
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2008-12

Forensic analysis of Window's® virtual
memory incorporating the system's page-file

Stimson, Jared M.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/3714

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FORENSIC ANALYSIS OF WINDOW’S® VIRTUAL
MEMORY INCORPORATING THE SYSTEM’S PAGE-

FILE

by

Jared M. Stimson

December 2008

 Thesis Advisor: Chris S. Eagle
 Second Reader: George W. Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Forensic Analysis of Windows® Virtual Memory
Incorporating the System’s Page-File.

6. AUTHOR(S) Jared Stimson

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Computer Forensics is concerned with the use of computer investigation and analysis techniques in order to collect
evidence suitable for presentation in court. The examination of volatile memory is a relatively new but important
area in computer forensics. More recently criminals are becoming more forensically aware and are now able to
compromise computers without accessing the hard disk of the target computer. This means that traditional incident
response practice of pulling the plug will destroy the only evidence of the crime. While some techniques are
available for acquiring the contents of main memory, few exist which can analyze these data in a meaningful way.
One reason for this is how memory is managed by the operating system. Data belonging to one process can be
distributed arbitrarily across physical memory or the hard disk, making it very difficult to recover useful
information. This report will focus on how these disparate sources of information can be combined to give a
single, contiguous address space for each process. Using address translation a tool is developed to reconstruct the
virtual address space of a process by combining a physical memory dump with the page-file on the hard disk.

15. NUMBER OF
PAGES

93

14. SUBJECT TERMS

Computer Forensics, Page-file, Virtual Memory

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FORENSIC ANALYSIS OF WINDOW’S® VIRTUAL MEMORY
INCORPORATING THE SYSTEM’S PAGE-FILE

Jared M. Stimson
Lieutenant Junior Grade, United States Navy

B.S., University of Nebraska, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2008

Author: Jared M. Stimson

Approved by: Chris S. Eagle

Thesis Advisor

 George W. Dinolt
Second Reader

 Peter J. Denning
 Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Computer Forensics is concerned with the use of computer investigation and

analysis techniques in order to collect evidence suitable for presentation in court. The

examination of volatile memory is a relatively new but important area in computer

forensics. More recently criminals are becoming more forensically aware and are now

able to compromise computers without accessing the hard disk of the target computer.

This means that traditional incident response practice of pulling the plug will destroy the

only evidence of the crime. While some techniques are available for acquiring the

contents of main memory, few exist which can analyze these data in a meaningful way.

One reason for this is how memory is managed by the operating system. Data belonging

to one process can be distributed arbitrarily across physical memory or the hard disk,

making it very difficult to recover useful information. This report will focus on how these

disparate sources of information can be combined to give a single, contiguous address

space for each process. Using address translation a tool is developed to reconstruct the

virtual address space of a process by combining a physical memory dump with the page-

file on the hard disk.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..13
A. CYBER CRIME...13
B. MOTIVATION ..14
C. OVERVIEW...15

II. COMPUTER FORENSICS ..17
A. CONVENTIONAL ANALYSIS ...18
B. DUMPING PHYSICAL MEMORY ..19

1. Hardware Devices ..19
2. Software Methods ..20
3. Hibernation...21

C. ACQUIRING THE PAGE-FILE..22

III. WINDOWS VIRTUAL MEMORY ...23
A. VIRTUAL ADDRESS TRANSLATION ...24

1. Page Directories ...26
2. Page Tables ...27
3. Individual Bytes ...28

B. THE PAGING SYSTEM...28
C. INVALID ENTRIES..29

1. Page-File..29
2. Demand Zero..30
3. Transition..30
4. Prototype...30
5. Zero ...31
6. Unknown...31

IV. PROCESS BASICS..33
A. EPROCESS STRUCTURE...33
B. EXECUTIVE THREAD..34
C. SEARCHING FOR PROCESSES..34

1. Constraints..34

V. SOFTWARE IMPLEMENTATION ...35
A. IMPLEMENTATION ...35
B. USAGE..35
C. FEATURES ..35

1. Walk Active Process List...35
2. Scan Image for Process Structures...37
3. Information Provided from Process Lists..37
4. Translates Virtual to Physical Address..38
5. Dump Process Information ...38
6. Identify Operating System ..39
7. Gets the Number of Pages in Memory ...39

 viii

8. Dump Process Memory ...39
D. TESTING..40

VI. SUMMARY ..41
A. FUTURE WORK...41

APPENDIX A. WINDOWS STRUCTURES ..45
A. WIN32STRUCTS.H...45

APPENDIX B. SOURCE CODE..61
A. EPROC.C..61

APPENDIX C. TEST RESULTS..83
A. TEST RESULTS ..83
B. SAMPLE OUTPUT ...83

1. Process List ...83
2. Process Scan ...84
3. Process Information...85
4. Operating System Identification -Verbose86
5. Memory Statistics...87
6. Address Translation...87

LIST OF REFERENCES..89

INITIAL DISTRIBUTION LIST ...91

 ix

LIST OF FIGURES

Figure 3.1 Mapping Virtual Addresses to Physical Memory (x86) [From 5]...................23
Figure 3.2 Translating a Valid Virtual Address (x86-specific) [From 5]25
Figure 3.3 Components of a 32-bit Virtual Address on x86 Systems [From 5]...............25
Figure 3.4 Valid x86 Hardware PTEs [From 5]..27

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Chris Eagle, George Dinolt, and Tim

Vidas. They gave much in advice and guidance, and without their help this project would

not have been possible. Professor Eagle has been an exceptional Professor and mentor.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

13

I. INTRODUCTION

A. CYBER CRIME

Security experts say that there was an alarming rise in the number of sophisticated

attacks recorded in 2006. They were made possible, partly, due to a large increase in the

number of vulnerabilities identified in popular software applications because last year

brought a sharp increase in the number of software security vulnerabilities discovered and

actively exploited by attackers. In 2006, Microsoft Corp. issued 97 security related

patches that the company designated "critical", meaning attackers could use them to

exploit vulnerable machines. In comparison, Microsoft issued only 37 critical updates in

2005. Also, fourteen of last year's critical flaws were "zero day" threats, meaning

Microsoft first learned about the bugs only after they were already being exploited.

Another alarming development is the level of sophistication attackers are now

using to develop their attacks. Some exploits are able to reside exclusively in volatile

memory without ever accessing the hard drive. When a piece of software can do this it

will leave no evidence on the system once it is shutdown. One exception to this is if

pieces of the process are paged to the disk. However, at the time of writing the paging

file structure is not fully understood. Research has been done to increase the information

that the paging file can provide, but further investigation is required to understand what

can be obtained using it. The harsh reality is that without evidence of its activity and

origin, authorities have no way of stopping these attacks. Also, researchers fear that

attacks will become even more advanced in 2008. "Criminals have gone from trying to

hit as many machines as possible to focusing on techniques that allow them to remain

undetected on infected machines longer," Symantec's Weafer said.

Some software security vendors suspect that a new Trojan horse program, dubbed

"Rustock.B" by some anti-virus companies, may serve as the template for future malware

attacks. The program modifies itself slightly each time it installs on a new machine to

evade detection by anti-virus software. In addition, it hides in the deep in the Windows©

operating system, creates invisible copies of itself, and refuses to run under common

malware analysis tools to resist identification and analysis by security researchers. "This

14

is about the nastiest piece of malware we've ever seen, and we're going to be seeing more

of it," said Alex Eckelberry, president of Clearwater, Florida-based security vendor

Sunbelt Software. "The new threats that we saw in 2006 have shown us that the malware

authors are ingenious and creative in their methods. Unfortunately, those attributes aren't

ones we would normally consider laudable in the context of criminals."

B. MOTIVATION

Computer Forensics is a field concerned with the use of tools and techniques to

locate and collect digital evidence to be used in court. Evidence might be collected during

and after a crime or misuse. [1] Such evidence may be found in both logical (files,

caches, buffers, etc.) and physical places (hard disks, CDs/DVDs, removable media, main

memory, etc.). While collecting evidence, Anzaldua, Godwin, and Volonino state the best

practice is to unplug a computer or remove a laptop’s battery, so as to preserve the exact

contents of a disk for later investigation without introducing changes to the system. Using

the operating system shutdown alters log and temp file states; furthermore, a shutdown

may trigger a logic bomb and a possible data wipe. [1] However, this approach has a

problem; it does not preserve active system memory. A portion of the volatile memory

can be found in the remnants of the operating system swap file, but this is not enough to

reconstruct the state of the system. Thus, there is a push to find a way to collect a forensic

image of memory without significantly altering the state of the system.

From the Order of Volatility listed in RFC 3227, the first item of volatile data that

should be collected during live-response is the contents of physical memory. [1]

Although the specifics of collecting particular parts of volatile memory, such as network

connections or running processes, have been known for some time, the issue of

collecting, parsing, and analyzing the entire contents of physical memory is a relatively

new endeavor. The most important questions when looking at memory are: why collect

the contents of RAM, how is it useful, and what is missed when it is not analyzed?

Some investigators collect the contents of RAM in hope of finding something not

on the hard drive, such as strings or passwords, and malware analysts look to memory

when dealing with malware because it is often encrypted or obfuscated in such a way that

static analysis is extremely difficult. Finally, rootkits can hide processes, files, Registry

15

keys, and even network connections from the tools usually used to enumerate them,

however, analyzing the contents of RAM can reveal these hidden items. The image may

also contain information about processes that have since exited, but still reside in

memory. When pages of memory are used by a process and the process terminates, these

pages are marked as free, but the data is not overwritten until the pages need to be reused.

As physical memory analysis grows, more investigators will pursue this as a

viable source of valuable information. However, what is currently lacking is a tool which

can merge the various sources that make up a virtual address space into a format that can

be later analyzed in an efficient manner. [1] This report will investigate what data is

stored and where it can be recovered from. In order to do this, it will examine the virtual

memory system used by the Windows© XP Operating System so that a tool can be

developed.

C. OVERVIEW

Inspired by the thesis by John S. Schultz at NPS titled “Offline Forensic Analysis

of MICROSOFT® Windows® XP Physical Memory” [7], this thesis will expand upon the

work done by Schultz to create an open source tool to analyze Windows© XP physical

memory dumps for digital forensic evidence. This section begins with a short overview

of the current state of cyber crime and the motivation behind this report. Chapter II opens

with the current state of computer forensics and the moves on to show how to collect the

contents of physical memory and the page-file. In Section III, the Windows© Virtual

Memory system is explained, showing how it is possible to recover information from a

Windows© XP memory image. This includes an examination of virtual to physical

address translation and the paging system, and how to navigate the virtual address space.

Section IV introduces the important structures resident in memory, and how they can be

analyzed to find useful information. Once the contents of memory are understood, the

software used to automate the analysis of the image is covered in Chapter V. Finally, a

summary of the findings of this report and recommendations for further work are given in

Section VI.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

II. COMPUTER FORENSICS

As attacks become more sophisticated, it is necessary to advance the latest tools

and techniques used in forensic science to meet the increasing demands of investigators.

In cyber crime investigations, the crime scene may consist of many computers perhaps

spanning several networks. A cyber criminal may affect a system locally or remotely.

Where as a local attacker may leave physical evidence, a remote attack from the Internet

can come from anywhere in the world and will leave only electronic evidence. In either

case, digital forensic evidence can be gathered from the criminal's computer, the victim's

computer, or both. This digital evidence can be broadly grouped into two categories,

volatile and non-volatile.

Non-volatile electronic evidence can be recovered after a system is powered off

and is found on hard disks, USB flash drives, and removable media. It is in non-volatile

media where most of the electronic evidence originates. System logs, malicious code,

internet browser cache, e-mails, and deleted files are all forms of non-volatile evidence.

Network logs may contain TCP session logs indicating the source IP address from where

the attack originated. The malicious code may be analyzed to determine what the

attacker did to the system and analysis of the hard disk can also lead to the recovery of

deleted files, which may contain evidence. E-mail and browser history can show the

criminal’s intent, expose any accomplices, and even give evidence as to how the attack

occurred.

However, a careful cyber criminal may permanently erase any incriminating

evidence from non-volatile media, making its recovery impossible. In the case of a

compromised computer running malicious code, there is other evidence that can be

useful; evidence in volatile memory. Unlike data stored on hard drives, evidence found

in main memory contains useful information about each running process, such as create

times of various system objects, exit times, open files, executing code, and child process.

However, it disappears once power is removed from the system. This type of evidence is

useful if a malicious program is running on a live system, because unlike the files on the

hard drive, this evidence cannot be erased from memory as long as malicious code is

18

running. If the investigator can capture the state of the system as closely to the way it

was when the incident occurred, then through careful analysis evidence can be taken from

the system. The ultimate goal is to be able to completely reconstruct the state of the

system using the memory and hard disks. If this can be accomplished then the crime

scene can be reconstructed and analyzed in a controlled environment, making gathering

evidence more reliable.

A. CONVENTIONAL ANALYSIS

There are many places where digital evidence might be found within a computer

system. One procedure for incident response is to immediately remove power from the

system and take it to a computer forensics lab. [15] On the other hand, if the system is

powered off before volatile storage such as physical memory is captured its content is

lost. Once a computer system is in the lab, a write blocker is used to further prevent

writing to the disks. Once that is in place, forensic copies of the system’s hard disks are

made and future analysis is carried out using the copies rather than the original disks. [13]

A forensic copy is an exact copy which does not alter the contents of the source disk.

This is done so that the results of the investigation can be reproduced and verified by

independent investigators. Write blockers may be implemented using software after the

system has been booted; however the safest method is a hardware device installed

between the hard disk and the mother board.

A forensic investigation needs to be carried out fairly quickly because the

evidence is usually needed for a court case, and if the evidence is not found in time it

becomes useless. As hard disk capacities increase, investigators need to focus their

efforts in order to find useful evidence. Fortunately, the contents of physical memory

may be able to provide investigators important evidence or insight as to where to find it

on the disk; thus reducing the amount of time and manpower needed for an investigation.

As physical memory analysis expands, more investigators will pursue this as a viable

source of valuable information. Unfortunately, what is currently lacking are extensive

tools which can merge the various sources that make up a virtual address space in to a

format that can be later analyzed in an efficient manner.

19

B. DUMPING PHYSICAL MEMORY

According to guidelines, digital evidence should be collected in order from the

most volatile to the least. [13] This means that the one of the first things an investigator

should do is copy the contents of RAM from all computers at the scene that are still

running. The problem is that nothing should be done which might compromise the state

of the suspect device. This reasoning is sound; however, this rule may be relaxed as long

as the impact of the imaging technique is considered in the investigation. [16] There are

several methods to acquire physical memory and this section provides an overview of the

various options available as well as the technical aspects related to each.

1. Hardware Devices

In the last few years, there has been research into alternatives to software-based

acquisition. These techniques have the advantage of gaining direct access to the memory

via DMA that can copy the entire contents of RAM without modifying it. In addition,

they can copy it very quickly while halting the processor, which eliminates the risk of

data changing during the imaging process.

In February 2004, Brian Carrier and Joe Grand published “A Hardware-Based

Memory Acquisition Procedure for Digital Investigations,” in the Digital Investigation

Journal. This paper proposed the idea of using a hardware expansion card named Tribble

to acquire the contents of physical memory. [2] It dumps physical memory in a manner

that does not introduce new software to the system and does not rely on the operating

system. This allows an investigator to retrieve the contents of volatile memory without

starting a new process or running potentially malicious code. The paper introduced a

prototype which can be installed in a PCI slot and copies the contents of the RAM to

external media. A hardware device such as the Tribble is unobtrusive and easily

accessible. The major limitation with a device such as this is that if not installed prior to

an incident it is ineffective for incident response. [2] Currently, the Tribble device is not

commercially available; however, other hardware devices do exist, but they are only

available to security professionals.

20

Research preformed by Maximillian Dornseif has shown that it is possible to

access memory through the Firewire interface. At PacSec in November of 2005, he

presented a paper, “Owned by an iPod” where he demonstrated how a firewire device can

read/write active memory within a Mac, BSD or Linux machine. At Ruxcon 2006, Adam

Boileau presented “Hit by a Bus: Physical Access Attacks with Firewire” where he

enabled the targeting of a Windows© XP machine. Utilizing a Linux box with firewire

support he revealed several hacks using live memory reading and writing against

Windows© XP. However, firewire collection presents some problems. First, there may

not be firewire ports available on the computer and second, plugging in a firewire device

might require the operating system to activate the port, which may alter the state of the

system and if not done properly, may crash the system. The primary issue is that the

concepts and tools available for firewire memory imaging are still immature and need

more research before they will become widely acceptable. Active memory and live data

collection are still new to the field of digital forensics and have issues regarding

reliability and analysis. As recently as BlackHat in February 2007 in DC, Joanna

Rutkowska demonstrated how to defeat firewire based memory imaging utilizing a low

level program, in the CPU. [6] Thus, the desire to collect a snapshot of the state of the

system should not overshadow the value of preserving the integrity of the data collected.

[6]

2. Software Methods

When using software acquisition the imaging program must first be loaded into

memory, which alters the memories contents and possibly displaces data. Also, the

program could rely on libraries that may have been subverted by the attacker. It is

possible that the program could receive false data from corrupted system files since the

software accesses physical memory through the operating system. Thus, with software

alone, it is not possible to obtain a snapshot of physical memory completely unaffected

by such tools. However, an undisturbed snapshot is not always necessary for forensic

analysis of memory because useful forensic evidence can be extracted from a physical

memory image captured with a software tool. [3] Since there are no native tools on

Windows© XP to dump the contents of system memory, a third-party program must be

21

used. One such tool is George Garner’s variant of the GNU dd utility [3]. The dd

program copies data in blocks from one file to another. In the case of Garner’s version,

the input file is \\.\PhysicalMemory, which represents the device name for physical

memory in Windows©. This, however, is no longer available on Vista, the newest

version of Windows©. It is important to use the noerror option when reading from

memory to ensure all readable blocks of data are copied because without this option, the

dd program will stop after a read error. [3] As for the output file, it is recommended that

no output file is specified in favor of piping the output of dd to netcat with the command

line. The netcat[18] program can be used to send and receives data over a network

connection, this allows physical memory to be copied and sent directly to an external

computer connected to the network so the data is not saved to the local hard disk. A

newer variant of dd is now available called KnTDD from GMG Systems, Inc. and is part

of KnTTools which provides advanced memory acquisition and analysis capabilities[19].

3. Hibernation

Hibernation is used to save the contents of volatile memory to disk in a file called

the hiberfil.sys which allows the system to power down without permanently losing that

data. Since the system uses this file to restore the state of the system, some useful

information might be available in the hibernation file. It is also possible that that

hibernation could be a useful way to acquire the contents of memory, since no additional

programs would have to be loaded. Unfortunately though, there are several problems

associated with using hibernation. First, when the system is hibernated it writes data to a

file, hiberfil.sys and if this file exists it will be overwritten, therefore the old file should

be copied from the system before the system is hibernated. Second, enabling hibernation

on systems where it is disabled requires changing the state of the machine, which

increases the risk of changing data. Microsoft Windows supports a "suspend to disk"

mode. Nicolas Ruff and Matthieu Suiche developed a library, called Sandman, which

allows reading and writing the hibernation file. They recently presented their results at

PacSec 07 [20].

Hibernation could come in handy in a forensic investigation. You just have to

send the computer to sleep in order to preserve the most important parts of its main

22

memory on disk. The presentation outlines the format of the hibernation file. It also

briefly discusses the variations between different OS versions and mentions the

compression algorithms involved. With the help of the Sandman library the hibernation

file could be converted into a raw memory dump and possibly also into a crash dump

(because the CPU state is preserved, too). Unfortunately the library is not available to the

public yet.

C. ACQUIRING THE PAGE-FILE

Even more pages can be recovered if the examiner has access to the page-file for

each system. Using the page-file might also allow the examiner to use more information

in the memory image. In order to use the page-file effectively, however, it must be

acquired at the same time as memory acquisition. By default, Windows© uses only one

paging file, %SystemDrive%\pagefile.sys, but the true locations and filenames for paging

files should be found using the registry. Capturing the page-file is difficult on a live

system as traditional file copying utilities cannot open them. When the system is running

the files are in use by the operating system and may not be opened by another process. It

would be beneficial for first responders to have a program to capture both physical

memory and the paging file in one step, but this will require further research. To acquire

the page-file mount the drive in a guest operating system and copy the page-file. The

examiner must be careful to use a write blocker so that no changes are made to the source

drive. The delay between capturing a memory image and the paging file may create

inconsistencies that could hinder analysis. Power to the system should be secured

immediately after obtaining the memory image in order to freeze the page-file in a state

as close to the state it was in when the image was obtained.

23

III. WINDOWS VIRTUAL MEMORY

The Windows© operating system creates a private virtual memory space for each

running process using the memory manager. The memory manager is used to map a

process’ virtual address space to the system’s physical memory or RAM. All modern

operating systems use some form of Virtual Memory (VM) system to give each process a

large address space while preventing it from gaining access to data belonging to other

processes. [5] The basic concept behind virtual memory is relatively simple. For each

process, the operating system maps virtual addresses to physical memory because RAM

has less storage space and is more expensive than a hard disk. The memory manager

creates data structures called page tables which the CPU uses to translate virtual

addresses into physical addresses. Each virtual address is associated with a system-space

structure called a page table entry (PTE), which contains the physical address to which

the virtual address is mapped. [16] For example, Figure 3-1 shows how three consecutive

virtual pages are mapped to three pages that are not physically contiguous.

Figure 3.1 Mapping Virtual Addresses to Physical Memory (x86) [From 5]

24

If the operating system runs out of space in physical RAM, some data is paged out

to make room. The paged data is maintained on the system’s hard drive. [5] If a page is

not mapped into physical memory, the operating system marks the page as invalid. Any

access to this page causes a page fault, which then causes the OS to copy the contents of

the page from secondary storage into memory.

To implement VM, Windows© maintains a large amount of data. It needs to know

if data is in RAM or on the disk. Maintaining this information for each byte of an

address space would require more memory than the address space itself and for this

reason Windows© breaks the address space into 4KB pages (or 4MB if large pages are

enabled) and maintains this information in page tables. A page table entry (PTE) consists

of the physical address of the page if the page is mapped to RAM and also some

attributes of the page. [15] The VMM used by Windows© XP allows each process to

access a full 4GB of virtual addresses, translating those virtual addresses into physical

addresses. [5] Within each virtual address space, there is a portion dedicated as user space

and a portion reserved for the operating system. User space is for application code,

global variables, the process stack, and dynamically linked libraries (DLLs) and it spans

from virtual address 0x00000000 to 0x7FFFFFFF. The system address space is

accessible by all processes and is for use by the operating system. It ranges from

0x80000000 to 0xFFFFFFFF and contains the necessary information for system

management of the virtual memory, including the page directory and the page table

entries (PTEs) used for virtual addresses translation.

A. VIRTUAL ADDRESS TRANSLATION

Windows© uses virtual addresses to abstract the memory storage system from the

rest of the operating system and other programs. The operating system presents each

program with a large private virtual address space and each time a program references a

virtual address the operating system translates that virtual address into a physical address

and retrieves the requested data. If the data is not in memory, it loads the data from the

disk. During memory analysis, the examiner needs to use this same translation process,

but without help from the operating system. Windows© on an x86 system uses a two-

level page table structure to translate virtual addresses to physical addresses. [5] A 32-bit

25

virtual address is interpreted as three separate components—the page directory index, the

page table index, and the byte index—that are used as offsets into the structures that

describe page how the page is mapped, as illustrated in Figure 3-2. The page size and the

PTE width dictate the width of the page directory and page table index fields. For

example, on x86 systems, the byte index requires 12 bits to describe the location of all

4096 bytes in each page.

Figure 3.2 Translating a Valid Virtual Address (x86-specific) [From 5]

The page directory index is used to locate the page table in which the PTE is

located. The page table index is used to locate the PTE, which, contains the physical

address to which a virtual page maps. The byte index indicates the proper address within

that physical page. Figure 3.3 shows the relationship of these three values and how they

are used to map a virtual address into a physical address.

Figure 3.3 Components of a 32-bit Virtual Address on x86 Systems [From 5]

Address translation is generally a three stage procedure. Every process on a

Windows system maintains a DirectoryTableBase variable. On an x86 systems this value

is stored in the CR3 register when the process is running. This value contains the base

26

address of the table of Page Directory Entries (PDE) for that process. For each virtual

address, a PDE is specified using a few bits from the original virtual address. The PDE is

used to find the base address of a page of Page Table Entries (PTE). The PTE is

designated using this base address and some more bits from the original virtual address.

The PTE in turn points to the base address of the page in physical memory where the data

is stored. The final address in physical memory is the base address of this page plus the

remaining bits from the original virtual address. The least significant bit in a PDE or PTE

entry is the Valid or V bit. When this bit is one the entry is said to be ‘valid’ and bits 12-

31 of the entry contain the Page Frame Number (PFN) used in the next part of the address

translation. In a PDE, the PFN points to the page containing the PTE. In a PTE, the PFN

points to the page containing the memory indicated in the original virtual address. On the

other hand, when the V bit is zero the entry is said to be ‘invalid’ and a different set of

rules must be used to find the data in question.

1. Page Directories

Each process has one page directory; a page the memory manager uses to map the

location of all page tables for that process. The physical address of the process page

directory is stored in the kernel process (KPROCESS) block, but it is also mapped

virtually at address 0xC0300000 on x86 systems. The CPU knows the location of the

page directory page because a special register (CR3 on x86 systems) that is loaded by the

memory manager contains the physical address of the page directory. Each time a thread

begins execution that is not part of the current process this register is loaded with the

address of the new process’ page directory. Context switches between threads in the same

process don't cause the address to be reloaded because all threads within the same process

share the same address space. The page directory is composed of page directory entries

(PDEs), each of which is 4 bytes long and describes the state and location of all the

possible page tables for that process. On x86 systems, 1024 page tables are required to

represent the full 4-GB virtual address space. The process page directory that maps these

page tables contains 1024 PDEs. Therefore, the page directory index needs to be 10 bits

wide. Because Windows© provides a private address space for each process, each process

has its own set of page tables to map its private address space. [5] However, the page

27

tables that map system space are shared among all processes. To avoid having multiple

page tables describing the same virtual memory, when a process is created, the page

directory entries that describe system space are initialized to point to the existing system

page tables.

2. Page Tables

The process page directory entries point to individual page tables. Page tables are

composed of an array of PTEs. The virtual address's page table index field (as shown in

Figure 4) indicates which PTE within the page table maps the data page in question. On

x86 systems, the page table index is 10 bits wide, allowing you to reference up to 1024 4-

byte PTEs. However, because 32-bit Windows© provides a 4-GB private virtual address

space, more than one page table is needed to map the entire address space. To calculate

the number of page tables required to map the entire 4-GB process virtual address space,

divide 4 GB by the virtual memory mapped by a single page table. Recall that each page

table on an x86 system maps 4 MB of data pages. Thus, 1024 page tables (4 GB/4 MB)

are required to map the full 4-GB address space. Valid PTEs have two main fields: the

page frame number (PFN) of the physical page containing the data or of the physical

address of a page in memory, and some flags that describe the state and protection of the

page, as shown in Figure 3.3.

Figure 3.4 Valid x86 Hardware PTEs [From 5]

28

3. Individual Bytes

Once the memory manager has found the physical page in question, it must find

the requested data within that page and this is where the byte index field comes in. The

byte index field tells the CPU which byte of data in the page you want to reference. On

x86 systems, the byte index is 12 bits wide, allowing you to reference up to 4096 bytes of

data (the size of a page). So, adding the byte offset to the physical page number retrieved

from the PTE completes the translation of a virtual address to a physical address.

B. THE PAGING SYSTEM

Ideally, when a process reads from, or writes to, a location in its virtual address

space, that address is available in physical memory for immediate use. The working set

is the set of virtual pages currently in main memory. But a system is not capable of

providing enough physical addresses in main memory to map to every address of each

process’s virtual address space. When a thread references a virtual page that is not in the

working set, a page fault occurs. The page fault triggers the memory manager to load the

desired page into memory and update the working set to include the newly loaded virtual

page. This is a valid page fault and is normally transparent to the user. An invalid page

fault is a request for data that is not accessible and will usually result in a system crash.

If there is a need to free space in RAM, then parts of code and data that are not

currently needed can be transferred to the hard disk in the page-file. This file is generally

called pagefile.sys and is usually stored in the root directory of the primary drive;

however one should check the system settings for its actual location. The format of the

page-file is very simple, and can be treated the same as memory. It is simply a contiguous

block of data which can be referenced by the same offsets as used for physical memory.

Because of the constant swapping of pages, the total address space of virtual memory is

rarely contained entirely within physical memory, nor is it ever constant.

Only the parts of the program and data that are in active use need to be in physical

memory. Thus, parsing and analyzing the contents of a RAM dump in isolation without

the page-file will not provide a complete view of memory. This is because pages that

have been swapped out to the page-file are not utilized in the memory analysis. To

29

overcome this Nicholas Maclean published his thesis work, Acquisition and Analysis of

Windows Memory [13], in the spring of 2006. He explains the inner workings of the

Windows© memory management system and provides an open-source tool written in

Python called vtop to reconstruct the virtual address space of a process. Jesse Kornblum

also released his work referred to as the “Buffalo” paper or by its full title, “Using Every

Part of the Buffalo in Windows Memory Analysis” early in 2007 [8]. In this paper, Jesse

demonstrates how more data can be recovered using invalid Page Table Entries.

C. INVALID ENTRIES

Just because an entry is invalid, doesn’t mean that the data it references is

inaccessible. [8] One can follow the same rules as the operating system to access the data

in question; however, it is still possible that the data was never loaded into memory and

thus is truly inaccessible. When a page is removed from memory it is marked as invalid.

An invalid PTE or PDE will always have its least-significant bit set to zero, but there are

a number of reasons for it being invalid each of which uses a slightly different format and

each invalid PDE or PTE fits into one of six categories: Page-file, Demand Zero,

Transition, Prototype, Zero, or Unknown. Below we describe each of these in detail.

1. Page-File

If both the P and T bits in an invalid PTE or PDE entry are zero, the entry points

to a frame in one of the paging files. Windows© can support up to 16 paging files, so the

page-file number, PageFileNumber, is given in bits 1-4. The offset of the desired frame in

the page-file, PageFileOffset, is in bits 12-31 of the invalid entry. [8] The true offset in

the paging file is the value of bits 12-31 from the entry plus some bits from the original

virtual address. Note that both PDEs and PTEs can point into the Page-file. For a PDE

Page-file entry, PageFileOffset uses bits 12-21, shifted right 12 places, from the original

virtual address being referenced. For a Page-file PTE entry, PageFileOffset uses bits 0-11

from the original virtual address.

30

2. Demand Zero

Like a page-file entry, Demand Zero entries have zeros in the T and P bits. But

when the PageFileNumber and PageFileOffset are both zero, the operating system has

marked the requested page as Demand Zero and would return any request for it with a

page of zeros.

3. Transition

When the T bit in an entry is one and the P bit is zero, the page is said to be in

Transition. [8] This means that the page has been modified but not yet written back to the

disk. Even though a page was in transition, the page was still in active memory and can

therefore be retrieved by an examiner. Just like a valid entry, the page frame number is

given in bits 12-31 and can be used to continue the address translation process.

4. Prototype

In a PTE, when the P bit is one, the entry is a pointer to a prototype page table

entry. Note that when P is one, the value of the T bit is part of the prototype’s index. The

entry contains an index number that can be used to compute the virtual address of the

prototype PTE. Prototype PTEs are used when more than one process is using the same

page in memory. [8] Prototypes are created when the operating system needs to invalidate

the page in question. This is to avoid having to update all of the processes using the page

each time the page is moved. Instead, they direct each process using the page to point to

the same prototype. The prototype then points to the page’s true location. When a page

in question is moved, the memory manager only has to update the one prototype. The

PTE stored by each process acts like a shortcut or symbolic link to the true PTE. Each

Prototype PTE should be in one of the six states listed below.

• Active: The V bit is one. The page was in memory and can be accessed using the
Page Frame Number in the prototype PTE entry.

• Transition: The V bit is zero and the T bit is one. The page was in Transition, but
can be accessed in the memory image using the Page Frame Number in the
prototype PTE entry.

31

• Modified No-Write: Like a transition prototype PTE, but the Dirty bit, bit six, is
also one. The page can be accessed in the memory image using the Page Frame
Number in the prototype PTE entry.

• Page File: The V, T, and P bits are all zero. The data are stored in the page file.

• Demand Zero: The V, T, and P bits are zero along with the PageFileNumber and
PageFileOffset. The page should be satisfied with all zeros.

• Mapped File: The P bit is one. The operating system would retrieve the requested
data from the original file on the disk. The author does not know how to use the
value from these prototype PTEs. [8]

5. Zero

If the entry is zero, there is no information available for the page in question.

Specifically, the page has been committed, but has not yet been accessed. That is, the

operating system has allocated the page but has not read from or written to it. In this

situation, the page does not contain any information relating to the process of which it

belongs. However, it may still contain residual information from a process that has

released the page for reuse by another process. Some processes will zero out a page that

is allocated or fill it with random data; but this is not always the case. If these pages do

contain data from another process the investigator will not be able to tell where the data

came from without more information which can be obtained through a more in-depth

analysis of the memory image.

6. Unknown

It is still possible that the status of the address is unknown and in this case the

entries are put in this category and disregarded. [8]

Until recently, the only investigation performed on physical memory was similar

to the analysis performed by system administrators on crash dumps to find out the cause

for a crash. Theoretically, the contents of physical memory can show everything about

the state of the system at the time the memory dump was taken (open files, running

processes, network connections, logged on users). However, the analysis of the complete

image of physical memory and page-file is able to reveal much more information. [8]

When a process terminates, the pages of memory which were allocated to it are marked

as free by the memory management system, but the actual contents of these pages are not

32

overwritten until the memory is used. This means that this portion of memory actually

contains data which is logically no longer part of the system. [9] This data may prove

invaluable to a forensic investigation as it will be totally invisible to conventional crash

dump analysis and the only way to recover it, is by means of an in depth forensic analysis

of physical memory. [9]

33

IV. PROCESS BASICS

Windows stores information about each process in an EPROCESS kernel

structure. The EPROCESS structures for all processes are stored in the address space of

the System process. Once the base address of the EPROCESS block is known, values can

be read by adding that offset and reading the value. Of the 4GB virtual address space

allocated to the process, only the 1st 2GB of the virtual address space are available for

the process to write to, with the 2nd 2GB used as shared system memory (although this

can be changed to 3GB for the process and 1GB for the system using a boot option) [5].

This means that by looking up all virtual addresses ranging from 0x00000000 to

0x80000000 (0-2GB) all memory writable by that process can be produced.

A. EPROCESS STRUCTURE

The executive process (EPROCESS) block is the most important structure in

memory for forensic analysis because it is the starting point of any further investigation

of that process. All EPROCESS blocks are part of a doubly linked list, which includes

blocks for active processes, although it is not uncommon to encounter exited processes in

the list. This happens when an exited process is still opened as a handle by another active

process; an exited EPROCESS block is deleted only when the last handle to the process

is closed.

Each process on a Windows system is represented as an executive process, or

EPROCESS, block. This EPROCESS block is a data structure in which various attributes

of the process, as well as pointers to a number of other attributes and data structures

relating to the process, are maintained. Because the data structure is a sequence of bytes,

each sequence with a specific meaning and purpose, these structures can be read and

analyzed by an investigator.

34

B. EXECUTIVE THREAD

Threads are entities within a process that represent executable code of the process.

Every process starts with a single thread, which may spawn other threads. Multiple

threads allow a process to do several tasks in parallel, with each thread doing a separate

task. This is also more efficient because when the Operating System switches threads in

the same process it does not cause a VM context switch.

Windows represents a thread by the executive thread (ETHREAD). Threads are

important to forensic analysis because threads are scheduled for execution not processes.

A thread’s creation and exit times are stored in its ETHREAD block. The initial

execution address for a thread is also stored in the ETHREAD block.

C. SEARCHING FOR PROCESSES

Now the problem is to find a pattern which reliably identifies the objects. This

section describes the data structures representing processes and threads. It notes constant

values and formulates rules which build upon pairs of offsets and values. [14] Other

rules will be derived from functional requirements of the operating system.

Below we describe an algorithm for a scanner that will identify process and thread

objects. [14] The scanner advances through the whole dump file at a step width equal to

the kernel’s memory allocation granularity. At every position the scanner looks for a

valid process and thread structure by reading in the data and parsing it. This object is then

evaluated based on a rule set.

1. Constraints
Values used to find valid process structures: [14]

Pcb.Header.Type != 0x03

Pcb.Header.Size != 0x1b

Pcb.DirectoryTableBase[0] == 0

Pcb.DirectoryTableBase[0] % 0x1000) != 0

Pcb.ThreadListHead.Flink < KERNEL_OFFSET

Pcb.ThreadListHead.Blink < KERNEL_OFFSET

 WorkingSetLock.Event.Type != 0x01

WorkingSetLock.Event.Size != 0x04

35

V. SOFTWARE IMPLEMENTATION

A. IMPLEMENTATION

The scanner was implemented in C using Notepad as the text editor and gcc as the

compiler. It has been tested in cygwintm [21] running on Windows© XP SP2. The system

we developed and tested with is an Intel P-III 1.1 Ghz laptop with 512 MB of RAM. We

needed no flags or modules other than those listed in the header file in Appendix A.

Simply compile using a standard gcc command with the header located in the same

directory as the source file.

B. USAGE

Below we provide a reprint of the “usage” string printed by the scanner we

implanted.

Usage statement: ./eproc.exe option <imageFile>

-l Walk active process list: ./eproc.exe -l <imageFile> <pAddress>

-s Scan image for process structures: ./eproc.exe -s <imageFile>

-t Translates Virtual Address: ./eproc.exe -t <imageFile> <pAddress>

<vAddress>

-d Dump process information: ./eproc.exe -d <imageFile> <pAddress>

-i Identify Operating System: ./eproc.exe -i <imageFile> -verbose

-p Gets the number of pages in memory : ./eproc.exe -p <imageFile>

<pAddress>

-m Dump Process Memory: ./eproc.exe -l <imageFile> <pAddress>

<pageFile>

C. FEATURES

1. Walk Active Process List

In conducting an investigation, after the preliminary data collection is complete

the investigator will start the off-line analysis. Using this tool the first thing that the

investigator should do is to get a process listing using the active process list. The

command line to do this would look like: ./eproc.exe -l <imageFile> It will

36

search for the System process, which is the active process head, starting at the beginning

of the file, using the same mechanism that is used to scan the image for process structures

and will traverse the list once it is found. Starting at the active process list head, System

process on Windows, the tool follows the forward links (Flinks) and backward links

(Blinks). They are pointers to the process before or after the current process in the active

process list. Optionally if the physical address of the System process is known it can be

entered at the command line after the path to the image file and the program will begin its

search at that address. The closer you get the less time it will take to find the system

process.

One weakness with this method is that it will not find processes that have been

removed from the active process list by DKOM (Direct Kernel Object Manipulation)

[17]. Such processes can be hidden because a device driver or loadable kernel module

has access to kernel memory and can modify objects in the kernel memory space in a

reliable fashion in order to hide objects such as processes. In order to hide a process

using object manipulation you must first locate the EPROCESS block of the process that

you want to hide, then change the process behind it in the list to point to the process after

the process you are trying to hid. Finally, change the process after it to point to the

process before the one you are trying to hide. [17] Now, the active process list points

around the hidden process and it is not reported when the system returns the active

process list.

The process continues to run because scheduling in Windows© is thread based and

not process based. [17] So while the process is not reported by the Operating System, it

continues to schedule the processes threads for execution without adverse affect to the

system. [17] However, even though this function may not list all of the processes that

could be running on the system it is a good initial listing and will show processes that

have not been unlinked and still may look suspicious, but are not sophisticated enough to

remove themselves from the process list. It also creates a baseline to compare the results

from a full memory scan. Any discrepancies between the listing and the scan indicate

areas that could use further investigation.

37

2. Scan Image for Process Structures

Once the investigator has a listing of the active processes the next step is to scan

the image for process structures. This is the mechanism that is used to find the active

process head when walking the list; however the list function stops scanning once the

System process is found and uses the linked list to find processes. The following

command will allow the investigator to scan a memory image: ./eproc.exe -s

<imageFile> The scan may take several minutes to complete depending on the system

on the size of the memory image. The results of the scan provide the investigator with a

list of every block of data that fits the process structure using expected values in specific

locations. The algorithm scans the memory image at an 8-byte interval because processes

are 8-byte aligned and compares each chunk of data to a process structure. If values in

specific fields match then a valid process is found.

The advantage to this is that it will find all process structures that are in the

memory image regardless of whether they have been removed through DKOM or have

been recently exited as long as the structure is still in memory and still meets the criteria

that describe a valid process structure. The disadvantage to this method of gaining

process information is that it is slow and on large images will take significantly longer

than walking the list if you need quick results. Comparing the results of both a listing

and scan will provide the best results for investigators and give them a reference point to

direct further investigation.

3. Information Provided from Process Lists

The useful information provided from the list and scan functions are the image

name and size which are provided in order to provide descriptive information to the

investigator for future reference:

• Each process name, which can sometimes provide the investigator an idea

as to the function of the process and whether it is a process that is suspect

or not,

• Pid and PPid give information as to which process spawned the current

process which is useful in determining where the processes originated,

38

• Time created can be used to determine a timeline of events in an

investigation,

• Offset in image is important for further investigation because this is

necessary input for the functions that work on specific processes,

• Page directory base address this is also useful information for manual

analysis and is used by the tool for address translation.

The information provided in the listing provides broad overview of what was

running on the system and can give clues as to where to investigate further.

4. Translates Virtual to Physical Address

Another feature is the ability of the program to translate a virtual address to a

physical offset in to the memory image. A command that will achieve this is:

./eproc.exe -t <imageFile> <pAddress> <vAddress> The examiner may want to

use this feature to aid in any manual analysis of the memory image. The procedure for

this is to enter the flag then the address to the process of which the address is taken then

the address to be translated. As of now it does not work for addresses that have been

paged.

5. Dump Process Information

Now that the investigator has an idea of which processes need further

investigation, the next step is to get the process image data from memory. This function

takes the offset to a process structure as its argument and overlays a process structure to

the data. An example command is: ./eproc.exe -d <imageFile> <pAddress> If the

data found at the address provided fits the valid process format it prints information about

the process including its DOS Header, File Header, Optional Header, and Section data.

The information provided by this function is most useful when combined with a manual

analysis on the image. One feature under development is the ability to carve out the data

referenced in the headers and specific sections for further analysis. If there is not a valid

process structure found at the offset given, the program prints: “no valid process found”.

39

6. Identify Operating System

Normally the investigator will already know the Operating System the image was

taken from, but it may be useful to identify the Operating System for verification. A

command to identify the Operating System of an image is: ./eproc.exe -i

<imageFile> -verbose Also, the verbose option returns information about the Kernel

image that may prove to be useful in the investigation. This function will print out the

version of windows that the image was captured from. It does this by locating the Kernel

Base Address and comparing it to addresses known to be used by common Operating

Systems [14].

7. Gets the Number of Pages in Memory

Statistics relating to the number of valid and invalid pages referenced in the page

directory is useful in determining memory usage and if a process was exhibiting suspect

behavior. The command to get the memory usage of a process is: ./eproc.exe -p

<imageFile> <pAddress> to get these statistics the scanner simply counts the number

of valid and invalid addresses are in the page table for the specified process. Once a valid

process is found, the page directory can be found using the process structures provided in

appendix A. With the location of the page directory the rest of the virtual to physical

translation information is found using the proper translation method.

8. Dump Process Memory

Now that the investigator has found the process that is suspect the next step is to

retrieve its memory space from the memory image and the page file. To do this the

command would be: ./eproc.exe -l <imageFile> <pAddress> <pageFile> this

function takes the image file and optionally a page-file and dumps the processes memory

space to a file in its own folder. The file and folder will be named with the process name

and the PID (process id). In order to reduce the amount of space required it does not

dump global pages from the system shared memory space. The algorithm used to find

the data and output it to a file goes through all of the virtual addresses in the page tables

and translates them using ether the valid address translation method or the invalid address

translation method. For invalid addresses if the address flags indicate it is in the page-file

40

it retrieves the page from the page-file if it is provided. The output function simply

writes the pages to the output file in the order they appear in the page tables. This puts

the pages in ascending order based on the virtual address of the page. A second file is

produced that contains the virtual addresses listed in the same order as the dump file so

that they can be later matched to the corresponding page from memory. A useful

function would be a mechanism to search the dumped file and would be useful and aid

the investigator in advanced analysis. This would make it easier to reconstruct memory

space and look at specific parts that may need further investigation. One feature that is

being explored is the ability to find and dump specific parts of the process image, such as

specific DLLs or all or part of the process executable.

D. TESTING

This program was tested using memory captured dd.exe. The system was a

Laptop running Windows XP Service Pack 2 with 512 MB of RAM. The page-file was

obtained by shutting down the system by removing the batteries and booting the system

with Backtrack [22] to allow access and to ensure the integrity of the file. The results of

the test runs can be found in Appendix C.

41

VI. SUMMARY

This report has shown that during the forensic process, as much attention must be

paid to volatile memory as to the more traditional sources of evidence. It should no

longer be standard practice for the contents of memory to be destroyed in the interest of

the integrity of the data on the hard disks. Different techniques are either available now or

will be available in the near future for acquiring memory images. Once a memory image

has been taken it is possible to locate pages that would not normally be available to the

investigator by incorporating information in the process’s page directories. Currently this

tool retrieves the pages in the order they appear in the page directories, it would be better

to sort them in order of virtual address, however this is still in progress. Another feature

under development is the ability to analyze the data it produces. There are few tools

currently available which can analyze this data, however, it can be done manually and

automated tools are under development. The release of the Volatility framework will

hopefully allow developers to add to this toolbox easily. It is expected that in the near

future, full suites of memory analysis software will be available, and the investigation of

memory will be viewed with the same importance as any other areas of computer

forensics.

A. FUTURE WORK

This paper has attempted to expand the amount of information available to an

examiner conducting Windows© memory analysis. The current implementation of this

tool extracts process data in its entirety and saves it in one consolidated file. One area

that needs to be addressed is the ability to extract specific parts of a process such as only

the executable or specific DLLs. This would facilitate an investigator’s search and allow

more time for analysis. Another area that needs further development is the robustness of

options available that will allow the user to more easily conduct data retrieval and

analysis. Although demonstrating that more information is available when using robust

address translation, there are still many opportunities to increase the amount of

recoverable data in a memory image. This will hopefully allow for more advanced

42

programs to be produced which could, for example analyze data structures and variables

within process space and produce visualization systems for displaying the contents of

memory in readable ways.

There is also much more information available to the investigator by looking for

other types of data structures. Future developments will be able to find loaded DLLs,

open file handles and which thread is accessing the files, encryption keys, and open

sockets just to name a few. All of this information will be useful to the investigator in

recreating the scene of the digital crime. Knowing if there were open sockets, threads

executing, and which files were being accessed at the time of the incident give the

investigator invaluable information as to the type, method, and extent of damage that may

have occurred. All of this information is available to some extent, but to take full

advantage of the information it provides it needs to be organized and analyzed in

meaningful ways.

Hibernation may prove to be a useful method of acquiring memory, but more

research needs to be done to make this a reliable tool in the forensic investigator’s tool

box. The ways in which Windows fetches, compresses, and stores memory are not fully

understood, and it is not clear if any other operations are performed during the

hibernation process. Researchers have had some success in reverse engineering the

proprietary algorithm used to hibernate systems running Windows©, however there is not

enough evidence to show that the methods they use yield the results required by forensic

analysis. Furthermore, this method requires that hibernation be enabled prior to the

incident which limits it usefulness to certain cases. Another consideration is that

hibernation a process operated by the system that is in question and it may be

compromised possible yielding unreliable results. If the system has been compromised

nothing running on the system can be trusted.

Firewire has been designed to access memory through DMA, which should lend it

towards memory acquisition with minimal impact on the target system. Research has

shown that this is possible on Windows© XP systems, but has yet to produce a viable

solution which would be suitable for incident response. While in some cases this may be

an acceptable method, the investigator must introduce new hardware to the system thus

43

changing its state. Whenever the investigator changes the state of the system by

introducing new hardware, one cannot rule out the possibility that it will be recognized

alerting the intruder and allowing for the destruction of evidence.

A multitude of applications relating to and stemming from this research can be

found in incident response, data recovery, computer forensics, and cyber crime

investigation. These are all interrelated, but each one is its own independent research

area with unique difficulties and opportunities. The field of memory analysis can be used

to determine what was happening on a system at the time the memory image was taken,

to find encryption keys and possibly reconstruct deleted files. The ultimate result of

research is to completely reconstruct the state of a live system from a memory image and

hard disk. The ability to do this is like being able to freeze a crime scene and completely

reconstruct it in a controlled environment, possibly even while the criminal is still

present. Further research will lead to greater understanding of computer systems leading

to tools that will aid solving cyber crimes and convicting suspects.

The final area of future research and possibly the most important when it comes to

catching and convicting criminals is the admissibility of evidence obtained in the Court

of Law. Once the investigator has used the information to solve the crime it must then be

used in court to convict the suspect. As of now, the tool is simply an evidence

acquisition tool used to diagnose symptoms of a system that appears to be compromised

and only a small piece of the overall investigation. However, in the future there will have

to be some way to prove that the dump came from the system in question, that it has not

been compromised, and be able to provide conclusive evidence that a crime was

committed and that the suspect did indeed commit the crime in question. Not only must

the tools used by an investigator do this, but it must do it in proven, repeatable ways.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

APPENDIX A. WINDOWS STRUCTURES

A. WIN32STRUCTS.H

/**
Name Windows Physical Memory Offline Analyzer [7]
File win32structs.h
Version 1.0
Author John Schultz

Description Console Program which enumerates the processes running on a
 Windows PC. The program reads an offline copy of the
 physical memory for all the information gathered about the
 running processes.

**/

#include<sys/cdefs.h>

#ifndef __WIN32STRUCTS_H
#define __WIN32STRUCTS_H

__BEGIN_DECLS

/*Each struct is defined based on that given by the Windows(R) Kernel
Debugger with few exceptions, which are noted*/
struct _unnamed {
 /* +0x000 */ long double var01;
 /* +0x00a */ long double var02;
 /* +0x014 */ long double var03;
 /* +0x01e */ long double var04;
};

struct LIST_ENTRY {
 /* +0x000 */ void *Flink;
 /* +0x004 */ void *Blink;
};

struct UNICODE_STRING {
 /* 0x000 */ unsigned short Length;
 /* 0x002 */ unsigned short MaximumLength;
 /* 0x004 */ unsigned short *Buffer;
};

struct STRING {
 /* 0x000 */ unsigned short Length;
 /* 0x002 */ unsigned short MaximumLength;
 /* 0x004 */ char *Buffer;
};

struct DISPATCHER_HEADER {
 /* +0x000 */ unsigned char Type;
 /* +0x001 */ unsigned char Absolute;
 /* +0x002 */ unsigned char Size;

46

 /* +0x003 */ unsigned char Inserted;
 /* +0x004 */ unsigned long SignalState;
 /* +0x008 */ struct LIST_ENTRY WaitList;
};

struct KEVENT {
 /* +0x000 */ struct DISPATCHER_HEADER Header;
};

struct KDEVICE_QUEUE {
 /* +0x000 */ short Type;
 /* +0x002 */ short Size;
 /* +0x004 */ struct LIST_ENTRY DeviceListHead;
 /* +0x00c */ unsigned long Lock;
 /* +0x010 */ unsigned char Busy;
};

struct KDPC {
 /* +0x000 */ short Type;
 /* +0x002 */ unsigned char Number;
 /* +0x003 */ unsigned char Importance;
 /* +0x004 */ struct LIST_ENTRY DpcListEntry;
 /* +0x00c */ void *DeferredRoutine;
 /* +0x010 */ void *DeferredContext;
 /* +0x014 */ void *SystemArgument1;
 /* +0x018 */ void *SystemArgument2;
 /* +0x01c */ unsigned long *Lock;
};

struct MMWSLE_HASH {
 /* +0x000 */ void *Key;
 /* +0x004 */ unsigned long Index;
};

struct MMSUPPORT_FLAGS {
 /* +0x000 */ int Sessionspace : 1;
 /* +0x000 */ int BeingTrimmed : 1;
 /* +0x000 */ int SessionLoader : 1;
 /* +0x000 */ int TrimHard : 1;
 /* +0x000 */ int WorkingSetHard : 1;
 /* +0x000 */ int AddressSpaceBeingDeleted : 1;
 /* +0x000 */ int Available : 10;
 /* +0x000 */ int AllowWorkingSetAdjustment : 8;
 /* +0x000 */ int MemoryPriority : 8;
};

struct MMWSL {
 /* +0x000 */ unsigned long Quota;
 /* +0x004 */ unsigned long FirstFree;
 /* +0x008 */ unsigned long FirstDynamic;
 /* +0x00c */ unsigned long LastEntry;
 /* +0x010 */ unsigned long NextSlot;
 /* +0x014 */ void *Wsle; /*points to MMWSLE*/
 /* +0x018 */ unsigned long LastInitializedWsle;
 /* +0x01c */ unsigned long NonDirectCount;
 /* +0x020 */ struct MMWSLE_HASH *HashTable;
 /* +0x024 */ unsigned long HashTableSize;

47

 /* +0x028 */ unsigned long NumberOfCommittedPageTables;
 /* +0x02c */ void *HashTableStart;
 /* +0x030 */ void *HighestPermittedHashAddress;
 /* +0x034 */ unsigned long NumberOfImageWaiters;
 /* +0x038 */ unsigned long VadBitMapHint;
 /* +0x03c */ unsigned short UsedPageTableEntries[768];
 /* +0x63c */ unsigned long CommittedPageTables[24];
};

struct MMSUPPORT {
 /* +0x000 */ long long LastTrimTime;
 /* +0x008 */ struct MMSUPPORT_FLAGS Flags;
 /* +0x00c */ unsigned long PageFaultCount;
 /* +0x010 */ unsigned long PeakWorkingSetSize;
 /* +0x014 */ unsigned long WorkingSetSize;
 /* +0x018 */ unsigned long MinimumWorkingSetSize;
 /* +0x01c */ unsigned long MaximumWorkingSetSize;
 /* +0x020 */ struct MMWSL *VmWorkingSetList;
 /* +0x024 */ struct LIST_ENTRY WorkingSetExpansionLinks;
 /* +0x02c */ unsigned long Claim;
 /* +0x030 */ unsigned long NextEstimationSlot;
 /* +0x034 */ unsigned long NextAgingSlot;
 /* +0x038 */ unsigned long EstimatedAvailable;
 /* +0x03c */ unsigned long GrowthSinceLastEstimate;
};

struct FAST_MUTEX {
 /* +0x000 */ long Count;
 /* +0x004 */ void *Owner;
 /* +0x008 */ unsigned long Contention;
 /* +0x00c */ struct DISPATCHER_HEADER Event;
 /* +0x01c */ unsigned long OldIrql;
};

struct CURDIR {
 /* 0x000 */ struct UNICODE_STRING DosPath;
 /* 0x008 */ void *Handle;
};

struct PEB_LDR_DATA {
 /* 0x000 */ unsigned long Length;
 /* 0x004 */ unsigned char Initialized;
 /* 0x008 */ void *SsHandle;
 /* 0x00c */ struct LIST_ENTRY InLoadOrderModuleList;
 /* 0x014 */ struct LIST_ENTRY InMemoryOrderModuleList;
 /* 0x01c */ struct LIST_ENTRY InInitializationOrderModuleList;
 /* 0x024 */ void *EntryInProgress;
};

struct KSEMAPHORE {
 /* +0x000 */ struct DISPATCHER_HEADER Header;
 /* +0x010 */ long Limit;
};

struct KGDTENTRY {
 /* +0x000 */ unsigned short LimitLow;
 /* +0x002 */ unsigned short BaseLow;

48

 /* +0x004 */ unsigned long HighWord;
};

struct KIDTENTRY {
 /* +0x000 */ unsigned short Offset;
 /* +0x002 */ unsigned short Selector;
 /* +0x004 */ unsigned short Access;
 /* +0x006 */ unsigned short ExtendedOffset;
};

struct HANDLE_TABLE {
 /* +0x000 */ unsigned long TableCode;
 /* +0x004 */ struct EPROCESS *QuotaProcess;
 /* +0x008 */ void *UniqueProcessID;
 /* +0x00c */ unsigned long HandleTableLock[4];
 /* +0x01c */ struct LIST_ENTRY HandleTableList;
 /* +0x02c */ unsigned long HandleContentionEvent;
 /* +0x030 */ void *DebugInfo;
 /* +0x034 */ long ExtraInfoPages;
 /* +0x038 */ unsigned long FirstFree;
 /* +0x03c */ unsigned long LastFree;
 /* +0x040 */ unsigned long NextHandleNeedingPool;
 /* +0x044 */ long HandleCount;
 /* +0x048 */ unsigned long Flags;
};

struct OWNER_ENTRY {
 /* +0x000 */ unsigned long OwnerThread;
 /* +0x004 long OwnerCount; */
 /* +0x004 */ unsigned long TableSize;
};

struct OBJECT_TYPE_INITIALIZER {
 /* +0x000 */ unsigned short Length;
 /* +0x002 */ unsigned char UseDefaultObject;
 /* +0x003 */ unsigned char CaseInsensitive;
 /* +0x004 */ unsigned long InvalidAttributes;
 /* +0x008 */ void *GenericMapping;
 /* +0x018 */ unsigned long ValidAccessMask;
 /* +0x01c */ unsigned char SecurityRequired;
 /* +0x01d */ unsigned char MaintainHandleCount;
 /* +0x01e */ unsigned char MaintainTypeList;
 /* +0x020 */ void *PoolType;
 /* +0x024 */ unsigned long DefaultPagedPoolCharge;
 /* +0x028 */ unsigned long DefaultNonPagedPoolCharge;
 /* +0x02c */ void *DumpProcedure;
 /* +0x030 */ void *OpenProcedure;
 /* +0x034 */ void *CloseProcedure;
 /* +0x038 */ void *DeleteProcedure;
 /* +0x03c */ void *ParseProcedure;
 /* +0x040 */ void *SecurityProcedure;
 /* +0x044 */ void *QueryNameProcedure;
 /* +0x048 */ void *OkayToCloseProcedure;
};

struct ERESOURCE {
 /* +0x000 */ struct LIST_ENTRY SystemResourcesList;

49

 /* +0x008 */ struct OWNER_ENTRY *OwnerTable;
 /* +0x00c */ short ActiveCount;
 /* +0x00e */ unsigned short Flag;
 /* +0x010 */ struct KSEMAPHORE *SharedWaiters;
 /* +0x014 */ struct DISPATCHER_HEADER *ExclusiveWaiters;
 /* +0x018 */ struct OWNER_ENTRY OwnerThreads[2];
 /* +0x028 */ unsigned long ContentionCount;
 /* +0x02c */ unsigned short NumberOfSharedWaiters;
 /* +0x02e */ unsigned short NumberOfExclusiveWaiters;
 /* +0x030 void *Address;*/
 /* +0x030 */ unsigned long CreatorBackTraceIndex;
 /* +0x034 */ unsigned long SpinLock;
};

struct SEGMENT {
 /* +0x000 */ struct CONTROL_AREA *ControlArea;
 /* +0x004 */ unsigned long TotalNumberOfPtes;
 /* +0x008 */ unsigned long NonExtendedPtes;
 /* +0x00c */ unsigned long WritableUserReferences;
 /* +0x010 */ unsigned long long SizeOfSegment;
 /* +0x018 */ long SegmentPteTemplate;
 /* +0x01c */ unsigned long NumberOfCommittedPages;
 /* +0x020 */ /* struct MMEXTEND_INFO */void *ExtendInfo;
 /* +0x024 */ void *SystemImageBase;
 /* +0x028 */ void *BasedAddress;
 /* +0x02c */ long u1;
 /* +0x030 */ long u2;
 /* +0x034 */ long *PrototypePte;
 /* +0x038 */ long ThePtes[1];
};

struct CONTROL_AREA {
 /* +0x000 */ struct SEGMENT *Segment;
 /* +0x004 */ struct LIST_ENTRY DereferenceList;
 /* +0x00c */ unsigned long NumberOfSectionReferences;
 /* +0x010 */ unsigned long NumberOfPfnReferences;
 /* +0x014 */ unsigned long NumberOfMappedViews;
 /* +0x018 */ unsigned short NumberOfSubsections;
 /* +0x01a */ unsigned short FlushInProgressCount;
 /* +0x01c */ unsigned long NumberOfUserReferences;
 /* +0x020 */ long unnamed;
 /* +0x024 */ struct FILE_OBJECT *FilePointer;
 /* +0x028 */ /*struct EVENT_COUNTER*/void *WaitingForDeletion;
 /* +0x02c */ unsigned short ModifiedWriteCount;
 /* +0x02e */ unsigned short NumberOfSystemCacheViews;
};

struct SUBSECTION {
 /* +0x000 */ struct CONTROL_AREA *ControlArea;
 /* +0x004 */ long unnamed;
 /* +0x008 */ unsigned long StartingSector;
 /* +0x00c */ unsigned long NumberOfFullSectors;
 /* +0x010 */ /*struct MMPTE*/void *SubsectionBase;
 /* +0x014 */ unsigned long UnusedPtes;
 /* +0x018 */ unsigned long PtesInSubsection;
 /* +0x01c */ struct SUBSECTION *NextSubsection;
};

50

struct SEGMENT_OBJECT {
 /* +0x000 */ void *BaseAddress;
 /* +0x004 */ unsigned long TotalNumberOfPtes;
 /* +0x008 */ long long SizeOfSegment;
 /* +0x010 */ unsigned long NonExtendedPtes;
 /* +0x014 */ unsigned long ImageCommitment;
 /* +0x018 */ struct CONTROL_AREA *ControlArea;
 /* +0x01c */ struct SUBSECTION *Subsection;
 /* +0x020 */ /*struct LARGE_CONTROL_AREA*/void *LargeControlArea;
 /* +0x024 */ /*struct MMSECTION_FLAGS*/ void *MmSectionFlags;
 /* +0x028 */ /*struct MMSUBSECTION_FLAGS*/ void
*MmSubSectionFlags;
};

struct SECTION_OBJECT_POINTERS {
 /* +0x000 */ void *DataSectionObject;
 /* +0x004 */ void *SharedCacheMap;
 /* +0x008 */ void *ImageSectionObject;
};

struct SECTION_OBJECT {
 /* +0x000 */ void *StartingVa;
 /* +0x004 */ void *EndingVa;
 /* +0x008 */ void *Parent;
 /* +0x00c */ void *LeftChild;
 /* +0x010 */ void *RightChild;
 /* +0x014 */ struct SEGMENT_OBJECT *Segment;
};

struct OBJECT_TYPE {
 /* +0x000 */ struct ERESOURCE Mutex;
 /* +0x038 */ struct LIST_ENTRY TypeList;
 /* +0x040 */ struct UNICODE_STRING Name;
 /* +0x048 */ void *DefaultObject;
 /* +0x04c */ unsigned long Index;
 /* +0x050 */ unsigned long TotalNumberOfObjects;
 /* +0x054 */ unsigned long TotalNumberOfHandles;
 /* +0x058 */ unsigned long HighWaterNumberOfObjects;
 /* +0x05c */ unsigned long HighWaterNumberOfHandles;
 /* +0x060 */ struct OBJECT_TYPE_INITIALIZER TypeInfo;
 /* +0x0ac */ unsigned long Key;
 /* +0x0b0 */ struct ERESOURCE ObjectLocks[4];
};

struct OBJECT_HEADER {
 /* +0x000 */ long PointerCount;
 /* +0x004 long HandleCount; */
 /* +0x004 */ void *NextToFree;
 /* +0x008 */ struct OBJECT_TYPE *Type;
 /* +0x00c */ unsigned char NameInfoOffset;
 /* +0x00d */ unsigned char HandleInfoOffset;
 /* +0x00e */ unsigned char QuotaInfoOffset;
 /* +0x00f */ unsigned char Flags;
 /* +0x010 */ /* struct OBJECT_CREATE_INFORMATION *ObjectCreateInfo;
*/
 /* +0x010 */ void *QuotaBlockCharged;

51

 /* +0x014 */ void *SecurityDescriptor;
};

struct VPB {
 /* +0x000 */ short Type;
 /* +0x002 */ short Size;
 /* +0x004 */ unsigned short Flags;
 /* +0x006 */ unsigned short VolumeLabelLength;
 /* +0x008 */ struct DEVICE_OBJECT *DeviceObject;
 /* +0x00c */ struct DEVICE_OBJECT *RealDevice;
 /* +0x010 */ unsigned long SerialNumber;
 /* +0x014 */ unsigned long ReferenceCount;
 /* +0x018 */ unsigned short VolumeLabel[32];
/*Unicode name*/
};

struct DEVICE_OBJECT {
 /* +0x000 */ short Type;
 /* +0x002 */ unsigned short Size;
 /* +0x004 */ long ReferenceCount;
 /* +0x008 */ struct DRIVER_OBJECT *DriverObject;
 /* +0x00c */ struct DEVICE_OBJECT *NextDevice;
 /* +0x010 */ struct DEVICE_OBJECT *AttachedDevice;
 /* +0x014 */ /* struct IRP */ void *CurrentIrp;
 /* +0x018 */ /* struct IO_TIMER */ void *Timer;
 /* +0x01c */ unsigned long Flags;
 /* +0x020 */ unsigned long Characteristics;
 /* +0x024 */ struct VPB *Vpb;
 /* +0x028 */ void *DeviceExtension;
 /* +0x02c */ unsigned long DeviceType;
 /* +0x030 */ char StackSize;
 /* +0x034 */ struct _unnamed Queue;
 /* +0x05c */ unsigned long AlignmentRequirement;
 /* +0x060 */ struct KDEVICE_QUEUE DeviceQueue;
 /* +0x074 */ struct KDPC Dpc;
 /* +0x094 */ unsigned long ActiveThreadCount;
 /* +0x098 */ void *SecurityDescriptor;
 /* +0x09c */ struct KEVENT DeviceLock;
 /* +0x0ac */ unsigned short SectorSize;
 /* +0x0ae */ unsigned short Spare1;
 /* +0x0b0 */ /* struct DEVOBJ_EXTENSION */ void
*DeviceObjectExtension;
 /* +0x0b4 */ void *Reserved;
};

struct DRIVER_OBJECT {
 /* +0x000 */ short Type;
 /* +0x002 */ short Size;
 /* +0x004 */ struct DEVICE_OBJECT *DeviceObject;
 /* +0x008 */ unsigned long Flags;
 /* +0x00c */ void *DriverStart;
 /* +0x010 */ unsigned long DriverSize;
 /* +0x014 */ void *DriverSection;
 /* +0x018 */ /* struct DRIVER_EXTENSION */ void *DriverExtension;
 /* +0x01c */ struct UNICODE_STRING DriverName;
 /* +0x024 */ struct UNICODE_STRING *HardwareDatabase;
 /* +0x028 */ /* struct FAST_IO_DISPATCH */ void *FastIoDispatch;

52

 /* +0x02c */ void *DriverInit;
 /* +0x030 */ void *DriverStartIo;
 /* +0x034 */ void *DriverUnload;
 /* +0x038 */ void *MajorFunction[28];
};

struct FILE_OBJECT {
 /* +0x000 */ short Type;
 /* +0x002 */ short Size;
 /* +0x004 */ struct DEVICE_OBJECT *DeviceObject;
 /* +0x008 */ struct VPB *Vpb;
 /* +0x00c */ void *FsContext;
 /* +0x010 */ void *FsContext2;
 /* +0x014 */ struct SECTION_OBJECT_POINTERS *SectionObjectPointer;
 /* +0x018 */ void *PrivateCacheMap;
 /* +0x01c */ long FinalStatus;
 /* +0x020 */ struct FILE_OBJECT *RelatedFileObject;
 /* +0x024 */ unsigned char LockOperation;
 /* +0x025 */ unsigned char DeletePending;
 /* +0x026 */ unsigned char ReadAccess;
 /* +0x027 */ unsigned char WriteAccess;
 /* +0x028 */ unsigned char DeleteAccess;
 /* +0x029 */ unsigned char SharedRead;
 /* +0x02a */ unsigned char SharedWrite;
 /* +0x02b */ unsigned char SharedDelete;
 /* +0x02c */ unsigned long Flags;
 /* +0x030 */ struct UNICODE_STRING FileName;
 /* +0x038 */ long long CurrentByteOffset;
 /* +0x040 */ unsigned long Waiters;
 /* +0x044 */ unsigned long Busy;
 /* +0x048 */ void *LastLock;
 /* +0x04c */ struct KEVENT Lock;
 /* +0x05c */ struct KEVENT Event;
 /* +0x06c */ /* struct IO_COMPLETION_CONTEXT */ void
*CompletionContext;
};

struct EX_PUSH_LOCK {
 /* +0x000 */ int Waiting : 1; //LSB
 /* +0x000 */ int Exclusive : 1;
 /* +0x000 */ int Shared : 30;
 /* +0x000 */ unsigned long Value;
 /* +0x000 */ void *Ptr;
};

struct OBJECT_DIRECTORY_ENTRY {
 /* +0x000 */ struct OBJECT_DIRECTORY_ENTRY *ChainLink;
 /* +0x004 */ void *Object;
};

struct OBJECT_DIRECTORY {
 /* +0x000 */ struct OBJECT_DIRECTORY_ENTRY *HashBuckets[37];
 /* +0x094 */ struct EX_PUSH_LOCK Lock;
 /* +0x098 */ struct DEVICE_MAP *DeviceMap;
 /* +0x09c */ unsigned long SessionId;
 /* +0x0a0 */ unsigned short Reserved;
 /* +0x0a2 */ unsigned short SymbolicLinkUsageCount;

53

};

struct DEVICE_MAP {
 /* +0x000 */ struct OBJECT_DIRECTORY *DosDevicesDirectory;
 /* +0x004 */ struct OBJECT_DIRECTORY
*GlobalDosDevicesDirectory;
 /* +0x008 */ unsigned long ReferenceCount;
 /* +0x00c */ unsigned long DriveMap;
 /* +0x010 */ unsigned char DriveType[32];
};

struct RTL_DRIVE_LETTER_CURDIR {
 /* +0x000 */ unsigned short Flags;
 /* +0x002 */ unsigned short Length;
 /* +0x004 */ unsigned long TimeStamp;
 /* +0x008 */ struct STRING DosPath;
};

struct RTL_USER_PROCESS_PARAMETERS {
 /* +0x000 */ unsigned long MaximumLength;
 /* +0x004 */ unsigned long Length;
 /* +0x008 */ unsigned long Flags;
 /* +0x00c */ unsigned long DebugFlags;
 /* +0x010 */ void *ConsoleHandle;
 /* +0x014 */ unsigned long ConsoleFlags;
 /* +0x018 */ void *StandardInput;
 /* +0x01c */ void *StandardOutput;
 /* +0x020 */ void *StandardError;
 /* +0x024 */ struct CURDIR CurrentDirectory;
 /* +0x030 */ struct UNICODE_STRING DllPath;
 /* +0x038 */ struct UNICODE_STRING ImagePathName;
 /* +0x040 */ struct UNICODE_STRING CommandLine;
 /* +0x048 */ void *Environment;
 /* +0x04c */ unsigned long StartingX;
 /* +0x050 */ unsigned long StartingY;
 /* +0x054 */ unsigned long CountX;
 /* +0x058 */ unsigned long CountY;
 /* +0x05c */ unsigned long CountCharsX;
 /* +0x060 */ unsigned long CountCharsY;
 /* +0x064 */ unsigned long FillAttribute;
 /* +0x068 */ unsigned long WindowFlags;
 /* +0x06c */ unsigned long ShowWindowFlags;
 /* +0x070 */ struct UNICODE_STRING WindowTitle;
 /* +0x078 */ struct UNICODE_STRING DesktopInfo;
 /* +0x080 */ struct UNICODE_STRING ShellInfo;
 /* +0x088 */ struct UNICODE_STRING RuntimeData;
 /* +0x090 */ struct RTL_DRIVE_LETTER_CURDIR CurrentDirectores[32];
};

struct PEB {
 /* +0x000 */ unsigned char InheritedAddressSpace;
 /* +0x001 */ unsigned char ReadImageFileExecOptions;
 /* +0x002 */ unsigned char BeingDebugged;
 /* +0x003 */ unsigned char SpareBool;
 /* +0x004 */ void *Mutant;
 /* +0x008 */ void *ImageBaseAddress;
 /* +0x00c */ struct PEB_LDR_DATA *Ldr;

54

 /* +0x010 */ struct RTL_USER_PROCESS_PARAMETERS *ProcessParameters;
 /* +0x014 */ void *SubSystemData;
 /* +0x018 */ void *ProcessHeap;
 /* +0x01c */ struct RTL_CRITICAL_SECTION *FastPebLock;
 /* +0x020 */ void *FastPebLockRoutine;
 /* +0x024 */ void *FastPebUnlockRoutine;
 /* +0x028 */ unsigned long EnvironmentUpdateCount;
 /* +0x02c */ void *KernelCallbackTable;
 /* +0x030 */ unsigned long SystemReserved[1];
 /* +0x034 */ unsigned long AtlThunkSList;
 /* +0x038 */ struct PEB_FREE_BLOCK *FreeList;
 /* +0x03c */ unsigned long TlsExpansionCounter;
 /* +0x040 */ void *TlsBitmap;
 /* +0x044 */ unsigned long TlsBitmapBits[2];
 /* +0x04c */ void *ReadOnlySharedMemoryBase;
 /* +0x050 */ void *ReadOnlySharedMemoryHeap;
 /* +0x054 */ void **ReadOnlyStaticServerData;
 /* +0x058 */ void *AnsiCodePageData;
 /* +0x05c */ void *OemCodePageData;
 /* +0x060 */ void *UnicodeCaseTableData;
 /* +0x064 */ unsigned long NumberOfProcessors;
 /* +0x068 */ unsigned long NtGlobalFlag;
 /* +0x070 */ long long CriticalSectionTimeout;
 /* +0x078 */ unsigned long HeapSegmentReserve;
 /* +0x07c */ unsigned long HeapSegmentCommit;
 /* +0x080 */ unsigned long HeapDeCommitTotalFreeThreshold;
 /* +0x084 */ unsigned long HeapDeCommitFreeBlockThreshold;
 /* +0x088 */ unsigned long NumberOfHeaps;
 /* +0x08c */ unsigned long MaximumNumberOfHeaps;
 /* +0x090 */ void **ProcessHeaps;
 /* +0x094 */ void *GdiSharedHandleTable;
 /* +0x098 */ void *ProcessStarterHelper;
 /* +0x09c */ unsigned long GdiDCAttributeList;
 /* +0x0a0 */ void *LoaderLock;
 /* +0x0a4 */ unsigned long OSMajorVersion;
 /* +0x0a8 */ unsigned long OSMinorVersion;
 /* +0x0ac */ unsigned short *OSBuildNumber;
 /* +0x0ae */ unsigned short *OSCSDVersion;
 /* +0x0b0 */ unsigned long OSPlatformId;
 /* +0x0b4 */ unsigned long ImageSubsystem;
 /* +0x0b8 */ unsigned long ImageSubsystemMajorVersion;
 /* +0x0bc */ unsigned long ImageSubsystemMinorVersion;
 /* +0x0c0 */ unsigned long ImageProcessAffinityMask;
 /* +0x0c4 */ unsigned long GdiHandleBuffer[34];
 /* +0x14c */ void *PostProcessInitRoutine;
 /* +0x150 */ void *TlsExpansionBitmap;
 /* +0x154 */ unsigned long TlsExpansionBitmapBits[32];
 /* +0x1d4 */ unsigned long SessionId;
 /* +0x1d8 */ unsigned long long AppCompatFlags;
 /* +0x1e0 */ unsigned long long AppCompatFlagsUser;
 /* +0x1e8 */ void *pShimData;
 /* +0x1ec */ void *AppCompatInfo;
 /* +0x1f0 */ struct UNICODE_STRING CSDVersion;
 /* +0x1f8 */ void *ActivationContextData;
 /* +0x1fc */ void *ProcessAssemblyStorageMap;
 /* +0x200 */ void *SystemDefaultActivationContextData;
 /* +0x204 */ void *SystemAssemblyStorageMap;

55

 /* +0x208 */ unsigned long MinimumStackCommit;
};

struct HARDWARE_PTE {
 /* +0x000 */ int Valid : 1; //LSB
 /* +0x000 */ int Write : 1;
 /* +0x000 */ int Owner : 1;
 /* +0x000 */ int WriteThrough : 1;
 /* +0x000 */ int CacheDisable : 1;
 /* +0x000 */ int Accessed : 1;
 /* +0x000 */ int Dirty : 1;
 /* +0x000 */ int LargePage : 1;
 /* +0x000 */ int Global : 1;
 /* +0x000 */ int CopyOnWrite : 1;
 /* +0x000 */ int Prototype : 1;
 /* +0x000 */ int Reserved : 1;
 /* +0x000 */ int PageFrameNumber : 20;
};

struct KPROCESS {
 /* +0x000 */ struct DISPATCHER_HEADER Header;
 /* +0x010 */ struct LIST_ENTRY ProfileListHead;
 /* +0x018 */ unsigned long DirectoryTableBase[2];
 /* +0x020 */ struct KGDTENTRY LdtDescriptor;
 /* +0x028 */ struct KIDTENTRY Int21Descriptor;
 /* +0x030 */ unsigned short IopmOffset;
 /* +0x032 */ unsigned char Iopl;
 /* +0x033 */ unsigned char Unused;
 /* +0x034 */ unsigned long ActiveProcessors;
 /* +0x038 */ unsigned long KernelTime;
 /* +0x03c */ unsigned long UserTime;
 /* +0x040 */ struct LIST_ENTRY ReadyListHead;
 /* +0x048 */ void *SwapListEntry;
 /* +0x04c */ void *VdmTrapcHandler;
 /* +0x050 */ struct LIST_ENTRY ThreadListHead;
 /* +0x058 */ unsigned long ProcessLock;
 /* +0x05c */ unsigned long Affinity;
 /* +0x060 */ unsigned short StackCount;
 /* +0x062 */ char BasePriority;
 /* +0x063 */ char ThreadQuantum;
 /* +0x064 */ unsigned char AutoAlignment;
 /* +0x065 */ unsigned char State;
 /* +0x066 */ unsigned char ThreadSeed;
 /* +0x067 */ unsigned char DisableBoost;
 /* +0x068 */ unsigned char PowerState;
 /* +0x069 */ unsigned char DisableQuantum;
 /* +0x06a */ unsigned char IdealNode;
 /* +0x06b KEXECUTE_OPTIONS Flags; */
 /* +0x06b */ unsigned char ExecuteOptions;
};

struct EPROCESS {
 /* +0x000 */ struct KPROCESS Pcb;
 /* +0x06c */ unsigned long ProcessLock;
 /* +0x070 */ unsigned long long CreateTime;
 /* +0x078 */ unsigned long long ExitTime;
 /* +0x080 */ unsigned long RunDownProtect;

56

 /* +0x084 */ void *UniqueProcessId;
 /* +0x088 */ struct LIST_ENTRY ActiveProcessLinks;
 /* +0x090 */ unsigned long QuotaUsage[3];
 /* +0x09c */ unsigned long QuotaPeak[3];
 /* +0x0a8 */ unsigned long CommitCharge;
 /* +0x0ac */ unsigned long PeakVirtualSize;
 /* +0x0b0 */ unsigned long VirtualSize;
 /* +0x0b4 */ struct LIST_ENTRY SessionProcessLinks;
 /* +0x0bc */ void *DebugPort;
 /* +0x0c0 */ void *ExceptionPort;
 /* +0x0c4 */ struct HANDLE_TABLE *ObjectTable;
 /* +0x0c8 */ unsigned long Token;
 /* +0x0cc */ struct FAST_MUTEX WorkingSetLock;
 /* +0x0ec */ unsigned long WorkingSetPage;
 /* +0x0f0 */ struct FAST_MUTEX AddressCreationLock;
 /* +0x110 */ unsigned long HyperSpaceLock;
 /* +0x114 */ struct ETHREAD *ForkInProgress;
 /* +0x118 */ unsigned long HardwareTrigger;
 /* +0x11c */ void *VadRoot;
 /* +0x120 */ void *VadHint;
 /* +0x124 */ void *CloneRoot;
 /* +0x128 */ unsigned long NumberOfPrivatePages;
 /* +0x12c */ unsigned long NumberOfLockedPages;
 /* +0x130 */ void *Win32Process;
 /* +0x134 */ void *Job; /*Points to EJOB*/
 /* +0x138 */ void *SectionObject;
 /* +0x13c */ void *SectionBaseAddress;
 /* +0x140 */ void *QuotaBlock; /*points to EPROCESS_QUOTA_BLOCK*/
 /* +0x144 */ void *WorkingSetWatch;/*points to PAGEFAULT_HISTORY*/
 /* +0x148 */ void *Win32WindowStation;
 /* +0x14c */ void *InheritedFromUniqueProcessId;
 /* +0x150 */ void *LdtInformation;
 /* +0x154 */ void *VadFreeHint;
 /* +0x158 */ void *VdmObjects;
 /* +0x15c */ struct DEVICE_MAP *DeviceMap;
 /* +0x160 */ struct LIST_ENTRY PhysicalVadList;
 /* +0x168 */ struct HARDWARE_PTE PageDirectoryPte;
 /* +0x16c */ unsigned long Filler;
 /* +0x170 */ void *Session;
 /* +0x174 */ char ImageFileName[16];
 /* +0x184 */ struct LIST_ENTRY JobLinks;
 /* +0x18c */ void *LockedPagesList;
 /* +0x190 */ struct LIST_ENTRY ThreadListHead;
 /* +0x198 */ void *SecurityPort;
 /* +0x19c */ void *PaeTop;
 /* +0x1a0 */ unsigned long ActiveThreads;
 /* +0x1a4 */ unsigned long GrantedAccess;
 /* +0x1a8 */ unsigned long DefaultHardErrorProcessing;
 /* +0x1ac */ long LastThreadExitStatus;
 /* +0x1b0 */ struct PEB *Peb;
 /* +0x1b4 */ unsigned long PrefetchTrace;
 /* +0x1b8 */ unsigned long long ReadOperationCount;
 /* +0x1c0 */ unsigned long long WriteOperationCount;
 /* +0x1c8 */ unsigned long long OtherOperationCount;
 /* +0x1d0 */ unsigned long long ReadTransferCount;
 /* +0x1d8 */ unsigned long long WriteTransferCount;
 /* +0x1e0 */ unsigned long long OtherTransferCount;

57

 /* +0x1e8 */ unsigned long CommitChargeLimit;
 /* +0x1ec */ unsigned long CommitChargePeak;
 /* +0x1f0 */ void *AweInfo;
 /* +0x1f4 */ unsigned long SeAuditProcessCreationInfo;
 /* +0x1f8 */ struct MMSUPPORT Vm;
 /* +0x238 */ unsigned long LastFaultCount;
 /* +0x23c */ unsigned long ModifiedPageCount;
 /* +0x240 */ unsigned long NumberOfVads;
 /* +0x244 */ unsigned long JobStatus;
 /* +0x248 */ unsigned long Flags;
 /* +0x24c */ long ExitStatus;
 /* +0x250 */ unsigned short NextPageColor;
 /* +0x252 */ unsigned char SubSystemMinorVersion;
 /* +0x253 */ unsigned char SubSystemMajorVersion;
 /* +0x254 */ unsigned short SubSystemVersion;
 /* +0x256 */ unsigned char PriorityClass;
 /* +0x257 */ unsigned char WorkingSetAcquiredUnsafe;
 /* +0x258 */ unsigned long Cookie;
};

struct CLIENT_ID {
 /* +0x000 */ void *UniqueProcess;
 /* +0x004 */ void *UniqueThread;
};

struct KAPC_STATE {
 /* +0x000 */ struct LIST_ENTRY ApcListHead[2];
 /* +0x010 */ struct KPROCESS *Process;
 /* +0x014 */ unsigned char KernelApcInProgress;
 /* +0x015 */ unsigned char KernelApcPending;
 /* +0x016 */ unsigned char UserApcPending;
 /* +0x017 */ unsigned char Trailer;
};

struct KQUEUE {
 /* +0x000 */ struct DISPATCHER_HEADER Header;
 /* +0x010 */ struct LIST_ENTRY EntryListHead;
 /* +0x018 */ unsigned long CurrentCount;
 /* +0x01c */ unsigned long MaximumCount;
 /* +0x020 */ struct LIST_ENTRY ThreadListHead;
};

struct KTIMER {
 /* +0x000 */ struct DISPATCHER_HEADER Header;
 /* +0x010 */ unsigned long long DueTime;
 /* +0x018 */ struct LIST_ENTRY TimerListEntry;
 /* +0x020 */ struct KDPC *Dpc;
 /* +0x024 */ long Period;
};

struct KAPC {
 /* +0x000 */ short Type;
 /* +0x002 */ short Size;
 /* +0x004 */ unsigned long Spare0;
 /* +0x008 */ struct KTHREAD *Thread;
 /* +0x00c */ struct LIST_ENTRY ApcListEntry;
 /* +0x014 */ void *KernelRoutine;

58

 /* +0x018 */ void *RundownRoutine;
 /* +0x01c */ void *NormalRoutine;
 /* +0x020 */ void *NormalContext;
 /* +0x024 */ void *SystemArgument1;
 /* +0x028 */ void *SystemArgument2;
 /* +0x02c */ char ApcStateIndex;
 /* +0x02d */ char ApcMode;
 /* +0x02e */ unsigned char Inserted;
 /* +0x02f */ char Trailer;
};

struct KWAIT_BLOCK {
 /* +0x000 */ struct LIST_ENTRY WaitListEntry;
 /* +0x008 */ struct KTHREAD *Thread;
 /* +0x00c */ void *Object;
 /* +0x010 */ struct KWAIT_BLOCK *NextWaitBlock;
 /* +0x014 */ unsigned short WaitKey;
 /* +0x016 */ unsigned short WaitType;
};

struct KTHREAD {
 /* +0x000 */ struct DISPATCHER_HEADER Header;
 /* +0x010 */ struct LIST_ENTRY MutantListHead;
 /* +0x018 */ void *InitialStack;
 /* +0x01c */ void *StackLimit;
 /* +0x020 */ void *Teb;
 /* +0x024 */ void *TlsArray;
 /* +0x028 */ void *KernelStack;
 /* +0x02c */ unsigned char DebugActive;
 /* +0x02d */ unsigned char State;
 /* +0x02e */ unsigned char Alerted[2];
 /* +0x030 */ unsigned char Iopl;
 /* +0x031 */ unsigned char NpxState;
 /* +0x032 */ char Saturation;
 /* +0x033 */ char Priority;
 /* +0x034 */ struct KAPC_STATE ApcState;
 /* +0x04c */ unsigned long ContextSwitches;
 /* +0x050 */ unsigned char IdleSwapBlock;
 /* +0x051 */ unsigned char Spare0[3];
 /* +0x054 */ long WaitStatus;
 /* +0x058 */ unsigned char WaitIrql;
 /* +0x059 */ char WaitMode;
 /* +0x05a */ unsigned char WaitNext;
 /* +0x05b */ unsigned char WaitReason;
 /* +0x05c */ struct KWAIT_BLOCK *WaitBlockList;
 /* +0x060 */ struct LIST_ENTRY WaitListEntry;
 /* +0x068 */ unsigned long WaitTime;
 /* +0x06c */ char BasePriority;
 /* +0x06d */ unsigned char DecrementCount;
 /* +0x06e */ char PriorityDecrement;
 /* +0x06f */ char Quantum;
 /* +0x070 */ struct KWAIT_BLOCK WaitBlock[4];
 /* +0x0d0 */ void *LegoData;
 /* +0x0d4 */ unsigned long KernelApcDisable;
 /* +0x0d8 */ unsigned long UserAffinity;
 /* +0x0dc */ unsigned char SystemAffinityActive;
 /* +0x0dd */ unsigned char PowerState;

59

 /* +0x0de */ unsigned char NpxIrql;
 /* +0x0df */ unsigned char InitialNode;
 /* +0x0e0 */ void *ServiceTable;
 /* +0x0e4 */ struct KQUEUE *Queue;
 /* +0x0e8 */ unsigned long ApcQueueLock;
 /* +0x0f0 */ struct KTIMER Timer;
 /* +0x118 */ struct LIST_ENTRY QueueListEntry;
 /* +0x120 */ unsigned long SoftAffinity;
 /* +0x124 */ unsigned long Affinity;
 /* +0x128 */ unsigned char Preempted;
 /* +0x129 */ unsigned char ProcessReadyQueue;
 /* +0x12a */ unsigned char KernelStackResident;
 /* +0x12b */ unsigned char NextProcessor;
 /* +0x12c */ void *CallbackStack;
 /* +0x130 */ void *Win32Thread;
 /* +0x134 */ void *TrapFrame;/*points to KTRAP_FRAME*/
 /* +0x138 */ struct KAPC_STATE *ApcStatePointer[2];
 /* +0x140 */ char PreviousMode;
 /* +0x141 */ unsigned char EnableStackSwap;
 /* +0x142 */ unsigned char LargeStack;
 /* +0x143 */ unsigned char ResourceIndex;
 /* +0x144 */ unsigned long KernelTime;
 /* +0x148 */ unsigned long UserTime;
 /* +0x14c */ struct KAPC_STATE SavedApcState;
 /* +0x164 */ unsigned char Alertable;
 /* +0x165 */ unsigned char ApcStateIndex;
 /* +0x166 */ unsigned char ApcQueueable;
 /* +0x167 */ unsigned char AutoAlignment;
 /* +0x168 */ void *StackBase;
 /* +0x16c */ struct KAPC SuspendApc;
 /* +0x19c */ struct KSEMAPHORE SuspendSemaphore;
 /* +0x1b0 */ struct LIST_ENTRY ThreadListEntry;
 /* +0x1b8 */ char FreezeCount;
 /* +0x1b9 */ char SuspendCount;
 /* +0x1ba */ unsigned char IdealProcessor;
 /* +0x1bb */ unsigned char DisableBoost;
 /* +0x1bc */ long long Trailer;
};

struct ETHREAD {
 /* +0x000 */ struct KTHREAD Tcb;
 /* +0x1c0 */ long long CreateTime;
 /* +0x1c8 */ long long ExitTime;
 /* +0x1d0 */ long ExitStatus;
 /* +0x1d4 */ struct LIST_ENTRY PostBlockList;
 /* +0x1dc */ void *TerminationPort;
 /* +0x1e0 */ unsigned long ActiveTimerListLock;
 /* +0x1e4 */ struct LIST_ENTRY ActiveTimerListHead;
 /* +0x1ec */ struct CLIENT_ID Cid;
 /* +0x1f4 */ struct KSEMAPHORE LpcReplySemaphore;
 /* +0x208 */ void *LpcReplyMessage;
 /* +0x20c */ void *ImpersonationInfo;
 /* +0x210 */ struct LIST_ENTRY IrpList;
 /* +0x218 */ unsigned long TopLevelIrp;
 /* +0x21c */ void *DeviceToVerify;
 /* +0x220 */ struct EPROCESS *ThreadsProcess;
 /* +0x224 */ void *StartAddress;

60

 /* +0x228 */ void *Win32StartAddress;
 /* +0x22c */ struct LIST_ENTRY ThreadListEntry;
 /* +0x234 */ unsigned long RundownProtect;
 /* +0x238 */ unsigned long ThreadLock;
 /* +0x23c */ unsigned long LpcReplyMessageId;
 /* +0x240 */ unsigned long ReadClusterSize;
 /* +0x244 */ unsigned long GrantedAccess;
 /* +0x248 */ unsigned long CrossThreadFlags;
 /* +0x24c */ unsigned long SameThreadPasssiveFlags;
 /* +0x250 */ unsigned long SameThreadApcFlags;
 /* +0x254 */ unsigned char ForwardClusterOnly;
 /* +0x255 */ unsigned char DisablePageFaultClustering;
};

__END_DECLS

#endif

61

APPENDIX B. SOURCE CODE

A. EPROC.C

/**
File eprocess.c
Version 1.0
Author Jared Stimson

Description: This is a tool used to search for processes using various
methods. It can be used to gather information from the image about
running processes.

**/
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<time.h>
#include<io.h>
#include<windows.h>
#include<ctype.h>
#include<unistd.h>
#include"win32structs.h"

#define KERNEL_OFFSET 0x80000000
#define SIZEOF_PROC 0x260
#define SIZEOF_THRD 0x258
#define PAGESIZE 0x1000
#define TOTAL_TYPES 32

int PAGEFILE = 0;

/**
Prints the usage statement.
Input: None
Output: Usage Statement
**/
void print_usage(){
 fprintf (stderr, "Usage: ./eprocess2DEC07.exe option <imageFile>
<args>\n"
 " -l Walk active process list\n"
 " -s Scan image for process structures\n"
 " -t Translates Virtual to Physical Address\n"
 " -d Dump process information\n"
 " -i Identify Operating System\n"
 " -p Gets the number of pages in memory\n"
 " -m Dump Process Memory\n");
}

/**
Convert the hex string to int.
Input: Hex String
Output: int
**/

62

unsigned int hstr_i(char *cptr){
 unsigned int i, j = 0;
 while (cptr && *cptr && isxdigit(*cptr)){
 i = *cptr++ - '0';
 if (9 < i)
 i -= 7;
 j <<= 4;
 j |= (i & 0x0f);
 }
 return(j);
}

/**
Convert the Windows time format to Unix format and convert the Unix
time
to GMT with the existing Linux Time library functions.

 Unix epoch is 1970-01-01 00:00:00 resolution is seconds
 Windows epoch is 1601-01-01 00:00:00 resolution is 100ns
**/
void win_time(long long winTime, char date[]){
 long unixTime = 0;
 unixTime = (long long) (winTime/10000000) - (long long)
11644473600ULL;
 strftime(date,32,"%Y-%m-%d %H:%M:%S %Z",gmtime(&unixTime));
}

/**
Translates virtual address to a valid physical address, if the virtual
address is mapped to a physical address.
Input: Long, Page Directory Base, File descriptor, Size of file.
Output: Pyisical offset of virtual address (long)
**/
long virtual_to_physical(long ptr32, long pageDirBase, FILE * in,long
size) {
 if(size > 256000000){
 if((ptr32 & 0xf0000000) <= 0x80000000)
 return ptr32 - KERNEL_OFFSET;
 }
 unsigned long pageDirectoryIndex = ptr32 & 0xffc00000;
 pageDirectoryIndex = pageDirectoryIndex >> 22;
 unsigned long pageTableIndex = ptr32 & 0x003ff000;
 pageTableIndex = pageTableIndex >> 12;
 unsigned long byteIndex = ptr32 & 0x00000fff;
 ptr32 = pageDirBase + pageDirectoryIndex * 4;
 fseek(in,ptr32,SEEK_SET);
 fread(&ptr32,4,1,in);
 if((ptr32 & 0x01) || ((ptr32 & 0xc00) == 0) || ((ptr32 & 0xc00)
== 0x8)) {
 ptr32 = (ptr32 & 0xfffff000) + pageTableIndex * 4;
 if(ptr32 == 0) return -1;
 fseek(in,ptr32,SEEK_SET);
 fread(&ptr32,4,1,in);
 if((ptr32 & 0x01) || ((ptr32 & 0xc00) == 0) || ((ptr32 &
0xc00) == 0x8)) {
 ptr32 = (ptr32 & 0xfffff000) + byteIndex;
 return ptr32;

63

 } else return -1;
 } else return -1;
}

/**
Returns the page Table Base.
Input: Pointer to Page Table Base
Output: Contents of PTB
**/
long get_PTB(long ptr32) {
 long pageTableBase = 0;
 if((ptr32 & 1)){
 pageTableBase = ptr32 & 0xfffff000;
 return pageTableBase;
 }
 else {
 if(!(ptr32 & 0xc00)){
 if((ptr32 & 0x1e) == 0){
 pageTableBase = (ptr32 & 0xfffff000);
 if(!pageTableBase)
 return 0;
 pageTableBase = pageTableBase + 1;
 return pageTableBase;
 } else
 return 3;
 }
 if(ptr32 & 0x400)
 pageTableBase = pageTableBase + 2;
 }
 return 4;
}

/**
Returns the page Base Address.
Input: Pointer to Page Base Address
Output: Contents of Page Base Address
**/
long get_PBA(long ptr32) {
 long pageBaseAddr = 0;
 if(ptr32 & 0x100){
 return 5;
 }
 if((ptr32 & 1) || ((ptr32 & 0xc00) == 0x800)){
 pageBaseAddr = ptr32 & 0xfffff000;
 return pageBaseAddr;
 } else {
 if((ptr32 & 0xc00) == 0){
 if((ptr32 & 0x1e) == 0){
 pageBaseAddr = ptr32 & 0xfffff000;
 if(!pageBaseAddr)
 return 0;
 pageBaseAddr = pageBaseAddr + 1;
 return pageBaseAddr;
 } else
 return 3;
 }
 if(ptr32 & 0x400)

64

 return 2;
 }
 return 4;
}

/**
Convert unicode string to ascii string and put it in tempString.
Input: unicode string
Output: ascii string
**/
void unicode_to_ascii(char *string, unsigned short length) {
 if(length <= 0)
 return;
 int m;
 char *tempString = malloc(length/2);
 for(m=0;m<length;m+=2) {
 memcpy(tempString+m/2,string+m,1);
 }
 memset(string,0,length);
 memcpy(string,tempString,length/2);
 free(tempString);
 return;
}

/**
Compares 2 4-byte numbers for greater than, less than, or equal to
condition.
Input: 2 numbers
Output: -1,0,1
**/
int longcmp(const void *n1, const void *n2) {
 unsigned long a = *(unsigned long *)n1;
 unsigned long b = *(unsigned long *)n2;

 return (a < b) ? -1 : ((a == b) ? 0 : 1);
}

/**
Used to lookup the machine type for an image.
Input: machine number, empty string
Output: machine name
**/
void lookup_machine(int machineNumber, char machineName[]){
 switch (machineNumber) {
 case 0x014c:
 strcpy(machineName,"IMAGE_FILE_MACHINE_I386");
 break;
 case 0x014d:
 strcpy(machineName,"IMAGE_FILE_MACHINE_I860");
 break;
 case 0x0200:
 strcpy(machineName,"IMAGE_FILE_MACHINE_IA64");
 break;
 case 0x8664:
 strcpy(machineName,"IMAGE_FILE_MACHINE_AMD64");
 break;
 default:

65

 strcpy(machineName,"Machine Unknown");
 break;
 }
}

/**
Returns String with file header characteristic information.
Input: Empty string
Output: Characteristics of file image
**/
void get_file_header_characteristics(int charsIn, char
characteristics[]){
 if(charsIn & 0x0001)
 strcat(characteristics, "\tIMAGE_FILE_RELOCS_STRIPPED\n");
 if(charsIn & 0x0002)
 strcat(characteristics, "\tIMAGE_FILE_EXECUTABLE_IMAGE\n");
 if(charsIn & 0x0004)
 strcat(characteristics,
"\tIMAGE_FILE_LINE_NUMS_STRIPPED\n");
 if(charsIn & 0x0008)
 strcat(characteristics,
"\tIMAGE_FILE_LOCAL_SYMS_STRIPPED\n");
 if(charsIn & 0x0010)
 strcat(characteristics,
"\tIMAGE_FILE_AGGRESIVE_WS_TRIM\n");
 if(charsIn & 0x0020)
 strcat(characteristics,
"\tIMAGE_FILE_LARGE_ADDRESS_AWARE\n");
 if(charsIn & 0x0080)
 strcat(characteristics,
"\tIMAGE_FILE_BYTES_REVERSED_LO\n");
 if(charsIn & 0x0100)
 strcat(characteristics, "\tIMAGE_FILE_32BIT_MACHINE\n");
 if(charsIn & 0x0200)
 strcat(characteristics, "\tIMAGE_FILE_DEBUG_STRIPPED\n");
 if(charsIn & 0x0400)
 strcat(characteristics,
"\tIMAGE_FILE_REMOVABLE_RUN_FROM_SWAP\n");
 if(charsIn & 0x0800)
 strcat(characteristics,
"\tIMAGE_FILE_NET_RUN_FROM_SWAP\n");
 if(charsIn & 0x1000)
 strcat(characteristics, "\tIMAGE_FILE_SYSTEM\n");
 if(charsIn & 0x2000)
 strcat(characteristics, "\tIMAGE_FILE_DLL\n");
 if(charsIn & 0x4000)
 strcat(characteristics, "\tIMAGE_FILE_UP_SYSTEM_ONLY\n");
 if(charsIn & 0x8000)
 strcat(characteristics,
"\tIMAGE_FILE_BYTES_REVERSED_HI\n");
 strcat(characteristics,"");
}

/**
Returns String with Optional Header Subsystem Information.
Input: Empty string
Output: File subsystem information

66

**/
void get_optional_header_subsystem(int subIn, char subSystem[]){
 switch (subIn) {
 case 0:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_UNKNOWN");
 break;
 case 1:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_NATIVE");
 break;
 case 2:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_WINDOWS_GUI");
 break;
 case 3:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_WINDOWS_CUI");
 break;
 case 5:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_OS2_CUI");
 break;
 case 7:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_POSIX_CUI");
 break;
 case 8:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_NATIVE_WINDOWS");
 break;
 case 9:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_WINDOWS_CE_GUI");
 break;
 case 14:
 strcpy(subSystem,"IMAGE_SUBSYSTEM_XBOX");
 break;
 default:
 strcpy(subSystem,"Machine Unknown");
 break;
 }

}

/**
Prints Data Directory Information
Input: Image Optional Header
Output: Data Directory Information

Directory Entries
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6
#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8
#define IMAGE_DIRECTORY_ENTRY_TLS 9
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10

/

67

void print_data_directories(struct _IMAGE_OPTIONAL_HEADER *optHeader){
 printf("\n\t\tData Directory Information\n");
 printf("\n%-27s %-10s %-10s\n", "Data Directory",
"RVA", "Size");
 printf("%-27s %-10s %-10s\n", "--------------", "--
-", "----");
 char directory[11][32] = {"Export Directory", "Import
Directory", "Resource Directory",
 "Exception Directory","Security
Directory", "Base Relocation Table",
 "Debug Directory", "Description
String", "Machine Value (MIPS GP)",
 "TLS Directory", "Load
Configuration Directory"};
 int i = 0;
 for(i;i < 11; i++){
 if((optHeader->DataDirectory[i].VirtualAddress > 0)
&& (optHeader->DataDirectory[i].Size > 0))
 printf("%-32s0x%.8x 0x%.8x\n",
 directory[i],
 optHeader-
>DataDirectory[i].VirtualAddress,
 optHeader->DataDirectory[i].Size);
 }
}

/**
Prints section header information.
Input: File, offset, Image section header
Output: Section information
**/
void print_section_data(FILE *in, int offset, struct
_IMAGE_SECTION_HEADER *sectHeader){
 fseek(in,offset,SEEK_SET);
 fread(sectHeader,sizeof(struct _IMAGE_SECTION_HEADER),1,in);
 memcpy(sectHeader->Name + 8,"",1);
 printf("%-9s0x%.8x 0x%.8x 0x%.8x 0x%.8x 0x%.8x\n",
 sectHeader->Name,
 sectHeader->Misc.VirtualSize,
 sectHeader->VirtualAddress,
 sectHeader->SizeOfRawData,
 sectHeader->PointerToRawData,
 sectHeader->Characteristics);
}

/**
Calculates statistics about memory usage.
Input: Eprocess block, File, page file, size
Output: Memory Stats
**/
void get_memory_stats(struct EPROCESS *eprocess, FILE *mem, FILE
*pageFile, int size){
 long PDE[1024];
 long PTE[1024];
 long pageTableBase = 0;
 int i = 0;
 int valid = 0;

68

 int paged = 0;
 int zero = 0;
 int global = 0;
 int prototype = 0;
 int unknown = 0;
 fseek(mem,eprocess->Pcb.DirectoryTableBase[0],SEEK_SET);
 fread(PDE,4096,1,mem);
 for(i;i < 1024;i++){
 pageTableBase = get_PTB(PDE[i]);
 if(pageTableBase != 0) {
 switch (pageTableBase & 0xf) {
 case 0:
 fseek(mem,pageTableBase,SEEK_SET);
 fread(PTE,4096,1,mem);
 break;
 case 1:
 if(pageFile != NULL) {

 fseek(pageFile,pageTableBase,SEEK_SET);
 fread(PTE,4096,1,pageFile);
 } else
 pageTableBase = 0;
 break;
 default:
 pageTableBase = 0;
 break;
 }
 if(pageTableBase != 0) {
 int j = 0;
 long pageBaseAddr = 0;
 for(j;j<1024;j++){
 pageBaseAddr = get_PBA(PTE[j]);
 if(pageBaseAddr != 0) {
 switch (pageBaseAddr & 0xf) {
 case 0:
 valid++;
 break;
 case 1:
 paged++;
 break;
 case 2:
 prototype++;
 break;
 case 3:
 unknown++;
 break;
 case 5:
 global++;
 break;
 }
 }
 }
 }
 }
 }
 printf("\nValid\t\t%d\nPrototype\t%d\nGlobal\t\t%d\nPaged\t\t%d\n
Unknown\t\t%d\n",

69

 valid, prototype, global, paged, unknown);
}
/**
Dumps the processes memory pages from the image and optionaly the
paging
file if available using the Page Directories.
**/
void get_memory(struct EPROCESS *eprocess, FILE *mem, FILE *pageFile,
int size){
 char pname[24];
 char processID[8];
 char fname[56];
 char iname[56];
 char directory[24] = "mkdir ";
 char deldir[24] = "rm -rf ";
 byte buffer[4096];
 long pid = 0;
 long PDE[1024];
 long PTE[1024];
 long pageTableBase = 0;
 char vAddr[20];
 int i = 0;
 int valid = 0;
 int paged = 0;
 int zero = 0;
 int global = 0;
 int prototype = 0;
 int unknown = 0;
 FILE *fd1 = NULL;
 FILE *fd2 = NULL;
 fseek(mem,eprocess->Pcb.DirectoryTableBase[0],SEEK_SET);
 fread(PDE,4096,1,mem);
 pid = (long)eprocess->UniqueProcessId;
 snprintf(processID,sizeof(processID),"\x5f%lu",pid);
 strncpy(pname,eprocess->ImageFileName,sizeof(pname));
 strncat(pname,processID,sizeof(pname));
 strncat(directory,pname,sizeof(directory)-strlen(directory));
 if(fopen(pname,"r") != NULL) {
 fprintf(stderr,"Error: Directory %s already
exists!\n",pname);
 exit(0);
 }
 system(directory);
 strncpy(fname,pname,sizeof(fname));
 strncat(fname,"/",1);
 strncat(fname,pname,sizeof(fname)-strlen(fname));
 strncpy(iname,fname,sizeof(fname));
 strncat(fname,".dmp",4);
 strncat(iname,".txt",4);
 fd1 = fopen(fname,"wb");
 fd2 = fopen(iname,"wb");
 if(fd1 == NULL){
 fprintf(stderr,"Error: Could not open %s!\n",fname);
 exit(0);
 }
 if(fd2 == NULL){
 fprintf(stderr,"Error: Could not open %s!\n",iname);

70

 exit(0);
 }
 fprintf(stderr,"Creating Working Set Files, Please Wait\n");
 for(i;i < 1024;i++){
 pageTableBase = get_PTB(PDE[i]);
 if(pageTableBase != 0) {
 switch (pageTableBase & 0xf) {
 case 0:
 fseek(mem,pageTableBase,SEEK_SET);
 fread(PTE,4096,1,mem);
 break;
 case 1:
 if(pageFile != NULL) {

 fseek(pageFile,pageTableBase,SEEK_SET);
 fread(PTE,4096,1,pageFile);
 } else
 pageTableBase = 0;
 break;
 default:
 pageTableBase = 0;
 break;
 }
 if(pageTableBase != 0) {
 int j = 0;
 long pageBaseAddr = 0;
 for(j;j<1024;j++){
 pageBaseAddr = get_PBA(PTE[j]);
 if(pageBaseAddr != 0) {
 sprintf(vAddr,"%8x",((i << 22) + (j
<< 12)));
 switch (pageBaseAddr & 0xf) {
 case 0:

 fseek(mem,pageBaseAddr,SEEK_SET);

 fread(buffer,1,sizeof(buffer),mem);

 fwrite(buffer,1,sizeof(buffer),fd1);

 fprintf(fd2,"%s\n",vAddr);
 valid++;
 break;
 case 1:
 if(pageFile != NULL){

 fseek(pageFile,pageBaseAddr,SEEK_SET);

 fread(buffer,1,sizeof(buffer),pageFile);

 fwrite(buffer,1,sizeof(buffer),fd1);

 fprintf(fd2,"%s\n",vAddr);
 }
 paged++;
 break;
 case 2:

71

 prototype++;
 break;
 case 3:
 unknown++;
 break;
 case 5:
 global++;
 break;
 }
 }
 }
 }
 }
 }
 fclose(fd1);
 fclose(fd2);
 printf("\nValid\t\t%d\nPrototype\t%d\nGlobal\t\t%d\nPaged\t\t%d\n
Unknown\t\t%d\n",
 valid, prototype, global, paged, unknown);
}
/**
Prints Optional Header information from process image.
Input: Image ofptional header
Output: Prints optional header information
**/
void print_optional_header(struct _IMAGE_OPTIONAL_HEADER *optHeader){
 char subSystem[] = "Subsystem Unknown";
 get_optional_header_subsystem(optHeader->Subsystem,
subSystem);
 printf("\n\t\tOptional Header\n");
 printf("Magic Number: 0x%x\n", optHeader-
>Magic);
 printf("Subsystem: %s\n", subSystem);
 printf("Image Base Address: 0x%x\n", optHeader-
>ImageBase);
 printf("Address of Entry Point: 0x%x (RVA)\n",
optHeader->AddressOfEntryPoint);
 printf("Code Base Address: 0x%x (RVA)\n",
optHeader->BaseOfCode);
 printf("Data Base Address: 0x%x (RVA)\n",
optHeader->BaseOfData);
 printf("Major OS Version: %d\n", optHeader-
>MajorOperatingSystemVersion);
 printf("Minor OS Version: %d\n", optHeader-
>MinorOperatingSystemVersion);
 printf("Size of Stack Reserved: 0x%x (%d bytes)\n",
optHeader->SizeOfStackReserve, optHeader->SizeOfStackReserve);
 printf("Number of RVA and Sizes: 0x%x\n", optHeader-
>NumberOfRvaAndSizes);
}

/**
Prints DOS Header informaiton from process image.
Input: File, Image Dos header
Output: Dos header information
**/

72

void print_dos_header(FILE * in,struct _IMAGE_DOS_HEADER
*dosHeader,long imgBaseOffset){
 printf("\n\t\tDOS Header\n");
 printf("e_magic: 0x%x\n",dosHeader-
>e_magic);
 printf("e_lfanew: 0x%x\n",dosHeader-
>e_lfanew);
 int ntHeader = 0;
 fseek(in,(long) imgBaseOffset + dosHeader->e_lfanew, SEEK_SET);
 fread(&ntHeader,2,1,in);
 printf("SIGNATURE: 0x%x\n",ntHeader);
}

/**
Prints File Header informaiton.
Input: Image File Header
Output: Prints file header information
**/
void print_file_header(struct _IMAGE_FILE_HEADER *fileHeader){
 char machineName[] = "Machine Unknown";
 char timeStamp[32];
 char characteristics[256];
 strcpy(characteristics,"\n");
 lookup_machine(fileHeader->Machine,machineName);
 printf("\n\t\tFile Header\n");
 printf("Machine Type: %s\n", machineName);
 printf("Number of Sections: %d\n", fileHeader-
>NumberOfSections);
 win_time(fileHeader->TimeDateStamp, timeStamp);
 printf("Time Stamp: %s\n", timeStamp);
 printf("Size of Optional Header: 0x%x (%d bytes)\n",
fileHeader->SizeOfOptionalHeader, fileHeader->SizeOfOptionalHeader);
 get_file_header_characteristics(fileHeader-
>Characteristics,characteristics);
 printf("Characteristics: \n%s\n", characteristics);
}

/**
Prints the process image information.
Input: Eprocess block, file, size, binary verbose
Output: kernel image information
**/
void print_image_info(struct EPROCESS *eprocess, FILE * in, long size,
int b){
 struct PEB *peb;
 int peb_offset = 0;
 int imgBaseOffset = 0;
 int address = 0;
 byte buf[1000];
 peb = malloc(sizeof(struct PEB));
 peb_offset = virtual_to_physical((long) eprocess->Peb,eprocess-
>Pcb.DirectoryTableBase[0],in, size);
 fseek(in,(long) peb_offset,SEEK_SET);
 fread(peb,sizeof(struct PEB),1,in);
 imgBaseOffset = virtual_to_physical((long) peb-
>ImageBaseAddress,eprocess->Pcb.DirectoryTableBase[0],in, size);
 if(imgBaseOffset != -1){

73

 printf("\nImgage Base Offset:
0x%x\n",imgBaseOffset);
 struct _IMAGE_DOS_HEADER *dosHeader;
 dosHeader = malloc(sizeof(struct _IMAGE_DOS_HEADER));
 fseek(in,(long) imgBaseOffset, SEEK_SET);
 fread(dosHeader,64,1,in);
 print_dos_header(in,dosHeader,imgBaseOffset);
 struct _IMAGE_FILE_HEADER *fileHeader;
 fileHeader = malloc(sizeof(struct _IMAGE_FILE_HEADER));
 fseek(in,(long) imgBaseOffset + dosHeader->e_lfanew + 4,
SEEK_SET);
 fread(fileHeader,sizeof(struct _IMAGE_FILE_HEADER),1,in);
 print_file_header(fileHeader);
 struct _IMAGE_OPTIONAL_HEADER *optHeader;
 optHeader = malloc(sizeof(struct _IMAGE_OPTIONAL_HEADER));
 fseek(in,imgBaseOffset + dosHeader->e_lfanew +
24,SEEK_SET);
 fread(optHeader,sizeof(struct
_IMAGE_OPTIONAL_HEADER),1,in);
 print_optional_header(optHeader);
 print_data_directories(optHeader);
 printf("\n\t\tSection Information\n");
 struct _IMAGE_SECTION_HEADER *sectHeader[fileHeader-
>NumberOfSections];
 printf("\nName Virt Size Virt Addr rData Ofs
rData Size Char\n");
 printf("---- --------- --------- --------- ------
---- ----\n");
 int i = 0;
 for(i;i < fileHeader->NumberOfSections;i++){
 sectHeader[i] = malloc(sizeof(struct
_IMAGE_SECTION_HEADER));
 print_section_data(in, imgBaseOffset + dosHeader-
>e_lfanew + 24 + 96 + 8*optHeader->NumberOfRvaAndSizes + 40*i,
sectHeader[i]);
 if(b == 1) {
 int numPages = sectHeader[i]-
>SizeOfRawData/0x1000;
 printf("\nThere are %d pages in this
section\n\n", numPages);
 int j;
 for(j = 0;j < numPages;j++){
 int vAddr = (long) peb->ImageBaseAddress
+ (long) sectHeader[i]->VirtualAddress + 0x1000*j;
 int pageAddr = virtual_to_physical((long)
vAddr,eprocess->Pcb.DirectoryTableBase[0], in, size);
 if(pageAddr != -1){
 printf("0x%.8x (0x%.8x)\n", vAddr,
pageAddr);
 }
 }
 }
 }
 }
}

/**

74

Prints a report of information found in the Eprocess block.
Input: Eprocess block, count, offset
Output: Process information
**/
void print_process_report(struct EPROCESS *eprocess, int count, int
offset) {
 char created[32];
 win_time(eprocess->CreateTime, created);
 printf("%3d |%-20s|%8d|%8d|%25s| %10.8p | %10.8p |\n",
 count,
 eprocess->ImageFileName,
 eprocess->UniqueProcessId,
 eprocess->InheritedFromUniqueProcessId,
 created,
 offset,
 eprocess->Pcb.DirectoryTableBase[0]);
 fflush(NULL);
}

/**
Calculates the size of the Image file. Used to determin the VAT
method.
Input: Image file
Output: Size of file
**/
long file_size(FILE *f){
 long cur_pos, length;
 cur_pos = ftell(f);
 fseek(f, 0, SEEK_END); // set pointer to end of file
 length=ftell(f); // offset in bytes from file's beginning
 fseek(f, cur_pos, SEEK_SET); // restore original position
 return length;
}

/**
Checks if memory block contains a valid process.
Input: Eprocess block
Output: 1 if not process, 0 if it is
**/
int check_process(struct EPROCESS *procTest){
 int check = 1;
 if((procTest->Pcb.Header.Type != 0x03) || (procTest-
>Pcb.Header.Size != 0x1b)){
 check = 0;
 } else if (procTest->Pcb.DirectoryTableBase[0] == 0){
 check = 0;
 } else if ((procTest->Pcb.DirectoryTableBase[0] %
0x1000) != 0){
 check = 0;
 } else if(((long) procTest-
>Pcb.ThreadListHead.Flink < KERNEL_OFFSET) || ((long) procTest-
>Pcb.ThreadListHead.Blink < KERNEL_OFFSET)){
 check = 0;
 } else if((procTest-
>WorkingSetLock.Event.Type != 0x01) || (procTest-
>WorkingSetLock.Event.Size != 0x04)){
 check = 0;

75

 }
 return check;
}

/**
Scans memory image for the active process head. Used when enumerating
process list.
Input: File and offset to start search
Output: Offset to active process head
**/
int get_active_process_head(FILE * in, int offset){
 int check = 1;
 struct EPROCESS *procTest;
 procTest = malloc(sizeof(struct EPROCESS));
 while(!feof(in)){
 check = 1;
 fseek(in,offset,SEEK_SET);
 fread(procTest,SIZEOF_PROC,1,in);
 if((check_process(procTest) == 1) && (strcmp(procTest-
>ImageFileName,"System") == 0)){
 free(procTest);
 return offset;
 }
 offset +=8;
 }
 free(procTest);
 return 0;
}

/**
Prints process image information to the screen.
Input: File, size, offset to process block as ascii hex, binary
pagefile present
Output: Prints process reports
**/
void dump_process_image(FILE * in,long size, char *process_address, int
b) {
 struct EPROCESS *procCounter;
 int count = 0;
 long procAddr = hstr_i(process_address); //0x21fe020 notepad.exe
laptopMem.dump
 procCounter = malloc(sizeof(struct EPROCESS));
 fseek(in,procAddr,SEEK_SET);
 fread(procCounter,sizeof(struct EPROCESS),1,in);
 if(check_process(procCounter) == 1){
 printf(" |%-20s|%8s|%8s|%-25s| %-10s | %-10s
|\n","Name","Pid","PPid"," Time"," Offset"," PDB");
 printf(" -------------------- ------- ------- ------
------------------ ------------ ------------ \n");
 print_process_report(procCounter, count, procAddr);
 print_image_info(procCounter, in, size, b);
 free(procCounter);
 printf("\n\n");
 }
 else {
 printf("Process not Found!");
 printf("\n\n");

76

 }
}

/**
Uses the location of the Kernel Executable Image to identify which OS
is running.
Input: Image Base Address
Output: Operating System
**/
void identify_kernel(long imgBaseOffset) {
 switch (imgBaseOffset) {
 case 0x400000:
 printf("Windows 2000\n");
 break;
 case 0x4d4000:
 printf("Windows XP\n");
 break;
 case 0x4d0000:
 printf("Windows XP\n");
 break;
 case 0x4d5000:
 printf("Windows XP\n");
 break;
 case 0xa02000:
 printf("Windows XP\n");
 break;
 case 0x4d7000:
 printf("Windows XP Service Pack 2\n");
 break;
 case 0x4de000:
 printf("Windows 2003\n");
 break;
 case 0x800000:
 printf("Windows 2003 Service Pack 1\n");
 break;
 case 0x2000000:
 printf("Windows Vista Beta 2\n");
 break;
 case 0x1800000:
 printf("Windows Vista RC1\n");
 break;
 }
}

/**
Looks for Kernel Address Space to identify the Operating System.
Input: FIle, Size, Image Base Address, binary verbose
Output: Operating System and Kernel Data
**/
void check_kernel(FILE * in,long size, long imgBaseOffset, int b) {
 struct _IMAGE_DOS_HEADER *dosHeader;
 dosHeader = malloc(sizeof(struct _IMAGE_DOS_HEADER));
 fseek(in,(long) imgBaseOffset, SEEK_SET);
 fread(dosHeader,64,1,in);
 if(dosHeader->e_magic == 0x5a4d){
 identify_kernel(imgBaseOffset);
 if(b == 1) {

77

 printf("\nImage Base Offset:
0x%x\n",imgBaseOffset);
 print_dos_header(in,dosHeader,imgBaseOffset);
 struct _IMAGE_FILE_HEADER *fileHeader;
 fileHeader = malloc(sizeof(struct
_IMAGE_FILE_HEADER));
 fseek(in,(long) imgBaseOffset + dosHeader->e_lfanew +
4, SEEK_SET);
 fread(fileHeader,sizeof(struct
_IMAGE_FILE_HEADER),1,in);
 print_file_header(fileHeader);
 struct _IMAGE_OPTIONAL_HEADER *optHeader;
 optHeader = malloc(sizeof(struct
_IMAGE_OPTIONAL_HEADER));
 fseek(in,imgBaseOffset + dosHeader->e_lfanew +
24,SEEK_SET);
 fread(optHeader,sizeof(struct
_IMAGE_OPTIONAL_HEADER),1,in);
 print_optional_header(optHeader);
 print_data_directories(optHeader);
 printf("\n\t\tSection Information\n");
 struct _IMAGE_SECTION_HEADER *sectHeader[fileHeader-
>NumberOfSections];
 printf("\nName Virt Size Virt Addr rData Ofs
rData Size Char\n");
 printf("---- --------- --------- ---------
---------- ----\n");
 int i = 0;
 for(i;i < fileHeader->NumberOfSections;i++){
 sectHeader[i] = malloc(sizeof(struct
_IMAGE_SECTION_HEADER));
 print_section_data(in, imgBaseOffset +
dosHeader->e_lfanew + 24 + 96 + 8*optHeader->NumberOfRvaAndSizes +
40*i, sectHeader[i]);
 }
 }
 }
 free(dosHeader);
}

/**
Performs OS detection of a RAM dump by locating the kernel base address
and parsing the ResourceTable from the PE file located at that address.
Input: File, Size, binary verbose
Output: Operating System
**/
void osid(FILE * in,long size,int b){
 int os_type[10] =
{0x80400000,0x804d4000,0x804d0000,0x804d5000,0x80a02000,0x804d7000,0x80
4de000,0x80800000,0x82000000,0x81800000};
 int i = 0;
 int k_address = 0;
 for(i;i < 10;i++){
 k_address = os_type[i] - KERNEL_OFFSET;
 check_kernel(in, size, k_address, b);
 }
}

78

/**
Gets the process located at the process address from the raw memory
image.
Input: File, Size, Process Offset, empty Eprocess Block
Output: Eprocess block
**/
void get_process(FILE *in,long size, int procAddr, struct EPROCESS
*proc) {
 fseek(in,procAddr,SEEK_SET);
 fread(proc,sizeof(struct EPROCESS),1,in);

}

/**
Dumps the process memory from the Page Directory.
Input: File, Page File, Size, Process offset as char
Output: Process report and memory contents to file
**/
void dump_process_memory(FILE *in, FILE *pageFile, long size, char
*process_address) {
 long procAddr = hstr_i(process_address); //0x21fe020 notepad.exe
laptopMem.dump
 struct EPROCESS *proc;
 proc = malloc(sizeof(struct EPROCESS));
 get_process(in, size, procAddr, proc);
 if(check_process(proc) == 1){
 printf(" |%-20s|%8s|%8s|%-25s| %-10s | %-10s
|\n","Name","Pid","PPid"," Time"," Offset"," PDB");
 printf(" -------------------- ------- ------- ------
------------------ ------------ ------------ \n");
 print_process_report(proc, 0, procAddr);
 printf("\n");
 get_memory(proc, in, pageFile, size);
 free(proc);
 printf("\n\n");
 }
 else {
 printf("Process not Found!");
 printf("\n\n");
 }
}

/**
Gets the number of pages in memory.
Input: File, Page File, Size, Process offset as char
Output: Memory Stats
**/
void get_process_memory_stats(FILE *in,FILE *pageFile, long size, char
*process_address) {
 long procAddr = hstr_i(process_address);
 struct EPROCESS *proc;
 proc = malloc(sizeof(struct EPROCESS));
 get_process(in, size, procAddr, proc);
 if(check_process(proc) == 1){
 printf(" |%-20s|%8s|%8s|%-25s| %-10s | %-10s
|\n","Name","Pid","PPid"," Time"," Offset"," PDB");

79

 printf(" -------------------- ------- ------- ------
------------------ ------------ ------------ \n");
 print_process_report(proc, 0, procAddr);
 get_memory_stats(proc, in, pageFile, size);
 free(proc);
 printf("\n\n");
 }
 else {
 printf("Process not Found!");
 printf("\n\n");
 }
}

/**
Translates Virtual addresses to Physical Addresses.
Input: File, Size, Process offset as char
Output: Physical offset
**/
void translate_address(FILE *in, long size, char *pAddr, char *vAddr) {
 long procAddr = hstr_i(pAddr);
 long virtAddr = hstr_i(vAddr);
 struct EPROCESS *proc;
 if(virtAddr == 0){
 printf("Not a Valid Address\n");
 exit(0);
 }
 proc = malloc(sizeof(struct EPROCESS));
 get_process(in, size, procAddr, proc);
 if(check_process(proc) == 1){
 printf(" |%-20s|%8s|%8s|%-25s| %-10s | %-10s
|\n","Name","Pid","PPid"," Time"," Offset"," PDB");
 printf(" -------------------- ------- ------- ------
------------------ ------------ ------------ \n");
 print_process_report(proc, 0, procAddr);
 printf("\n");
 printf("Virtual Address:\t\t0x%.8x\n",virtAddr);
 printf("Physical
Address:\t\t0x%.8x\n",virtual_to_physical(virtAddr,proc-
>Pcb.DirectoryTableBase[0],in, size));
 free(proc);
 printf("\n\n");
 }
 else {
 printf("Process not Found!");
 printf("\n\n");
 }
}

/**
Given the pointer to the first process in the active process list, this
function follows the list of active processes. Default value for the
pointer is 0. If a valid process is not found it will continue to
search
the image from the address of the pointer.
Input: File, Size, Process offset
Output: List of processes
**/

80

void process_list(FILE * in,long size,long pAddr) {
 struct EPROCESS *proc;
 int count = 0;
 long procAddr = 0;
 procAddr = get_active_process_head(in, pAddr);
 proc = malloc(sizeof(struct EPROCESS));
 get_process(in, size, procAddr, proc);
 if((check_process(proc) == 1) && (strcmp(proc-
>ImageFileName,"System") == 0)) {
 printf(" |%-20s|%8s|%8s|%-25s| %-10s | %-10s
|\n","Name","Pid","PPid"," Time"," Offset"," PDB");
 printf(" -------------------- ------- ------- ------
------------------ ------------ ------------ \n");
 print_process_report(proc, count, procAddr);
 while(1) {
 count++;
 procAddr = virtual_to_physical((long) proc-
>ActiveProcessLinks.Flink,proc->Pcb.DirectoryTableBase[0],in, size)-
0x88;
 get_process(in, size, procAddr, proc);
 if(check_process(proc) != 1)
 break;
 print_process_report(proc, count, procAddr);
 }
 } else {
 printf("System process not found");
 exit(0);
 }
 free(proc);
 printf("\n\n");
}

/**
Identifies the name and size of the memory image.
Input: File, path to image, size
Output: Name and Size
**/
void identify_image(FILE * in, char *name,long size){
 char * format =
 "\nImage name: %21s\n"
 "Image Size: %12d Bytes\n\n";
 printf(format, name, size);
}

/**
Scans the image for process objects.
Input: file and size
Output: process scan
**/
void process_scan(FILE * in,long size) {
 int count = 0;
 int offset = 0;
 struct EPROCESS *procTest;
 procTest = malloc(sizeof(struct EPROCESS));
 printf(" |%-20s|%8s|%8s|%-25s| %-10s | %-10s
|\n","Name","Pid","PPid"," Time"," Offset"," PDB");

81

 printf(" -------------------- ------- ------- ------------
------------ ------------ ------------ \n");
 while(!feof(in)){
 get_process(in, size, offset, procTest);
 if(check_process(procTest) == 1){
 print_process_report(procTest, count, offset);
 count++;
 }
 offset +=8;
 }
 free(procTest);
 printf("\n\n");
}

/**
Main Function.
**/
int main(int argc, char **argv) {

 int c = 0;
 FILE * imgFile = NULL;
 FILE * pageFile = NULL;
 long procAddr = 0;
 if(argc < 3){
 print_usage();
 exit(0);
 }
 imgFile = fopen(argv[2],"rb");
 if(imgFile == NULL){
 fprintf(stderr,"Error: Could not open
%s!\n",argv[2]);
 exit(0);
 }
 int fileSize = file_size(imgFile);
 identify_image(imgFile,argv[2],fileSize);
 while ((c = getopt (argc, argv, "lstdipm")) != -1)
 switch (c) {
 case 'l':
 if(argc > 3){
 procAddr = hstr_i(argv[3]);
 }
 process_list(imgFile, fileSize, procAddr);
 break;
 case 's':
 process_scan(imgFile, fileSize);
 break;
 case 't':
 if(argc > 4){
 translate_address(imgFile, fileSize,
argv[3],argv[4]);
 } else print_usage();
 break;
 case 'd':
 if((argc > 4) && (strcmp(argv[4],"-pages") ==
0)) {
 dump_process_image(imgFile, fileSize,
argv[3], 1);

82

 } else dump_process_image(imgFile, fileSize,
argv[3], 0);
 break;
 case 'i':
 if((argc > 3) && (strcmp(argv[3],"-verbose") ==
0)) {
 osid(imgFile, fileSize, 1);
 } else osid(imgFile, fileSize, 0);
 break;
 case 'p':
 get_process_memory_stats(imgFile, pageFile,
fileSize, argv[3]);
 break;
 case 'm':
 if(argc > 4){
 pageFile = fopen(argv[4],"rb");
 }
 dump_process_memory(imgFile, pageFile,
fileSize, argv[3]);
 break;
 default:
 print_usage();
 break;
 }
 fclose(imgFile);
 return 0;
}

83

APPENDIX C. TEST RESULTS

A. TEST RESULTS

Eproc.exe has been tested against WPMOA [7] and Volatility [4]. The table below
shows the results of the tests.

These tests show that processes that have been exited or removed from the active process

list by some other means can be found by scanning the image for process block structures

and that it gives a better picture of what was running on the system at the time the image

was taken. This is a more forensically sound method of finding the processes in a

memory image. The next test is the memory retrieved using Eproc over WPMOA [7].

The later used the working set list to find memory pages used by a process and only

found 20 MB of memory for notepad.exe. Eproc on the other hand dumps all non-global

pages from the page directory and when combined with the more robust method of

address translation mentioned above was able to locate 87 MB of data. Improvements

over WPMOA are an algorithm built in that will locate the Active Process List head, a

scanning function used to locate processes not it the list, processing of PE header

information, the ability to locate data in the swap file if available.

B. SAMPLE OUTPUT

1. Process List

Image name: /home/jstimson/Images/laptopMem.dump
Image Size: 536776704 Bytes

 |Name | Pid| PPid| Time | Offset | PDB |
 -------------------- ------- ------- ------------------------ ------------ ------------
 0 |System | 4| 0| 2009-04-22 19:24:48 | 0x023ca830 | 0x00039000 |
 1 |smss.exe | 1628| 4| 2007-08-24 22:10:52 | 0x021bb8f8 | 0x18a12000 |
 2 |csrss.exe | 1700| 1628| 2007-08-24 22:10:54 | 0x020adc08 | 0x1ac4b000 |
 3 |winlogon.exe | 1724| 1628| 2007-08-24 22:11:01 | 0x0228b2c8 | 0x1efb0000 |
 4 |services.exe | 1768| 1724| 2007-08-24 22:11:02 | 0x022851f8 | 0x1f0fc000 |
 5 |lsass.exe | 1780| 1724| 2007-08-24 22:11:02 | 0x0213dda0 | 0x1f0b6000 |
 6 |svchost.exe | 1948| 1768| 2007-08-24 22:11:05 | 0x02260c40 | 0x1f7a8000 |
 7 |svchost.exe | 1996| 1768| 2007-08-24 22:11:06 | 0x02124da0 | 0x1f8b2000 |
 8 |svchost.exe | 492| 1768| 2007-08-24 22:11:06 | 0x021a1020 | 0x1fb38000 |
 9 |svchost.exe | 612| 1768| 2007-08-24 22:11:06 | 0x021355f8 | 0x1fce0000 |
 10 |svchost.exe | 840| 1768| 2007-08-24 22:11:07 | 0x021bfda0 | 0x0073a000 |

Test Eproc WPMOA [7] Volatility [4]
List 38 procs 38 procs 38 procs
Scan 78 procs N/A 75 procs
Mem dump Notepad.exe 87 MB 20 MB N/A

84

 11 |ccSetMgr.exe | 1120| 1768| 2007-08-24 22:11:08 | 0x02123358 | 0x0394f000 |
 12 |explorer.exe | 1228| 1168| 2007-08-24 22:11:08 | 0x02280460 | 0x08dc3000 |
 13 |ccEvtMgr.exe | 1248| 1768| 2007-08-24 22:11:08 | 0x01fae638 | 0x03f80000 |
 14 |spoolsv.exe | 1448| 1768| 2007-08-24 22:11:09 | 0x020ecbe0 | 0x0b648000 |
 15 |DefWatch.exe | 1680| 1768| 2007-08-24 22:11:18 | 0x01ee4518 | 0x0c27f000 |
 16 |GoogleUpdaterSe | 1848| 1768| 2007-08-24 22:11:18 | 0x01fb9478 | 0x0c224000 |
 17 |mdm.exe | 1912| 1768| 2007-08-24 22:11:18 | 0x0226ac78 | 0x0c209000 |
 18 |svchost.exe | 284| 1768| 2007-08-24 22:11:18 | 0x02105be0 | 0x0d6f1000 |
 19 |Rtvscan.exe | 692| 1768| 2007-08-24 22:11:24 | 0x01f08be0 | 0x0d8f5000 |
 20 |vmware-authd.ex | 728| 1768| 2007-08-24 22:11:25 | 0x01eecda0 | 0x0da7b000 |
 21 |vmount2.exe | 796| 1768| 2007-08-24 22:11:25 | 0x01f1d258 | 0x0dc76000 |
 22 |vmnat.exe | 772| 1768| 2007-08-24 22:11:25 | 0x01ec9c10 | 0x0deae000 |
 23 |vmnetdhcp.exe | 1824| 1768| 2007-08-24 22:11:25 | 0x01e20a28 | 0x0df63000 |
 24 |vmserverdWin32. | 356| 1768| 2007-08-24 22:12:25 | 0x01e076a0 | 0x0f366000 |
 25 |alg.exe | 3088| 1768| 2007-08-24 22:12:33 | 0x01df35e8 | 0x1186c000 |
 26 |ccApp.exe | 3580| 1228| 2007-08-24 22:12:35 | 0x01e34020 | 0x12025000 |
 27 |VPTray.exe | 3812| 1228| 2007-08-24 22:12:36 | 0x021e1738 | 0x1447d000 |
 28 |acrotray.exe | 3820| 1228| 2007-08-24 22:12:36 | 0x01f11da0 | 0x14e91000 |
 29 |jusched.exe | 3924| 1228| 2007-08-24 22:12:40 | 0x01ef3438 | 0x131e6000 |
 30 |ctfmon.exe | 1136| 1228| 2007-08-24 22:12:42 | 0x020dd558 | 0x1411e000 |
 31 |GoogleUpdater.e | 2300| 1228| 2007-08-24 22:12:44 | 0x01de9a68 | 0x14e8b000 |
 32 |FNPLicensingSer | 2728| 1768| 2007-08-24 22:12:50 | 0x01eef530 | 0x1c4c8000 |
 33 |cmd.exe | 984| 1228| 2007-08-24 22:13:16 | 0x01fad820 | 0x03d23000 |
 34 |bash.exe | 1092| 984| 2007-08-24 22:13:17 | 0x01e53020 | 0x1577a000 |
 35 |firefox.exe | 2440| 1228| 2007-08-24 23:24:30 | 0x01dd3a60 | 0x0a62d000 |
 36 |notepad.exe | 720| 1228| 2007-08-24 23:24:46 | 0x021fe020 | 0x0cb45000 |
 37 |cmd.exe | 2892| 1228| 2007-08-24 23:25:11 | 0x01da9248 | 0x1e3e0000 |
 38 |dd.exe | 2232| 2892| 2007-08-24 23:26:55 | 0x01d7d020 | 0x0c4aa000 |

2. Process Scan

Image name: /home/jstimson/Images/laptopMem.dump
Image Size: 536776704 Bytes

 |Name | Pid| PPid| Time | Offset | PDB |
 -------------------- ------- ------- ------------------------ ------------ ------------
 0 |Idle | 0| 0| 2009-04-22 19:24:48 | 0x00559080 | 0x00039000 |
 1 |dd.exe | 2232| 2892| 2007-08-24 23:26:55 | 0x01d7d020 | 0x0c4aa000 |
 2 |cmd.exe | 2492| 1228| 2007-08-24 22:24:48 | 0x01d846b0 | 0x07a74000 |
 3 |cmd.exe | 2892| 1228| 2007-08-24 23:25:11 | 0x01da9248 | 0x1e3e0000 |
 4 |bash.exe | 2404| 1092| 2007-08-24 23:18:09 | 0x01dc8218 | 0x06c32000 |
 5 |firefox.exe | 2440| 1228| 2007-08-24 23:24:30 | 0x01dd3a60 | 0x0a62d000 |
 6 |GoogleUpdater.e | 2300| 1228| 2007-08-24 22:12:44 | 0x01de9a68 | 0x14e8b000 |
 7 |alg.exe | 3088| 1768| 2007-08-24 22:12:33 | 0x01df35e8 | 0x1186c000 |
 8 |vmserverdWin32. | 356| 1768| 2007-08-24 22:12:25 | 0x01e076a0 | 0x0f366000 |
 9 |vmnetdhcp.exe | 1824| 1768| 2007-08-24 22:11:25 | 0x01e20a28 | 0x0df63000 |
 10 |ccApp.exe | 3580| 1228| 2007-08-24 22:12:35 | 0x01e34020 | 0x12025000 |
 11 |bash.exe | 1092| 984| 2007-08-24 22:13:17 | 0x01e53020 | 0x1577a000 |
 12 |vmnat.exe | 772| 1768| 2007-08-24 22:11:25 | 0x01ec9c10 | 0x0deae000 |
 13 |DefWatch.exe | 1680| 1768| 2007-08-24 22:11:18 | 0x01ee4518 | 0x0c27f000 |
 14 |vmware-authd.ex | 728| 1768| 2007-08-24 22:11:25 | 0x01eecda0 | 0x0da7b000 |
 15 |FNPLicensingSer | 2728| 1768| 2007-08-24 22:12:50 | 0x01eef530 | 0x1c4c8000 |
 16 |jusched.exe | 3924| 1228| 2007-08-24 22:12:40 | 0x01ef3438 | 0x131e6000 |
 17 |Rtvscan.exe | 692| 1768| 2007-08-24 22:11:24 | 0x01f08be0 | 0x0d8f5000 |
 18 |acrotray.exe | 3820| 1228| 2007-08-24 22:12:36 | 0x01f11da0 | 0x14e91000 |
 19 |vmount2.exe | 796| 1768| 2007-08-24 22:11:25 | 0x01f1d258 | 0x0dc76000 |
 20 |cmd.exe | 984| 1228| 2007-08-24 22:13:16 | 0x01fad820 | 0x03d23000 |
 21 |ccEvtMgr.exe | 1248| 1768| 2007-08-24 22:11:08 | 0x01fae638 | 0x03f80000 |
 22 |GoogleUpdaterSe | 1848| 1768| 2007-08-24 22:11:18 | 0x01fb9478 | 0x0c224000 |
 23 |csrss.exe | 1700| 1628| 2007-08-24 22:10:54 | 0x020adc08 | 0x1ac4b000 |
 24 |ctfmon.exe | 1136| 1228| 2007-08-24 22:12:42 | 0x020dd558 | 0x1411e000 |
 25 |spoolsv.exe | 1448| 1768| 2007-08-24 22:11:09 | 0x020ecbe0 | 0x0b648000 |
 26 |svchost.exe | 284| 1768| 2007-08-24 22:11:18 | 0x02105be0 | 0x0d6f1000 |
 27 |ccSetMgr.exe | 1120| 1768| 2007-08-24 22:11:08 | 0x02123358 | 0x0394f000 |
 28 |svchost.exe | 1996| 1768| 2007-08-24 22:11:06 | 0x02124da0 | 0x1f8b2000 |
 29 |svchost.exe | 612| 1768| 2007-08-24 22:11:06 | 0x021355f8 | 0x1fce0000 |
 30 |lsass.exe | 1780| 1724| 2007-08-24 22:11:02 | 0x0213dda0 | 0x1f0b6000 |
 31 |svchost.exe | 492| 1768| 2007-08-24 22:11:06 | 0x021a1020 | 0x1fb38000 |
 32 |smss.exe | 1628| 4| 2007-08-24 22:10:52 | 0x021bb8f8 | 0x18a12000 |

85

 33 |svchost.exe | 840| 1768| 2007-08-24 22:11:07 | 0x021bfda0 | 0x0073a000 |
 34 |VPTray.exe | 3812| 1228| 2007-08-24 22:12:36 | 0x021e1738 | 0x1447d000 |
 35 |dd.exe | 3284| 2404| 2007-08-24 23:18:09 | 0x021f30e8 | 0x1f71f000 |
 36 |notepad.exe | 720| 1228| 2007-08-24 23:24:46 | 0x021fe020 | 0x0cb45000 |
 37 |svchost.exe | 1948| 1768| 2007-08-24 22:11:05 | 0x02260c40 | 0x1f7a8000 |
 38 |mdm.exe | 1912| 1768| 2007-08-24 22:11:18 | 0x0226ac78 | 0x0c209000 |
 39 |explorer.exe | 1228| 1168| 2007-08-24 22:11:08 | 0x02280460 | 0x08dc3000 |
 40 |services.exe | 1768| 1724| 2007-08-24 22:11:02 | 0x022851f8 | 0x1f0fc000 |
 41 |winlogon.exe | 1724| 1628| 2007-08-24 22:11:01 | 0x0228b2c8 | 0x1efb0000 |
 42 |Acrobat.exe | 1332| 1228| 2007-08-24 22:22:37 | 0x022f27b8 | 0x0924c000 |
 43 |System | 4| 0| 2009-04-22 19:24:48 | 0x023ca830 | 0x00039000 |
 44 |svchost.exe | 1948| 1768| 2007-08-24 22:11:05 | 0x0257ec40 | 0x1f7a8000 |
 45 |jusched.exe | 3924| 1228| 2007-08-24 22:12:40 | 0x03416438 | 0x131e6000 |
 46 |ccSetMgr.exe | 1120| 1768| 2007-08-24 22:11:08 | 0x040bd358 | 0x0394f000 |
 47 |bash.exe | 2404| 1092| 2007-08-24 23:18:09 | 0x04229218 | 0x06c32000 |
 48 |GoogleUpdaterSe | 1848| 1768| 2007-08-24 22:11:18 | 0x045ad478 | 0x0c224000 |
 49 |notepad.exe | 720| 1228| 2007-08-24 23:24:46 | 0x046db020 | 0x0cb45000 |
 50 |vmserverdWin32. | 356| 1768| 2007-08-24 22:12:25 | 0x059886a0 | 0x0f366000 |
 51 |bash.exe | 2404| 1092| 2007-08-24 23:18:09 | 0x06043218 | 0x06c32000 |
 52 |mdm.exe | 1912| 1768| 2007-08-24 22:11:18 | 0x07488c78 | 0x0c209000 |
 53 |ccEvtMgr.exe | 1248| 1768| 2007-08-24 22:11:08 | 0x08052638 | 0x03f80000 |
 54 |Acrobat.exe | 1332| 1228| 2007-08-24 22:22:37 | 0x083017b8 | 0x0924c000 |
 55 | | 4| 0| 2009-04-22 19:24:48 | 0x09341998 | 0x00039000 |
 56 |Acrobat.exe | 1332| 1228| 2007-08-24 22:22:37 | 0x0a7ed7b8 | 0x0924c000 |
 57 |ccSetMgr.exe | 1120| 1768| 2007-08-24 22:11:08 | 0x0a8a3358 | 0x0394f000 |
 58 |ccEvtMgr.exe | 1248| 1768| 2007-08-24 22:11:08 | 0x0a908638 | 0x03f80000 |
 59 | | 4| 0| 2009-04-22 19:24:48 | 0x0ae10998 | 0x00039000 |
 60 |explorer.exe | 1228| 1168| 2007-08-24 22:11:08 | 0x0ae8e460 | 0x08dc3000 |
 61 |FNPLicensingSer | 2728| 1768| 2007-08-24 22:12:50 | 0x0b3b2530 | 0x1c4c8000 |
 62 |VPTray.exe | 3812| 1228| 2007-08-24 22:12:36 | 0x0b47e738 | 0x1447d000 |
 63 |ccApp.exe | 3580| 1228| 2007-08-24 22:12:35 | 0x0c096020 | 0x12025000 |
 64 |bash.exe | 1092| 984| 2007-08-24 22:13:17 | 0x0ccc5020 | 0x1577a000 |
 65 | | 4| 0| 2009-04-22 19:24:48 | 0x0cd1f998 | 0x00039000 |
 66 |spoolsv.exe | 1448| 1768| 2007-08-24 22:11:09 | 0x0d055be0 | 0x0b648000 |
 67 |svchost.exe | 492| 1768| 2007-08-24 22:11:06 | 0x0e8bc020 | 0x1fb38000 |
 68 |vmware-authd.ex | 728| 1768| 2007-08-24 22:11:25 | 0x0ea4fda0 | 0x0da7b000 |
 69 |csrss.exe | 1700| 1628| 2007-08-24 22:10:54 | 0x0ed23c08 | 0x1ac4b000 |
 70 |vmnat.exe | 772| 1768| 2007-08-24 22:11:25 | 0x0ee9cc10 | 0x0deae000 |
 71 |svchost.exe | 284| 1768| 2007-08-24 22:11:18 | 0x0f08fbe0 | 0x0d6f1000 |
 72 |bash.exe | 2404| 1092| 2007-08-24 23:18:09 | 0x0f6a5218 | 0x06c32000 |
 73 |vmount2.exe | 796| 1768| 2007-08-24 22:11:25 | 0x0fa90258 | 0x0dc76000 |
 74 |winlogon.exe | 1724| 1628| 2007-08-24 22:11:01 | 0x0fc692c8 | 0x1efb0000 |
 75 |svchost.exe | 612| 1768| 2007-08-24 22:11:06 | 0x0fccf5f8 | 0x1fce0000 |
 76 |GoogleUpdaterSe | 1848| 1768| 2007-08-24 22:11:18 | 0x0feee478 | 0x0c224000 |
 77 |DefWatch.exe | 1680| 1768| 2007-08-24 22:11:18 | 0x0ff97518 | 0x0c27f000 |
 78 |notepad.exe | 720| 1228| 2007-08-24 23:24:46 | 0x10c9e020 | 0x0cb45000 |

3. Process Information

Image name: /home/jstimson/Images/laptopMem.dump
Image Size: 536776704 Bytes

 |Name | Pid| PPid| Time | Offset | PDB |
 -------------------- ------- ------- ------------------------ ------------ ------------
 0 |bash.exe | 1092| 984| 2007-08-24 22:13:17 | 0x01e53020 | 0x1577a000 |

Imgage Base Offset: 0x1b393000

 DOS Header
e_magic: 0x5a4d
e_lfanew: 0x80
SIGNATURE: 0x4550

 File Header
Machine Type: IMAGE_FILE_MACHINE_I386
Number of Sections: 5
Time Stamp: 2009-04-22 19:26:45
Size of Optional Header: 0xe0 (224 bytes)
Characteristics:

86

 IMAGE_FILE_RELOCS_STRIPPED
 IMAGE_FILE_EXECUTABLE_IMAGE
 IMAGE_FILE_LINE_NUMS_STRIPPED
 IMAGE_FILE_LOCAL_SYMS_STRIPPED
 IMAGE_FILE_32BIT_MACHINE
 IMAGE_FILE_DEBUG_STRIPPED

 Optional Header
Magic Number: 0x10b
Subsystem: IMAGE_SUBSYSTEM_WINDOWS_CUI
Image Base Address: 0x400000
Address of Entry Point: 0x1000 (RVA)
Code Base Address: 0x1000 (RVA)
Data Base Address: 0x5b000 (RVA)
Major OS Version: 4
Minor OS Version: 0
Size of Stack Reserved: 0x200000 (2097152 bytes)
Number of RVA and Sizes: 0x10

 Data Directory Information

Data Directory RVA Size
-------------- --- ----
Import Directory 0x00076000 0x00003e3c

 Section Information

Name Virt Size Virt Addr rData Ofs rData Size Char
---- --------- --------- --------- ---------- ----
.text 0x00059200 0x00001000 0x00059400 0x00000400 0xe0000020
.data 0x00002400 0x0005b000 0x00002400 0x00059800 0xc0000040
.rdata 0x00013000 0x0005e000 0x00013200 0x0005bc00 0x40000040
.bss 0x00003200 0x00072000 0x00000000 0x00000000 0xc0000080
.idata 0x00003e00 0x00076000 0x00004000 0x0006ee00 0xc0000040

4. Operating System Identification -Verbose

Image name: /home/jstimson/Images/laptopMem.dump
Image Size: 536776704 Bytes

Windows XP Service Pack 2

Image Base Offset: 0x4d7000

 DOS Header
e_magic: 0x5a4d
e_lfanew: 0xe8
SIGNATURE: 0x4550
 File Header
Machine Type: IMAGE_FILE_MACHINE_I386
Number of Sections: 21
Time Stamp: 2009-04-22 19:26:45
Size of Optional Header: 0xe0 (224 bytes)
Characteristics:

 IMAGE_FILE_EXECUTABLE_IMAGE
 IMAGE_FILE_LINE_NUMS_STRIPPED
 IMAGE_FILE_LOCAL_SYMS_STRIPPED
 IMAGE_FILE_32BIT_MACHINE

 Optional Header
Magic Number: 0x10b
Subsystem: IMAGE_SUBSYSTEM_NATIVE
Image Base Address: 0x400000
Address of Entry Point: 0x1d55ce (RVA)
Code Base Address: 0x580 (RVA)
Data Base Address: 0x6a400 (RVA)

87

Major OS Version: 5
Minor OS Version: 1
Size of Stack Reserved: 0x40000 (262144 bytes)
Number of RVA and Sizes: 0x10

 Data Directory Information

Data Directory RVA Size
-------------- --- ----
Export Directory 0x001aa380 0x0000b55d
Import Directory 0x001f3a24 0x00000050
Resource Directory 0x001f4380 0x00010708
Base Relocation Table 0x00204b00 0x0000f984
Debug Directory 0x00071f00 0x00000038
Load Configuration Directory 0x000535a0 0x00000040

 Section Information

Name Virt Size Virt Addr rData Ofs rData Size Char
---- --------- --------- --------- ---------- ----
.text 0x00071900 0x00000580 0x00071a00 0x00000580 0x68000020
POOLMI 0x00001200 0x00071f80 0x00001300 0x00071f80 0x68000020
MISYSPTE 0x00000700 0x00073280 0x00000700 0x00073280 0x68000020
POOLCODE 0x00001500 0x00073980 0x00001600 0x00073980 0x68000020
.data 0x00016c00 0x00074f80 0x00016d00 0x00074f80 0xc8000040
PAGE 0x000f8e00 0x0008bc80 0x000f8e80 0x0008bc80 0x60000020
PAGEVRFY 0x0000f100 0x00192e80 0x0000f200 0x00192e80 0x60000020
PAGEWMI 0x00001700 0x001a2080 0x00001800 0x001a2080 0x60000020
PAGEKD 0x00004000 0x001a3880 0x00004080 0x001a3880 0x60000020
.edata 0x0000b500 0x001aa380 0x0000b580 0x001aa380 0x40000040
PAGEDATA 0x00001500 0x001b5900 0x00001580 0x001b5900 0xc0000040
PAGEKD 0x0000c000 0x001b6e80 0x0000c080 0x001b6e80 0xc0000040
PAGECONS 0x00000100 0x001c2f00 0x00000200 0x001c2f00 0xc0000040
PAGEVRFC 0x00003400 0x001c3100 0x00003480 0x001c3100 0x40000040
PAGEVRFD 0x00000600 0x001c6580 0x00000680 0x001c6580 0xc0000040
INIT 0x0002d700 0x001c6c00 0x0002d780 0x001c6c00 0xe2000020
.rsrc 0x00010700 0x001f4380 0x00010780 0x001f4380 0x40000040
.reloc 0x0000f900 0x00204b00 0x0000fa00 0x00204b00 0x42000040

5. Memory Statistics

Image name: /home/jstimson/Images/laptopMem.dump
Image Size: 536776704 Bytes

 |Name | Pid| PPid| Time | Offset | PDB |
 -------------------- ------- ------- ------------------------ ------------ ------------
 0 |dd.exe | 2232| 2892| 2007-08-24 23:26:55 | 0x01d7d020 | 0x0c4aa000 |

Valid 2020
Prototype 50966
Global 32156
Paged 8400
Unknown 324

6. Address Translation

Image name: /home/jstimson/Images/laptopMem.dump
Image Size: 536776704 Bytes

 |Name | Pid| PPid| Time | Offset | PDB |
 -------------------- ------- ------- ------------------------ ------------ ------------
 0 |dd.exe | 2232| 2892| 2007-08-24 23:26:55 | 0x01d7d020 | 0x0c4aa000 |

Virtual Address: 0x00407000
Physical Address: 0x04a1a000

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

LIST OF REFERENCES

 [1] Chris Prosise; Kevin Mandia; Matt Pepe. Incident Response and Computer
Forensics, Second Edition. McGraw-Hill Osborne Media, 2003.

 [2] Brian D. Carrier; Joe Grand. “A Hardware-Based Memory Acquisition Procedure
for Digital Investigations.” Digital Investigation Journal, Issue 1(1), February
2004.

 [3] George M. Garner. “Forensic Acquisition Tools.” Internet:
users.erols.com/gmgarner/forensics/, August 17, 2004.

 [4] Nick Petroni; AAron Walters, Volatile Systems, Volatility
http://www.volatilesystems.com/VolatileWeb/volatility.gsp. 25 February 2007.

 [5] Mark E. Russinovich; David A. Solomon. Microsoft® Windows® Internals, Fourth
Edition: Microsoft Windows Server™ 2003, Windows XP, and Windows 2000.
Redmond, Washington: Microsoft Press, 2005.

 [6] J. Rutkowska. "Beyond the CPU: Defeating Hardware Based RAM Acquisition
Tools (Part I: AMD case)," Black Hat DC, February 2007.

 [7] John Schultz. "Offline Forensic Analysis of Microsoft Windows XP Physical
Memory," Naval Postgraduate School Thesis, September 2006.

 [8] J. Kornblum. "Using Every Part of the Buffalo in Windows Memory Analysis,"
Digital Investigation Journal, January 2007.

 [9] J. Solomon; E. Huebner; D. Bem; M. Szezynska. "User data persistence in
physical memory," Digital Investigation, Volume 4, Issue 2, June 2007, pp 68-72.

 [10] Chris Betz. Memparser, 1.0 edition, July 2006.
http://sourceforge.net/projects/memparser/ 15 January 2007.

 [11] Mariusz Burdach. An introduction to the windows memory forensic, 2005.
http://forensic.seccure.net/pdf/introduction to windows memory forensic.pdf. 3
December 2007.

 [12] Nick Petroni; Aaron Walters; Timothy Fraser; William Arbaugh. FATKit: A
framework for the extraction and analysis of digital forensic data from volatile
system memory. Digital Investigation, 3(4):197–210, December 2006.

 [13] Nicholas P. Maclean. Acquisition and analysis of Windows© memory. Master’s
thesis, University of Strathclyde, 2006.
http://www.cis.strath.ac.uk/_nimaclea/fi/reports/windows memory.pdf. 20
November 2006.

90

 [14] Andreas Schuster. Searching for processes and threads in Microsoft Windows©
memory dumps. Digital Investigation, 3(S):10–16, August 2006.
http://dfrws.org/2006/proceedings/2-Schuster.pdf. 26 September 2006.

 [15] Tim Vidas. Forensic analysis of volatile memory stores. NEbraskaCERT
Conference, August 2006.
http://www.certconf.org/presentations/2006/files/RB3.pdf. 26 September 2006

 [16] Tim Vidas. "The Acquisition and Analysis of Random Access Memory," Journal
of Digital Forensic Practice, Volume 1, Issue 4 December 2006, pp 315 - 323.

 [17] Jamie Butler. “DKOM (Direct Kernel Object Manipulation),” BlackHat Windows
Security 2004, www.blackhat.com/presentations/win-usa-04/bh-win-04-
butler.pdf. 14 January 2007.

 [18] The GNU Netcat Project, http://netcat.sourceforge.net/, June 2008.

 [19] KnTDD, KnTTools, GMG Systems, Inc. http://gmgsystemsinc.com/knttools/,
June 2008.

 [20] Enter Sandman – Japan Pacsec 2007, http://www.msuiche.net/pres/PacSec07-
slides-0.4.pdf, December 2007.

 [21] Cygwintm, http://www.cygwin.com, June 2008.

 [22] Backtrack 3, Remote-Exploit, http://www.remote-exploit.org/backtrack.html,
June 2008.THIS PAGE INTENTIONALLY LEFT BLANK

91

INITIAL DISTRIBUTION LIST

1. Dudley Knox Library
Naval Postgraduate School
Monterey, California

2. Chris S. Eagle

Naval Postgraduate School
Monterey, California

3. George W. Dinolt
Naval Postgraduate School
Monterey, California

