
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2009-06

Interoperability risk mitigation through the
application of operational capability based engineering

Lenahan, Jack; Pacetti, Don; Heller, Scott; Reed, Rebecca;
Mori, Paul

14th International Command and Control Research and Technology Symposium
(ICCRTS), June 15-17, 2009, Washington DC.
https://hdl.handle.net/10945/37497

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

14th ICCRTS
“C2 and Agility”

Title of Paper:

Interoperability Risk Mitigation through the Application of Operational Capability Based
Engineering

Topics

C2 Architectures and Technologies, Networks and Networking,
Authors: Jack Lenahan Imagine One Corporation, Don Pacetti, Commander Scott

Heller USN, Rebecca Reed, Paul Mori
POC: Jack Lenahan

Organization: Office of the Chief Engineer
Space and Naval Warfare Systems Center Atlantic

Charleston, S.C.
Address: P.O. Box 190022

N. Charleston, South Carolina: 29419
Phone: 843-218-6080

Email: John.Lenahan@Navy.mil

Abstract
 We are interested in investigating an operational system of systems engineering approach
to the resolution of interoperability issues discovered after system deployment. Operational
systems of systems engineering focuses on the engineering of systems in an end to end mission
thread context. Such a methodology shifts the acquisition focus from simple ‘box engineering’ to
the behavior of systems in their operational ecosystem.
 This paper proposes a Capabilities Based Engineering Framework (CBEF) to provide a
methodology that will deliver operations focused enterprise requirements in addition to
traditional systems requirements. Capability based approaches1 are used to identify and
understand interactions, patterns, structures and properties of the end to end architecture.
A System of Systems (SoS) refers to an integrated package of individual solutions that
interoperate to provide a required capability. In addition to interoperability requirements, an
analytically based operational capability process results in the identification of capability gaps
for a given end to end mission thread. The resulting capability gaps become expressed in terms
of functional requirements, interaction requirements and performance requirements for the
optimal “pack” of systems and distributed services.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Introduction
We begin with the assumption that formal system of systems interoperability engineering at

the mission level rarely occurs in the DoD prior to acquisition. This assumption has an expensive
derivative consequence. The lack of a DoD SoS interoperability engineering process leaves the
procured systems exposed to expensive interoperability repair issues after system deployment.
Ignoring the need to define interoperability specifications at the beginning of a system’s
lifecycle, it seems difficult to avoid contractual incompleteness in terms of the acquisition
community. This statement can be analyzed in terms of its immediate impact. The government is
currently unable to engineer for system interoperability prior to the deployment of the new
systems. If we are discussing this in a classical sense, we can see that traditional systems
engineering, focusing upon delivering a particular “box” which will satisfy a documented set of
narrow requirements, may encounter difficulty when interoperating or even simply interfacing
with other systems. If we enlarge our discussion to include so called net centric composeable
applications, weaved together as a tapestry of web services and BPEL sequences to satisfy our
mission needs in new and novel ways, then our interoperability problems explode exponentially.
This is quantified in a study conducted by NIST (the National Institute of Standards and
Technology) as depicted in figure 1 below.

Figure1 – Relative Costs to Repair Defects when Found at Different Stages of Software
Development2

According to the study, the cost of error correction after product release is thirty times more
expensive than at the requirements stage time of a system life cycle. This study validates the
need for early and continued end to end mission thread interoperability engineering and testing.

Interoperability3 is the ability to exchange and use information. The use of the data is as
important as is the exchange of the data. For example, are American telephones interoperable4?
If two English speaking people call each other, then the answer is probably yes. They can
exchange voice data and understand it. If a telephone user calls a wrong number and the person
who answers only speaks Russian, then they are not said to be interoperable in that case. Please
note that the phones worked properly, the voice data was precisely replicated at both ends of the
call, but the voice data was unusable by the participants. To summarize, without the operational
context, everything works, but no one can communicate.

We can now modify our interoperability definition to state that: systems are interoperable in
clearly specified contexts such that all pre-existing constraints for exchange and usage are met.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

For purposes of this paper, the clearly specified context is the mission thread. Thus, for our
telephone example above, the system is interoperable for any two users who can effectively
communicate given a functional technology.

Capability5 is defined as ability to perform actions. A requirement6 is a singular documented
need of what a particular product or service should be or do. A mission defines a specific goal to
be achieved through a sequence of well orchestrated actions. For example, in order to carry out a
mission to find and destroy enemy submarines, the mission participants would need the
capability to detect, identify, and prosecute sub surface targets, (the action of detection, the
action of identification, and the action of target destruction). In order to accomplish this mission,
system of systems engineers will need to derive requirements for each activity to be successful.
The sequencing of these activities in order to be successful constitutes a mission thread.

Combining the total number of systems needed to satisfy the mission capabilities into a
successful cohesive whole, is systems of systems engineering in a mission thread context.

The ability of each system to provide useable data throughout the mission thread from an end
to end perspective is known as systems of system interoperability engineering in an end to end
mission thread context.

The mission thread is the tool with which we weave composite fabrics that we call C4ISR7
solutions. There can be time critical strike fabrics, surface warfare fabrics, interdiction fabrics,
anti-submarine fabrics, etc. In geology, the term fabric describes the spatial and geometric
configuration of all the elements that make up a particular rock8. In mission thread centric,
systems of systems architectures, the multiple layers of: interfaces; systems; composeable data
consuming services; fusing services; applications; systems; platforms; communications and
networks capabilities constitute the spatial and geometric configurations of the elements of the
architectural fabric. In simpler terms, we are using the term fabric to identify a set of
architectures used to construct a system of systems architecture, or a SoS fabric if you will. The
set of systems required to deliver an operational capability is also known as an end to end
architecture. We chose the term fabric because the authors find it confusing to use the term
architecture to simultaneously describe anything from a simple software system, to PC internals
(the CPU architecture for example), or an entire set of communications architectures, network
architectures or DODAF SV-6 architectures, etc. The set of capabilities delivered by multiple,
integrated end to end architectures are operational fabrics. All the pieces must harmonize
operationally to create a functional and interoperable fabric. The failure of any of the key pieces
in any portion of the composite fabric prevents the desired capabilities from emerging. The most
commonly identified failure in composing end to end mission thread operational fabrics is
interoperability.

Interoperability9 ”would seem to be a straightforward concept. Put simply, interoperability is
a measure of the degree to which various organizations or individuals are able to operate together

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

to achieve a common goal. From this top-level perspective, interoperability is a good thing, with
overtones of standardization, integration, cooperation, and even synergy. Interoperability
specifics, however, are not well defined. They are often situation-dependent, come in various
forms and degrees, and can occur at various levels—strategic, operational, and tactical as well as
technological. They are also far more likely to be recognized when interoperability problems
emerge and taken for granted when such problems do not”. Remember the telephone example
mentioned above.

The authors of this paper believe that operational issues can best be addressed by a capability
based engineering framework or CBEF. This framework is designed to enhance the acquisition
life cycle. We are hoping that operational fabric analysis or system of systems architecture
analysis will occur prior to specification development. Our team believes that this constitutes a
professionalization of interoperability requirements engineering since operational and
interoperability needs will be procured rather than ‘fixed in the field’. A discussion of the CBEF
model follows.

CBEF Discussion
Please remember the goal of CBEF is to reduce the risk of discovering expensive

interoperability issues after the deployment of the newly developed system(s) on military
platforms. Our CBEF process provides an environment which serves two specific
interoperability related purposes:

1. Engineering interoperability requirements into initial specifications

2. Reverse interoperability engineering after post deployment issues are identified.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Figure 2 - The CBEF Process Model for System of System Interoperability Engineering

Figure 2 depicts a simplified acquisition model. It emphasizes several key features of the
CBEF process. First, we introduce a system of systems engineering activity prior to system
acquisition. The SoS activity is followed by a detailed analysis of data flows and their
corresponding interfaces along with a data usability assessment associated with each downstream
mission thread consuming system or human activity. This would permit interoperability data to
appear in the system specification prior to contract award. This activity includes two specific
interoperability functions: end to end mission thread data flow modeling which will produce data
interface requirements as it outputs (at a SoS level); and an end to end mission thread data usage
model (to satisfy the formal interoperability definition requirements of data exchange and
usability).

We believe that mapping capabilities to mission threads, followed by a process of identifying
the required individual systems, services, system collections, and statistically relevant data flows,
can lead to impressive results in terms of reducing interoperability risk. By focusing on the
capability and the associated mission threads needed to provide that capability, interoperability
becomes manageable at least at the data interface level. However, this still leaves open the

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

questions surrounding data usage. Here we believe that an important step has been missing from
most SoS and other System Engineering protocols: How is the data actually used in an
operational environment? For example, suppose that sensor data is processed by several
composed service oriented architecture (SOA) functions, each function using different fusion
algorithms then presenting that data to track processors for use by a commander. Can the
commander actually have enough confidence in the fused data such that he could authorize
weapons launch? If the publishers of the sensor data understood its ‘downstream usage’,
pedigreed meta data could be added to facilitate C2 decisions based upon that data. The CBEF
methodology provides for a mechanism to permit the capture of system and data usage such that
data flow patterns are understood in terms of data usage patterns. The discussion that follows
provides an example of the CBEF process as it constructs an end to end mission thread needed to
support interoperability verification.

SPAWAR Systems Center Atlantic has developed several toolkits designed around capability
based engineering assessments. The SPAWAR toolkits also focus on data usage. This permits a
greater possibility of reducing or solving interoperability problems. The set of these toolkits is
collectively known as the capability based engineering framework. The toolkits consist of
several knowledge bases and intelligent user assistants. Our knowledge bases have mapped the
Joint Capability Areas (JCA), service specific capabilities lists (NMTLS, UJTLS, etc.) common
system function lists (CSFL), and other authoritative data sources to platforms and systems.

Our process adheres to the so called SoS engineering ‘Vee”. This process begins by mapping
Joint warfighting capabilities to capability requirements. It is these capability requirements that
will form the basis of capability verification testing (end to end mission thread level
interoperability testing). The capability requirements are then used to derive the dimensions of
the operational fabric required to develop the necessary system of systems architecture designs
(C4ISR elements design). These products are then decomposed to individual system
requirements and used to design system level architectures. The systems are then synthesized
into an operational fabric.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Figure3. SoS Engineering “Vee”

The arrows in figure 3 represent requirements. SoS capability requirements must be

understood and properly decomposed to drive the design and development of individual
solutions on the left side of the “Vee”. On the right side of the “Vee”, a test and evaluation
process is required that can recompose the individual solutions into the SoS and validate that the
overall behavior and performance satisfy end to end (E2E) requirements. If the system
engineering process is properly implemented so that solutions are designed to operate within a
SoS architecture from the start, the E2E test requirements are already known and testing
becomes a validation of the sound enterprise system engineering.

Documentation and analysis of SoS requirements in the form of architectures is an integral
part of several key acquisition milestones and artifact requirements (ICD, CDD, NR-KPP, etc).
However, the usability of these products is limited as they vary in fidelity across individual
solutions and also in availability based on the acquisition phase of the solution(s) under test. In
addition, due to varying levels of technology maturity, test articles may not be available for
solutions to test at the SoS level as desired.

The use-case that this process is targeted to support is the entry of a C4ISR solution into a lab
environment to validate E2E capability. This reverse engineering process assumes that E2E
requirements have not been previously defined or specified and must be determined based on the
capability that the individual solution provides. In order to assemble an architecture that would
capture a test of the proposed solution, we apply an operational context to support a test
framework. The test architecture is baselined and may be validated for future re-use and/or
integration with other net centric architectures.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Figure 4 – System of System Engineering Process for Interoperability Testing

Figure 4 depicts the high level CBEF interoperability testing process containing the
following steps:

Step 1 – Select candidate Enterprise Architectures (EA) to construct a fabric model
Step 2 – Define the Operational Scenario
Step 3 – Conduct Mission Thread and Individual Systems Analysis
Step 4 – Perform Equipment String Discovery
Step 5 – Perform Equipment String Filtering
Step 6 – Design a test configuration and execute the test

Step 1. Select Candidate Enterprise Architectures

For a given capability which needs interoperability verification, select the most
appropriate architectures from program of record POR libraries. If architectures do not exist
but are required for the capability to be tested for interoperability, a collaborative architecture
development and design activity should be initiated to produce the desired DODAF artifacts.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Step 2. Define Operational Scenario

The input into the process is a proposed C4ISR fabric or architectural set, with one or
more functions that must be tested in an E2E environment. CBEF now defines a series of
operational scenarios that best describe the operational requirement(s). These scenarios must
be mapped to key interoperability points in the mission threads.

Step 3: Conduct Mission Thread and Individual Systems Analysis

In this step, analysts decompose the operational scenarios defined in Step 2 into the
sequence of operational activities. For each operational activity, the system function(s)
required to support that activity are identified including decisions required to be supported by
the activity. In addition to these functional requirements, the information elements (IEs)
exchanged between operational activities in the sequence are also defined. These are referred
to as interaction requirements. At this time, the operational analysts define how the data is to
be used at each activity. This creates an understanding of the data flow in terms of data
usage for each interaction requirement. For example, after the data is exchanged between two
systems in an SoS architecture, what decisions might a watch commander make using that
data as the basis of his decisions?

The output of this step is a set of SoS data interactions and data usage requirements.

Step 4: Discover Equipment Strings

In this step, the E2E strings of equipment and data flows required to fulfill the
information exchange requirements are discovered and validated. This step identifies the
supporting infrastructure required to exchange the information between application pairs.
The equipment strings generated by this step should match the actual configuration of the
operational assets.

This step may be performed manually by operational experts. But due to of the
complexity and number of options that may be available, CBEF supports this step by using
an automated equipment string discovery algorithm. This algorithm utilizes the required
information exchanges, defined communications links and current platform configuration
data to generate the communications architecture needed to satisfy the selected mission
thread. This process step constructs the multi-dimensional operational fabric for the C4ISR
mission.

In summary, a set of equipment strings is generated to define all applications and
infrastructure required to support the functional and interaction requirements of the mission
thread. The equipment strings should represent the actual configuration of the operational
asset, down to the version and variant for each system

The output of this process is a set of equipment strings.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Step 5: Equipment String (ES) Filtering (Identify statistically meaningful interoperations)

 In this step, the candidate equipment strings are prioritized and tailored with the goal of
determining the statistically most relevant interoperations. This creates the end to end
architecture which needs to be constructed and tested. The output of this step is a desired test
configuration.

Step 6: Test Configuration Implementation

In this step, the prioritized equipment strings are implemented as E2E systems exhibiting
the statistically meaningful data flow and interoperability. At SPAWAR Systems Center
Atlantic, they are implemented by leveraging equipment in local test labs. The labs emulate
the infrastructure on ships in the fleet. After test configuration construction, interoperability
testing commences and various metricized reports are presented to the system designers,
testers and fleet operations staff.

CBEF is still an evolving capability. Its goal is to provide an environment in which complex
interoperability issues can be tested during product design or when interoperability issues arise
after system deployment. We have identified several future capabilities for CBEF which are
identified in the following section.

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Future CBEF Directions

At this time CBEF has been used to evaluate the following fabric dimensions: network
architectures, command and control architectures, communications architectures, intelligence
architectures, surveillance architectures, and reconnaissance architectures in end to end mission
thread contexts. We have primarily assessed legacy system based implementations. The
following table summarizes the goals and future expansion of the CBEF tool kits in terms of
assessing and providing interoperability analysis of the following:

SoS Type Definition Currently
CBEF
Supported

Future CBEF Capability

Virtual SoS Virtual SoS lack a central management authority
and a centrally agreed upon purpose for the system-
of-systems. Large-scale behavior emerges

Yes Improve Current Analytical
Tools to Include Hybrid
Architectures – Legacy- SOA-
ESB – Event Driven - Coalition

Collaborative In collaborative SoS the component systems
interact more or less voluntarily to fulfill agreed
upon central purposes. The Internet is a
collaborative system. The Internet Engineering
Task Force works out standards but has no power
to enforce them. The central players collectively
decide how to provide or deny service, thereby
providing some means of enforcing and maintaining
standards.

Partially Improve Current Analytical
Decision Modeling Tools to
Support Interoperability Data
Usage Pattern Analysis at the
Collaborative Level

Acknowledged Acknowledged SoS have recognized objectives, a
designated manager, and resources for the SoS;
however, the constituent systems retain their
independent ownership, objectives, funding, and
development and sustainment approaches. Changes
in the systems are based on collaboration between
the SoS and the system.

Partially Attempting to change the
Procurement Process Model to
Permit Independent
Ownership to be Maintained
but to increase the
Specification Details at
Procurement Time to Include
Interoperability Requirements

Directed Directed SoS are those in which the integrated
system-of-systems is built and managed to fulfill
specific purposes. It is centrally managed during
long-term operation to continue to fulfill those
purposes as well as any new ones the system owners
might wish to address. The component systems
maintain an ability to operate independently, but
their normal operational mode is subordinated to
the central managed purpose.

No This model implies
Evolutionary Capability
Emergence. This would
require automated assessment
tools to permit faster
identification of
interoperability issues and
possible meta data
improvements or the creation
of a formal interoperability
markup language

 Table 1 – Definitions of Types of Systems of Systems10

Table one discusses the types of SoS available at this writing11. “Most military systems today are
part of a SoS even if they are not explicitly recognized as such. Operationally, the DoD acts as an

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

Statement A: Approved for public release; Distribution is unlimited (17 March 2009)

SoS as military commanders bring together forces and systems (e.g., weapons, sensors,
platforms) to achieve a military objective. However, DoD development and acquisition have
focused on independent systems. Most systems are initially created and further developed
without concern for explicit SoS considerations”. [Maier,1998; Dahmann, 2008].

Summary
The following key points were addressed by this paper.

1. Interoperability is defined as the interfacing and usage of data. We expanded the
definition of interoperability for systems as follows: systems are interoperable in clearly
specified contexts such that all pre-existing constraints for data exchange and usage are
met.

2. Interoperability issues are expensive to resolve after systems are deployed on platforms.
3. SPAWAR Systems Center Atlantic has developed a capability based engineering

framework (CBEF) which will permit capture of interoperability requirements at system
specification time during the acquisition cycle.

4. The CBEF methodology provides for a mechanism to permit the capture of system and
data usage such that data flow patterns are understood in terms of data usage patterns.

5. CBEF also provides for an interoperability reverse engineering methodology by
analyzing capabilities in an end to end mission thread such that interoperability issues can
be resolved.

References:
1. Charles, Phil, personal correspondence, capability based engineering frameworks

discussions.
2. “NIST Planning Report 02-3, “The Economic Impacts of Inadequate Software Infrastructure

for Software Testing”, May 2002, page 94
3. Interoperability definition from: wordnet.princeton.edu/perl/webwn
4. Campbell, Victor, personal correspondence
5. Baldwin, Kristen, “Defense View on Considerations for System of Systems SE”, 25 October

2006
6. “Defense View on Considerations for System of Systems SE”, 25 October 2006
7. Command, Control, Computers, Communications, Intelligence, Surveillance, and

Reconnaissance
8. Source: wikipedia.org/wiki/Fabric (geology)
9. “Interoperability of US and Allied Forces: Focus on C3ISR”, MR1235, Rand Corporation,

2000, chapter 2
10. Systems Engineering Guide for Systems of Systems, Version 1.0 , August 2008, Office of the

Deputy Under Secretary of Defense for Acquisition and Technology, Systems and Software
Engineering. Systems Engineering Guide for Systems of Systems, Version 1.0. Washington,
DC: ODUSD(A&T)SSE, 2008, page 17

11. Ibid., page 16

http://www.google.com/url?sa=X&start=0&oi=define&q=http://wordnet.princeton.edu/perl/webwn%3Fs%3Dinteroperability&usg=AFQjCNHwampxMbafkv4CU__opAsj1rEUkQ
http://www.google.com/url?sa=X&start=4&oi=define&q=http://en.wikipedia.org/wiki/Fabric_(geology)&usg=AFQjCNGsoq0D_oF5UJCx7Rx3YsnQyRXBJw

	Introduction
	CBEF Discussion

