

Calhoun: The NPS Institutional Archive DSpace Repository

Radar cross section lectures

Fuhs, Allen E.

Monterey, California, Naval Postgraduate School

DTIC accession number: ADA125576
http://hdl.handle.net/10945/37502

RADAR CROSS SECTION LECTURES

by

DISTINGUISHED A PROFESSOR ALLEN E. FUMS Department of Aeronautics

$$
\begin{array}{llll}
38 & 03 & 02 & 035
\end{array}
$$

RADAR CROSS SECTION LECTURES

by

Distinguished Professor Allen E. Fuhs
 Department of Aeronautics
 Naval Postgraduate School
 Monte:2y, CA 93940
 (40R)646-2948
 AV 878-2948

A

INTRODUCTION

These notes were developed while the author was on Sabbatical at NASA Anes Research Center Juring FY 1982. The lectures were presented to engineers and scientists at NASA Ames in March-April 1982. In August 1982, the RCS lecturre were presented at General Dynamics Fort Worth Division.
T - thoroughly cover the content the following time schedule is required:

LECTURE I. INTRODUCTION TO ELECTROMAGNETIC SCATTERING

1. Level of Complexity

2. Features of BM Wave
3. What Is RCS?
4. Magnitude of Radar Cross Section
5. Polarization and Scattering Matrix
6. Inverse Scattering
7. Geometrical Versus Radar Cross Section
8. Polarization and RCS for Conducting Cylinder
9. Far Field vs Near Field
10. Influence of Diffraction on EM Waves
11. Relation of Gain to RCS
12. Antenna Geometry and Beam Pattern
13. Radar Cross Section of a Flat Plate
14. Wavelength Regions
15. Rayleigh Region
16. Optical Region
17. Mie or Resonance Scattering

Before discussing RCS, a perspective is given on the complexity of problems to be encountered. A measure of complexity is the tool required for numerical solution. The tools span from slide rule to CRAY computer.

Since these lectures are prepared mainly for the aerodypamicist, typical aerodynamics problems are given along with classes of RCS problems. The lectures provide sufficient information which allows back-of-envelope calculations in the "Southwest" corner of the graph. The lecrures discuss in a descriptive way the scientific problems in the "Northeast" corner.

A. E. FUHS ${ }^{2}$

FRATURES OF EM WAVE

0 Wavelength

$$
\lambda=c / f
$$

$c=$ speed of EM wave $=3 E 8 \mathrm{~m} / \mathrm{sec}$
$f=\mathrm{frequency}, \mathrm{Hz}$
0 Electric and Magnezic Fields*

- orientation related to antenna (source)
$-E=2 H \quad ; \quad Z=(i / \varepsilon)^{1 / 2}$ ohms
0 Polarization
- orientation of the electric vector \vec{E}
- polarization may be important in determining magnitude of RCS

0 Energy and Power*
energy density $=$ energy/volume $=\frac{1}{2}\left(\varepsilon E^{2}+\mu \mathrm{H}^{2}\right)=$ Joules/m ${ }^{3}$
flux of energy = power/area $=\vec{S}=\vec{E} \times \overrightarrow{\mathrm{B}}=$ Watts $/ \mathrm{m}^{2}$
power ~ (amplitude squared)
0 Interference
field vectors add vectorially; may cause cancellation of waves
*J. C. Slater, Microwave Transmission, Dover, 1959.

A: E. FUHS ${ }^{3}$

What is RCS?

0 The RCS of any reflector may be thought of as the projected aras of equivalent isotropic (same in all directions) reflector. The equivelent reflector returns the same power per untt solid angle.

0 RCS is an area.
0 Kening of RCS can be seen by arranging σ in form:

$$
\frac{d I_{1}}{4 \pi}-I_{r} R^{2}
$$

OI ${ }_{1}$ - power intercepted and acattered by target, Hatcs
$\sigma I_{i} / 4 \pi=$ power scattered in 4π steradians solid angle, Watts/steradian
$I_{r} A_{r}$ power into receiver of area A_{x} " Watto
$\Omega=A_{Y} / R^{2}$ - solid angle of receiver as seen from cargen, steradian
$I_{r} A_{r} / \Omega$ - power reflected to receiver per unit solid angle, Watts/steradian
$I_{r} A_{r} /\left(A_{I} / R^{2}\right)-I_{r} R^{2}$ - pover reflected to receiver per unit solid angle. Uatts/steradian

0 Meaning of linit
R is distance from target to radar recelver.
E_{i}, H_{i}, and I_{i} are fized.
E_{x} and H_{r} vary as $1 / R$ in far Ineld.
Ir varies as $1 / R^{2}$ in far field.
Hence, O has a linit as $R \rightarrow \infty$.

$$
\begin{aligned}
I_{i}= & \text { irradiance }=\text { power density } \\
= & \text { intensity }=\text { watts } / \mathrm{m}^{2} \\
& \text { A:E:FUHS }
\end{aligned}
$$

A. E. FUHS 4

Magnitude of Radar Crons Section

0 BCS can be expresaed in terna of area.
0 Since RCS is an area, you can check your formine for RCS for dimensions; the formulas should alsays have dimensions of lencth equared.

0 The square meter is usually used as a refercnce to express 0 as relative value using decibels. An example of calculation

Given $\sigma=28 \mathrm{db}$, what is $a \ln \mathrm{~m}^{2}$?

$$
g\left(\mathrm{~m}^{2}\right)=10^{28 d b_{s m} / 10} \cdot 631 \mathrm{a}^{2}
$$

Given $\sigma=0.34 \mathrm{~m}^{2}$, what is σ in $d b_{\mathrm{am}}$?

$$
\sigma\left(d b_{a b}\right)=10 \log _{10}(0.34)=-4.7 \mathrm{db}
$$

0 Some typical ralues are shown for various objecta. Alao the manitude of creeping waves or traveling vaves from ar aircrafe is shown. When the RCS due to direct reflection is reduced, RCS from other wave scattering phenomen may become important.

MAGNITUDE OF RADAR CRDSS SECTION								
Magnitude in terms of area σ in units of meter ${ }^{2}$								
Relative magnitude in terns of $d b_{s m}$								
$d b_{S m}=10 \log _{10}\left(\frac{m^{2} \mathrm{RcS}}{1.0 \mathrm{~m}^{2}}\right)$								
Typical values of RCS								
. 0001	. 001	. 01	0.1	1.0	10	100	1000	$10000 \mathrm{~m}^{2}$
-40	-30 INSECTS	$\begin{aligned} & -20 \\ & \text { EIRDS }^{2} \end{aligned}$	-10	0	10	20 EIGHTER AIRCRAFT	30 BOMEER: TRANSPORT AIRCRAFT	$40 \mathrm{db}_{\mathrm{sm}}$ SHIPS
				CREEPING WAVE				
				Traveling				

A. E. FUHS s

EOLARIZATION AND SCATTERING MATRIX

0 The elements of scactering matrix have both phase and amplitude

$$
a_{H H}=\left|a_{H H}\right| \exp j \phi_{H H}
$$

0 For monostatic radar (transmitter and receiviag anrennas are colocated or fery close together)

$$
a_{\mathrm{VH}}=a_{\mathrm{HV}}
$$

The expression is sot true for bistatic radar.
0 Polarization of wave is specified by stating orientation of electric field yector E.

0 Groes polarization occurs when target changes the polarization of reflected wave compared to incident wave.

0 Polarization may be specified by orientation of E relative to a long distance of targer, e.g., a wire. In this case, the notation

$$
\sigma_{i l} \text { and } \sigma_{\perp}
$$

is used.
0 Uscelly $\sigma_{11}>\sigma_{1}$.

A. E, FUHS 6

INVERSE SCATIERING

0 To quote from Professor Kennaugh* on the subject of inverse scattering:
"One measure of electromagnetic scattering properties of an object is the radar cross section (RCS) or apparent size. In the early days of radar, it was found that rapid variation of RCS with aspect, radar polarization, and frequeacy complicate the relation between tiue and appirent sizes. As measurement capabilities improved: imestigations of the variation of RCS with these parameters provided the radar analyst with a plethora of data, but few insights inio this relation. In the present coutext, such data are essential in determining the physical features of a distant target, rather than an amoying radar anomaly."

0 Inverse scattering provides a nonimaging method to determine target size, shape, etc.

0 By appropriately processing the backscattered waveforms or target signature observed in radar receivers, different target shapes may be discriminated and classified.

0 Stwalth implies denial of detection; an expanded concept for stealth implies control of backscattered waveform, thereby denying information about target size, shape, etc.

[^0]scATTERING
INVERSE

A. E, FUHS 7

GEOMETRICAL VERSUS RADAR CROSS SECTION

0 Sphere. The two areas are drawn to scale. For a sphere, $\sigma=\pi a^{2}$ independent of wavelength in optical region. Solve for a :

$$
a=\operatorname{SQR}(\sigma / \pi)=0.56 \text { meter }
$$

0 Square Flat Plate. Consider a frequency of 8.5 GHz which corresponds to $\lambda=0.035 \mathrm{~m}=3.5 \mathrm{~cm}$. The cross section for a flat plate is

$$
\sigma=\frac{4 \pi A^{2}}{\lambda^{2}}=\frac{4 \pi\left[(0.1 m)^{2}\right]^{2}}{(0.035)^{2}}=1 \mathrm{~m}^{2}
$$

0 Alrcraft Broadside. The aireraft may have a panel which is normal to the wave vector \vec{k}. A large RCS results due to reflection from the panel.

0 Low RCS Aircraft Broadside. By a combination of RCS reduction methods, the alrcraft has a smaller RCS than projected area.
SPHERE
GEOMETRICAL VERSUS RADAR
CROSS SECTION
RADAR CROSS

$$
\begin{aligned}
& \text { PROJECTED } \\
& \text { AREA } \\
& 25 \mathrm{~m}^{2} \\
& \text { AIRCRAFT } \\
& \text { BROADSIDE }
\end{aligned}
$$

RES $400 \mathrm{~m}^{2}$
$\operatorname{RCS} 9 \mathrm{~m}^{2}$

RADIUS 1.7 m

A. E. FUHS ${ }^{8}$
 POLARIZATION AND RCS FOR CONDUCTHNG CYLINDER

0 When λ is smaller than a, polarization is not importarit for magnitude of RCS,
0 The three regions besed on relative size of λ compared to are shown. In both Rayleigh and optical regions, the RCS varies omoothly with changing λ. In the Mie region, also known as resonance region, the RCS varies rapidiy with changing λ. In optical region, $\sigma_{\|}$and σ_{\perp} converge to kal ${ }^{2}$.

0 Cylinders with small ka are used for radar chaff.
0 A cylinder can be used as a model for estimating RCS of the leading edge of a wing or rudder.

0 Mie region occurs where circumference of cylinder, i.e., $2 \pi a$, is nearly equal to wavelength, λ.

0 The values of ka for which cylinder diameter, d_{v} equals λ and for which cylinder radius, a, equals λ are shown in the graph.

19

A: E, FUHS

A. E, FUHS ${ }^{9}$

FAR FIELD vs NEAR FIELD

0 The symbol f refers to a fraction of a wavelength. In far field, the variation in phase is amall over a distance L.

0 In far field, the incident wave can be considered to be a plane wave.
0 The radiation from a dipole illustrates far field and near field for microwaves.

$$
\begin{aligned}
& E_{\theta}=\frac{M k^{3}}{4 \pi \varepsilon} \exp [f(\omega t-k r)] \sin \theta\left[-\frac{1}{k r}+\frac{1}{(k r)^{2}}+\frac{1}{(k r)^{3}}\right] \quad \text { NEAR } \\
& E_{\theta}=-\frac{M k^{3}}{4 \pi \varepsilon} \exp [j(\omega t-k r)] \sin \theta \frac{1}{k r} \\
& M=\text { dipole moment } \\
& \varepsilon=\text { electric inductive capacity } \\
& k=2 \pi / \lambda \\
& \omega=2 \pi f(f \text { is frequency here) } \\
& \theta=\text { polar angle in polar coordinates } \\
& j=\text { square root of minus one }
\end{aligned}
$$

FAR FIELD vs NEAR FIELD
FADAR CROSS SECTION APPLIES
TO FAR FIELD
$R^{2}=L^{2}+(R-F \lambda)^{2}$
$f=\frac{L^{2}}{2 \lambda R} \ll 1$ FAR FIELD AND NEAR FIELD HAVE
SIMILAR NIEANINGS IN OPTICS AND
RADAR FAR FIELD
IN OPTICS, FRESNEL DIFFRACTION
OCCURS IN NEAR FIELD. FRAUNHOFER
DIFFRACTION OCCURS IN FAR FIELD

A. E. FUHS

0 On the left-inand alde is a barider wh a mail hole D. The waves are moving toward che right. The diffracted vave are mearly circular with center at hole.

0 A large value of λ / D giolds a bean which divergea.
0 On the Fight-hand ide, the hole D is much larger than a mevelength. The bean it tranmited through the barrier with iftie divergence.

0 A sull value of λ / D ylelde anrow bean from an antenne.

REIATION OF GAIN TO RCS

0 In the optical region, i.e., where ka is large, a formula can be written for RCS involving gain and reflecting area. The formula is given in the viewgraph.

0 Gain is a ratio of two solid angles. For a sphere, the solid angle is 4π steradians. If the wave is cioffined to a beam due to an antenna, the power is concentrated in the beam. Gain indicates the extent the power is concentrated in the beam.

0 To find the solid angle of the beam, the relation $\theta=C \lambda / D$ is used. C is a constant and usually has value $2 / \pi$.

0 The reflecting area is the surface area between two wavefronts spaced $\Delta \lambda$ apart. Surface area outside the volume defined by the two wavefronts does not return radiation in a direction toward the radar antenna.

0 Derivation of the equation for gain: Consider the beam from an antenna to be a cone with half angle $\theta=2 \lambda / \pi D$. At a range R, the cone has a base with radius r. The value of x is given by $r=\theta R$

The area of the beam, A_{b}, at range R is πr^{2}. In terms of θ and the diffraction formula

$$
A_{b}=\frac{4 \lambda^{2} R^{2}}{\pi D^{2}}
$$

The solid angla of the beam is

$$
\Omega=\frac{A_{b}}{R^{2}}=\frac{4 \lambda^{2}}{\pi D^{2}}
$$

By definition

$$
G=\frac{4 \pi}{\Omega}=\frac{4 \pi}{\lambda^{2}} \cdot \frac{\pi D^{2}}{4}=\frac{4 \pi A}{\lambda^{2}}
$$

where A is the area of the antenna.
$-$
$O F$ GAIN TO RS
$\sigma=G A$
$R C S=$ GAIN•REFLECTINGAREA
REFLECTING AREA

REFLECTING AREA is SURFACE
area between two wavefront
SPACED $\triangle \lambda$

A: E. FUMS

$$
\begin{aligned}
& -\frac{G A I N}{G=\frac{4 \pi}{\Omega} \frac{\text { steradians }}{\text { steradians }}} \\
& \Omega=\text { solid angle of bedim } \\
& G=\frac{4 \pi A}{\lambda^{2}} \\
& \sigma=\frac{4 \pi A^{2}}{\lambda^{2}}
\end{aligned}
$$

A. E. FUHS 12
 ANTENDIA GBOMETRY AND BEAM PATTERN:

0 A circular antenna produces a circular beam of radius r.
0 An elliptical antema produces an elifptical bean. Due to diffraction, the long dimension of the antenna, I_{a}, is at right angles to long dimension of the beam, θ_{e}. The long dimensions of the antenna and beam are crossed. Note that $\theta_{e}>\theta_{a}$ and $I_{a}>L_{e}$.

0 The reason antennas are important to RCS as that the circular antenna is equivalent to a circular disc. The circular antenna is the source for a plane wave from an aperture in the form of a circle. Consider an incident plane wave reflected from a circular disc. The result is a plane wave from an aperture (the disc) in the form of a circle. Hence, the reflecting area is equivalent to an enṭenna. Antennas have side lobes. The radiation reflected by a flat plate or a disc has the same side lobes as an antenna of same shape.
AND BEAM PATTERN

radar cross section of a flat plate

0 The RCS of a flat plate is obtained from

$$
\sigma=G A
$$

where A equals the plate area, A_{p}.
0 Three different geometries leading to a series of wavefronts moving to the right are illustrated. The beam in the far field is identical for the three cases illustrated.

0 The shape of the flat plate does not influence the value of σ so long as the smallest dimension of the plate is much longer than a wavelength.

0 A test for whether or not the formula applies is accomplished by comparing λ and the square root of A_{p}. The result must be

$$
\lambda \ll \sqrt{A_{p}}
$$

A:E.FUHS ${ }^{14}$
 WAVELENGTH REGIONS

0 Recall $k=2 \pi / \lambda$; consequently

$$
\mathrm{ka}=\frac{2 \pi \mathrm{a}}{\lambda}
$$

a is a characteristic dimension of the body.
0 A complex shape such as an aircraft may have components spanning all three regions. For example, the wing leading edge may be in the optical region while a gun muzzle may be in the Rayleigh region.

0 The region where ka $\simeq 1$ is known as Me region or as the resonance region. Resonance may occur between creeping waves and the specular reflected waves. The numerous wiggles characteristic of the resonance region may te due to the resonance.

0 The resonance region is difficult to analyze. In the Rayleigh region, series expansions using ka as an expansion parameter can be accomplished. In the optical region, the expansion parameter is $1 / \mathrm{ka}$. The series expansion technique is not useful for the Mie region. For Rayleigh scattering, the leading term in an expansion may be the electrostatic field.
WAVELENGTH REGIONS
mie (RESONANCE)
OPTICAL.
 difficult theoretically
Guska smooth
$\sigma_{v s} k a$ many wiggles
difficult theoretically
σ may be independent of wave length
σ
σ
σ
$k a \ll 1$
$k a \simeq 1$
$k a>1$
A:E.FUHS

A.E, FUHS 15

bayleiga region

0 An oblate ellipsoid of revolution is shown in the figure. When the distance in the axial direction is small, the oblate ellipsold models a disc like a penny. For this case, F is not near unity.

0 A prolate ellipsoid of revolution is shown in the viewgraph. When the distance along the axis is emphasized, a wire can be modelled. In that case, F is not near unity.
0 For smooth bodies which do not deviate too much from a sphere, the RCS is independent of polarization or aspect angle.

0 The formula for σ can be tested for a sphere. For a sphere

$$
\sigma / \pi a^{2} \simeq 0.1 \text { when } \mathrm{ka} \simeq 0.33
$$

Assume $F=1.0$. Then, since $V=4 \pi a^{3} / 3$

$$
\sigma=\frac{4}{\pi} k^{4}\left(\frac{4 \pi}{3} a^{3}\right)^{2}=\frac{64}{9}(k a)^{4} \pi a^{2}
$$

Inserting the value for ka, one finds

$$
\sigma / \pi a^{2}=0.084
$$

which is close to the acsurate value.
RAYLEIGH REGION

RAYLEIGH

A:E.FUHS

A. E. FUHS ${ }^{16}$

OPTICAL REGION

0 One can apply the formula $\alpha=\pi \rho_{1} \rho_{2}$ to a sphere. In that case $\rho_{1}=\rho_{2} a$, Hence,

$$
\sigma=\pi a^{2}
$$

which is the anticipated result.
0 Optical approximation has the grestest use to calculate specular returns and the associated sidelobes.

0 Optical approximation may fail when there is a surface singularity such as an edge, a shadow, or a diacontinuity in slope or curveture. Surface singularities may cause second-order effects which include creeping and traveling waves. When specular returns are weak, the RCS may be dominated by creeping or traveling waves.
REGION
RAY TRACING CAN BE USED TO ESTIMATE σ
A SMOOTH CURVED SURFACE NORMAL TO THE IN
VECTOR \vec{K} WILL GIVE SPECULAR REFLECTION

REGION. A: E. FUMS
OPTICAL

A. E. FUHS ${ }^{27}$

MIE OR RESONAYCE SCATIERING

To antiafy electrical bousdary conditions on a body, a grid with nodes spaced at a mall fraction of a wavelength, asy $\lambda / 6$, is needed. For the optical region vere $\lambda \ll a$, the number of grid points is very large. However, for the resomance or Me region, the value of λ is near a dimension of the body. Fewer grid points are needed in the resonance region than in the optical region.
A: E. FUMS
GEOMETRY OF BODY IS CRITICAL FACTOR
VERY FEW ANALYTICAL SOLUTIONS IN RESIN
vIE SCATTERING
SIMPLE GENERALIZATIONS FOR σ ARE NOT POSSIBLE
FAVORABLE FOR NUMERICAL TECHNIQUES; FEWER GRID POINTS
NEEDED
IIMPULSE-RESPONSE TECHNIQUE MAY BE APFLICABLE
MAY OBTAIN RESULTS IN MIE-REGION BY TAKING MORE
TERMS IN ILK SERIES EXPANSION; EXTEND OPTICAL
REGION TOWARD NIE-REGION
GEOMETRY OF BODY IS CRITICAL FACTOR

VERY FEW ANALYTICAL SOLUTIONS IN RESONANCE-REGION
lecture il. radar cross section calculations; radar range equation

1. Physical Optics
2. Radar Range Equation 1
3. Radar Range Equation 2
4. Radar Range Equation 3
5. Burnthrough Range
6. RCS for Sfrnple Shapes
7. Calculation of "F1at Plate" Area
8. Why RCS for Sphere Does Not Depend on λ
9. Wavelength Dependence of Specular Reflection
10. Wavelength Dependence Using Flat Plate σ
11. Wavelength Dependence Using P. O. Integral
12. Radar Cross Section of a Sphere
13. Addition of Specular and Creeping Waves
14. Derivation of $\sigma=\pi \rho_{1} \rho_{2}$
15. Radar Cross Section for Wires, Rods, Cylinders and Discs
16. Radar Cross Section of Circular Disc of Radius, a--Linear Scale
17. Radar Cross Section of Circular Disc of Radius, a-Decibel Sale (í = 12 GHz)
18. Radar Cross Section of Circular Disc of Radius, a-Decibel Scale (f = 2 GHz)
19. RCS of Dihedral
20. Determination of RCS for Dihedral
21. Sample Calculation of RCS for a Dthedral
22. Calculated Dihedral RCS for $-30^{\circ}<\theta<120^{\circ}$
23. Data for a Dihedral at 5.0 Gdz
24. Creeping Waves
25. Travellag Haves
26. RCS of Cavicies
27. Retroreflectors
28. RCS of Coumon Trihedral Reflectors
29. Vector Sum for Radar Cross Section
30. Radar Cross Section for Two Spheres
31. Sample Output for Two-Spheres Model
32. Radar Cross Soction and Antennas

A. E. FUHS 1
 PRYSICAL OPTICS

0 The symbol I is 1rradiance, Watta/m ${ }^{2}$.
0 The value of I_{0} is I at $\theta=0$.

$$
\operatorname{limit}_{\theta \rightarrow 0}^{\operatorname{lin}} \frac{I}{I_{0}}=\left(\frac{\operatorname{kan} \theta}{\operatorname{kat} \theta}\right)^{2}=1
$$

0 Using the Rirchhoff Integral, which is a technique used in physical optics, the radar cross section is obtained.

0 A vocabulary guide is given since optics people use differeat words than microvave people.

References are ay follows:
J. M. Stone, Rediation and Optics, BcGrav Hill, New York, 1963.
J. W. Crispin, Jr., and K. M. Siegel, Editors, Methods of Radar Cross Section Anglyaig: Acedemic Pregs, Hew York, 1968.

APPLICATION OF KIRCHIHOFF INTEGRAL
TD FRAUNHOFER DIFFRACTION GIVES

$\frac{I}{I_{0}}=\left[\frac{\sin (k a \sin \theta)}{k a \sin \theta}\right]^{2}$

RADAR CROSS SECTION FOR SQUARE FLAT PLATE
CRISPIN-SIEGEL
PAGE 122
$\frac{\sigma}{\sigma_{0}}=\left[\frac{\sin (k a \sin \theta)}{k a \sin \theta}\right]^{2}$

A. E. FIHS

0 By using the dimensions, one can understand the various steps in the derivation.

0 Symbols have the following definitions:
$P=$ radar transmitter power, Watts
$G=$ antenna gain
$R=$ range, $1 . e .$, distance fiom radar to target, meters $\Omega=$ solid angle

0 Note that atmospheric attenuation is neglected.
$-$
POWER THROUGH A IS
POWER STERADIAN $=\frac{P G}{4 \pi} \frac{A}{R^{2}}$
POWER PER UNIT AREA IS
$\left\{\frac{\text { POWER }}{\text { STERADIAN STERADIAN }}\right.$
$\left\{\begin{array}{l}\text { AREA }\end{array}\right\}=\frac{P 6}{4 \pi} \frac{1}{R^{2}}$
$A: E \cdot F U H S$

0 Note that ICS has units of an area and is used as the area which intercepts outgoing radar power.

0 The signal, S, has units of power.
0 Note that $1 / \mathrm{R}^{2}$ is (steradian/unit area).

RADAR RANGE EQUATION 3

0 Detection range does not necessarily equal R_{0}.
0 Using logarithmic differentiation, one can show thet

$$
\frac{\Delta R_{0}}{R_{0}}=\frac{1}{4} \frac{\Delta P}{P}+\frac{1}{2} \frac{\Delta A}{A}+\frac{1}{4} \frac{\Delta \sigma}{\sigma}-\frac{1}{2} \frac{\Delta \lambda}{\lambda}-\frac{1}{4} \frac{\Delta N}{N}
$$

- A 40 per cent reduction in σ causes only a 10 per cent reduction in range.

0 The formula for relative detection ranges is useful. An example:
Radar power is doubled. How much does the reference range increase?

$$
\frac{R_{2}}{R_{1}}=\left[\frac{P_{2}}{P_{1}}\right]^{1 / 4}=(2)^{1 / 4}=1.189
$$

Range increases by 19 per cent for a 100 per cent increase in power.
A. E. FUHS

0 Symbols have definitions as follows:
A_{r} radar antenna area, m^{2}
$A_{j} \quad$ jammer antemna area, m^{2}
Abr area of radar beam at jammer, m^{2}
Ay area of jammer beam at radar, m^{2}
θ_{j} angle of jammer beam, radians
θ_{r} angle of radar beam, radians
S_{f} signal at radar due to jammer, Watts
$S_{\text {r }} \quad$ Signal at radar due to reflected power from target which is carrying jammer, Watts
$P_{r} \quad$ radar power, Watts
P_{j} jammer power, Watts
R range, meters
λ wavelength, meters
σ RCS of target which is carrying jammer, m ${ }^{2}$
0 Obviously both radar and jamer must be on same λ.
0 Note that S_{j} varies as R^{-2}.
0 Note that S_{r} varies as R^{-4}.
0 A narrow beam for jammer is not practical since this implies jammer must be aimed. Hence A_{j} is small.
0 Note that R_{b} varies as $\operatorname{SQR}(\sigma)$.
0 For penetrating aircraft, a small value of R_{b} is desired.

A.E.FUHS ${ }^{6}$ RCS FOR SIMPLE SHAPES

0 The direction of the incident wave is specified by \vec{k} which is usually parallel to an axis for the simple cases considered here.

0 The equations are valid only in optical region where ka $\gg 1$.
0 The cone and paraboloid extend to infinity. σ is due to scattering at the tip for a cone and blunt nose for a paraboloid.

0 Compare the RCS for a sphere and a paraboloid. What do you notice?
0 The prolate (cigar shaped) ellipsoid of revolution has a RCS less than a sphere of radius b. Rewrite formula for σ as

$$
\sigma=\left(\pi b^{2}\right)(b / a)^{2}=(\text { RCS OF SPHERE OF RADIUS } b)(b / a)^{2}
$$

As ratio b/a decreases, the radius of curvature at the nose decreases; σ decreases. Interprete the result in terms of

$$
\sigma=\pi \rho_{1} \rho_{2}
$$

0 The circular ogive is tangent to a cylindex. The cylinder must extend to Infinity. Note RCS is same for a cone and an ogive. RCS is due to scattering by the tip.
A: E. Furs
RCS
FOR
SIMPLE
SHAPES
VALID IN OPICAL
aEGION
SPHERE
$\sigma=\pi a^{2}$
$C O N E ~ E X T E N D S ~ T D I N F I N I T Y ~$
CONE EXTENDS TO INFINITY
PARABOLOID
$\begin{aligned} & 2 \xi= \text { APEX RADIUS OF } \\ & \text { CURVATURE } \\ & \sigma= 4 \pi \xi^{2} \\ & \text { PARABOLOID EXTENDS TO NNFINITY }\end{aligned}$

A: E. FUHS 7

galculation of "flat plate" area

0 To use the formula

$$
\sigma=\frac{4 \pi A_{p}^{2}}{\lambda^{2}}
$$

one must evaluate A_{p}.
0 The method for determining A_{p} is shown for two cases, a sphere and a cylinder. The quantity F is a small number, and $F \lambda$ is a small fraction of a wavelength.

0 The cross section for a sphere does not depend on wavelength.
0 The cross section for a cylinder decireases as λ increases.
0 One can understand the dependence of σ on λ in terms of diffraction.
0 The reflecting area, A_{p}, is much smaller than the projected area of the body.

53
(

CALCulation of "flat plate" area
A: E. FUMS

$a^{2}=(a-F \lambda)^{2}+r^{2}$
$r=\sqrt{2 F a \lambda}$
$A_{P}=\pi r^{2}$
$\sigma=\frac{4 \pi A_{P}^{2}}{\lambda^{2}}=4 \pi\left(4 \pi^{2} F^{2} a^{2}\right)=\pi a^{2}$
THERE FORE
$-1 \frac{k}{\sigma}$
4

$A_{p}=2 r L=2 L \sqrt{2 F a \lambda}$
$\sigma=\frac{4 \pi[2 L \sqrt{2 F a \lambda}]^{2}}{\lambda^{2}}$
$\sigma=16 F k a L^{2}=k a L^{2}$
THEREFORE
$F=1 / 16$

0 The symbols have the following meaning:

```
r radius of reflecting ares, meters
```

$A=r e f l e c t i n g$ ares, m^{2}
θ - angle of reflected beam
Ω - solid angle of reflected beam
P = reflected power, Watts
0 In words the result, $\sigma_{2}=\sigma_{1}$, can be expressed as foiliows: As λ decreases, the reflected power decreases. However, the angle of the reflected beam, which is due to diffraction, decreases also. The changes in reflected power and solid angle of the reflected beam compensate for each other. As wavelength decreases, reflected power decreases; however, the reflected power is in a smaller reflected beam.

O Exercise for the Motivated Reader. Using viewgraphs 7 and 8, repeat the analysis for a cylinder. Show that

$$
\frac{\sigma_{2}}{\sigma_{1}}=\frac{\lambda_{1}}{\lambda_{2}}
$$

A. E. FIJHE

WAVELENGTH DEPEEDENCE OE SEECHLAR REFLECTION

0 In the optical region, the RCS for varlous geometrical shapes varies with λ. The variation is due to specular reflection.

0 The variation for a sphere was discussed by viewgraph 7.
0 The variation of σ with λ can be underatood by using

$$
\sigma=\pi \rho_{1} \rho_{2}
$$

0 The flat glate, cylinder, and ellipsoid can be understood in terms of

$$
\sigma=\frac{4 \pi A_{p}^{2}}{\lambda^{2}}
$$

0 The variation of A_{p} with A deterniaes variation of λ.
WAVEL ENGTH DEPENDENCE OF SPECULAR REFLECTION

59.

$$
\sigma=\frac{4 \pi A_{p}^{2}}{\lambda^{2}}
$$

$$
\begin{aligned}
& a^{2}=\left(a-\frac{\lambda}{4 \pi}\right)^{2}+\left(\frac{w}{2}\right)^{2} \\
& W \sim \sqrt{\lambda}
\end{aligned}
$$

A: E. FUM G

0 P. O. = Physical Optics
0 The wedge, curved wedge, and cone have at least one zero value for radius of curvature. These can be understood in terms of the formula for σ which is based on an integration of $\partial A / \partial \rho$ along the direction of incident wave motion.

0 In this viewgraph, ρ is the distance along the direction of incident wave propagation.

0 The equation for σ is somewhat analogous to the equation for supersonic potential function. See page 237 of Liepmann and Roshko.*

[^1]61
WAVELENGTH DEPENDENCE USING POO. INTEGRA

$$
\sigma=\frac{k^{2}}{\pi}\left[\int e^{2 i k p} \frac{d A}{d p} d p\right]^{2}
$$

equation (1) pace 299 CRISPIN and SIEGEL "methods OF RADAR CROSS SECTION ANALYSIS", ACADEMIC PRESS, 196 :

WAVE FR OS

$$
\begin{aligned}
& \frac{d A}{d \rho}=C \rho^{n} \\
\sigma & =\frac{k^{2}}{\pi}\left[\int e^{2 i k \rho} C \rho^{n} d \rho\right]^{2} \\
\sigma & =\frac{k^{2}}{\pi}\left[\frac{1}{k^{n+1}} \int e^{2 i k \rho} C(k \rho)^{n} d k \rho\right]^{2} \\
\sigma & =\frac{k^{-2 n}}{\pi}\left[\int e^{2 i z} C z^{n} d z\right]^{2} \quad z=k \rho \\
k & =2 \pi / \lambda \\
\sigma & \sim \lambda^{2 n} \quad \text { A:E:FUH }
\end{aligned}
$$

A. E. FUHE ${ }^{12}$
 radar cioss section of a sphere

0 The formula valid in Rayleigh region

$$
\frac{\sigma}{\pi a^{2}}=\frac{64}{9}(\mathrm{ka})^{4}
$$

comes from Lecture 1, Viewgraph 15.
0 In the optical region, σ_{0} is independent of ka; subscript " 0 " refers to optical region.

0 In the MIE or RESONANCE region, the cross section is the sum of two contributions. Electric fields add vectorially; power does not add. Hence the formula

$$
\sigma=\left[\sqrt{\sigma_{0}} \pm \sqrt{\sigma_{c}}\right]^{2}
$$

applies only at maxima or minima of the curves. At other locations a phase angle is required.

0 The meaning of the word "resonance" now becomes apparent. When the specular and creeping waves have the correct relative phase, one gets "resonance" or an addition of the two waves.

0 At point 1, which is a maximum in Mie region, ka is nearly 1.0. Hence

$$
\frac{\sigma_{c}}{\pi a^{2}} \simeq 1.03
$$

A. E. FUHS
 13

addition of specular and creeping waves

0 One can calculate σ for the maximum at point 1 of RCS wave

$$
\begin{gathered}
\sigma_{c} / \pi a^{2}=1.03 \\
\sigma_{0} / \pi a^{2}=1.00 \\
\frac{\sigma}{\pi a^{2}}=\left[\sqrt{\sigma_{c} / \pi a^{2}}+\sqrt{\sigma_{0} / \pi a^{2}}\right]^{2}=4.06
\end{gathered}
$$

In terms of db , precise calculations show that the cross section is 5.7 db hig at point 1. For the calculations here

$$
\sigma_{d b}=10 \log _{10}(4.06)=6.09
$$

which is close.
0 At the minimum at point 2 on the curve ka $=1.8$

$$
\begin{aligned}
& \frac{\sigma_{c}}{\pi a^{2}}=1.03(1.8)^{-2.5}=0.237 \\
& \frac{\sigma}{\pi a^{2}}=[\sqrt{1.0}-\sqrt{0.237}]^{2}=0.263
\end{aligned}
$$

which is close to value of 0.28
0 In summary, the wiggles in the RCS curve in the Mie region are due to constructive or destructive interference between specular reflected and creeping waves.

65
-
acomel
$\stackrel{4}{4}$
3
$0 \Delta S$
$\Delta \theta \quad$ angle subtended by ΔS from center for radius R
ΔS_{r} arclength along the reflected wavefront
$\vec{k}_{i} \quad$ propagation vector for incident wave
$\vec{k}_{r} \quad$ propagation vector for reflected wave
$R \quad$ radius of curvature of the reflected wavefront
ρ radius of curvature of reflecting surface
$\Omega \quad$ solid angle formed by reflected wavefront
$P_{i} \quad$ incident power, Watts
$P_{r} \quad$ reflected power, Watts
0 The fact that the angle associated with $p, 1, e ., \Delta \theta_{1} / 2$, is one-half of the angle assoctated with R_{s} i.e., $\Delta \theta_{1}$, is an important fact.

0 In the derivation of the equation, one uses the definition of RCS.

A:E.FUHS

radar cross section for wires, rods, cilinders and discs

0 The problem has three characteristics lengths, 1.e., a, L, and λ, and two ratios, i.e., ka $=2 \pi a / \lambda$ and L / λ.

0 The values of L / λ and ka determine the RCS.
0 Consider a reference square area which is λ on each side. The various geometrical figures have the λ-square drawn to indicate relative sizes of ka and L / λ.

0 The (L / λ) - (ka) plane has been divided into three regions. In the upper left where $L / \lambda \gg 1$ and ka $\gg 1$, the polarization of the wave 18 not important. In the corner near the origin where $L=a \operatorname{and} k a \ll 1$, polarization is not important. In between these two regions, polarization is important, and one needs both σ_{μ} and σ_{L} to be complete.

A: E. FUHS 16
 radar cross section of circular disc of radius, a
 LINEAR SCALE
 0 The RCS of a circular disc has been calculated.

0 To evaluate the formula, one needs to know frequency and disc radius. These values are given.

0 A disc with an area of

$$
A=\pi r^{2}=\pi(0.4572)^{2}=0.66 \mathrm{~m}^{2}
$$

yields a cross section of almost $9000 \mathrm{~m}^{2}$ at 12 GHz .
0 The linear scale of σ illustrates the big change in σ as frequency increases. The width of the reflected beam becomes much narrower as frequency increases.

RADAR CROSS SECTION OF CIRCULAR DISC OF RADIUS, a Linear scale

RADAR CROS S SECTION OF CIRCULAR DISC OF RADIUS, a DECIBEL SCALE

0 When $\mathrm{db}_{\text {sm }}$ is used as a value for RCS, the sidelobes become more apparent. For $f=12 \mathrm{GHz}$, the main lobe of the beam is about 2° wide.

RADAR CROSS SECTION OF CIRCULAR DISC OF RADIUS, a DECIBEL SCALE
$a=36$ inches $=0.457$ meter
$f=1.2 \mathrm{GZz}$

θ, Angle Between Disc Normal, \vec{n}, and Propagation Vector, \vec{k}, Degrees

0 The side lobes at $f=2 \mathrm{GHz}$ cannot be seen in the plot using a linear scale; see viewgraph 16. However, with the decibel plot, the side lobes are evident. At 2 GHz , the main lobe is almost 12° wide.
radar cross section of circular disc of radius, a DECIBEL SCALE
a - 36 inches $=0.457$ meters
$f=2 \mathrm{GHz}$

A: E،FUHE 19

rCS OF DIEEDRAL

0 The radar cross section is due to different surfaces when viewing angle changes. Starting at $\theta=0^{\circ}$, the surfaces contributing to the RCS will be noted.
0 Near 0°. The plate P_{2} and the edge E_{1} are the main contributors. Consider \vec{E} perpendicular to edge E_{1}. The RCS for E_{1} can be modelled as a wire using RCS from viewgraph 15. The flat plate P_{2} can be modelled using RCS from viewgraph 1.
0 Between 0° and 90°. The dihedral forms a retroreflector. In this region, use formula for the retroflector.

0 Near 90°. Ditto for 0°; however, use E_{2} and P_{1}.
0 Between 90° and 135°. Both plates P_{1} and P_{2} contribute to RCS. Once again, use RCS formula from viewgraph 1.

0 Between 135° and 180°. In this region the fact that the two plates P_{1} and P_{2} form a 90°-wedge becomes important. The symbol FW_{8} means use the finite wedge formulas with plate $\overline{P_{1}}$ in shadow.
0 Near 180°. Plate P_{2} is (almost) normal to incident wave. A large RCS results due to flat plate P_{2}.
0 Between 180° and 270°. Use formulas for finite wedge with both surfaces of wedge exposed. Subscript e means both surfaces are exposed.
0 Between 270° and 360°. Already discussed due to symetrically located regions.

A.E.FUHS ${ }^{20}$

DETERMINATION OF RCS FOR DIHEDRAL

0 The largest RCS occurs when θ is 45° as seen in left-hand side of viewgiaph.
0 One uses the flat plate formula to calculate RCS.
0 When θ is not equal to 45°, A_{p} can be found by a topological trick. Rotate the dihedral about an axis parallel to \vec{k} and passing through the dot on the corner line. Area common to both the initial and rotated dihedral is A_{p}. The angle θ is identical to θ used in the preceding viewgraph.
DETERMINATION OF RES FOR DIHEDRAL

USE $\left(90^{\circ}-\theta\right)$ FOR
$\frac{\sigma(\theta)}{\sigma_{45}}=2 \sin ^{2} \theta$
-

A: E. FIlMS

SAMPLE CALCULATION OF RCS FOR A DIHEDRAL

0 The cross section due to retroreflection from dihedral, i.e., $\sigma(\theta)$, and the cross section from flat plate, i.e., $\sigma_{F P}$, were added using the formula shown. The formula implies both reflected waves have the same phase angle.

1

A. E. FUHE

Calculated dihedral acs for - $30^{\circ}<\theta<120^{\circ}$

0 The peak at $\theta=0^{\circ}$ is due to flat plate P_{2}. The peak at $\theta=45^{\circ}$ is due to retroreflection by the dihedral. The peak at $\theta=90^{\circ}$ is due to flat plate P_{1}. For $90^{\circ}<\theta<120^{\circ}$, the cross section is due to plates P_{1} and P_{2}.
0 This curve should be compared with the curve in the following viewgraph.

Linculated diekdral rcs for $-30^{\circ}<\theta<120^{\circ}$

DATA FOR A DIHEDRAL AT 5.0 GHz

0 The simple model given in viewgraph 21 provides accurate results except for the dip at 45°.

CREEPING WAVES

0 Creeping waves usually yield smaller RCS than specular reflection. In case of sphere, σ_{c} was as large as the specular return for ka $\simeq 1$.

0 Creeping waves are important for smooth blunt bodies such as spheres, cylinders, and ellipsoids.

$$
\begin{aligned}
& \text { CREEPING WAVES } \\
& \text { A RAY TANGENTIAL TO } \\
& \text { A SMOOTH OBJECT } \\
& \text { EXCITES CREEPING } \\
& \text { WAVES. } \\
& \text { CREEPING WAVES ARE } \\
& \text { ENCOUNTERED IN THE } \\
& \text { MIE OR OPTICAL REGION. } \\
& \text { WAVES ARE LAUNCHED AT } \\
& \text { SHADOW BOUNDARY (RAYS ARE } \\
& \text { TANGENT TO SURFACE) OF.AN } \\
& \text { OBJECT, CREEPING WAVES EMERGE } \\
& \text { AT THE OPPOSITE SHADOW BOUNDARY } \\
& \text { AS SHOWN, CREEPING WAVES PROPAGATE CLOCKWISE INENT WAVES } \\
& \text { AND COUNTERCLOCKWISE. }
\end{aligned}
$$

traveling waves

0 Body acts like a traveling wave antenna.
0 Formula for RCS due to wire for $L=39 \lambda$ and $a=\lambda / 4$.

$$
\frac{c}{\lambda^{2}}=(8.5 E-4)\left[\frac{\sin \theta}{1-\cos \theta} \sin [124.5(1-\cos \theta)]\right]^{4}
$$

$\theta=0$ is for \vec{k} parallel to wire. At $\theta \simeq 8^{\circ}$, the value of σ / λ^{2} attains a value of about 10 .

0 The conditions for excitation of traveling waves are noted, namely long, thin bodies with near nose-on incidence of waves.

0 Bodies with dielectrics favor excitation of traveling waves.

89

$\angle O N G$ THIN BODY SUCH AS WIRES, PROLATE ELIPSOIDS, AND OGINES
NEAR NOSE-ON INCIDENCE
$\vec{E} V E C T O R ~ I N-P L A N E ~ D F ~ P A P E R ~$
BACK SCATTERED WAVES EMANATE FROM REAR DF BODY

rCS OF CAVITIES

0 The flat plate model gives an order-of-magnitude estimate of the inlet, exhaust, or radar cavity.

0 Fenestrated radomes may be opaque at some radar frequencies avoiding problem of transparent radome and exposure of radar cavity.

0 Use of retroreflectors
drones
sail boats
navigation buoys
0 Looking at retroreflectors, RR , on sail boats in Monterey Bay showed that almost every one was installed wrong if the radar was on another ship. One plate of the RR usually was mounted horizontally which is wrong.

0 Retro reflectors are inadvertently designed into a vehicle causing very large RCS.

0 Retroreflectors were left on the moon by the astronauts.

rays are reflected from all three SURFACES.

[^2]0 Consider the corner to form x, y, z coordinate system.
The angle of a symuetrically located vector can be found by

$$
\begin{aligned}
& \cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1.0 \\
& \theta_{x}=\theta_{y}=\theta_{z}=0 \\
& \theta=\arccos (1 / \sqrt{3})=54.736^{\circ}
\end{aligned}
$$

A. E. FUHS

VECTOR SUM FOR RADAR CROSS SECTION

0 The radar cross section for multiple scatterers can be found using the equation. In the equation, the sum is from first to m-th scattering object.

0 The equation contains phase information which may lead to cancellation.
0 The symbols have the following definitions:
σ_{k} radar cross section of k-th object
d_{k} distance from k-th object to radar receiver
λ wavelength of radar
E_{x} electric field in reflected wave
$E_{\text {rik }}$ electric field in reflected wave due to k-th object
0 Since radar waves make round trip, a difference $\Delta d=\lambda / 4$ gives a phase change of $\lambda / 2$ which is 180° phase. A 180° phase causes cancellation. A difference $\Delta d=\lambda / 2$ yields a phase of λ; the reflected waves are in phase and add.
VECTOR SUM FOR RADAR CROSS SECTION

$=$ reflected electric field vector

w
RADAR WAVES MAKE ROUND TRIP

radar cross section for two spheras

0 A variety of features of RCS can be illustrated with the two-sphere model.
0 Vector addition of E
Assume $f=1$ and $\theta=90^{\circ}$; then $\sigma=4 \sigma_{1}$.
The cross sention is 4 times that of one sphere!
0 Influence of spacing λ relative to λ. Assume $f=1$.
$\frac{8 \pi \ell}{\lambda} \cos \theta=0$ or $2 n \pi \quad$ a maximum occurs
$\frac{8 \pi \ell}{\lambda} \cos \theta=(2 n-1) \pi ; n=i, 2,3,4, \ldots$ a minimun (zero) occurs
As ℓ / λ increases, the number of maxima increases.
0 Influence of unequal RCS for scattex:ng centers (i.e., spheres not same size)

$$
\begin{aligned}
& \mathrm{f}=1 / 4 \quad \mathrm{E}_{2}=1 \quad \mathrm{E}_{1}=1.4 \\
& \mathrm{E}_{\max }=1+1 / 4=5 / 4 \quad E_{\min }=1-1 / 4=3 / 4 \\
& \sigma_{\max }=(5 / 4)^{2}=1.56 \quad \mathrm{E}_{\min }(.75)^{2}=0.56
\end{aligned}
$$

0 Influence when λ / ℓ or l / λ are not integers

- interference still occurs
- angular location of interference peaks are shifted
- large σ at $\rho=0^{\circ}$ is modified

0 When spheres are broadside to wave, the greatest sensitivity of RCS to a change $\ln \theta$ occurs, i.e.

$$
\frac{\partial \sigma}{\partial \theta} \text { is largest }
$$

O When spheres are on a line parallel to \vec{k}, the least sensitivity of RCS to a change in θ occurs, i.e.

$$
\frac{\partial \sigma}{\partial \theta} \text { is smallest }
$$

RADAR CROSS SECTION FOR TWO SPHERES

0 The RCS due to two spheres was calculated. Plotted is σ / σ_{1} as a function of θ. When θ is 90°, the spheres are broadside to the waves. The spheres are oriented as shown in the drawing. A non-integer spacing was selected; $2 \ell=0.714 \lambda$.
\bigcirc The figure on the left-hand side is for $f=1$, i.e., both spheres are the same size. Broadside to the incident waves, σ / σ_{1} is equal to 4. When $\theta=0$, the RCS does not decrease to zero. At $\theta=0^{\circ}$, the phase angle between the electric vectors is

$$
(2)(0.71)(360)-360=151.2^{\circ}
$$

Since the phase angle is not 180°, the RCS does not vanish.
0 The figure on the right side has the same spacing for the spheres. However, the relative sphere size has been changed since $f=1 / 2$. In fact, the RCS of one sphere is only f^{2} or $1 / 4$ as large. The RCS does not vanish at any value of θ due to destructive interference.
101

radar cross section and antennas

0 When the flat plate is illuminated at an angle α off the normal, the (monostatic) radar does not see the main lobe.

0 The (monostatic) radar receives the $N=3$ sidelobe for the case fllustrated.
0 Note that the angle off the normal α is one-half of the angle of the $N=3$ lobe from the main lobe, i.e.
103.

wave

1. Origin of Electromagnetic Wave Scattering
2. Contributors to Aircraft Radar Cross Section
3. Relative Size of Contributors to RCS
4. Aircraft at Visible and Microwave Frequencies
5. Fire Fox MIG-31
6. Plan Form Fire Fox MIG-31
7. Gross Features of RCS for Fire Fox MIG-31
8. Antenna Scattering
9. Radar Cross Section Reduction
10. Impedance Loading
11. Shaping to Reduce Radar Cross Section
12. Do's and Don't's for Shapiag to Achleve Low RCS
13. Radar Ahsorbing Material, RAM
14. Practical Aspects of RAM
15. Construction Materials
16. Radar "Hot Spots"
17. Payoff of Reduced Radar Cross Section

A: E. FUHS

ORIGIN OF ELECTROYAGNETIC WAVE SCATTERING

SPECOLAK. Mirror-like reflection. Lobes occur due to diffraction. Main contribution occurs when $\vec{k}_{1} \cdot \vec{n}=-k_{1}$, 1 .e., wavefronts are tangent to surface. \vec{k}_{i} is wave propagation vector which ia normal to incident wavefront.

DIFFRACTION. A discontinuity occurs, and electromagnetic (EM) boundary conditions must be satisfied. The scattered uave is necessary to satisfy the boundary conditions.

TRAVEIING WAVE. A long thin body with near nose-on incidence may cause traveling waves. Along the body, EM scattering may occur due to surface discontinuity change in material, e.g., metal to plastic end of body

CREEPING LAVE. Waves which propagate in the shadov region of smoch bodies are creeping vaves.

CHANGES IN EM BONDARY CONDITIONS. As the facident wave propagates along the surface of the body, the gM boundary condicions are satisfied by currents in body. Whenever a change in EM boundary conditions occurs, scactering results. Examples are:

```
gaps and edges
surface disconcinuities in slope, curvature, etc.
change in surface eaterlals
```

107

CONTRIBUTORS TO AIRCRAFT RADAR CROSS SECTION

(1) RADCZE. If radome is transparent, then radar wave "sees" Inside the cavity containing A / C radar. Black boxes inside may form retroreflectors. If radome is opaque, then tip diffraction may occur.
(2) A smooth rounded surface may have a creeping wave for the \vec{k}_{i} shown.
(3) Cockpit is a cavity and may be a large contributor to RCS.
(4) The propagation vector \vec{k}_{1} is about tangent to surface. The incident wave encounters an edge which is a scattering device.
(5) sultiple reflections may occur. This may be more important for bistatic radar
(6) Large flat areas may cause glints. "Flat" is in quotes because a surface may have $\rho \gg \lambda$ and appear to be flat. ρ is radius of curvature.
(7) Ordasince and drop tanks contribute to RCS.
(8) Edge diffraction (like a wedge) occurs at sharp leading edges and trailing edges. Sharp is $\rho \ll \lambda$. Blunt is $p=\lambda$ or $\rho>\lambda$. Blunt edges use a cylinder as model.
(9) Inlet cavities may give very large RCS.
(10) The ruder and elevator may fora right angle dihedral which acts as retroreflector.
$-$
CONTRIBUTORS TO AIRCRAFT RADAR CROSS SECTION

RELATIVE SIZE OF CONTRIBUTORS TO RCS

ORDNANCE. Kissile may have own radar which can have large RCS. RUDDER-ELEYATOR DIBEDRAL may be big due to action of retroreflector. EXHAUST. Waves can prupagate within the cavity and reflec: from internal parts. RUDDKRS. RCS is amall except for glint at broadside.

WING. RCS is amall except when viewed so as to see "flat" area.
INLET FOR APU. The iniets for APU, air conditioning ducts, and gun exhaust gas ports can be large in certain direction.

COCKPIT. Big contributor to RCS.
GUN MUZZLE. Scattering is due to surface discontinuities. RADOME. Big ancenna inside acts like a cat's eye in the dark. FUSELAGE. Recall $y=\pi \rho_{1} \rho_{2}$. Usually ρ_{1} and ρ_{2} are amall compared to ρ of wing upper or lower surface.
RELATIVE SIZE OF CONTRIBUTORS TO RCS
SIZE OF RCS DEPENDS DN ASPECT ANCLE. MAGNITIDE STATED IS FOR MAXIMUM
RCS FROM THE ITEM.
A. E:FUHS
RUDDERS (SMALL)
GINE EXHAUST (EI6)
TERSURNER (BI6)

- VUDDER -ELEVATO
DIHEDRAL (BIG)

aIrciaft at visible and microwave grequencies

0 The EM bourdary conditions and the wave equetions are shown. The equation for free space is

$$
\nabla^{2} \frac{{ }^{2}}{E}+k_{0} \frac{\text { 直 }}{}=0
$$

For propagation inside dielectrics, change k_{n} to k_{1}.
C Three major cavities are illustrated:
aircraft radar cavity
engine inlet cavity
cockpit cavity

13

AIRCRAFT AT VISIBLE AND MICROWAVE FREQUENCIES
A. E. FUMS

B.C.fordielectric

As seen by your eyeball

Banditry Cinotitiunstor $-\nabla^{2} \vec{E}+k_{0}^{2} \vec{E}=0$ Conductor — Boundary Conditions for Dielectric

Transparent radome. Zustráar Cimotitionsiar Dielectric

$\nabla^{2} \vec{E}+\lambda_{0}^{2} \vec{E}=0$
Waves inside cavity $k_{0} \Rightarrow$ value for air

- Waves inside radome (scattered by antenna,'

$$
\nabla^{2} \vec{E}+k_{0}^{2} \vec{E}=0
$$

PIRE FOX MIG-31

0 As an example of estimating RCS for an aircraft, the MIG-31 Fire Fox will be usea.

0 Some of the gross features of the RCS for the aircraft can be obtained from formulas discussed earlier.

0 The Fire Fox was designed, not for Mach 6, but for movie audiences. Low RCS and good L/D were not requirements. The design requirement was to look "mean."

Note: The comments for viewgraph 6 start here.

PLAN FORM FIRE FOX MIG-31

The assumed plan form is shown. The plan form can be verified now that the MIG-31 is in U. S. hands.

Assume the following:
wing span, 30 m length, 28 m radar frequency, 12 GHz
Wavelength, 0.025
The RCS will be eatimated in the plane of the plan form. One views the aircraft from nose-on ($\theta=0^{\circ}$) moving clockwise to starboard wing tip $\left(\theta=90^{\circ}\right)$. The various scattering components are identified.

A. E."FUHS

NOSE-ON $\quad \theta=0^{\circ}$

Tip Diffraction: The tip of the fuselage appears to be a wedge. Formulas for finite wedges are quite complex and are outside the realm of a back-of-anenvelope calculation. Based on calculations for tip diffraction for cones, σ mig not be too important. However, this should be verified.
Engine Inlets: There are four engine inlets which will be modelled as flat plates with size $0.7 \mathrm{~m} \times 1.8 \mathrm{~m}$ for each.

$$
\sigma_{1}=\frac{4 \pi A^{2}}{\lambda^{2}}=\frac{4 \pi(0.7 \times 1.8)^{2}}{(.025)^{2}}=32000 \mathrm{~m}^{2}=45 \mathrm{db}
$$

One can estimate the width of the main lobe from

$$
\frac{\sigma}{\sigma_{0}}=\left[\frac{\sin (\mathrm{ka} \sin \theta)}{\mathrm{ka} \sin \theta}\right]^{2}
$$

The first zero occurs when ka $\sin \theta=\pi$.

$$
\theta=\arcsin (\pi / \mathrm{ka})=1.02^{\circ}
$$

The lobe is very narrow.
To add the four inlets, use the equation from Lecture 2, viewgraph 29. If phase angles for the waves returned from the four inlets are all zero, then the addition formula becomes

$$
\sigma=\left[4 \sqrt{\sigma_{1}}\right]^{2}=16 \sigma_{1}
$$

The RCS for all four inlets is 57 db .

LEADING EDGE OF STARBOARD CANARD

The LE has a sweep of 20°. The LE can be modelled as a wire. The assumed dimensions are $L=3.8 \mathrm{~m}$ (length of $L E$ on MIG-31) and radius of $a=0.01 \mathrm{~m}$. For these values

$$
\begin{aligned}
& \sigma_{\perp}=\frac{9}{4} \pi(3.8)^{2}(251.3 \times 0.01)^{4} \\
& \sigma_{\perp}=4072 \mathrm{~m}^{2}=36 \mathrm{db}_{\mathrm{sm}}
\end{aligned}
$$

The preceding equation appears in vieugraph 15 of lecture 2. To estimate width of main lobe, one can use the same formula as used for the inlet. Wires have a lobe structure similar to a flat plate.

$$
\frac{\sigma}{\sigma_{0}}=\left[\frac{8 \operatorname{sn}(k L \sin \theta)}{k L \sin \theta}\right]^{2}
$$

The first zero in RCS occurs when

$$
k L \sin \theta=\pi
$$

or where $\theta=0.2^{\circ}$ when $L=3.8 \mathrm{~m}$. The second peak occurs at

$$
\theta=\arcsin \left(\frac{3 \pi}{2 k L}\right)=0.28^{\circ}
$$

The value of the second peak is $34 \mathrm{db}_{5 \mathrm{sa}}$.
The other comsent is that the lobes are very, very narrow.
\cdots
PLAN FORM FIRE FOX MIG-3I

gross features of rcs for fire fox mig-31

Continuing the calculations, the other leading edges were evaluated as follows:

Sweep	L, m	a, m	σ, m^{2}	$\sigma, \mathrm{db}_{\mathrm{sm}}$
33°	3.5	0.02	55300	47
40°	10	0.02	450000	56
70°	9	0.02	366000	55
90° (wing cip)	1.2	0.01	406	26

FUSELAGB

The fuselage has a normal vector at an angle of $\theta \simeq 85^{\circ}$. Assume $\rho_{1}=3 \mathrm{n}$ and $\rho_{2}=10 \mathrm{~m}$. From

$$
\sigma=\pi \rho_{1} \rho_{2}=94 \mathrm{~m}^{2}=20 \mathrm{db}
$$

one finds the RCS for fuselage.

TRAILING EDGE OF PORT WING

The TE of port wing is normal to the incident waves frov $\theta=170^{\circ}$.
Modelling the $T E$ as a wire with $L-12 \mathrm{~m}$ and $a=0.01 \mathrm{~m}$, the following results
were obtained

$$
\sigma=404000 \mathrm{~m}^{2}=46 \mathrm{db}_{8 \llbracket}
$$

The large RCS is due to high radar frequency.
4 -ENGINE EXHAUSTS AT $\theta=180^{\circ}$
The calculation for inlet was repeated with assumed dimensions of $0.8 \mathrm{~m} \times 2.0 \mathrm{~m}$. The result is

$$
\mathrm{a}=823550 \mathrm{~m}^{2}=47 \mathrm{db}_{\mathrm{sm}}
$$

The RCS have been plotted. The various op should be added using the formula given in Lecture 2, vieugraph 29.

NOTE
A note about values of RCS is appropriate. The leading edges scale as

$$
\frac{\sigma_{2}}{\sigma_{1}}=\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2}
$$

Since the waveleagth is small, the value of RCS is large. At $\lambda=1.0 \mathrm{~m}$, the cross sections would be reduced by a factor of ($0.025 / 1.0)^{2}=6.25 \mathrm{E}-4$ or -32 db . One could subtract 32 db from tach vaiue shown for LE or TE if λ were 1.0 w .

ANIENLA SCATTERING

0 Ssructural Scatteriag Term is due to currents induied in the antenna burface and 18 Independent of antenn load impedance.

O Antenna Scattering Term is due to current induced at the antenns load terminals. An ant:enns launches a plane wave from the antenns focus when radiating. The power moves outward from focal point to beam. When radar illuminates the antenna with plane waves, the power moves to the focus. The antenna fecd system has a certain impedance. Depending on the impedance of the feed, the waves may or may not be re-radiated.

0 The RCS of an antenna is given by

$$
\sigma=\left[\sqrt{\sigma_{s}}+\sqrt{\sigma_{e}} \exp i \psi\right]^{2}
$$

Where σ_{s} is RCS of structural scattering term and σ_{e} is the effective echo area of antenna. The phase angle between σ_{s} and σ_{e} is ψ. The vaiue for σ_{e} is, for certalu epecific conditions,

$$
\sigma_{e}=\frac{\grave{n}^{2}}{4 \pi} G^{2}
$$

where C is aiatenna gain at λ. As an estimate, one can use

$$
\sigma=\frac{\lambda^{2} G^{2}}{\pi}
$$

for antenna RCS.
0 As an example, consider an antenta vich a gain G of 100 at $\lambda=0.5 \mathrm{~m}$. The gCS of the antenns is estimated to be

$$
0=\frac{(0.5)^{2}(100)}{7}-8 m^{2}
$$

Antenna scattering

Scattering pattern for antenna scattering term is precisely
The square of the antenna radiation pattern.

radar cross section beduction

0 SHAPING implies control of geometry so as te reduce RCS.
0 RAM is material used to match wave impedance of free space or to absorb the EM wave energy.

0 IMPEDANCE LOALING consists oE passive or active elements added at appropriate locations to control RCS.
RADAR CROSS SECTION REDUCTION
A: E. FUHS

[^3]
IMPEDANCE LOADING

0 On the left-hand side is the case of a luaded pair of cylinders. By correct choice of Z_{L}, the load impedance, the RCS is reduced by 35 db .

0 On the right-hand side is the case of a pair of circular ogives back-to-back. The incident waves are arriving from the left when $\theta=0^{\circ}$. A wire with leagth $\lambda / 4$ is added to the tail and of the body. The wire causes a major reduction in RCS for $0<\theta<45^{\circ}$. This is an example of scattering by traveling wavee when θ is small. A relatively mi ur change makes a very large change in RCS.

O For simple cases, one by be able to exploit the mechod. Application of impedance loading to complex shapes may not be obvious.

SHAPING TO REDUCE RADAR CROSS SECTION

0 The direction of incident radar waves is an important consideration. If the aircraft will be illuminated from below, put engines on top of the wing.
(1) SHIEID INLETS. The inlets can be shielded by the fuselage. Locating the engines on top when radar is below A / C will help. If engine performance permits the use of wire mesh over the inlet, the RCS can be reduced. Mesh spacing is small fraction of λ.
(2) CANT RUDDERS INWARD. The, surface normal vector \vec{n} is moved upward. The big RCS which occurs when \vec{k} and \vec{n} are parallel will occur only when radar is above the A / C. Also when a rudder-elevator combination is used, the retroreflector of the dihedral is avoided.
(3) SHIELD NOZZLES. The comments for inlets apply.
(4) ROUND WING TIPS. Use the formula $\sigma=\pi \rho_{1} \rho_{2}$. A rounded wing tip has small ρ_{1} and ρ_{2}.
(5) CANT FUSELAGE SIDES. This tips the surface normal $\overrightarrow{\mathrm{n}}$ upward. For low RCS, do not have n pointing toward the radar!
(6) BLEND COMPONENTS. Waves are scattered by discontinuities in slope, curvarure, etc. Blending minimizes the geometrical discontinuities.
(7) MINIMIZE BREAKS AND CORNERS. Any shape resembling a retroreflector is bad. As shown in viewgraph 1, gaps scatter EM waves.
(8) PUT ORDNANCE LOAD INSIDE AIRCRAFT. This would make both the aerodynamicists and radar engineers happy. However, internal storage may not be possible. Drag equals $q C_{D} \Lambda$. Internal storage may give large A.
(9) ELIMINATE BUMPS AND PROTRUSIONS. The comments of items (6) and (7) apply here. Use retractable covers over gun parts.
(10) USE BANDPASS RADOME. An opaque radome at the search radar wavelength eliminates this problem.
(11) USE LOW PROFILE CANOPY. Ever since the SPAD, aviators want to see. Dog-fights require good visibility. Having said that, a low profile canopy with gold plating will have much lower RCS. The thin layer of gold (or other metal) plated on the canopy screens out microwaves.
(12) SWEEP LE. The A/C is frequently illuminated by a search radar from nosemon aspect. A swept LE is one way to reduce RCS. There are two philosophies in regard to LE shape. A straight LE concentrates a big RCS in a narrow lobe. If the search radar is never in that lobe, the A / C cannot be detected because of LE return. A curved LE spreads a smaller RCS over a wide angle. Although RCS is spread over a large angle, RCS is small.

FINAL NOTE: Think of A / C as a porcupine with surface normal vectors \vec{n} as quills. Don't have any quills pointing toward radar!
SHAPING TO REDUCE RADAR CROSS SECTION

0 The aircraft designer may not be able to heed all the advice.
0 Ship superstructures are classic examples of bulit-in retroreflectors.
DO's AND DON'T'S FOR SHAPING TO ACHIEVE LOW RCS
DonT's
Dont make any retroreflectors
inadvertently
Avoid large flat areas.
Avoid 90° intersections of flat
areas
Avoid cavities exposed to radar
Avoid disconfinuities in
conducting path. EM waves
induce currents in vehicle skin.
Don't concentrate currents by having
electrical discontinuities.

RADAR ABSORBING MATERIAL, RAM

0 The probubility of achieving the stated goal for RAM is rather remote. 0 The book of Ruck, et al.*, provides a detailed discussion of RAM.

[^4]RADAR ABSORSING MATERIAL，RAM

aprue foadse of ar！f！suasul－	万－ita
verfezinejod of an！t！svasul－	
ax！l tuled－	papafar for are sanem ${ }^{\circ} Z=Z$ f！－
W甘y aoł 7＊09	คر｜four sanem
ranpm frapioul ayt fras！pal	
fin grosqe fow op W ty awos	aseds axy fo asuepaliwn sey－
	$w \forall y 1 \supset \exists y 83 d$
3n＊M 1NヨロIつNI 才0 nouつヨylaヨy	
	pueq ap！M
adwexa ve are	（fuevosas）pueq moreu－
sotinat ！ayaubew hssol	STHIVヨIHW oNgyosg
	ssol y_{2} I \＆feltwis－
af！n！y uf！n soly＞ajo！p hssol	teay af h6rava anem fianvar
ST41831甘W 9NIgyOS $8 \forall 10$ sヨd人	SヨA甘morJIW EyOS8

PRACTICAL ASPECTS OF RAM

In addition to electromagnetic properties, RAM must have other favorable physical properties.

CONSTRUCTION MATERIALS

- EMP is electromagnetic pulse from exoatmospheric nuclear explosions.
- The attrition rate for Mosquito bomber was low.

Factors, such as speed and twin-engines as well as low RCS, may have contributed to the low rate.

- The trend is toward composite materials. Mixed structures, such as wings with composite skins and aluminum spars, may have high RCS due to reflection from spars.
CONSTRUCTION MATERIALS A.E.FUHS
metals have high electrichl conductinity
- high conductivity means high reflectivity
- high conductivity, protection for EMP
LOW) CONDUCTIVITY MATERIALS
- plywood Mosquito bomber
metal parts reflect (ag. engine, wirng, puaps)
materials have low electrical conductivity
OF MATERIALS
mixture
joints radomes

radar "hot spots"

0 Many of the sources of "hot spots" have been discussed already.
0 Estimate the RCS of the trihedral corner reflector in tha cockpit. Use the formula from Lecture 2, vieugraph 28:

$$
\sigma=\frac{12 \pi x^{4}}{\lambda^{2}}
$$

Assume $X=0.2 \mathrm{~m}$ and $\lambda=0.5 \mathrm{~m}$.

$$
\sigma=\frac{12 \pi(0.2)^{4}}{(0.5)^{2}}=742 \mathrm{~m}^{2}=29 \mathrm{db}_{8 \mathrm{~m}}
$$

BIC!

PAYOFF OF REDUCED RADAR CRGSS SECTION

0 An air searsh radar may have a specifisation to be able to seaxch so-many $\mathrm{m}^{3} / \mathrm{sec}$ of space. If the RCS is reduced, the volume search rate decays rapifly.
\cdots

1. Maxwell's Equations
2. Solution for Scattered Field
3. Solutions to Maxwell's Equations
4. Separation of Variables
5. Geometric Optics
6. Geometrical Theory of Diffraction
7. Physical Optics
8. Impulse Approximation
9. Numerical Methods for Radar Cross Section
10. Applicability of Sum-of-Components Model for RCS Calculation

A. E. FUHS

MAXNELL'S EQUATTONS

The symbols have the following definitions:

E

B
ρ

J
ε_{0}
μ_{0}
k_{0}

H magnetic field intensity, ampere-turn/m
D elecrric displacement, coulomb/m ${ }^{2}$
electric field intensity, volts/m
magnetic induction, webers/m ${ }^{2}$
charge density, coulomb/m ${ }^{3}$
current density, amperes/m ${ }^{2}$
permittivity of free space, farad/m
permeability of free space, henry/m
free space propagation constanc, $1 / m$
MAXWELL'S EQUATIONS

0 The symbols have the following definitions:
$q_{s} \quad$ surface charge density, coulomb/m ${ }^{2}$
K surface current density, amperes/m
0 Additional boundary conditions apply at infinity.
SOLUTION FOR SCATTERED FIELD AOE.FUHS

SOLUTIONS TO MAXNELL'S EQLATIONS

0 Scattering of electromagnetic waves is a baven for the spplied mathematician!

SEPARATION OF VARIABLES

0 More than a dozen orthogonal coordinate systems have been discovered.
SEPARATION OF VARIABLES

0 Geometrical optics accounts for tranomission through radomes by using Snell's laws.
GEOMETRIC OPTICS
As name implies technique adapted
FROM OPTICS.
REQUIREMENT FDR GEOMETRIC OPTICS
L >> λ
WHERE L IS SIZE OF SCATTERING
OBJECT, ALSO CALLED TARGET.
CORRESPONDS TO "OPTICAL REGION."
GEOMETRICAL OPTICS DEALS WITH
RAYS AND WAVEFRONTS.
DIFFRACTION DOES NOT
GEOMETRICAL OPTICS.
SPECULAR REFLECTION IS A
GEOMETRICAL OPTICS CONCEPT
A. E. FUMS

GEOMELRICAL THEORY OF DIFFRACTION

0 By introducing phase angle as well as anplitude, the features of diffraction can be incorporated into the theory.

0 Geometrical theory of diffraction is an ad hoc method without firm theoretical foundation; it does work, however.
DIFFRACTION
GEOMETRICAL THEORY OF

```
Phase angles are associated
Phase angles are
techique gives good re sults
PROBLEMS ENUMERATED
WITH RAYS.
FOR
ABOVE
```

AND SHADOW REGIONS.
CORNERS, WEDGES, TANGENT POINTS,
GEOMETRICAL OPTICS FAILS TO
ACCOUNT FOR EDGES, TIPS,
GEOMETRICAL OPTICS FAILS TO
ACCOUNT FOR EDGES, TIPS,
Q
OF DIFFRACTION.
A.E.FUHS

PHYSICAL OPTICS

0 Physical optics involves integrals. The solutions are in terms of Integrals.

PHYSICAL OPTICS A.E.FUHS
PHYSICAL OPTICS RECOQNIZES
WAVE NATURE OF EM RADIATION.
DIFFRACTION AND INTERFERENCE
ACCOUNTED FOR.
PHYSICAL OPTICS SYNONYMOUS
WITH "KIRCHHOFF INTEGRAL" ξ
"HUYGENS PRINCIPLE"

$$
\begin{aligned}
& \text { PHYSICAL OPTICS PROVIDES THE } \\
& \text { INTENSITY OF RADIATION, WATTS/m', } \\
& \text { IN EITHER NEAR FIELD OR FAR } \\
& \text { FIELD. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { VARIATION OF INTENSITY IS DUETS } \\
& \text { DIFFRACTION AND INTERFERENCE. }
\end{aligned}
$$

DISC REFLECTS
plANE wave heisnainit

WIRE; OFF-NO

FLAT PLATE, DISC, WIRE; OFF-NORMAL

$$
\begin{aligned}
& y \\
& 5 \\
& 5 \\
& 2 \\
& 2 \\
& 2 \\
& 0 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
$$

USING PHYSICAL LED

IMPULSE APPROXIMATION

0 Impulse approximation is important to the problen of inverse scattering.
IMPULSE APPROXIMATION
OTHER TECHNIQUES USE MONOCHROMATIC
Wave. variation of scattering is
NOT EXPLOITED.
incident wave in impulse method
IS A DELTA FUNCTION IN TIME.
backscattered wave has all
FREQUENCY COMPONENTS. THE
SCATTERED WAVE IS MEASURED AS A FUNCTION OF TIME.
BY FOURIER TRANSFORM IN TM E,
THE RESPONSE AS A FUNCTION OF
FREQUENCY IS O STAINED
A. E. Furs
8
RADAR CROSS SECTION

NUMERICAL METHODS FOR RADAR CROSS SECTION

0 Numerical Methods are either in primary role or in secondary role.
0 The most common approach to machine calculation of RCS is the Sum-of-Components.

0 Direct solution of Maxwell's equations is handicapped by computer capability.

APPLICABILITY OF SUM-OF-COMPONENTS MODEL FOR RCS CALCULATION

C Even though $\mathrm{kL} \gg 1.0$, where L is for overall aircraft size, for parts of the aircraft $k \ell \simeq 1.0$ or $k \ell \ll 1.0$ may occur. Hence, solutions must span all three frequency ranges. \& is the size of a subcomponent of the aircraft.
A.E.FUHS

APPLICABILITY OF SUMI-OF-COMPONENTS MODEL FOR RES CALCULATION.

[^0]: *Edward M. Kennaugh, "Opening Remarks, Special Issue on Inverse Methods in Electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. AP-29, March, 1981.

[^1]: *H. W. Liepmann and A. Roshko, Elements oi Gas Dynamics, Wiley, New York, 1957.

[^2]: RETROREFLECTORS DO NOT WORK WITH BISTATIC
 RADAR.

[^3]: Avialiom Weat e Space Techrotocgy Augusi 0,1982

[^4]: *George T. Ruck, Editor, Radas Cross Section Handbook, Volume 2, "'entia i: New York, 1970.

