{G}(\beta)= \\
\int_{-\infty}^{\infty} I\left(e^{J} e^{-\beta}\right) d\left(1-G\left(e^{-\beta}\right)\right)=\int_{0}^{\infty} \bar{F}(\lambda \alpha) d G(\alpha)=H(z) .
\end{gathered}
$$

 \bar{F} and $G_{i} i=1,2$ are $d_{0} f \rho^{\prime}$, e hav, dsins theored 5 , $\psi_{\bar{F}} \cdot \psi_{\bar{G}_{1}}=\psi_{\overline{\mathrm{F}}} \cdot \psi_{\bar{G}_{2}} ;$ and since $\psi_{\overline{\mathrm{F}}}(t)=\int_{-\infty}^{\infty} e^{i t \mathrm{t}} \mathrm{d}(x)$ is \sin identically zero (except possibly on a set of meauure zero), then $\psi_{\bar{G}_{1}}=\psi_{G_{2}}$ and $\bar{G}_{1}=\bar{G}_{2} \Rightarrow 1-G_{1}\left(e^{-\beta}\right)=1-G_{2}(. . \beta)$ $G_{1}(\alpha)=G_{c_{2}}(\alpha)$ and the class ol soile paremeter mixturn zo identifiable.

Theorem S. Iet F be a d. which generates a family $\{F(x ; \alpha)\}$ via a location change such that $F\left(C^{+}\right)=0$. If the Fourier transform of $F(x)$ is not identically zero in some non-degənaretu - 2san interval, the classatranslation paranotar ii=tures is identifiable.

Proof: The proof is essentially the sane au in theoren 7. Irote that ve assune the mixing diatribution Is on the translation parameter only.

When twe consider the cto ss af mixtures of a specific family of d.f.'s, we can divide the class of mixing d.f.'s, \mathscr{Q}, into two mutually exclusive classes. Let $D_{\mathbf{1}}$ denste the

 $H(x)=\int F(x ; \alpha) \alpha G^{\prime \prime}(\alpha)$. If \tilde{H} is in the class g_{1}, say $H(x)=\mathbb{F}\left(x ; \alpha^{*}\right)$, their the $d . f . G \varepsilon \mathscr{P}_{1}$, which concentrates all its mass at α^{*}, yields $H(x)=\int F(\mathbb{z} ; \alpha) d G(\alpha)=F\left(x ; \alpha^{*}\right)$. But this means $G=G^{*}$, since q is iobetifiable, and clearly this is impossible. so we eve

Theorem 9. Let $q+$ be identifiable with respect to g_{1}. Then, wo wan-degmerate wixhmie of g_{n} is an aiewent of g.

Tins result established a weossary condition for identi-
 such that the resulting mi nome j s again a maser of the class, we know tic alan of mitres is not ideatiflible.

Theorem 10. Int \mathcal{F}_{i} bo $a G_{1}$-inure of $g_{1}=\{\mathbb{F}(\mathrm{x} ; \alpha)\}$, $i=1,2$.

$$
\text { Then, } H_{1} \# H_{2}(x)=\int F(x ; \alpha) d\left(G_{1} G_{2}\right)(\alpha) \text { if, and only if, }
$$ g_{1} is additively closed.

Proof: Suppose $H_{1} * H_{2}=\int F O\left(G_{1} * G_{2}\right)$. Let $H=H_{2} * H_{2}$ and $G=G_{1} * G_{2}$, and suppose g_{1} is slot additively

$$
\begin{aligned}
& =\left(; \alpha_{1}\right)+\mathbb{P}\left(: \beta_{0}\right) \neq\left(-\alpha+\beta_{0}\right) . \quad I=\tau \mu_{J_{1}}\left(\alpha_{0}\right)= \\
& \left.\mu_{G_{2}}(\beta)=i, i \in I\right)=F\left(x, \alpha_{0}\right) \text {, } H_{c}(x)= \\
& P\left(x, \beta_{0}\right) . \psi_{G_{I}}(t)=e^{i t \alpha_{0}}, \quad \psi_{G_{2}}(t)=e^{i t \beta_{0}}, \\
& \text { and by theorem } 2 \psi_{G}=\mathrm{e}^{\text {it }}\left(\alpha_{0}+\beta_{0}\right) \text {. Note, } \\
& \int F(2 ; \alpha) d G=F\left(x ; \alpha_{0}+\beta_{0}\right) \text { tut } H(x)=H_{1} \because H_{2}(x)= \\
& F\left(x ; \alpha_{0}^{\prime}\right) \cdots F\left(\therefore, \beta_{0}\right) \neq F\left(x ; \alpha_{0}+\beta_{0}\right) \text { is clearly contra- }
\end{aligned}
$$

Bu pose \mathcal{H} is anotitively olsoea. Let $\psi(t), \psi(t)$,
 $F(x ; \alpha)$, respectively. Tinging theorems 2 and 5 , ion hove

$$
\begin{aligned}
\psi(t) & =\psi(t) \psi(t)=\int \psi(t ; \alpha) d G_{I}(\alpha) \cdot \int \psi(t ; \beta) 3 G_{2}(\beta) \\
& =\iint \psi(t ; \alpha+\beta) d G_{1}(\alpha) d G_{2}(\beta) \\
& =\iint \psi(t ; v) d G_{I}(V-\beta) d G_{2}(\beta) \\
& =\int \psi(t ; v) \alpha G(V)
\end{aligned}
$$

and this implies tat $\begin{aligned} & \text { is } \\ & \text { a } \\ & G\end{aligned}=G_{1} * G_{2}$-fixture of

$$
\mathscr{L}_{1}=\{r(x ; \alpha)\} .
$$

Te note that in our statement of this theorem, is sher to encore g_{1} is caditivslv closed, "e have required that $H_{1} H_{2}(x)=\int F(x ; \alpha) d\left(G_{1} \cdot G_{2}\right)(\alpha)$ hold for the entire mixing cusses Z and \& , far Insestrispent conditions mere noupsoary,

 clessed.
5. Additively Jioged abd Identiflable bistriliotions. Usiug some of the foregolla rewure, fie will detather e
 closed oless oud ocloh wre heatifence.

The Poisson dintribution is glven by

$$
\mathscr{P}(x ; \lambda)=\sum_{i=1}^{\pi} e^{-\lambda} \frac{\lambda^{k}}{\lambda!}, \lambda>0 .
$$

The ciaracteristic function for the zoisson is

$$
\psi(t)=\int e^{i t x} d e(x)=\sum_{x=0}^{\infty} e^{i t x} e^{-\lambda} \frac{\lambda^{x}}{x!}=e^{\lambda\left(e^{1 t}-1\right)} .
$$

Letting $P_{1}\left(x ; \lambda_{1}\right) * P_{2}\left(x ; \lambda_{2}\right)=H(x)$, find, wime theargan f, that

$$
F(x)=\sum_{=0} e^{-\left(\lambda_{l}+\lambda_{e}\right)} \frac{\left(\lambda_{1}+\lambda\right)}{k!}
$$

Which is Poisson witio parmotor $\lambda_{1}+\lambda_{2}$, wad hence tes estesan

BInation: $B(-3, n)=\sum_{n=1}\left(\frac{n}{k}\right)$

Conahy: $U(\alpha ; \alpha, \beta)=\int_{-\infty} \frac{1}{\pi \alpha\left\{1+\left(\frac{x-\beta}{\alpha}\right)^{2}\right\}} d y$, ith respert to α and. β.

$$
\psi(t)=e^{t \Delta \beta-\alpha|t|}
$$

In1-square: $X^{2}(x ; y)=\int^{x} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1-\frac{\pi}{2}} d x$, itl respect to t.

$$
\psi(t)=\frac{1}{(1-21 t)^{\frac{1}{2}}}
$$

Wegative binotiol: $B^{-}(x ; n, p)=\sum_{=0}\binom{r-1}{k} p^{r}(1-p)$, its respect to r.

$$
\psi(t)=\left[\frac{1}{1-(1-2) e^{i t}}\right]^{r}
$$

Gainc: $G(x ; \lambda, r)=\int \frac{\lambda}{\Gamma(\underline{Y})}(\lambda)^{r \cdots 1} e^{-\lambda} d x$, watid ro: foot to x.

$$
\psi(t)=\left[-\frac{1 t}{\lambda}\right]^{-r}
$$

Hoxn 1: $I(x ; \mu, \sigma)=\int_{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left[\frac{-\mu}{\sigma}\right]^{2}} d x$, withe respect to μ ani σ.

$$
\psi(t)=e^{i t \mu-\frac{1}{2} t^{2} \sigma^{2}}
$$

In view of theorem 5, we can al 70 sxamine the products of characteristic functions of two meajers of a given class of distribution furctions to determine that the class is not additively closed. For examole, in the exponential class

$$
F(x ; \lambda)=\int_{0}^{x} \lambda e^{-\lambda x} d x \text { and } \psi(t)=\frac{\lambda}{\lambda-i t} .
$$

So $\frac{\lambda_{1}}{\lambda_{1}-i t} \cdot \frac{\lambda_{2}}{\lambda_{2}-i t}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1} \lambda_{2}-t^{2}-i t\left(\lambda_{1}+\lambda_{2}\right)}$ aud this is not the
the characteristic function for the exponential with parameter $\lambda_{1}+\lambda_{2}$. Using the same argument, we see tlat the Bernoulli, geometric, and uniform clasees are not aduitively closed.

By usiny theorem 6, we note that since $\lambda \varepsilon D\left(R_{+}\right)$the Poisson family is identiftahle. jinilerly, t?e bi omial, chi-square, ganma, zerative binomisl, and coucry fnollies are identifiable. By using theorem 9, we note that if we can find a non-degenerate mixture of a certain cla33 thot is again a meaber of that olass, then we can conclule the class is not identifieble. Tor exanole, if we consider a mixture of two Bermoulli distribitions of the following form

$$
B(\ldots)=\alpha B\left(2, v_{1}\right)+(1-\alpha) B(x ; 1)
$$

$$
\begin{aligned}
\psi(t) & =\alpha\left[1+1-L_{1}\right]+(1-\alpha)\left[2 e^{1 t}+i-p_{2}\right] \\
& =\left[\alpha{ }_{1}+(1-\alpha) p_{2}\right] e^{i t}+\alpha\left(1-p_{1}\right)+(1-\alpha)\left(1-p_{2}\right) \\
& =v e^{1 t}+(1-p)
\end{aligned}
$$

and $W(x)$ is acain Bermoulli with $p=\alpha 1+(1-\alpha) p_{2}$ as a parameter. Hence, tice clas of Bermoulli ilttributions is not identifiable.
(ie will now observe thet the pruperty of ardtivity is not macessary to evaur icentilisbility. I:e expoinnticu distribution is not aluitivelv olused, but in

$$
F(x ; v)=\int_{0} v e^{-v} d x=I-c^{-v x}
$$

 shows t'at $G(v)-m$ xutures $j \leq\{(x ; v)\}$ arciofotiliabic.

Since the normal fanily is additively closed with respect to each parameter (singly), we may usu cteorem 6 again to conclude the family is identifiable for $G(\mu)$ and $G(\sigma)$-mixtures. For a discassion of ixtures on both paraueters, see Teicner [7].

The foregoing restults are summarized in tie follo:riag table.

318
Bemotylis
Bぢmosten
yanctiy
Joi－S1：Nはコ
シャronatitis？
Ge． $2 \times$
＂ootetric
i．eg．Binomial
Nornal
Poisison
TH1forn


```
ICCくt10+21
```

A
30
Y：－（I）
Yes
Yes
Yes
$\mathrm{Y}=(\mathrm{F})$
-10
Yes
$Y=(2)$
Yes
7.0

Yes（－）
Ys
Yes (μ, σ)
YOZ
Y VG（ λ ）
． .0

Yen
． 3
 Aximg distribution is oves the essametsf

E．IILEA A Astu？es．

 t1suz bo d.

$$
G(\alpha)= \begin{cases} & \text { If } \alpha<\alpha_{1} \\ \frac{1}{3} & \alpha_{1} \leq \alpha \leq \alpha_{2} \\ 1 & \alpha_{2} \leq \alpha\end{cases}
$$

The mixture relathe to a ol $60 \quad g_{1}=\{F(x ; \alpha)\}$ is

$$
H(x)=\frac{1}{3} F\left(x ; \alpha_{1}\right)+\frac{2}{3} F\left(x ; \alpha_{2}\right) .
$$

We first conelior the onse folte linear inturnsi i.e., $H(x)=\sum_{i=1} a_{i} E\left(x ; \alpha_{i}\right)$. Cleariy, In is a ain a distsibution function; and letting $\psi(t ; \alpha)$ b: t.e olnoroteri tio function for $T(\pi ; \alpha)$, We leve

$$
\psi(t)=\int \psi(t ; \alpha) \underset{i}{ }(\alpha)=\sum_{i=1}^{n} a_{i} \psi\left(t ; \alpha_{i}\right)
$$

 of H are giver as indotions of the .aoments of $F(x ; \alpha)$ by

$$
a_{r}=\sum_{i=1}^{1} u_{i} u_{r}\left(\alpha_{i}\right)
$$

Where in. $\left(\alpha_{i}\right)$ is the rth monent oc $P\left(x ; \alpha_{i}\right)$. Trese zasules

4lveot.
 sImescalo mosoptiss.

$$
G \in \mathcal{L} \Rightarrow \psi(t)=\int e^{1 t} \quad \dot{G}(x)=\sum_{k=1}^{\infty} k^{2 t s i}
$$

By theorem 5 if G_{1}, G_{2} \& , tien $\because=G_{1}{ }^{2} G_{2}$ w111 have a choractaristic function of the form

$$
\psi(t)=\left(\sum_{i=1}^{\infty} \operatorname{itm}_{k}\right)\left(\sum_{k=1}^{\infty} i_{k}\right)=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} r_{k j} e^{i t z_{i}}
$$

Where $r_{1 c t}=V_{2}$, enti $z_{10}=x_{0}+y_{j}$
But this is precizoly the form of cmaseteristic fnctiont of distributions in \mathcal{L}. slearly, $\left(G_{1} * G_{2}\right) * G_{3}=G_{1} *\left(G_{2} * G_{3}\right)$ and. $G_{1} \div G_{2}=G_{2} \% G_{I}$. So considerin \mathcal{L} as an almebraic system with convolution as the binary comoositioz defined in \mathcal{L}, we have

Thiorem 12. Under the onecation of convolution, \mathcal{L} is an Abeltat semi-group.

We also note that $I(x)=\left\{\begin{array}{ll}0 & x<0 \\ 1 & 0 \leq x\end{array}\right.$ is of the reguira form to be a distribution function in \mathcal{L}. $I(x)$ has characteriuiic fulction

$$
\psi(t)=\int i t x d I(x)=1 \cdot e^{i t 0}=1
$$

$$
\left.\sum_{i}^{n} \mu_{i}, \quad \sum_{1}^{n} \sigma_{j}\right)
$$

$$
\begin{aligned}
& F(x ; \in(\alpha, \beta)) \text {. }
\end{aligned}
$$

 tuix fellonint Mas.-v.

Proof:

$$
\begin{aligned}
& \text { Let } \mathrm{A}=\mathrm{H}_{1} \mathrm{H}_{2}, \mathrm{I}=\mathrm{L}_{1} * \mathrm{I}_{2} \text { בnd ienotz by } \psi(\mathrm{t}) \text {, } \\
& \psi_{1}(t), \psi_{2}(1,), \text { anc: } \psi(t ; \alpha) \text { tre characteristic }
\end{aligned}
$$

2 ite thet

$$
\psi_{1}(t)=\int \psi(t ; \alpha) d 1_{1}(\alpha) \quad \psi_{2}(t)=\int \psi(t ; \alpha) d I_{2}(\alpha)
$$

and by t teoren 5

$$
\begin{aligned}
& \psi(t)=\psi_{1}(t) \cdot \psi_{2}(t)=\int \psi(t ; \alpha) d I_{1}(\alpha) \cdot \int \psi(t ; \alpha) d I_{2}(\alpha) \\
& =\iint \psi(t ; \alpha+\beta) d I_{I}(\alpha) I_{2}(\beta) \\
& =\iint \psi(t ; \gamma) d I_{1}(\gamma-\beta) d I_{2}(\beta) \\
& =\int \psi(t ; v) d I(v) \\
& \text { and this impies }=\int F d L . \quad \text { But } I=I_{1} *_{1} I_{2} \text { and }
\end{aligned}
$$

 of two norma. if eryloutions. Ine.s,

$$
\therefore(x)=\alpha \mu_{1}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-\alpha) \pi_{2}\left(\mu_{1}, \sigma_{2}^{2}\right) \quad 0<\alpha<1
$$

$$
y_{1}=
$$

$(a-9016$ 20 volatile) 。

$$
\begin{aligned}
& \psi(t)=\left[\psi_{N}(t)\right]^{n}=\left[\alpha \psi_{1}(t)+(1-\alpha) \psi_{1}(t)\right] \\
&=\sum_{=1} 1 \mid \alpha \psi_{1}^{n}(t)(I-\alpha)-\psi_{2}(t) \\
&=\sum_{=1}^{1} \beta \psi_{1}^{k}(t) \psi^{n}(t) \\
& \beta=\mid \alpha^{n}(1-\alpha)
\end{aligned}
$$

$$
H_{1}\left(x \mu+(n-k) \mu_{2}, \quad \sigma_{1}+(n-k) \sigma_{2}\right) \quad{ }_{r}=0,2, \ldots, \ldots .
$$

Hence, $\mathrm{F}_{\mathrm{S}_{1}}=\beta_{01}+\beta_{2}+\ldots+\beta_{1}+$, where in is tale norad dis-

 theoras.

 tions afondmily ioposalher bo soltho.

$$
f_{1}(x)=\frac{1}{\sqrt{2 \pi \sigma_{i}}} e^{-\frac{1}{2}}\left[\frac{x-\mu_{i}}{\sigma_{i}}\right]^{2} \quad \quad i=1,
$$

:Te bave

$$
I(\lambda)=\alpha f_{1}(X)+(1-\alpha) f_{2}(. . .)
$$

and $\quad i\left(\alpha, \mu_{2}, \sigma_{j}, \mu, \sigma_{1}\right)=\prod_{i=1} \pm\left(i_{i}\right)$ is t in iloe? ihoosd envertion foz \because gente belsize.

$$
100 \mathrm{I}=\sum_{i=1}^{1} \operatorname{1ag}\left\{\alpha_{1}\left(x_{i}\right)+(1-\alpha) f_{2}\left(x_{i}\right)\right\}
$$

$$
\text { (1) } \quad \frac{\partial 1 \rho_{1}}{\partial \alpha}=\sum_{1}^{n} \frac{f_{1}\left(x_{1}\right)-f_{1}\left(x_{1}\right)}{\alpha f_{1}\left(x_{1}\right)+(1-\alpha) f_{2}\left(x_{i}\right)}=0
$$

$$
\begin{aligned}
& \text { (-) } \frac{\partial}{\partial \mu}=\sum_{=} \frac{\alpha-\frac{\partial}{\partial \mu}\left(\frac{\partial}{\mu}\right)}{\alpha}\left(\frac{\alpha}{1}\right)+\left(\frac{\alpha)}{}=\right. \\
& \text { (う) } \quad \frac{\partial 1}{\partial \sigma_{1}} I=\sum_{i=1} \frac{\alpha \frac{\partial}{\partial \sigma_{1}}(i, i)}{\alpha\left(i_{1}\right)+(-\alpha)}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } \quad \frac{\partial \operatorname{lec} I}{\partial \sigma_{i}}=\sum_{i} \frac{(1-\alpha) \frac{\partial}{\partial \sigma_{i}}\left(\lambda_{i}\right)+(1-\alpha)}{\alpha_{i}\left(I_{i}\right)}=
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\mu}_{1}=\mu_{1}(x), \hat{\mu}=\mu_{2}(x), \hat{\sigma}_{2}=\sigma_{2}(\cdot), \quad \hat{\sigma}_{2}=\sigma_{2}(x),
\end{aligned}
$$

(2)

$$
f(\ldots)=\alpha(\therefore, \mu, \sigma)+(1-\alpha)=(2, \mu, \sigma) .
$$

Tlue cabratoses are yroay ty

$$
\begin{aligned}
& \hat{\alpha}=\frac{\theta_{2}}{\hat{\alpha}_{1}} \\
& \hat{\mu}_{1}=x_{2}+d_{1} \\
& \hat{\mu}_{2}=i_{1}+\alpha_{1} \\
& \hat{\sigma}=z_{2}+?
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}=\frac{1}{n} \sum_{i=1} i \quad 3_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{1}-z_{1}\right)^{3} \\
& s_{3}=\frac{1}{1} \sum_{i=1}^{2}\left(x_{1}-s_{1}\right) \quad s_{4}=\frac{1}{1} \sum_{1=1}^{n}\left(x_{1}-s_{1}\right)^{4} \\
& \text { theal } \quad \sigma_{1}=s_{1} \\
& x_{2}=\frac{n}{2 n-1} 3 n \\
& k_{3}=\frac{n^{2}}{(-2)(x-2)} k_{2}=\frac{n^{2}}{(n-1)(n-2)(x-7)}(2+1) 3, \cdots(x-2)
\end{aligned}
$$

$$
x^{3}+\frac{1}{2} x_{4} x+\frac{1}{2} x_{5}=
$$

Gad di is the uezstive root we ivo ghadrstio

$$
x^{2}+\frac{3}{y} x+y=0
$$

 mathmators for tha same parsmerale in tommon whation

If we let $x_{1}, x_{2}, \ldots, x_{11}$ tee a randogi sumple neon a popu-
 eters, se have the tharstival gomiation momants siven by

$$
\mu_{I}=\int_{-\infty}^{\infty} E E(x) \quad 1=1, c, \ldots
$$

$$
m_{2}=\frac{1}{2}=2,2, \ldots
$$

μ.

$$
H_{1}=\mu_{-}\left(-\theta_{i}, e_{1}, F_{1}\right) \quad I=1,2, \ldots,
$$

$-22 \overline{3}: 017$ in..

$$
\hat{\theta}_{L}=a_{1}\left(\operatorname{com}_{2}, \ldots, \quad=1, \quad=1, \ldots,\right.
$$

 0f 5.5.0. 5 t

$$
\text { Lettlace }(x)=\frac{\alpha}{\hat{Q}_{1}} \quad x / \theta_{1}+\frac{(1-\alpha)}{2} \quad x / \theta_{2} \quad \text { nicere }
$$

$C \alpha<1 \quad-1,->, \quad, \quad\rangle$

$$
\begin{aligned}
& \alpha-+(I-\alpha) \theta_{2}=1 \\
& \alpha-1+(I-\alpha)-\frac{1}{2}+\frac{3}{6} \\
& \alpha \theta_{1}+(1-\alpha)
\end{aligned}
$$

$$
\hat{e}_{1}=\frac{-[2(a,-x)]+\sqrt{(-1-2 m)}}{1-(a))}
$$

.

$$
\begin{aligned}
& \hat{\alpha}=\frac{\hat{\theta}}{\hat{\theta}_{1}-\hat{\theta}}
\end{aligned}
$$

as =stiaators. Thepse eatinators matis seltonancies, and

 PLex Masers, guntrefy to kypotheviこ.

$$
\left.\begin{array}{l}
\operatorname{Pr}\left[\hat{\theta}_{1}>0\right] \rightarrow 1 \\
\operatorname{rr}\left[\hat{\theta}_{2}>1\right] \rightarrow 1 \\
\operatorname{Pr}[0 \leq \hat{\alpha} \leq 1] \rightarrow 1
\end{array}\right\} \quad \text { as } n \rightarrow \infty
$$

 nators are tot consistc..t.
(d) If α is arorl, the eatisetors 2re comelatant, even when $\epsilon_{1}=\theta_{2}$. IIomerris, the probasilitp utat $\hat{\epsilon}_{1}$ gno \hat{e}_{2} are
 parts do converee to zary in mombility.
 ent ustintors may is fertwed for θ_{1} and e_{2}, rrorided it is

syにな！

$$
B(z)=\int a(x ;-) d G(-)
$$

 $F(x ;-)$ ，the robiem hescmion out of entinstlus the form of

 how this yobolem wate hm suprosthed．

 Eter＝shr plusture thetr gerformacn．

Q．ire inical liequod of istimetion．
ThE No110wint hract an土 wotrosch to the asti nation of

 dailts.

Assume the deta baz bieen rouped sud let

$$
\begin{aligned}
& \text { n - sample siak } \\
& \Delta t \text { - intemral size in mbiak dats ana deran crouved } \\
& t_{j} \text { - mizpoint of fth Sherval } \\
& a_{j} \text { - tumber ut wheervatione in the fill Hatival. }
\end{aligned}
$$

Tho theorctical denalts fanction is

$$
f(x)=\frac{\alpha}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{1}{2}\left[\frac{x-\mu_{1}}{\sigma_{1}}\right]^{2}}+\frac{1-\alpha}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{1}{2}\left[\frac{x-\mu}{\sigma_{2}}\right]}
$$

 $f(x) 100$ kine like Bisure 2. Fach callyonent of the airture

$$
(x) \cong \frac{\alpha}{\sqrt{\pi_{1}} \sigma_{1}} e^{-\frac{1}{2}\left[\frac{2-\mu_{1}}{\sigma_{1}}\right]}
$$

and tign Pjght 840 c oy

$$
I(x)=\frac{(7-\alpha)}{\sqrt{\pi} \sigma_{2}}-\frac{1}{2}\left[\frac{x-\mu_{2}}{\sigma 2}\right]^{2}
$$

In $+2 t h e r$ cus 39

$$
\frac{a}{n} \cong r\left[t,-\frac{\Delta t}{2} \leq x \leq t+\frac{\Delta t}{2}\right]
$$

$$
\operatorname{Iag}=20 g\left|\frac{11 \Delta t}{\sqrt{2 \pi} \sigma}\right|-\frac{.4343}{\sigma^{2}}\left(t_{j}-\mu\right)^{2}
$$

$$
t=\mu
$$

 ge: 48 255 1245^{7}.

$$
f(x)=\frac{\alpha}{\sqrt{\pi} \sigma}-\left[\frac{-\theta}{\sigma}\right]^{c}+\frac{(2-\alpha)}{\sqrt{2 \pi} \sigma}-\left[\frac{-(-+)}{\sigma}\right]
$$

Figure 2

 in istirat.

 (1034), 2p. $\overline{1-6 .}$

 V07. 14, $\left(101 \frac{3}{3}\right)$, 20. 550-400.

 Gut tion oy Itamtive Penceizen, giometrila, VoI. 4n, (1961), 22.452-456.

 Foijure Itas Diotributions from g fuotre Iire Test Dat=, Biontrika, Val. 45, (1058), pp. 504-520.

 1. Provien a Blopgaion Jlagalfloanio, Jonmel uf

-1

$$
(240), \quad \frac{x}{-2} \frac{-3}{2}+-2
$$

16. Teicier,

