
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-12

One size does not fit all: a system
development perspective

LaSalle, Erik
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/37656

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ONE SIZE DOES NOT FIT ALL: A SYSTEM
DEVELOPMENT PERSPECTIVE

by

Erik LaSalle

September 2013

Thesis Advisor: John Osumundson
Second Reader: Kishore Sengupta

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

ONE SIZE DOES NOT FIT ALL: A SYSTEM DEVELOPMENT PERSPECTIVE
5. FUNDING NUMBERS

6. AUTHOR(S) Erik LaSalle

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. government. IRB protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Investments in technology have the potential to improve lives and organizations and can be force multipliers for an organization,

however federal IT projects too often experience cost overruns, schedule slippages, and performance shortfalls. Specific to the

Coast Guard, there are currently four Information Technology Level 1 acquisitions programs that have life-cycle costs estimates

equal to or greater than $1-billion. Many of these projects are over budget, and as a result, many of the desired capabilities do not

make it to the end user.

Since the passage of the first Acquisition Act and every acquisition mandate since, the federal government has struggled to deliver

capabilities that have met the requirements of the end-user, while staying within budget, on schedule and within cost. To alleviate

this, adding more mandates and oversight has become the “go to play.” However, these mandates just might be having the

antithesis effect on desired outcomes. This thesis describes alternative system development methodologies that could assist

Department of Homeland Security and Department of Defense in maximizing the delivery of capabilities to the end-user, while

staying on schedule and within budget.

14. SUBJECT TERMS WatchKeeper, MASI, agile, software development, project management,

computer, engineering process, life-cycle, acquisition.
15. NUMBER OF

PAGES
99

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ONE SIZE DOES NOT FIT ALL: A SYSTEM DEVELOPMENT PERSPECTIVE

Erik LaSalle
Lieutenant Commander, United States Coast Guard

B.A., Florida Atlantic University, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Erik LaSalle

Approved by: John Osmundson, PhD
Thesis Advisor

Kishore Sengupta, PhD
Second Reader

Dan Boger, PhD
Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Investments in technology have the potential to improve lives and organizations and can

be force multipliers for an organization, however federal IT projects too often experience

cost overruns, schedule slippages, and performance shortfalls. Specific to the Coast

Guard, there are currently four Information Technology Level 1 acquisitions programs

that have life-cycle costs estimates equal to or greater than $1-billion. Many of these

projects are over budget, and as a result, many of the desired capabilities will not make it

to the end user.

Since the passage of the first Acquisition Act and every acquisition mandate

since, the federal government has struggled to deliver capabilities that have met the

requirements of the end-user, while staying within budget, on schedule and within cost.

To alleviate this, adding more mandates and oversight has become the “go to play.”

However, these mandates just might be having the antithesis effect on desired outcomes.

This thesis describes alternative system development methodologies that could assist

Department of Homeland Security and Department of Defense in maximizing the

delivery of capabilities to the end-user, while staying on schedule and within budget.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. ORGANIZATION OF THE STUDY ...1
B. MOTIVATION ..2
C. RESEARCH QUESTIONS ...2

II. WHAT IS AGILE? ..5
A. MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT5
B. GENERAL GUIDELINES TO AGILE (BASIC THEORIES)7
C. AGILE DEVELOPMENT METHODS ...10

1. Crystal Methodologies ...11
2. Dynamic Software Development Method (DSDM)12
3. Feature-Driven Development ..13
4. Lean Software Development ...14
5. Scrum ..15
6. Extreme Programming (XP) ...16

D. ASSUMPTIONS AND IMPACTS..21
1. Assumptions..21
2. Impacts ..22
3. Process and Documentation Impacts ...24
4. Comparison to Traditional Engineering Methods (Plan

Driven) ..24
5. When to Apply Agile Development ..27

III. WATCHKEEPER AND MASI ..29
A. WATCHKEEPER GOALS AND OBJECTIVES.......................................29
B. WATCHKEEPER PROJECT PROCESS AND DOCTRINE30
C. WATCHKEEPER PROJECT PROGRESS MEASUREMENT31
D. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES33

1. Sponsor and Sponsor’s Representative ..33
E. COMMUNICATIONS ..35
F. OTHER FACTORS ...36
G. WATCHKEEPER OUTCOME ...36

1. WatchKeeper Outcome Compared to Goals and Objectives36
H. MISSION AND ASSET SCHEDULING INTERFACE (MASI)36

1. MASI Goals and Objectives ..36
I. MASI PROJECT PROCESS AND DOCTRINE ..41
J. MASI PROJECT PROGRESS MEASUREMENT41
K. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES41
L. COMMUNICATIONS ..42
M. MASI: OTHER FACTORS ..44
N. MASI OUTCOME ...45

IV. PROJECT IMPACTS ...47
A. WATCHKEEPER PROCESS AND DOCTRINE (RIGIDITY)47

 viii

B. WATCHKEEPER PROJECT PROGRESS MEASUREMENT49
C. STAKEHOLDERS AND COMMUNICATION ...50
D. WATCHKEEPER OTHER FACTORS ..51
E. MASI OUTCOME COMPARED TO GOALS AND OBJECTIVES53
F. MASI PROCESS AND DOCTRINE ...53
G. MASI PROGRESS MEASUREMENT..53
H. MASI STAKEHOLDERS AND COMMUNICATION54
I. MASI: OTHER FACTORS ..54
J. WATCHKEEPER AND MASI PROJECTS RELATIVE SCORE54
K. WATCHKEEPER AND MASI PROJECTS COMPARED TO

AGILE DEVELOPMENT ..64

V. CONCLUSION ..67
A. FUTURE RESEARCH ..67

LIST OF REFERENCES ..69

APPENDIX ...73

INITIAL DISTRIBUTION LIST ...79

 ix

LIST OF FIGURES

Figure 1. Single- and Double-Loop Learning (From Argyris & Schön, 1996)...............10
Figure 2. Agile Development Crystal Methodologies (From John Pruitt, 2011)12
Figure 3. Dynamic Development Software Method (From Clifton & Dunlop, 2003)13
Figure 4. Feature-Driven Development (From Feature-Driven, n.d.)14
Figure 5. Lean Software Development (From Scio, 2010) ...15
Figure 6. Scrum Development (From Lynch, 2010) ...16
Figure 7. Extreme Programming (From Extreme, 2000) ..17
Figure 8. Dimensions Affecting Method Selection (From Boehm & Turner, 2004)28
Figure 9. Stakeholder Organization...35
Figure 10. Overall Planning View of MASI ...39
Figure 11. Overall Planning of the Prototype System Used for MASI40
Figure 12. Fictitious Monthly View of Assets in the MASI System40
Figure 13. MASI Stakeholders ..42

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. The Genome of Agile (From Glaiel et al., 2013) ...18
Table 2. Agile Genes Maps to Several Popular Agile Methodologies (From Glaiel

et al., 2013) ..20
Table 3. Levels of Software Understanding and Use (From Boehm & Turner, 2004) ..23
Table 4. Traditional versus Agile Software Development (From Nerur, Mahapatra,

& Mangalara, 2005, p. 75) ...26
Table 5. The Five Critical Agility/Plan-Driven Factors (From Boehm & Turner,

2004, p. 55) ..27
Table 6. Aggregated totals of WatchKeeper and MASI relative scoring63
Table 7. The Five Critical Agility/Plan-Driven Factors: Comparison With

WatchKeeper and MASI Projects (From Cockburn et al., 2005, p. 55)65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ALMIS Aviation Logistics Management Information System

AOPs Abstract of Operations

BFT Blue Force Tracking

C4ISR Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance

COI Critical Operating Issues

DAA Designated Approving Authority

DHS Department of Homeland Security

DOG Deployable Operational Group

DSDM Dynamic Software Development Method

EVM Earned Value Management

GAO Government Accountability Office

IMS Integrated Master Schedule

IOC Interagency Operations Center

IOP Interagency Operational Planning

IPT Integrated Product Team

IVT Integrated Vessel Targeting

JCIDS Joint Capabilities Integration and Development System

KPP Key Performance Parameters

MASI Mission and Asset Scheduling Interface

MDA Maritime Domain Awareness

MHSOPS Maritime Homeland Security Operations

MISLE Marine Information for Safety and Law Enforcement

MNS Mission Needs Statement

MSAM Major System Acquisition Manual

OM Operations Monitoring

OPAREA Operating Area

ORD Operational Requirements Document

PM Program Manager

PORD Preliminary Operational Requirements Document

 xiv

SAFE Port Security and Accountability for Every Port

SCC Sector Command Centers

SDLC System Development Life Cycle

WBS Work Breakdown Structure

XP Extreme Programming

 xv

ACKNOWLEDGEMENTS

I would like to convey my sincerest appreciation to Dr. John Osmundson,

Department of Information Sciences, Naval Postgraduate School, for his interest, time,

and guidance during this endeavor. I would also like to thank Dr. Kishore Sengupta,

Department of Information Sciences, Naval Postgraduate School for his tireless effort and

passion in helping me write this thesis. Dr. Sengupta’s understanding of the application

of agile software development within project management is astounding, and without his

guidance, I would have produced an inferior product. In addition, I would like to thank

the Acquisition Research Program at the Naval Postgraduate School, specifically Ms.

Tera Yoder for her support and guidance throughout the thesis process. I am grateful for

her friendship and contagiously optimistic outlook on life.

Additional acknowledgements begin with Lieutenant Commander Christopher

Treib of the United States Coast Guard. Chris’s friendship and contributions to this

endeavor is greatly appreciated.

I also would like to thank my beautiful wife, Dare, for her love, encouragement

and support throughout my career and during my studies at Naval Postgraduate School. I

value her friendship and love more than words can express, and without doubt, her

tireless effort is the foundation of our family

Last, but certainly not least, I would like to thank my wonderful daughters,

Isabella, Wylee, and Fenway, for being awesome kids and for reminding me on a daily

basis of the true values of life

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

Software Engineering
The philosopher Hegel hypothesized that increased human understanding
follows a path of thesis (this is why things happen the way they do);
antithesis (the thesis fails in some important ways; here is a better
explanation); and synthesis (the antithesis rejected too much of the
original thesis; here is a hybrid that captures the best of both while
avoiding their defects). (Boehm, 2006)

Statement of the Problem
The problem is that U.S. Coast Guard information technology (IT) projects are

often delivered late, over budget, and not within the scope of the original requirements.

Additionally, when these IT projects are delivered, they are often obsolete because the

technology specified in the original acquisition requirements has a very short life cycle.

This is a problem because failing to successfully deliver these IT capabilities hampers the

Coast Guard’s ability to accomplish its three primary responsibilities of maritime safety,

maritime security, and maritime stewardship.

Purpose of the Study
The purpose of this thesis is to explore and understand the factors that may have

contributed to Coast Guard IT projects that have been delivered late and/or out of scope

or that are over budget. This study seeks an understanding of the nature and

characteristics of failed IT projects. These failures are in the context of a plethora of

resources made available to the Coast Guard to ensure the success of its IT projects. This

study is important because it could identify several areas where progress might be made

in improving the rate at which Coast Guard Command, Control, Computers,

Communications, Intelligence, Surveillance, and Reconnaissance (C4ISR) technology

can be assessed, acquired, implemented, and sustained.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Investments in technology have the potential to improve organizations and can be

force multipliers. However, federal IT projects too often experience cost overruns,

schedule slippages, and performance shortfalls. Specific to the Coast Guard, there are

currently four information technology command, control, communications, computers,

intelligence, surveillance, and reconnaissance (C4ISR) Level 1 acquisitions programs,

which are outlined in the Major Systems Acquisition Manual as having life-cycle cost

estimates equal to or greater than $1 billion. As stated in a September 2012 Government

Accountability Office (GAO) report, these major C4ISR programs are 86 percent over

budget and current funding levels will not allow the programs to execute as planned

(Government Accountability Office [GAO], 2012). Additionally, outdated program

baselines do not reflect current costs or schedules of the programs for myriad reasons,

which results in the Coast Guard not being able to provide Congress with accurate

information in its capital investment plan.

Since the passage of the first acquisition act, and in every acquisition mandate

since, the federal government has struggled to deliver capabilities that have met the

requirements of the end user while staying within budget and on schedule. To alleviate

this challenge, adding more mandates and oversight has become the “go-to play.” These

policies and mandates, however, just might be creating a phenomenon that Senge (1990)

called compensating feedback, which is “when well-intentioned interventions call forth

responses from the system that offset the benefits of the intervention” (p. 58), meaning

that the additional regulatory requirements are having a counterproductive effect on the

desired outcomes. Regardless, improvements must be made, and this thesis explores a

viable option for improvement.

A. ORGANIZATION OF THE STUDY

Chapter I of this thesis described the context surrounding the current state of

investments in technology and C4IT capabilities within the Coast Guard. Chapter II

describes agile software development and provides a glimpse into the current

 2

fundamental application of this methodology. Chapter III provides a detailed look at both

the WatchKeeper project and the Mission and Asset Scheduling Interface (MASI)

project, two IT projects that I was personally involved with, and the outcomes of those

projects. The goal of Chapter III is to provide a glimpse into the challenges that are

present when fielding C4IT systems. Chapter IV discusses the challenge of information

from federal-level policies and directions, as well as internal Coast Guard policies and

direction. Chapter V presents potential considerations for future C4IT development

endeavors.

B. MOTIVATION

I am convinced that the Coast Guard can become more efficient and effective at

fielding capabilities for operators to be better positioned to complete their mission. Being

involved with both the WatchKeeper project and the MASI project, I have witnessed

firsthand successful outcomes to IT project management challenges—when the effort is

freed of bureaucratic mandates that have little to no value. I am also convinced that the

Coast Guard possesses enough indigenous talent to accomplish fielding useful systems

for our operators.

C. RESEARCH QUESTIONS

1. Introduction

• What is the problem and purpose of the thesis? Agile development

• What is it?

• What are the different types?

• What are the strengths and weaknesses?

• When is it appropriate to apply the methodology?

• What are the comparisons with traditional engineering approaches?
2. WatchKeeper and MASI IT systems

• What is the WatchKeeper project, and what were the goals and objectives
of the project?

• How was the WatchKeeper project managed?

• What was the outcome of the WatchKeeper project?

 3

• What is the MASI project, and what were the goal and objectives of the
project?

• How was the MASI project managed?

• What was the outcome of the MASI project?
3. Analysis of the WatchKeeper and MASI projects

4. Recommendations

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. WHAT IS AGILE?

Agile software development is an approach that developers use to plan,

coordinate, work, and communicate with customers, stakeholders, etc. In its most

simplistic form, agile software development is about “feedback and change” (Dingsøyr,

Dyba, & Moe, 2010). Cockburn (2006) also stated that by accepting that perfect

communication is not feasible, one can learn to manage that uncertainty and “stop when

you have sufficiently communicated to the purpose of the intended audience” (p. 1).

Boehm and Turner (2004) defined agile as both the ability to rapidly change and the

counterpart to discipline: discipline strengthens; agility releases and invents. A textbook

definition of agile development states that when there are uncertainties with development

or problems occur, agile provides procedures for allowing for flexibility to be responsive

to unanticipated issues (Burd, Jackson, & Satzinger, 2012). Erickson, Lyytinen, and Siau

(2005) defined agility as the “means for stripping away the heaviness, commonly

associated with traditional software development methods, to promote quick response to

changing environments” (p. 2). These definitions don’t necessarily solidify an exact

answer to what agile software development is; however, the definitions share some

similar terminologies, such as communication, uncertainty, volatile environments, and

flexibility—all of which are derived from the Manifesto for Agile Software Development

(Beck et al., 2001).

A. MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

In February 2001, 17 people met in Utah and developed what is commonly known

as the Manifesto for Agile Software Development (the Manifesto). The Manifesto

describes what the group feels is “the uncovering of better ways to developing software”

(Beck et al., 2001). The Manifesto has 12 principles:

1. Satisfy the customer through early and continuous delivery of valuable
software: The highest priority of the team is to satisfy the customer
with frequent deliveries that allow for early feedback with respect to
the requirements, the team, and the process.

2. Harness change for competitive advantage: If the team can adapt to the
changing requirements (because of early, frequent delivery), this

 6

allows for a response to late-breaking information that often allows a
company to outmaneuver a competitor.

3. Deliver working software frequently: This reinforces the importance of
delivering working software frequently.

4. Business people and developers work together daily: This principle
enforces the concept that daily interaction helps to facilitate better
communication.

5. Build projects around motivating people: This principle focuses on the
people aspect of the project more than on the process.

6. Face-to-face conversation is the most effective and efficient way to
convey information: This principle supports number 4, with the
addition of the importance of face-to-face communication—the most
efficient and effective approach for conveying information.

7. Working software is the primary measure of progress: This is the
Manifesto’s third reference to the delivery of working software. It
reinforces software delivery as a primary goal of a software
development project.

8. Agile processes promote sustainable development: This principle
focuses on the nonlinearity of humans and suggests that as people put
in long hours, they begin to tire and the rate of progress of the project
slows

9. Continuous attention to technical excellence and good design enhances
agility: This principle focuses on a well-encapsulated design, which
facilitates greater agility and an ability to change. In order to
accomplish this, the team should produce good designs throughout the
project.

10. Simplicity is the art of maximizing work done: Simplicity is essential.
As Cockburn (2002) stated, “Simplicity has to do with accomplishing
while not doing, maximizing the work not done while producing good
software” (p. 212).

11. The best architecture, requirements, and design emerge from self-
organizing teams: The focus here is on the architecture being allowed
to adjust over time, just as the requirements do.

12. Adjust and fine tune the development process to become more
effective at delivering useful code in intervals: This principle reaffirms
that the most important aspect of the software development project is
the delivery of working software.

 7

The four core values gleaned from the Manifesto and that are at the core of agile system

development are the following

1. individuals and interactions over processes and tools,

2. working software over comprehensive documentation,

3. customer collaboration over contract negotiation, and

4. responding to change over following a plan.

B. GENERAL GUIDELINES TO AGILE (BASIC THEORIES)

The idea of agile development is that it is more important to place emphasis on

the people in the project than on the documentation. Amicability, talent, skill, and

communication become the foundation of the team, and the development of these skills is

of utmost importance (Cockburn & Highsmith, 2001b). The idea is that by strengthening

these areas, the cost of moving information and quickening the decision-making sequence

is realized, ultimately making the team more flexible. By placing people physically

closer and replacing documents with in-person communication, the cost of moving

information can be greatly reduced; likewise, adding experts to the team and working

incrementally quickens the feedback loop, thus reducing the time that it takes to make a

decision (Cockburn & Highsmith, 2001b).

The fact that the business world has become turbulent, uncertain, and fast paced—

requiring fast responses—is why the term agile has been coined. However, it is of the

utmost importance not only to be fast, but to be accurate as well. The agile process

requires that appropriate business processes be in place to make and support change.

However, in order for these processes to succeed, they must have responsive people and

organizations. Too often, software engineering and rigorous process adherents are

incorrectly confused as competence (Cockburn & Highsmith, 2001a). As Cockburn and

Highsmith (2001b) stated, “Processes do provide the framework for groups to work

together, but processes alone cannot overcome a lack of competency. However

competency can surely overcome the vagaries of a process” (p. 132).

Agile software development is a complex phenomenon that includes interrelated

practices and managerial policies, so it might be best to try to examine agile software

development from a theoretical perspective. There are a variety of theories that best

 8

explain agile development, but dynamic capabilities, coordination, and double-loop

learning are the theories that work the best. Dynamic capabilities theory helps explain

the need for agility and how to achieve it. Coordination and double-loop learning help

explain how to best achieve coordination and learning in an agile environment

(Balasubramaniam & Lan, 2007). Agile manufacturing, which was introduced to help

the United States regain competitive positioning in the manufacturing world, proves that

agility is not unique to software development (Dingsøyr & Dybå, 2008). Manufacturing

industries embraced agile to react quickly to changing customer requirements, and

dynamic capabilities theory, as explained in strategic management literature

(Balasubramaniam & Lan, 2007). Pisano, Teece, and Teece (1997) stated, “Dynamic

capabilities are the firm’s ability to integrate, build and reconfigure internal and external

competences to address rapidly changing environments” (p. 515). Dynamic capabilities

theory explains how organizations can achieve competitive advantages while operating in

a changing environment. Dynamic capabilities theory exhibits several common features

of agile development. These features include cross-functional teams, joint experiences

among team members, and external communications. Effective dynamic capabilities

include the frequent use of prototyping to obtain real-time feedback in order to adjust

actions and experimentations. Applying dynamic capabilities theory to agile software

development has been proven successful across multiple industries, suggesting merit to

its application in appropriate dynamic environments.

Coordination theory requires that the entire group working on the project share a

common set of goals and share information to facilitate activities (Kraut & Streeter,

1995). As task interdependence becomes intensive, group coordination increases

significantly and personal coordination increases moderately (Van De Ven, Delbecq, &

Koenig, 1976). As such, agile development involves intensive teamwork and high task

interdependence, using group meetings and personal coordination. As task

interdependence increases, organizational hierarchy decreases, suggesting that agile

development requires an increased use of organizational rules and routines

(Balasubramaniam & Lan, 2007). As uncertainty increases, tasks become more

challenging and coordination is more difficult. Therefore, the use of personal and group

 9

coordination increases while the use of impersonal coordination decreases significantly.

In an agile environment, where tasks are highly uncertain because of changing and/or

incomplete requirements, personal and group modes of coordination are preferred over

the use of formal documentation (Balasubramaniam & Lan, 2007). As Balasubramaniam

and Lan (2007) state, “Agile approaches replace heavy documentation, upfront design,

detailed plans and formal contracts with feature based planning, evolving design and co-

located customers” (p. 46).

Double-loop learning theory helps explain how to solve complex and ill-

structured problems in rapidly changing contexts. Learning is critical in agile software

development, as Highsmith (1997) states,

In an adaptive environment, learning challenges stakeholders, including
both developers and customers, to examine their assumptions, and then
use the results of each development cycle to learn the direction of the next.
The cycles need to be short, so teams can learn from small, rather than
large mistakes. They also need to be double-looped, so teams learn both
about product changes, fundamental changes, and underlying assumptions
about how the products are being developed. (p. 45)

Double-loop learning theory has three important elements:

1. Governing variables are dimensions that people keep within.

2. Action strategies are the plans used to keep governing variables within
an acceptable range.

3. Consequences are the results of those actions.

In single-loop learning, when something goes wrong, workers try to look for

another solution given the variables that are present. In double-loop learning, however,

people question the governing variables themselves and subject the variables to critical

scrutiny. As such, this is a shift in the way people frame strategies and consequences.

Double-loop learning is more important for organizations operating in dynamic

environments (Argyris & Schön, 1996). See Figure 1 for details on single- and double-

loop learning.

 10

Figure 1. Single- and Double-Loop Learning (From Argyris & Schön, 1996)

Agile software development practices foster double-loop learning because double-

loop learning provides an environment that warrants the participants to experiment with

their mental models. As Beck (2004) stated, “Agile software development is a

continuously self-correcting process” (p. 46). Instead of doing things right, the focus is

on doing the right thing to enhance business value, frequently adjusting strategies and

monitoring the feedback of those decisions.

An aspect of agile development that is often missed is that organizations are

complex, adaptive systems, where decentralized interaction is guided by a set of simple,

generative rules (Cockburn & Highsmith, 2001b). The previously mentioned

organizational theories are tremendously important to help explain why agility is useful

in software development. The agile approach is consistent with these sound principles

and is grounded in management and the organization theories explained previously

(Balasubramaniam & Lan, 2007).

C. AGILE DEVELOPMENT METHODS

Agile software development methods are being adopted in all industries and fields

to deal with quickly evolving requirements that can become obsolete before project

completion (Balasubramaniam & Lan, 2007). As Sengupta et al. (2013) stated:

 11

Lightweight processes that employ short iterative cycles, actively involve
users to establish prioritize, and verify requirements, and rely on a team’s
tacit knowledge as opposed to documentation. True agile methods must
take several cycles to complete, teams must determine the best way to
handle work, and the work structures must be reorganized during the
project rather than predetermined. (p. 2)

There are multiple agile methodologies. To provide a scope for this thesis, I

summarize six methods in this section: crystal methodologies, dynamic software

development method (DSDM), feature-driven development, lean software development,

scrum, and extreme programming (XP). I do not intend for this section to describe these

methodologies in great detail but rather to provide high-level exposure to each method’s

core values and practices (Dingsøyr & Dybå, 2010). Methods/processes/models are not

capitalized in APA (like laws and theories are not).

1. Crystal Methodologies

The core philosophy of this methodology is that software development requires

cooperative invention and communication, with a primary goal of delivering useful

working code. A key to this philosophy is that projects need to be run differently based

on needs and that the people involved must be as flexible as the needs. Crystal is a

method for co-located teams of different sizes and criticality, and each team is given a

color based on the team’s size and the team’s talents. These colors are clear, yellow,

orange, red, magenta, and blue. As shown in Figure 2, the clear team has the fewest

members, while the blue team has the largest number of team members. This is the most

flexible of all the agile methods and critically focuses on communication and small teams

(Cockburn, 2002). Crystal development has seven characteristics:

1. frequent delivery,

2. reflective improvement,

3. osmotic communication,

4. personal safety,

5. focus,

6. easy access to experts, and

7. requirements for the technical environment. .

 12

Figure 2. Agile Development Crystal Methodologies (From John Pruitt, 2011)

Figure 2 describes the various categories of the crystal method, of which life has

the highest priority and comfort has the lowest. The colors represent the size of the team

that is needed for the effort. For example, an E-yellow project is a project that is

essential and requires a team of 20 members, and a D-red project is a project that is

discretionary and requires a 100-person team.

2. Dynamic Software Development Method (DSDM)

This methodology divides projects into three phases: pre-project, which focuses

on candidate projects and funding; project life cycle, which examines the feasibility,

design, and implementation of the project; and finally, the post-project, which ensures the

system is operating effectively and efficiently. Figure 3 provides a graphical

representation of the DSDM. The DSDM has nine principles:

1. involving the user,

2. empowering the project team,

3. delivering frequently,

4. addressing current business needs,

5. using iterative and incremental development,

6. allowing for revisions,

7. fixing high-level scope before the project starts,

8. testing throughout the project life cycle, and

9. providing efficient and effective communication.

 13

Figure 3. Dynamic Development Software Method (From Clifton & Dunlop, 2003)

3. Feature-Driven Development

This methodology combines model-driven and agile development with an

emphasis on an initial object model, division of work features, and iterative design for

each feature. It consists of five activities: develop overall model, build feature list, plan

by feature, design by feature, and finally build by feature. Feature-driven development is

driven from the customer’s perspective and is designed around industry best practices.

Figure 4 provides a simple graphical representation of the feature-driven development

model.

 14

Figure 4. Feature-Driven Development (From Feature-Driven, n.d.)

4. Lean Software Development

This methodology is an adaptation of principles from lean production, in

particular, the Toyota production system, to software development. This methodology

has seven principles:

• eliminate waste,

• amplify learning,

• decide as late as possible,

• deliver as fast as possible,

• empower the team,

• build integrity, and

• see the whole.

Figure 5 shows a graphical overview of this method.

 15

Figure 5. Lean Software Development (From Scio, 2010)

5. Scrum

This methodology focuses on project management in situations where it is

difficult to plan ahead and where feedback loops constitute the core element of the

process. Software is developed by a team in increments that are called sprints, starting

with planning and ending with review. The implementation features are registered in a

backlog, and the product owner decides which backlog items should be developed in the

next sprint. All of the software development activities (requirements analysis, design,

coding, testing, and delivery) are carried out in each sprint (Suganya & Mary, 2010). At

the end of each sprint, the team is able to deliver a small portion of the product. Work is

coordinated in daily stand-up meetings where the person in charge, called the scrum

master, is responsible for solving problems. These scrums define the framework to

organize and produce products on time. The scrum master prioritizes the backlog, and

then the scrum team prioritizes the customer requirements, taking into consideration both

the customer needs and the business needs. Figure 6 shows a graphical representation of

a scrum and the tasks involved.

 16

Figure 6. Scrum Development (From Lynch, 2010)

6. Extreme Programming (XP)

This methodology is probably the most well-known agile process (Beck, 2000;

Strigel, 2001). XP starts with a planning phase, followed by several iterations, and ends

with acceptance testing. The work is broken up and prioritized by the end user. The key is

that at the end of every iteration, the end user performs an acceptance test against the

requirements, often referred to as user stories (Suganya & Mary, 2010). See Figure 7 for

a graphical depiction of the XP process. XP focuses on best practices for development

and consists of 13 common practices:

• whole team,

• customer test,

• small releases,

• planning game,

• collective ownership,

• coding standard,

• continuous integration,

• metaphor,

• sustainable pace,

• simple design,

 17

• pair programming,

• refectory, and

• test-driven development.

Figure 7. Extreme Programming (From Extreme, 2000)

Given the preceding examination of these agile methodologies, there are six

features that are common to them all. As Bohner and Coram (2005) stated, these features

are as follows:

1. Collaboration: Agile methods are highly collaborative inside and
outside the development group.

2. Code review: Agile methods encourage code reviews to facilitate the
dissemination of key information.

3. Small teams: Agile methods encourage small teams.

4. Short release schedules: Agile release schedules can be as short as two
weeks, which allows the team to evaluate the product and identify
priorities.

5. Boxing: Time boxing helps to focus the customer and reduces scope
creep. The release length is fixed so that the features of the system are
not.

6. Constant testing: Frequent testing helps to prevent a degraded product.
This helps to offset the risk of just writing the code. Testing must be
automated with the daily builds and regression test to ensure that all
functionality works.

To support the theme of common characteristics, Glaiel, Moulton, and Madnick

(2013) have found that regardless of the agile methodology employed, seven agile

 18

techniques are common to all of the previously mentioned methodologies. They call

these seven agile techniques the “Genome of Agile,” and they are listed and described in

Table 1 (Glaiel, Moulton, and Madnick, 2013).

Table 1. The Genome of Agile (From Glaiel et al., 2013)

1. Gene
Name

2. Description 3. Contrast to
Traditional

 Story/Feature Driven Breakup of the project into
manageable pieces of
functionality, sometimes named
“features,” “stories,” “use
cases,” or “threads.” The
system is segmented into sets of
client-valued functionality, and
development work is organized
around producing these
features.

 Traditionally employ
functional decomposition
where system is broken into
subcomponents that are
implemented in parallel and
integrated in late stages.
This requires upfront
requirement specification in
lockdown.

 Iterative-Incremental Development is performed in
repeated cycles (iterative) and
in portions at a time
(incremental).

 Development approaches
call for complete
requirements analysis
phase, followed by lengthy
design, coding, and test
phases

. Micro-Optimizing . This represents the adaptive
nature of agile management
processes. Agile methodologies
are encouraged to tailor aspects
of the development process to
adapt to change. Teams are
empowered to modify aspects
of the process or dynamically
adapt to changing
circumstances. Small
improvements and variable
changes are made frequently as
needed.

. Traditional processes can
exhibit a flavor of this
change in the form of
lessons learned activities
that are called for at the
completion of a project, but
which really feed to the
next development cycle and
yield little improvement on
subsequent development
projects.

. Refactoring . Refinement of the software
design and architecture to
improve software
maintainability and flexibility.
Several of the agile
methodologies consider
refactoring to be the primary

. Typically traditional
development schedules do
not permit refactoring.

 19

1. Gene
Name

2. Description 3. Contrast to
Traditional

development practice.
Refactoring consists of taking
apart existing working code,
factoring out common
elements, and rebuilding it to
provide a stronger base for
subsequent development.

. Continuous Integration . Policies and practices related to
configuration management, and
software build and test
automation. Continuous
integration involves methods
for maintaining an updated
code base that includes all
changes that have been made
and regularly building a testable
version of the product

. Configuration management
is traditionally approached
by having different teams
develop different portions
of software in isolated
environments. They then
try to integrate these
separate portions later in
the development cycle.

. Team Dynamics . Soft factors related to the
project team. Daily meetings,
workspaces, pair programming,
schedule/peer pressure,
experience gained, etc.

.

. Customer Involvement . Customer/User involved in
demonstrations of functionality
to verify and validate features.
Higher frequency feedback and
clarification of uncertainty.
Availability to participate in
development meetings.
Customer involvement gene
means accepting changing
requirements and including the
user in the development to the
degree that is possible.

. The traditional approach to
this is to lock in the system
requirements early in the
project. Any subsequent
changes require contractual
renegotiation for added
scope or scope change.

The application of the genome of agile framework is dependent on the agile

methodology used. Not every agile method features every genome as identified by Glaiel

et al. (2013), as is shown in Table 2

 20

Table 2. Agile Genes Maps to Several Popular Agile Methodologies (From Glaiel et al., 2013)

. Methodology 26. Agile Gene
27. 28. Feature

Driven
29. Iterative-

Incremental
30. Refactoring 31. Micro-

Optimizing
32. Customer

Involvement
33. Team

Dynamics
34. Continuous

Integration
35. Scrum 36. X 37. X 38. 39. X 40. X 41. X 42.

43. XP 44. X 45. X 46. X 47. X 48. X 49. X 50.
51. TDD 52. X 53. X 54. X 55. 56. 57. 58. X
59. FDD 60. X 61. X 62. 63. 64. 65. 66.

67. Crystal 68. X 69. X 70. 71. X 72. X 73. 74.

 21

D. ASSUMPTIONS AND IMPACTS

1. Assumptions

While there has been a lot of interest and enthusiasm behind agile methods, and

most reviews have been favorable, specific assumptions are present in agile software

development processes. These assumptions and development practices could lead to

limitations. The following is a summary of the assumptions identified by Turk, France,

and Rumpe (2005):

1. Visibility assumption: This assumption suggests that working code can
be used as a sole source for project visibility. Although project
visibility is traditionally accomplished through various report
specifications—and measures of quality and productivity—agile
development suggests that working code is a true barometer for project
status.

2. Iteration assumption: This assumption states that a project can always
be structured into short fixed-time iterations. As stated previously,
agile processes require features to be coupled and bundled so they can
be addressed in fixed-time iterations.

3. Customer-interaction assumptions: This assumption suggests that the
customer will always be available for interaction when needed by
developers. This means that the customer can always reschedule their
other work.

4. Team-communication assumption: This assumption states that
developers are located so that they are able to have frequent
communication with each other, specifically face to face. This requires
that team meetings be a priority and that this is accepted by all of the
respective stakeholders.

5. Face-to-face assumption: This assumption suggests that face-to-face
interaction is the most productive method in communication. This
assumption deemphasizes the value of documentation as a
communication aid based on the idea that tacit knowledge is superior
to other types of gained knowledge. There are potential ramifications
for this assumption. As Boehm (2002) stated, “This focus on tacit
knowledge makes projects that use agile process dependent upon
experts” (p. 13).

6. Documentation assumption: This assumption states that developing
extensive documentation and software models is counterproductive.
The assumption is that it is more reliable to determine design from
actual code than from documents, specifically since documents are

 22

rarely kept up to date and are not maintained when code is changed.
Advocates for documentation state that documents provide good
models to bring new hires up to speed, which helps users determine
the applicability of requirements.

7. Welcoming changing requirements: Requirements change during
software development, and this is recognized both in the agile and
traditional developmental communities. Evolving requirements are an
inherent problem of software development; however, it is assumed that
the development team will be able to handle changing requirements,
even late in the game.

8. Continuous redesign assumption: This assumption maintains that
systems can continuously be redesigned while maintaining their
conceptual integrity. The assumption is that the system can be
redesigned and carried out without a significant amount of time and
cost.

9. Simplicity is essential: This assumption states that the complexity
imposed by heavyweight processes and models is unnecessary. The
assumption is that a focused architecture that satisfies the current
needs is preferred to a general architecture that is designed to
incorporate future needs.

2. Impacts

In addition to the assumptions underlying agile software development processes,

there are impacts that may affect the project management component of the software

development effort. I examine these impacts as they relate to people, processes, and

projects and then summarize the findings of Bohner and Coram (2005). The impact of a

software development process on people is obvious. The people involved include

developers, customers, testers, executive management, and project leaders, to name a

few. However, the largest impact is on the developers. As previously stated, agile

methods are lightweight methods that do not follow strict guidelines and processes. As

such, it is imperative that the developers be highly trained and willing to work as a team.

Cockburn (2002) identified characteristics and three levels of skill that developers must

have to accomplish various tasks within a given framework. Table 3 identifies these

characteristics.

 23

Table 3. Levels of Software Understanding and Use (From Boehm & Turner, 2004)

Level Characteristics

3 Able to produce solutions and
unprecedented situations

2 Able to tailor solutions to fit new, but
precedented situations

1A Solid developer able to implement
functionality, estimate effort, and re-
factor code

1B Able to implement simple functionality,
execute tests, and follow directions

-1 Unwilling or unable to work in a
collaborative environment

Of the three different personal technical skills identified in Table 3, only levels 3,

2, and 1A would possess the needed ability to work in an agile environment. Given the

need to employ high levels of expertise, traditionally staffed organizations may have

difficulties achieving this requirement.

The impact of using agile methodology on an organization’s software

development testing team is dependent on the developmental cycles of the agile process

chosen. Testers must work closely with developers throughout the entire process and

might actually need to be programmers themselves. The challenge to management is to

be able to identify this required skill set of would-be team members. As a project leader

in an agile development effort, the challenge is in assembling an experienced staff and

empowering those members. This empowerment might be a cultural shift for some

organizations, which may dissect the decision-making hierarchy. Additionally, project

leaders have to develop the skills required to respond to change. Project leaders have a

much more hands-on role than in traditional development efforts, and as such, they are

more involved with customer collaboration.

Customers have a much more involved role with agile methods than with

traditional development efforts. With agile, customers are involved throughout the entire

process, unlike traditional development, where customers are involved only with defining

the requirements and with acceptance testing. It is highly recommended that a full-time

customer presence be on-site to work with the development team on a daily basis.

 24

3. Process and Documentation Impacts

Since agile methods require new process activities, many organizations must

make drastic changes to old processes to accommodate the new way of doing business.

This includes, but is not limited to, planning, documentation, development processes, and

delivery. Agile processes place less importance on formal planning, but planning still

needs to take place. Planning in agile is a relatively informal process, but there are so

many small tests, which may lead to more planning needs. In most agile efforts,

documentation is often limited to allow for optional architecture to be developed. The

determination of how much documentation to use in an agile effort is critical, as is the

understanding that documentation must be updated whenever a change is made. Although

this type of documentation effort can avoid the wasted time of writing a document and

then leaving it to become obsolete, it does come with risk. As stated earlier,

documentation is an excellent way to bring new hires up to speed with the developmental

effort, and it provides a method for tracking and auditing.

4. Comparison to Traditional Engineering Methods (Plan Driven)

As stated previously, the primary goals of agile methods are rapid value and

responsiveness to change, while the primary goals of plan-driven methods are

predictability, stability, and high assurance. Agile approaches are based on the view that

organizations are complex adaptive systems, where requirements are emergent rather

than pre-specifiable (Boehm & Turner, 2004). Plan-driven goals are focused on

increasing process capability for standardization, measurement, and control. Agile

projects focus on building things quickly and finding out through experience what

activity or feature will add the most value (Boehm & Turner, 2004). Agile

methodologies are reactive postures that have considerable advantages when operating in

an environment with rapid changes, such as technology. However, the downside to this

approach is the overemphasis on tactical objectives over strategic objectives.

Current research has stated that agile processes work best within small to medium

groups working on relatively small applications (Boehm & Turner, 2004). Kent Beck

(2004) stated, “The size of the project clearly matters, and it would very difficult to run a

 25

project using agile methods with a team of 100 programmers or more” (p. 38). Larger

agile projects with hundreds of people have been successful, but in those cases,

traditional plans and specifications were adopted to deal with interactions among the

project elements. Conversely, plan-driven methods are better for larger projects, where

plans, documentation, and processes provide for better communication. As stated

previously, agile methods concentrate on delivering a product on time to satisfy the

customer. However, this comes with an inherent risk of microscopically focusing on the

product at hand and ignoring problems that may occur later. An example of this pitfall is

developing an agile system or application that doesn’t integrate well with the

organization’s overall enterprise architecture.

When agile approaches are compared to traditional approaches from a managerial

perspective, there are discrete differences in each stakeholder’s expectations. Although

planning, control, and communications are prevalent in both approaches, they are

managed differently. Agile approaches depend on dedicated customer involvement

focused on adding rapid value to the effort. Conversely, plan-driven methods depend on a

formal contract between the developers and customers as the basis for customer relations.

This contract is designed to identify foreseeable problems in advance and formalize a

solution with documentation. Although this approach aids in identifying potential issues,

it can be a high stress point for the development team working to facilitate the plan-

driven effort. With agile, planning is seen as a means to an end, and a high percentage of

time is spent on re-planning. Plan-driven methods use plans to anchor their processes

and again to provide for a spectrum for communication. As stated in the Manifesto for

Agile Software Development, the emphasis in agile methodologies is on individuals and

interactions (Beck et al., 2005).

An important part of agile development—maybe even the most important part—is

testing. Testing is a way to validate that the customers have specified the right product

and that the developers built the right product. Testing requires that code be developed

and executed, which is frequent in agile approaches. However, with plan-driven

approaches, testing does not occur as often, resulting in problems being discovered late in

 26

the development cycle; these problems are expensive to fix. In most agile approaches, it

is recommended to automate testing procedures. As Beck (2003) stated:

This has significant advantages:

• Ensures that the requirement is testable

• Avoids documentation minutia

• It enables incremental build and test opportunities

• It helps modularize the application structure and provides a safety net for
re-factoring

• It helps form an explicit working knowledge of the application. (p. 74)

Table 4. Traditional versus Agile Software Development (From Nerur, Mahapatra,
& Mangalara, 2005, p. 75)

 Traditional Agile
Fundamental assumptions Systems are fully

specifiable, predictable, and
can be built through
meticulous and extensive
planning.

High-quality, adaptive
software can be developed
by small teams using the
principles of continuous
design improvement in
testing based on rapid
feedback and change.

Control Process centric People centric
Management style Command and control Leadership in collaboration
Knowledge management Explicit Tacit
Role assignment Individual: favors

specialization
Self-organizing teams:
encourages role
interchangeability

Communication Formal Informal
Customer’s role Important Critical
Project cycle Guided by tasks or

activities
Guided by product features

Development model Life-cycle model (waterfall,
spiral, or some variation)

The evolutionary delivery
model

Desired organizational
form/structure

Mechanistic (bureaucratic
with high formalization)

Organic (flexible in part to
dissipate encouraging
cooperative social action)

Technology No restrictions Favors object-oriented
technology

 27

5. When to Apply Agile Development

Agile methodologies are appropriate for projects that have high variability,

uncertain requirements, and unknown capabilities of people and that are utilizing new

technology (Nerur et al., 2005). To better guide the decision-making requirements on

when to use agile approaches and when to use plan-driven approaches, I have identified

five critical factors, introduced by Cockburn et al. (2005) to be most appropriate. As

described by Boehm and Turner (2004), these factors are project size, criticality,

dynamism, personnel, and cultural factors. Table 5 describes these factors.

Table 5. The Five Critical Agility/Plan-Driven Factors (From Boehm & Turner,
2004, p. 55)

Factor Agility Discriminators Plan-Driven Discriminators

Size (number of
personnel)

Well matched to small products
and teams. Reliance on tacit
knowledge limits scalability.

Methods evolved to handle
large products and teams. Hard
to tailor down to small
projects.

Criticality (Loss due
to impact of defect)

Untested on safety-critical
products. Potential difficulties
with simple design and lack of
documentation.

Methods evolved to handle
highly critical products. Hard
to tailor down to low criticality
products.

Dynamism
(Percentage of
requirements
changing per
month)

Simple design and continuous
re-factoring are excellent for
highly dynamic environments
but a source of potentially
expensive rework for highly
stable environments.

Detailed plans and big design
up-front are excellent for a
highly stable environment, but
a source of expensive rework
for highly dynamic
environments.

Personnel
(Technical abilities
as defined in Table
3)

Requires continuous presence
of critical mass of scarce Level
2 or 3 experts (as defined
earlier). Risky to use non-agile
Level 1B people.

Need for critical mass of
scarce Level 2 and 3 experts
(defined earlier) during project
definition but can work with
fewer late in the project. Can
usually accommodate some
Level 1B people.

 28

Factor Agility Discriminators Plan-Driven Discriminators

Culture (thriving in
chaos vs. order)

Thrives in a culture where
people feel comfortable and
powered by having many
degrees of freedom (thriving on
chaos).

Thrives in a culture where
people feel comfortable and
empowered by having their
roles defined by clear policies
and procedures (thriving on
order).

Boehm and Turner (2004) developed Figure 8, which does a nice job

summarizing graphically the five critical factors associated with agile and plan-driven

efforts. The closer you move towards the center of the diagram, the more appropriate it is

to use agile methods. By rating a project along all of the five axes, a visual evaluation of

relationships can be identified.

Figure 8. Dimensions Affecting Method Selection (From Boehm & Turner, 2004)

 29

III. WATCHKEEPER AND MASI

As stated in Chapter I, my interest in agile system development started during my

time working on both the MASI and WatchKeeper projects. The work I did on these

projects came during my time while stationed at Coast Guard Headquarters from 2008 to

2011. My role with both projects was in the capacity of sponsor’s representative, and, as

such, my responsibilities included acting as a liaison between the end users of the

systems (operators) and the rest of the project team. As the sponsor’s representative, I

worked very closely with the sponsor, and my main obligation was to ensure that

requirements that the end user identified as important were built into the system being

developed. In the following paragraphs, I will provide a synopsis of both the

WatchKeeper and MASI projects. The projects will be broken down by their goals and

objectives, the doctrine in process that was followed for each project, how progress was

measured, the stakeholders within the projects, the communication effort within the

projects, and finally the other factors that influenced the projects.

A. WATCHKEEPER GOALS AND OBJECTIVES

The WatchKeeper project was the IT component of the larger Interagency

Operations Centers (IOC) project. The IOC project was a result of the mandates of the

Security and Accountability for Every Port (SAFE Port) Act of 2006, and directed the

Department of Homeland Security (DHS) to transform Coast Guard Sector Command

Centers (SCCs) to host interagency members and meet the challenges of interagency

coordination and maritime security. The three gaps identified by the SAFE Port Act were

the following:

1. basic awareness of vessel activities near vulnerable port and coastal
infrastructure,

2. systems linking the ever-increasing volume of information with vessels in
ways that help decision-makers determine threats and develop the correct
course of action, and

3. means for effective information sharing and joint operations with port
partners.

 30

The volume of maritime domain awareness (MDA) information necessary to

manage Coast Guard and interagency operations has increased dramatically and exceeded

the field’s capacity to collect and process it. The Coast Guard needed new information

management capabilities to solve the coordination and operational challenges faced by

today’s interagency decision-makers. Decision-makers lack the ability to see, understand,

and share information that is critical to coordinate interagency operations in port and

coastal areas. This situation severely inhibits efficient information sharing with

interagency partners, resulting in reduced mission capabilities in the ports and waterways

within the U.S. The WatchKeeper project was the IT system that was identified to help

close these gaps, and as such, was targeted to provide the following capabilities:

1. Integrated vessel targeting (IVT): This component integrates the
targeting results of various agencies, and builds a consolidated threat
picture of people, vessels, and cargo operating within an operating
area (OPAREA) as provided by intelligence and law enforcement
communities in support of the Ports, Waterways, and Coastal Security
missions.

2. Interagency operational planning (IOP): This planning component
integrates federal, state, and local asset status and schedules. As such,
better coordination and more efficient resource allocation between
agencies can be realized.

3. Operations monitoring (OM): This component manages the IOC daily
schedule that was created by the IOP component. It manages the
schedule against all emergent events, such as search and rescue, spills,
and other events occurring outside the operational planning window.
OM creates and shares the tactical picture, including command and
control, mission status, and the status of IOC forces and Blue Force
Tracks (BFT).

B. WATCHKEEPER PROJECT PROCESS AND DOCTRINE

As the sponsor’s representative for the project, I along with the sponsor’s

directorate was responsible for providing a few key documents early on in the project.

These documents included the mission need statement (MNS), the Preliminary

Operational Requirements Document, (pORD), and the Operational Requirements

Document (ORD). The WatchKeeper project’s MNS was approved in 2005 and was

revalidated in February 2009. This MNS verified the capability gaps identified in the

SAFE Port Act within ports and waterways within the U.S., and was used initially to

 31

guide the needs of the project. In addition to the MNS, the pORD was developed in April

2008 to provide more fidelity to the actual requirements that would be needed, and to aid

in the development of the more robust ORD, which was signed in 2010. Therefore, the

only requirements guide that was used early on for the initial development effort was the

pORD, which again, only provided a very high-level conceptual need, not system specific

requirements.

For the project management effort, the following doctrine and Integrated Product

Teams (IPTs) were used to guide the project:

• Major Systems Acquisition Manual (MSAM)

• Systems Development Life Cycle (SDLC)

• Mission Engineering Process Guide: This process guide was developed
while working with and visiting select sectors to identify key processes
and workflows of SCCs. The focus on the mission engineering effort was
to identify processes and not IT solutions; the effort was to capture what
was happening within the command centers at the various watch positions,
to better define systems requirements.

• Two-chartered IPT: The two teams were

1. information management IPT and
2. senior leadership.

C. WATCHKEEPER PROJECT PROGRESS MEASUREMENT

One key MSAM requirement was that earned value management (EVM) be used

as the performance measurement tool, because of the dollar threshold that WatchKeeper

met. The goal of EVM is to integrate the contract scope of work with scheduling cost

elements at appropriate levels for optimum project planning and control. The MSAM

directs that EVM be used against a work breakdown structure (WBS) at sufficient levels

to enable an understanding of the performance against the allocated time and budget.

This information is then used to create an integrated master schedule (IMS), which

incorporates the WBS items.

EVM is also the technique that communicates a project status within a portfolio

and is an integral component of the Office of Management and Budget Exhibit 300

 32

(Primavera Systems, 2008). The MSAM does not provide clear guidance on how EVM is

to be incorporated but instead directs the PM to comply with the DHS (2009) guidance.

The DHS guidance states:

Title V of the Federal Acquisition Streamlining Act of 1994 requires
agency heads to approve or define the costs, performance, and schedule
goals for major acquisitions to achieve, on average, 90 percent of the cost,
performance and schedule goals established (p. 8).

Additionally, when EVM is employed for a project, it is imperative that it be

supported by management and stakeholders at all levels (Fleming & Koppelman, 2009).

All stakeholders have a vested interest in the project, and it is important that everyone

have a rudimentary understanding of the EVM data. EVM also enables stakeholders to

understand what other stakeholders are doing. The following 10 requirements were

identified by Fleming and Koppelman (2009) as being critical to successfully implement

EVM:

1. EVM requires the project to be fully understood, defined, and scoped to
100 percent of the project effort. Stakeholders need to know what
constitutes 100 percent of the work in order to measure progress along the
way.

2. EVM requires that the defined scope be decomposed—broken down into
major management tasks, which are selected as points of management
control—and then planned and scheduled down to the detailed work
package level.

3. EVM requires that an integrated and measurable project baseline be
authorized—relating the scope of work directly to an achievable budget—
then locked into a specific time frame for performance measurement. This
is called bottom-up planning.

4. EVM requires that only authorized budgeted work be accomplished,
meaning all work being done must be tightly controlled. Scope creep
cannot be allowed.

5. EVM requires that physical performance be measured.

6. EVM requires that the values used be related to the planned values to
accurately reflect performance against the project baseline.

7. EVM requires that reporting be consistent with the earned value being
measured to allow for an accurate portrayal of cost performance. The
relationship of actual cost must reflect the true cost performance. Earned
value less actual cost provides cost performance.

 33

8. EVM requires that a forecast be made periodically (weekly, monthly) to
estimate the amount of time and money it will take to complete 100
percent of the project.

9. EVM requires that a full disclosure of actual results be made available to
all stakeholders who have a vested interest in the project. All stakeholders
will receive the same actual performance results.

10. EVM requires that project managers, in conjunction with key
stakeholders, decide on the appropriate action to be taken to stay within
authorized budget expectations.

D. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES

Figure 9 at the end of this section provides a graphical representation of the

hierarchy and organizational layout of WatchKeeper’s stakeholders. It is not an official

organizational hierarchy of the Coast Guard, but rather the organizational hierarchy of the

WatchKeeper project from personal experience.

1. Sponsor and Sponsor’s Representative

• Initially, CG-741 was the sponsor’s representative and CG-761 was the
sponsor. This later changed: CG-761 became a sponsor’s representative
and CG-741 maintained the role of the sponsor. The switch in
responsibilities occurred when new leadership reported aboard both CG-
761 and CG-741, creating a leadership turnover in both directorates.
Both incoming captains were newly promoted, and no relationship
between the two had been established yet. After the change in leadership,
CG-761 took over the role of sponsor’s representative and CG-741
assumed the duties of sponsor. Interestingly, the outgoing captain of CG-
761 became the leader of the Command Control and Communications
Center (C2CEN), which was later identified as the lead developer of the
WatchKeeper system, and the outgoing captain of CG-741 retired.

• CG-9: Program manager: The program manager (PM) was a senior
commander (O5) and had the overall responsibility of the project. This
created an interesting dynamic in the senior decision-making for the
project. Although the commander was more than capable of performing
the duties required of the PM, there was still an underlying reality that he
was junior to other decision-making stakeholders, given that they were all
O6s.

• CG-6: CG-6 included the technical agents and technical leaders of the
project. They were to oversee all engineering efforts with respect to
impacts to enterprise, security, and accreditation. Both centers of
excellence (C2CEN, Operations System Center [OSC]) are under CG-6

 34

leadership; yet, for this development effort, the PM (CG-9) had the
authority to direct the developers. This created an interesting dynamic in
which the normal reporting and tasking chain of command was then
bypassed; CG-9 directly tasked a CG-6 asset.

• C2CEN: When C2CEN was given the decision on which technical
organization/corporation/agency to hire, the challenge was whether they
should include themselves as a possible candidate for the job. After
consideration, the decision was made that C2CEN would be the lead
developing agents for this project.

• Operations Systems Center (OSC): OSC is another Coast Guard Center
of Excellence that works for CG-6. Once it was decided that the Coast
Guard was going to undertake this project in-house (from a
developmental standpoint), OSC was earmarked for providing a piece of
the proposed technical solution. As such, C2CEN would develop two
thirds of the proposed solution and OSC would develop the remaining
one third.

• Research and Development Center (R&DC): The R&D center was hired
to provide support for this project.

• Contract Support: Contractor support was pivotal in the creation of the
Mission Engineering Process document. This document laid the
groundwork for standardizing the processes that the WatchKeeper system
should be designed to facilitate. Contract support worked very closely
with both the sponsor and the sponsor’s representative on identifying the
workflow of the end users of the system. This work helped to identify
what would later be known as IVT, IOP, and OM. The goal here was to
focus on the process and not on solutions or technology. The team felt
that it would be prudent to truly understand the workflow inputs and
outputs and functional areas they resided in before coming up with the
technical solution.

• Operators and end users: Coast Guard command centers.

 35

Figure 9. Stakeholder Organization

E. COMMUNICATIONS

Communication for this project was challenging given the project’s size and

scope. The PM established many processes to better facilitate information sharing

between directorates and key stakeholders, but this was never realized. Some of the

variables that challenged the PM’s effort included the geographical separation of key

stakeholders. C2CEN is located in Portsmouth, Virginia; OSC is the located in

Kearneysville, West Virginia; CG-7 is located in the Transpoint building at Coast Guard

Headquarters; and CG-9 and CG-6 are located at the Jamaal building at Coast Guard

Headquarters. The challenges of being geographically separated created a logistical

nightmare for the project. Stakeholders were aware of these challenges and tried to

implement various forms of communications to minimize potential negative impacts.

These tools included bi-weekly information management IPT meetings, weekly progress

report meetings, monthly senior management team meetings, and day-to-day emails, to

name a few. One of the biggest shortcomings of having physically separated key

stakeholders was that too much time was wasted getting members up to speed at the

beginning of every meeting. For example, despite having met two weeks ago, it took a bit

of time for mid-level management to reassess and understand the issues that were last

 36

discussed during the previous meetings. Without face-to-face communication on a

regular (daily) basis, a lot of time was wasted playing catch-up. Additionally,

stakeholders did not physically attend many of the meetings in person but rather attended

telephonically. This only added to the inefficient and ineffective use of time.

F. OTHER FACTORS

The landscape for this project was complicated. The major stakeholder leadership

was either (1) a newly promoted captain or commander or (2) a seasoned captain with

many years of O6 experience. This was interesting because the new captains tried to

assert themselves as seasoned captains and at times received pushback from the more

veteran captains. As stated earlier, the PM was a senior O5 and was in charge of the

project and, as such, had to make unpopular decisions. This had to be done very carefully

because of the differences in ranks, which often led to wasted time. Given this dynamic,

it was often difficult to obtain a clear picture of who was in charge of the project at any

given point. On numerous occasions, CG-761 claimed that they were responsible while

CG-741 felt that they were in charge. C2CEN operated as if they were in charge and held

sole responsibility for deciding on the technical solution for the project.

G. WATCHKEEPER OUTCOME

1. WatchKeeper Outcome Compared to Goals and Objectives

It is difficult to classify the WatchKeeper project as a success in any capacity.

The project was delivered years late, with limited capability, and was grossly over

budget. There are many projects that have lofty goals, but that must settle for less

because of factors outside the control of the program; this is true for WatchKeeper as

well, but is not the primary reason for the project’s failure. WatchKeeper’s shortcomings

can be attributed to many factors, all which will be explored in Chapter IV of this thesis.

H. MISSION AND ASSET SCHEDULING INTERFACE (MASI)

1. MASI Goals and Objectives

The MASI project was originally developed to support the Coast Guard IOP

needs of WatchKeeper. It was the second of the three capabilities WatchKeeper was

 37

going to deliver. MASI was going to be capable of displaying all assets, all asset

statuses, and all planned, in progress, and completed missions planned. MASI was to

eventually support port partner-specific planning and scheduling requirements as well

with later builds. MASI was to provide a single user interface for near-real-time

transparency of all asset and mission information. MASI was to support pre-

planning/emergent planning, scheduling, and the execution of missions. This single

presentation layer is Web based, and was to be available to anyone authorized for access

to the system, including planners, watchstanders, and port partners.

Modernization places a premium on information transparency throughout the

Coast Guard and DHS. This is particularly true at the Sector level, where the majority of

mission execution occurs. Prioritizing missions and assigning resources are under the

responsibility of the sector commander to optimize resource employment across the 11

CG-mission categories and subcategories. The effective and efficient management of

resources can only occur with transparent planning and execution, and by making the

results visible to all levels of command.

Mission planning is conducted via many different formats, tools, and processes.

For example, spreadsheets, whiteboards, and Microsoft Outlook calendars are all used to

perform planning functions within Coast Guard units. The results of this inferior process

are as follows:

• The various planning products are not published in a manner that provides
a single operational view to the chain of command and command centers,
resulting in degraded situational awareness.

• Command centers have incomplete visibility of information on asset
statuses, planned activities, assets underway, and mission completion.

• Response to emergent events is often reactionary without taking into
consideration the impact of resource redeployment and without the
transparency to apply risk-based decision support.

• There is low awareness of Prevention Department activities.

• After missions are complete, the missions are recorded in various
enterprise authoritative databases (e.g., Abstract of Operations [AOPS],
Aviation Logistics Management Information System [ALMIS], Marine
Information for Safety and Law Enforcement [MISLE]) without a clear
relationship between common data elements.

 38

MASI was to provide the following capabilities and services:

• A single user interface will provide a near-real-time presentation of all
resources and statuses.

• A single user interface will provide a near-real-time presentation of all
mission assignments planned, underway, and completed.

• A single user interface will provide a near-real-time presentation of
significant events that will influence planning decisions.

• Planners will enter planning and scheduling information and decisions in
one place: MASI.

• Units and command centers will then use MASI to manage the assigned
missions and to support post-mission reporting.

• A single location will be available for the display of resource and mission
planning and execution, optimizing resource utilization against the highest
priority missions.

• Horizontal and vertical awareness will be provided for resource and
mission planning, integration, and execution.

• The requirement for reporting will not change, but the system will support
standard reporting procedures.

• MDA will be enhanced by providing command centers with single source
visibility of all activities in the area of responsibility—planned, underway,
and completed.

• The system will contribute to the standardization of data management and,
by extension, an increase in data integrity within authoritative systems.

To provide a better perspective on MASI’s capabilities, the following is an

example of the types of missions it will support:

• Resources and missions across the entire Coast Guard are displayed in one
application visible to all. In the event of an emergent mission, all levels of
command can see what assets are available and take the necessary actions
to respond.

• By being able to observe the changing assignments and resource statuses
in MASI, higher levels of command can avoid direct contact with
subordinate commands and command centers, thus freeing watchstanders
to better accomplish the mission.

• When a resource (e.g., cutter, boat, aircraft, or inspection team) gets
underway, that movement is transparent to the command center.

 39

• MASI captures non-asset and mission information (e.g., reasons for
aborting mission, bar status, tidal closures) that is critical to operational
decision-making and requirements analysis.

Figures 10–12 are screenshots of the MASI system to illustrate the previously

mentioned system concepts.

Figure 10. Overall Planning View of MASI

 40

Figure 11. Overall Planning of the Prototype System Used for MASI

Figure 12. Fictitious Monthly View of Assets in the MASI System

 41

I. MASI PROJECT PROCESS AND DOCTRINE

Although MASI was a component of WatchKeeper, and an IT system of its own

right, it did not follow the same doctrine rigor as the WatchKeeper project. The

following is the list of the doctrine that MASI used:

• Systems Development Life Cycle (SDLC)

• Requirements document (Excel spreadsheet)

• Testing document (Excel spreadsheet)

J. MASI PROJECT PROGRESS MEASUREMENT

The MASI project’s progress was not tracked simultaneously with the

WatchKeeper project, nor was MASI tracked with EVM. MASI’s requirements were

captured on an Excel spreadsheet with the sponsor, sponsor’s representative, end user,

and developers. This list of requirements was then prioritized by the end user and given

to the developers to evaluate the realm of possibility and the development time needed.

Once the developers completed this task, a final meeting was held and the official

requirements list was generated. This list of requirements was then used to guide the

development effort and track progress towards capability delivery.

K. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES

• CG-741: Sponsor

• CG-761: Sponsor’s representative

• CG-6: Technical agents

• OSC: Developers

• End user: Coast Guard Deployable Operational Group (DOG)

• End users: Coast Guard Command Center personnel

Figure 13 is a graphical representation of the MASI stakeholders.

 42

Figure 13. MASI Stakeholders

L. COMMUNICATIONS

This MASI project included daily face-to-face communication with stakeholders.

The key stakeholders at Coast Guard Headquarters (CG-7, CG-6, and CG-8) were part of

the daily meetings, with the support of contractors. In addition to the short, daily

interactions, there was a weekly meeting that included the stakeholders at Coast Guard

Headquarters, the developers from OSC, and the end users of the DOG. These meetings

were face to face as well and focused on reviewing development progress and refining

requirements. The luxury of meeting face to face cannot be understated. Communicating

technical ideas and concepts face to face enabled the team to be more focused and

committed. It nurtured a more creative, homogenous environment than other projects I

have been involved with, and it facilitated storyboarding and the visual display of ideas

and concepts, which was critical during the concept phase of the effort. The group size of

these meetings was typically between five and seven people, and the meetings were held

in a very informal setting, sometimes even standing. Ideas were mapped out on a

whiteboard, and problems were worked through in a visual manner. At least one day

prior to the weekly meeting, the group agreed upon a small agenda and focused only on

those items. Any new business ideas or concerns were placed in a “parking lot” to be

CG-6 Technical
Director

OSC

CG-7

CG-741 Sponsor CG-761 Sposnor
Rep

Command
Center

Personnel

CG-Pacific Area

DOG

 43

discussed at a later time. This process proved to be especially useful in keeping the

group on task and focused, given the compressed schedule of the MASI system. Another

outcome of these frequent meetings was that no issues went unresolved for more than one

or two days. When challenges did come up, they were discussed as a group, rather than

taking a parochial perspective. This allowed somewhat of a 360° view of the issue and

generally resulted in a much more fruitful solution.

Another valuable contribution to the effort was having the actual end users

participate in both the daily and the weekly meetings and communicating with them face

to face. Given that they were going to be the ones using the system on a daily basis, their

input proved to be invaluable, and their contributions helped limit requirement

ambiguities. The developers were able to explain challenges they were facing, and trade-

offs could be agreed upon and understood. Additionally, priorities could be adjusted

accordingly. Having access to the end user with this frequency also facilitated the

development of training for the new system. Having the end user present during the

development process allowed for a more thorough understanding of the system in a more

contextual sense. The end user was also able to communicate actual workflow that

would be required of the system, and engineering “best guesses” were eliminated from a

developmental perspective.

In the MASI project, formal communication with senior leadership occurred on a

weekly basis; although this communication was more frequent than communication in the

WatchKeeper project, it was far less cumbersome because it lacked the WatchKeeper

project’s reporting requirements. The report that was generated for the MASI project was

more anecdotal yet more useful when it came to relaying ideas, challenges, and the actual

status of the project. The format and amount of information that was relayed during the

MASI project wasn’t regimented, but the content was. As a group, we felt that it was

more important to capture accurate information rather than a specific amount of

information. If there was nothing to report, then there was nothing to report. The group

felt no obligation to fabricate information to placate leadership, and leadership

appreciated this. The report that was generated represented every stakeholder’s priorities,

and issues that could not be agreed upon were identified as such. If issues arose from the

 44

report, the team met within a day to address those issues. Given the political and

technical issues surrounding the MASI project, this form of communication helped to

ease any concerns in a timely manner. This frequent reporting also facilitated the means

for any course corrections that senior leadership felt prudent to address quickly.

M. MASI: OTHER FACTORS

As previously stated, the MASI project was originally scripted to be one third of

the WatchKeeper project (with the other two thirds being IVT and OM), but was directed

to move out independently from the WatchKeeper effort. The reason for this push was

that the designated approving authority (DAA) deemed MASI’s predecessor Maritime

Homeland Security Operations (MHSOPS) to be a security risk to the Coast Guard

enterprise. The MHSOPS system was used as the prototype for the MASI project and

provided an operational capability to the DOG. The DOG on a daily basis used

MHSOPS, and if turned off, it would critically reduce the unit’s operational

effectiveness. Therefore, there was pressure to deploy WatchKeeper, because of the

security risk that MHSOPS posed—yet at the same time, the project team had to develop

the system to meet the workflow of the DOG. From the DOG’s perspective, it did not

want a new system because the system it was using already worked, and it did not want

the aggravation of having to learn a new way of doing business. The leadership for the

DOG was extremely concerned about turning MHSOPS off because it was their primary

IT tool used for missions, and they had little faith that the new system (MASI) could be

fielded in a timely fashion. Therefore, getting the DOG’s buy-in and commitment was

crucial.

From an acquisition and project management perspective, the challenge was in

trying to use existing doctrine (SDLC) to guide the MASI project within the compressed

timeline. The DAA, the official in charge of assessing the risk of a system within an

enterprise, ordered that MHSOPS be off-line within 90 days, thereby marking the line in

the sand for the delivery date for MASI. The SDLC’s requirements could not be met in

the timeframe established by the DAA or in the timeframe, in which MASI was being

generated, so therein was the real challenge. The DAA, which is part of CG-6 and which

 45

owns the SDLC process, was requiring MHSOPS to be turned off and MASI to be

deployed in a timeframe outside the realm of possibilities with respect to meeting the

SDLC mandates. This quagmire created tension within CG-6 that carried over to the

MASI project team. How could the team meet both requirements? The MASI team

members attempted to establish a quasi-SDLC approach, and tried to customize the

documentation requirements of the SDLC to meet the MASI project needs, but this was

an exercise in futility given the delivery schedule of the project. Another challenge was

that the engineering approach in use to deliver the system did not dovetail with the SDLC

requirements, regardless of how hard the group tried to make it fit. The team was

meeting more often and delivering requirements without having required documents

generated. This issue was eventually resolved with the agreement among team members

and leadership that the only required documents for the initial MASI effort would be

requirements documents and testing documents. The other mandated items would be

addressed in future builds and when MHSOPS was off-line.

N. MASI OUTCOME

I would consider the MASI project a success, as it was delivered on time to meet

the security risk identified by the DAA, while meeting the requirements of the DOG (end

user). The project went from concept to delivery within three months with very little

funding. With respect to MASI’s contribution to the WatchKeeper project, this

integration still had not happened at the time this thesis was written. However, this is not

the fault of the MASI project not having the required capability, but rather the

WatchKeeper project’s inability to integrate the two systems. I will explore the MASI

project’s outcome further in Chapter IV.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

IV. PROJECT IMPACTS

In this chapter, I provide the important variables for both the WatchKeeper and

MASI projects. I analyze and interpret variables that impacted the projects, using a

similar format to Chapter III. I examine the variables, process and doctrine (rigidity),

progress measurement, stakeholders, communication, and other factors of both projects. I

then provide a relative score on a scale of 1 to 10 of these variables on how well each

respective project did in that area. For example, if the project did well in that area, the

score would be closer to 10, if the project did poorly, the score would be closer to 1. I

also provide the effect on cost, schedule, and performance the respective variable did.

For example, I examine the progress measurement variable for both the WatchKeeper

and MASI projects; I rate it with a relative score, and then provide the effect of that score

on the project’s cost, schedule, and performance. Finally, the chapter ends with a

comparison of both the WatchKeeper and MASI projects with agile system development.

A. WATCHKEEPER PROCESS AND DOCTRINE (RIGIDITY)

As I stated in Chapter III, WatchKeeper used the MSAM and acquisition life-

cycle process to manage the project. These processes are defined by upfront planning,

formal documentation, and a linear phase approach, and do not provide an opportunity

for the program to move back to previous phases (Benito, Casagni, Mayfield, &

Northern, 2010). WatchKeeper was to deliver new capabilities that had never been

delivered with previous IT systems. As such, WatchKeeper by definition was filled with

many uncertainties with respect to requirements, yet because of the doctrine that was

being followed required that these requirements be accurately defined upfront. One

factor that led to the uncertainty with requirements was that the end user had a difficult

time defining what was needed or desired. This uncertainty with requirements may be

the primary reason for the difficulties the WatchKeeper project faced (Atkinson,

Crawford, & Ward, 2006). Adhering to the heavyweight process outlined with the

MSAM and acquisition mandates, forced the program and project to get everything right

the first time, which is an impossible task if the desired results are uncertain.

 48

Additionally, these heavyweight processes were designed for large weapon systems and

not IT systems (Benito et al., 2010). As Duquette et al. (2008) describes, “Typically, the

acquisition development cycle is quite lengthy, as much as 5 to 10 years; and this

development cycle is too long for IT programs” (p. 25). By the time these technologies

are fielded, they are outdated and no longer address the needs of the end user.

The Joint Capabilities Integration and Development System (JCIDS) is the

process in the acquisition cycle that is designed to reduce uncertainty with development

by focusing on needed capabilities, rather than future threats. Although the JCIDS

process is an effort to reduce ambiguity with the requirements phase of the process, it is,

in my opinion, still far too cumbersome for the delivery of IT systems. As such, I feel

that the WatchKeeper project was handcuffed from the very beginning because of the

uncertainty with the requirements and that an agile approach would have produced better

results. WatchKeeper’s shortcomings can be illustrated with an excerpt from a 2010

letter from the sponsor’s representative (CG-761) to the PM (CG-9):

As the Sponsor Representative for the information management
(WatchKeeper) component of the Interagency Operations Center I have
serious concerns with the current status, progress, and direction of the
project. The project has had several system scope changes, has missed
every capability delivery date, and is currently months behind schedule on
the next deliverable. These delays reach beyond the project, and are
beginning to negatively impact both the Sector Command and port
partners alike. For example, the Operational Testing and Training
schedules have been rearranged 3-times with Sector personnel, putting an
unnecessary burden on an already over-taxed workforce. The root cause
of these issues stems from the failure to implement basic project
management tools, including an Integrated Master Schedule and an
appropriate Integrated Support staff to meet the requirements and
mandates of the project. I am no longer confident that our system
development aligns with our operational requirements; therefore, I am
again requesting detailed architecture views/diagrams, Integrated Project
Plan, a summary report of the technical challenges encountered thus far
and the action officer assigned to solve these challenges. (Sponsor
representative, personal communication, October 4, 2009)

Clearly, there were concerns from the sponsor’s representative perspective about

the management approach taken to deliver the WatchKeeper project. Many of the

project’s managerial challenges were not due to competence issues but rather to the fact

 49

that the PM had no alternative approaches other than the one dictated by the MSAM and

the acquisition process mandates. Many of these mandates added no value to the process

but had to be complied with because of the dollar threshold that WatchKeeper met. The

inflexibility of these policies increased the cumbersomeness of an already complex

project. These policies prevented opportunities for program management to seek

alternative engineering approaches more suited for a project with these characteristics

(e.g., unknown requirements, use of new technologies, large team size, and

geographically separated stakeholders) and forced the use of traditional system

development applications. As such, this traditional approach required that a plethora of

documents be generated—many of which called for detailed information that was

unknown given the uncertainty of the project requirements.

Additionally, the actual system development approach and solution were chosen

prior to establishing a requirements document. There was the nonspecific pORD that

outlined and identified ideas and concepts at a very high level, but by no means did it

provide the fidelity needed to develop an actual system or engineering solution. A

detailed requirements document did not exist because at this point, the end user (via the

sponsor’s representative) had not identified them. The Mission Engineering Book, which

would later be delivered to show workflows and business processes that WatchKeeper

would facilitate, had not been developed yet, and the missions that were to be

accomplished were not completely identified. Regardless of these facts, C2CEN set out to

start developing the system, using the pORD as guidance (Appendix 1). To add to this

problem, the developers derived the original system requirements alone—without other

stakeholders present. The impact of the first iteration of system requirements generated

by the developers in a silo would prove to be an issue that the project never recovered

from.

B. WATCHKEEPER PROJECT PROGRESS MEASUREMENT

Meeting requirements was a challenge for the WatchKeeper project. The project

requirements were not identified, so it was impossible to understand 100 percent of the

project’s scope. As stated, EVM requires full disclosure of actual results so that all

 50

stakeholders receive the same information and allows only one set of books. There were

several attempts made to accomplish this, but there was never 100 percent buy-in from

stakeholders due to a lack of trust. A measurable project baseline must be identified and

locked down for EVM to hold any value, but this never happened. There were attempts to

comply with locking down the EVM variables, but because there was not a clear

understanding of requirements, this was an impossible objective. Finally, EVM requires

that a forecast be made periodically, but because of moving baselines, shifting delivery

schedules, a number of requirements to be fulfilled per release, and closed

communication among stakeholders, the EVM effort proved to be a waste of time for

WatchKeeper.

Although a valid attempt was made to establish EVM requirements as mandated

by the MSAM doctrine, at no time was WatchKeeper close to meeting and achieving a 90

percent success rate on cost, performance, and schedule goals, as identified by the DHS

(2009) requirement. The lack of accurate EVM data contributed to the WatchKeeper

project’s failing to meet acquisition milestones on time, resulting in a loss of faith at the

DHS level. The WatchKeeper project failures with EVM are not a reflection of EVM

techniques and their usefulness; it is a reflection of poor EVM execution. If the

requirements for WatchKeeper had been understood, if communication channels had

been forged, or if the project had not been handcuffed with cumbersome mandates from

the acquisition process, the likelihood of EVM success would have been far greater. The

WatchKeeper project’s failure to implement EVM does not suggest that EVM was

incorrect; it suggests that the Coast Guard could not properly facilitate the requirements

of EVM.

C. STAKEHOLDERS AND COMMUNICATION

Additional factors that led to challenges of the WatchKeeper project included a

lack of cohesiveness among key stakeholders, a failure to communicate effectively, a lack

of trust, the geographic separation of stakeholders, and a sense that there would be

endless funding for the project. It did not matter what was done; it could always be fixed.

On more than one occasion, various stakeholders—including at the leadership level—

 51

mentioned that the first version of WatchKeeper did not count and that it was disposable.

This philosophy removed any feeling of accountability from stakeholders and perpetuated

an environment that fostered complacency and stakeholder independence. Delivering

useful code did not appear to be the primary focus; instead, meeting the mandates of the

acquisition process and the MSAM was the priority, since failure to do this would surely

derail the project at the DHS level, which would lead to a loss of funding. As a result,

stakeholders worked diligently, but independently, on delivering their required portion of

the MSAM documents, with little care as to the actual requirements or system needs.

As mentioned in Chapter III, WatchKeeper communication efforts often were in

vain. Many of the meetings were held at a distance because of the geographical

separation of the stakeholders. These consequences of non-face-to-face meetings were

misconceptions of information passed between stakeholders. Each directorate had its in-

house method for internal communication and its own dialect, but when these various

lexicons were brought together in a group setting, they did not necessarily result in a clear

understanding of the message. Document control and management were also challenges.

Despite having a consensus that it was important to maintain document control, leaders of

the project never could properly manage documents. There were many meetings where

two different versions of a document were being reviewed simultaneously, and a lot of

time was wasted simply trying to identify the appropriate artifact to discuss.

D. WATCHKEEPER OTHER FACTORS

The WatchKeeper stakeholder dynamics were interesting. Aside from the

organizational and hierarchy challenges, the biggest hurdle was the political landscape

that existed amongst stakeholders. This politically charged jockeying ended up being a

true detriment to the project. Besides the normal disagreements and uncertainties that are

present in any project, this project had a level of animosity between stakeholders because

of military ranks that were involved. There were meetings where quarreling dominated

the agenda, and there was a lack of trust between stakeholders that at times bordered on

resentment. C2CEN felt that nobody trusted its efforts, while both directorates in CG-7

felt that C2CEN was not being honest with the development efforts that were underway.

 52

CG-6 had an interesting role: C2CEN is typically tasked by CG-6, but because this

project was a major acquisition, CG-9 was in charge and directed C2CEN, which

presented internal challenges within both CG-9 and CG-6.

Senior leadership also introduced pressure to the WatchKeeper. It was often said

by senior management that this project “was too big to fail.” Therefore, the information

that was passed to the decision-makers was often a more positive perspective than reality.

No group was willing to be responsible for the failure of the project. Milestone

deliverables and expectations were all managed in a way that would present the

organizing group in the best light. From a program management perspective, it was very

difficult to gauge the true pulse of the project given these realities.

Another challenge for the WatchKeeper project was that the developers, based on

their interpretation of the pORD document, derived the WatchKeeper system

requirements independently. This introduced many challenges to the delivery of the

WatchKeeper system. The developers decided which requirements to deliver and when

to deliver them. Initially, the developers broke the requirements into three spiral

deliverables. The first spiral would deliver eight percent of the requirements, the second

spiral was slotted to deliver 12 percent of the requirements, and the third spiral would

deliver the remaining 80 percent of the requirements. After missing the delivery date of

the first spiral by 114 days, the developers reduced the targeted scope by 50 percent and

added five additional spiral releases. Again, these decisions were made independently

without input from other stakeholders.

The WatchKeeper project also failed to meet testing events. Because of this

failure, the Coast Guard finally decided—with pressure from the DHS—to reduce the

scope of WatchKeeper. Therefore, in 2010, the DHS gave the direction that

WatchKeeper was to be deployed as a technology demonstrator rather than a full-fledged

system of record, which removed the MSAM requirements from the WatchKeeper effort.

This decision came at a price. The WatchKeeper project realized substantial funding

cuts, and there was operational backlash as well. At the time of writing this thesis,

WatchKeeper is still being deployed throughout the nation at Coast Guard SCCs as a

technology demonstration, with far fewer capabilities than envisioned.

 53

E. MASI OUTCOME COMPARED TO GOALS AND OBJECTIVES

The MASI project was delivered on time, but more importantly, it met the

operational needs of the DOG. Therefore, MHSOPS could be taken off-line and the

security risk to the enterprise was removed. Another success of MASI was the

effectiveness of the training that was established and the execution of this training to the

DOG in their subordinate units. The success of this training is a direct result of having the

DOG representation during the development process. Not every desired capability was

delivered with the first iteration of MASI, but the system that was delivered could be

used effectively to accomplish the DOG’s missions. Without doubt, there is a direct

correlation between the success of the project and the development approach taken to

deliver the system.

F. MASI PROCESS AND DOCTRINE

Another factor, and quite possibly the most important one with respect to MASI’s

success, was the reality that the project did not get bogged down with documentation and

paperwork. Although it did follow the SDLC as outlined in Chapter III, it was a modified

SDLC that only required documentation that was beneficial to the development efforts.

Having flexibility within this process was incredibly useful to stakeholders. There was

no expectation to simply “check the box” for paperwork drills. It was not as if the MASI

project did not follow a process or create documentation; the MASI project simply was

allowed to modify established procedures to facilitate a more useful development

approach. Time was of the essence given the security risk identified by MHS OPS, and

the flexibility allowed for tailoring the regimented process was significant.

G. MASI PROGRESS MEASUREMENT

Another contribution to the success of MASI was the manner in which progress

was assessed. The metric that was used for assessing the progress of the project was not

EVM like that of WatchKeeper, but rather actual capability delivered by the developers.

As stated earlier, priorities were established during the daily face-to-face meetings, and

the developers used these priorities as a recipe for delivering the system. During the

weekly meetings, progress reports on these priorities were presented to the group, and on

 54

a bi-monthly basis, tangible system capabilities were demonstrated. Another crucial

component of the delivery of the MASI system was the management of expectations. By

no means was the first release of the system expected to be the end-all and be-all, but

rather it was viewed as a first foundational step in a series of releases, and everybody was

aware of this. Again, the frequent meetings, the establishment of an agreed-upon

direction, access to a prototype system (MHSOPS) as a guide, and honest stakeholder

communication simplified many of the complexities that typically hinder progress in

system development efforts.

H. MASI STAKEHOLDERS AND COMMUNICATION

Face-to-face daily communication was also critical in the delivery of MASI. I

cannot remember an instance where a key stakeholder was unaware of the progress of the

project or the immediate future goals of the effort. Face-to-face interaction was the

driving force behind this. In addition, having the developer, the customer, the testing

team, and the enterprise team communicate in the manner in which they did knocked out

many obstacles and ambiguities typical of a software development effort. As outlined in

Chapter II, people are the driving force behind successful software development

deliveries. This was realized with the MASI project.

I. MASI: OTHER FACTORS

Although the MASI project was successful, and a capability was delivered to the

operator, the MASI project still has challenges ahead. As with any endeavor, momentum

must be maintained, which requires that leadership continue to support the effort. There

is still the need to integrate MASI into WatchKeeper, and this is going to present some

challenges to both the WatchKeeper and MASI projects. With that said, if the

appropriate level of importance and support is given, there is no doubt that the MASI and

WatchKeeper integration effort will be successful.

J. WATCHKEEPER AND MASI PROJECTS RELATIVE SCORE

As described at the beginning of this chapter, I will provide a description and

metric value for variables that impacted both the WatchKeepr and MASI projects. The

 55

variable will be underlined, the project in reference bolded, and the relative score follows

the related project. The impact of the variable is then explained in relation to the effect it

had on the project’s schedule, cost, and performance, which is identified in italics.

Progress measurement: the importance of measuring the progress a software

development effort cannot be undervalued. A baseline must be established and locked

down so that a road map can be established. Progress measurement is the metric that is

used to communicate work that has been done and work that remains, to both

stakeholders within the project and interested parties outside the project.

WatchKeeper

How well the WatchKeeper project did with progress measurement on a scale of

1-10 (1= low, 10= high): 2

Effect

Schedule: although EVM was used for the project, the deliverables were never

base-lined or locked down. Requirements were moved from date to date, or deleted all

together by the developers. As such, clear deliverables were never established; what was

being delivered and when was never clear, which made scheduling extremely difficult.

Milestones were established and missed. When this happened, another schedule was

established and new milestones were identified. These new milestones contained more

deliverables than the previous milestone, and typically less time.

Costs: the impact from the lack of an honest progress measurement tool is

obvious. The WachKeeper project could not definitively express progress within the

project because of the lack of implementing a progress measurement tool. This had a

negative impact on the costs of the project.

Performance: with the requirement delivery schedule never being established, it

was unclear as to what the final capabilities of the system would yield. To date, the

WatchKeeper system still has not successfully passed Key Performance Parameters

(KPP’s) and Critical Operating Issues (COI’s) tests, and is still being fielded as a

technology demonstration to end users.

 56

MASI

How well the MASI project did with progress measurement on a scale of 1-10

(1= low, 10= high): 7

Effect

Schedule: MASI was a smaller project in scope and therefore easier to manage

with respect to schedule. There was a prototype to work from (MSHOPS) and the

number of requirements identified for delivery was minuscule compared to that of

WatchKeeper. As such, the scheduling was realistic with end user priorities being the

focus of delivery. If the requirements were not a priority and an engineering possibility

given time or technical skill, the requirement was pushed to a later iteration/deliverable.

These issues were identified during the daily face-to-face meetings with stakeholders.

Cost: the majority of the capabilities were delivered to the end-user within budget.

Performance: the majority of the capabilities was delivered to the end-user and met the

identified requirements.

Stakeholder: I have broken down stakeholders into the following categories: trust

among stakeholders, stakeholder professional experience, stakeholder proximity to each

other geographically, stakeholder support of the project, and finally stakeholder turnover.

Trust amongst stakeholders is vital for successful software development efforts. There

must be a genuine trust of each other so that key metrics of progress have validity.

Professional experience with the stakeholder’s respective role is important to understand

within a project so that adequate time can be allotted for training as necessary, and

expectations can be managed with expected time to complete a task. Obviously, the more

experience a stakeholder has in their respective role, the less time would be needed for

training and theoretically the more experience a stakeholder has, the quicker a task can be

completed. Stakeholder geographic proximity with each other affects the manner in

which the stakeholders communicate, perform their respective tasks, and interact with

each other. The closer the stakeholders are, the easier it is to perform these functions.

Stakeholder Support of the project is critical. Without genuine support of all stakeholders

 57

involved with the software development project, the project will be hampered. By

support, I am not only referring to funding, but I am also referring to staffing, leadership

support, belief in the project, and how the project will be integrated within into the

overall enterprise of the organization. Finally, stakeholder (personnel) turnover reflects

the impact of project stakeholders leaving a project and being replaced. Stakeholder

turnover happens for a myriad of reasons, and is especially prevalent within DoD and

DHS given rotations, promotions, and changing priorities. As such, the impact of this

disruption must be realized, and the impact on the project’s progress must be understood.

When new stakeholders are brought on to a project, this individual must be trained in the

technology, the goals, and the overall strategy of the project. This adds time to the

project.

WatchKeeper

How well the watchKeeper project did with the stakeholder variable on a scale of

1 to 10 (1= low, 10= high):

• Trust among stakeholders: 4

• Stakeholder professional experience: 4

• Stakeholder proximity to each other: 3

• Stakeholder support of the project: 7

• Stakeholder turnover: 3 (many stakeholders left the project)

Effect

Schedule: the lack of trust among stakeholders had a negative effect on the

schedule. Stakeholders often withheld information from each other, including progress

information and information about delays. The professional experience of stakeholders

was fairly low. Both the sponsor and sponsors representative had no prior experience in

their role prior to the WatchKeeper project. Developing the WatchKeeper system was

also a first for the developers of the project. Although they had prior experience with

system development, never had they taken a project on of this magnitude. The program

manager of the project had experience with acquisition and program management, but

never had the program manager been responsible for a project of this size. The

inexperience of stakeholders had a negative effect on the schedule. Stakeholders were

 58

geographically separated as mentioned earlier this thesis, and as such added a layer of

complexity to many facets of the project. This geographical separation also had a

negative effect on the schedule. Stakeholder support of the project was relatively high.

All of the stakeholders wanted the project to succeed, and all of the stakeholders realized

the value of the project for the Coast Guard. Stakeholder support did not have a negative

effect on the schedule. Stakeholder turnover for the project was high. As mentioned

earlier in the thesis, roles and responsibilities were interchanged and stakeholders left the

project for various reasons. As such, the new stakeholders coming into the project

required time to come up to speed with the happenings of the effort. This had a negative

effect on the project schedule.

Cost: the above-mentioned stakeholder variables had a negative impact on the

project, resulting in the cost being driven higher.

Performance: the above-mentioned stakeholder variables had a negative impact

on the project, resulting in reduced capabilities being delivered to the end-user.

MASI

How well the MASI project did with the stakeholder variable on a scale of 1 to 10

(1= low, 10= high):

• Trust among stakeholders: 9

• Stakeholder professional experience: 5

• Stakeholder proximity to each other: 7

• Stakeholder support of the project: 9

• Stakeholder turnover: 10 (no stakeholders left the project)

Effect

Schedule: of the above-mentioned stakeholder variables, the only variable that

impacted the schedule in a negative way was stakeholder professional experience. The

developers of the project had experience working with the technology being

implemented, and the program manager of the effort was comfortable managing MASI

project. The sponsor and sponsors representative were again relatively new to their

respective roles, but given their experience gained from the WatchKeeper project, and the

 59

high experience of the other stakeholders involved in the effort, the impact was minimal

to the schedule.

Cost: the MASI project was delivered within budget.

Performance: the MASI project delivered the capabilities identified in the

requirements.

Communication: there are several forms of communication that I’m referring to.

They are Formal (meetings, testing events, requirement generation), informal (elevator,

water-cooler, lunches, etc), written (both official project documents and adhoc email for

example), and team size. Regardless of the form, the communication must be open and

available to all stakeholders. The final aspect of communication is team size. As pointed

out by Brooks, Jr., (1982, p. 18), “communication is made up of two parts, training and

intercommunication. Of the two, intercommunication is worse. As tasks are separately

coordinated, the effort of intercommunication increases n(n-1)/2. For example, three

workers require three times as much pairwise intercommunication as two; four requires

six times as much as two, etc.” Therefore, the more stakeholders that are involved, the

more complex the communication variable becomes.

WatchKeeper

How well the WatchKeeper project did with the communication variable on a

scale of 1-10 (1= low, 10= high):

• Formal: 5

• Informal: 7

• Written: 3

• Team size: 4

Effect

Schedule: of all of the communication variables mentioned above, the biggest

detriment to the WatchKeeper project was with the written and team size variables. Given

that the trust among stakeholders could have been stronger, there were many written

communications that only reached certain stakeholders, and were purposefully withheld

from others. This includes actual project memorandums that were not routed to certain

 60

stakeholders for various reasons. Additionally, the team size of the project facilitated the

gravitation into “cliques” amongst stakeholders. These “cliques” shared emails and other

items within their group, but not outside. Many of these communications related to the

schedule, and because they weren’t open and available to all, the schedule was impacted.

Cost: a lot of time was wasted given the lack of strong communication channels,

and as such, the cost of the project was impacted negatively.

Performance: again, given the lack of communication amongst stakeholders had a

negative effect on the performance and functionality of the WatchKeeper project.

MASI

How well the MASI project did with the communication variable on a scale of 1

to 10 (1= low, 10= high):

• Formal: 7

• Informal: 9

• Written: 9

• Team size: 9

Effect

Schedule: there was no negative impact on schedule because of communication

within the MASI project.

Cost: the MASI project was not negatively impacted because of the

communication variables.

Performance: given the frequent face-to-face meetings, and the small team size,

any risks to the project were dealt with immediately and understood by all stakeholders.

As such, communication had a positive impact on the delivery of capabilities to the end-

users.

Rigidity of the development process being followed: the appropriate development

process that should be selected is dependent on the project needs. For new technologies

and uncharted efforts, flexibility is paramount. Obviously new technology requires more

 61

time to understand, forecast, develop, and implement. However, for more routine efforts,

or for maintenance and support, standardized processes might be appropriate.

WatchKeeper

How well the WatchKeeper project with the rigidity variable on a scale of 1-10

(1= low, 10= high): 3

Effect

Schedule: because of the required mandates of the MSAM and other acquisition

policies, the WatchKeeper project was handcuffed in such a manner that tasks were being

assigned just to “check the box”, despite little to no value being added to the overall

success of the project. Many man/woman hours were wasted “checking the box”, and

because stakeholders realized that these activities had no impact on the project, the

motivation to complete these tasks were extremely low. Additionally, the technology was

new to the developers of WatchKeeper, so there were many times that they were learning

“on the fly”. However, the mandate of the acquisition process requires that project needs

and engineering solution be identified upfront with little to no time for updating. Given

the new technology and experience of the developers, it was almost impossible to clearly

identify when capabilities would be delivered despite best efforts. These activities had a

negative effect on the schedule of the project.

Cost: the above-mentioned factors negatively impacted the costs of the project.

Performance: given the technology challenges, many of the capabilities were not

delivered as identified in the requirements.

MASI

How well the MASI project did with the rigidity variable on a scale of 1 to 10 (1=

low, 10= high): 9

Effect

Schedule: the MASI project was not riddled with having to meet specific

mandates. Although the SDLC was the guidance used for the effort, the project was given

flexibility as to which sections with in the SDLC would be followed. If the stakeholders

 62

felt that a certain function would add no value to the effort, it was skipped. This

flexibility enabled stakeholders to focus on value added processes, and as such the

schedule of the project was met.

Costs: cost was not impacted with the process implemented to develop MASI.

Performance: all capabilities were delivered as identified in the requirements, and

the flexibility afforded to the stakeholders was a critical reason for this.

Other factors: outside pressures refers to situations such as, political, time to

develop the project (“this project has to be done by this date, no exceptions), etc. The

more of these variables that are introduced to the project, the more likely shortcuts are

going to try to be taken. Shortcuts do not have a positive effect within the development

effort, at worst, they lengthen the effort.

WatchKeeper

How well the WatchKeeper project did on a scale of 1-10 (1= low, 10= high): 5

The WatchKeeper project had outside factors that impacted the project. For

example, given the hierarchy of the stakeholders, there were political influences of the

effort. Another critical factor that impacted the project was that the WatchKeeper project

was classified as “too big to fail”, and as such, the true reality of progress was never

ascertained or accepted.

Effect

Schedule: the “other” factors had a negative impact on the schedule of the project.

Costs: the “other” factors had a negative impact on the schedule of the project.

Performance: the “other” factors influenced the delivery of capabilities for the

project and as such had a negative impact on the effort.

MASI

How well the MASI project did with the other factor variable on a scale of 1 to 10

(1= low, 10= high): 7

 63

The only “other” factor to impact the MASI project was the pressure to deliver

something quickly so that MHSOPS could be taken off-line. This pressure was both

negative and positive to the project effort. The negative aspect was the identified

compressed timeline given to the project by leadership. The positive aspect of the “other”

factors was that leadership was motivated to get MHSOPS off-line given the security risk

it posed to the enterprise, and as such provided timely support as needed.

Effect

Schedule: the “other” factors had a positive impact on the schedule of the project

given the reasons identified above.

Costs: the “other” factors had a positive influence on the project as identified

above.

Performance: the “other” factors had a positive influence on the project as

identified above.

Table 6. Aggregated totals of WatchKeeper and MASI relative scoring

 WatchKeeper MASI

5. Progress Measurement 76. 2 77. 7

8. Stakeholder:

. Trust

. Experience

. Proximity

. Support

3. Turnover

84.

85. 4

86. 4

87. 3

88. 7

89. 3

90.

91. 9

92. 5

93. 7

94. 9

95. 10

6. Communication

. Formal

101.

102. 5

106.

107. 7

 64

 WatchKeeper MASI

. Informal

. Written

0. Team Size

103. 7

104. 3

105. 4

108. 9

109. 9

110. 9

11. Rigidity 112. 3 113. 9

14. Other Factors 115. 5 116. 9

K. WATCHKEEPER AND MASI PROJECTS COMPARED TO AGILE
DEVELOPMENT

Table 6 shows both the MASI and WatchKeeper projects compared to Boehm and

Turner’s (2004) theory of the five critical factors involved in determining the relative

suitability of agile or plan-driven methods given a project situation. The blue-shaded

boxes reflect the plan-driven approach, while the green-shaded boxes reflect suitability

more appropriate for agile methods. As clearly identified by the table, the MASI project

was better suited for an agile approach given the factors involved with the project, while

the WatchKeeper project was almost split between plan-driven and agile given the factors

involved.

 65

Table 7. The Five Critical Agility/Plan-Driven Factors: Comparison With
WatchKeeper and MASI Projects (From Cockburn et al., 2005, p. 55)

 WatchKeeper MASI
Agile

Plan Driven

Size (Number of
personnel on the
team)

Upwards of 20
people

6–8 people Well matched to small
products and teams.
Reliance on tacit
knowledge limits
scalability.

Methods evolved to
handle large products
and teams. Hard to
tailor down to small
projects.

Criticality (The
impact of
software defects
in terms of
comfort, money,
and or lives)

Low Medium
but closer
to low

 Untested on safety-
critical products.
Potential difficulties with
simple design and lack of
documentation.

Methods evolved to
handle highly critical
products. Hard to
tailor down to low
criticality products.

Dynamism (The
degree of
requirements
and technology
change)

Ambiguous
changing
requirements

Changing
technology

 Simple design and
continuous re-factoring
are excellent for highly
dynamic environments
but a source of
potentially expensive
rework for highly stable
environments.

Detailed plans and
big design up-front
are excellent for a
highly stable
environment, but a
source of expensive
rework for highly
dynamic
environments.

Personnel
(Technical
abilities as
defined in Table
3)

Low for the
task at hand

High Requires continuous
presence of critical mass
of scarce Level 2 or 3
experts (as defined
earlier). Risky to use
non-agile Level 1B
people.

Need for critical
mass of scarce Level
2 and 3 experts
(defined earlier)
during project
definition but can
work with fewer late
in the project. Can
usually accommodate
some Level 1B
people.

Culture
(Whether the
individuals on
the team prefer
predictability or
can tolerate
change)

The team was
not designed to
be flexible, nor
did the team
feel
empowered.

Team felt
empowered
.

 Thrives in a culture
where people feel
comfortable and powered
by having many degrees
of freedom (thriving on
chaos).

Thrives in a culture
where people feel
comfortable and
empowered by
having their roles
defined by clear
policies and
procedures (thriving
on order).

An interesting observation regarding the data in Table 6 is that the data reflected

in the cells of the WatchKeeper and MASI projects are the actual values from each

respective project for the corresponding variable in the row. For example, the personnel

 66

factor for the MASI project was high given the technical abilities of the project team,

while for the WatchKeeper project, the personnel factor was low, given the abilities of

WatchKeeper’s project team. Given the technical challenges of the WatchKeeper project

outlined earlier, this factor should have rated high as well, and as such would have

switched that cell’s value to green suggesting that an agile approach would have been

more appropriate. The personnel factor was not the only factor that was in error for the

WatchKeeper project. The culture factor cell, which is a gauge of how many degrees of

freedom the stakeholders have, should have been green as well for the WatchKeeper

project, given the uncertainty of many of the variables, such as vague requirements and

new technologies exploration. As outlined in Chapter II, these types of variables are

better suited for an agile approach, and as such, this box too would have been green,

again suggesting that the WatchKeeper project should have used an agile approach,

instead of a plan-driven approach.

 67

V. CONCLUSION

The primary objective of this thesis was to explore and understand factors that

may have contributed to Coast Guard IT projects that have delivered late and or out of

scope, by exploring and comparing two IT projects; WatchKeeper and MASI. Agile

software development was also examined, and a history and definitions of the various

methodologies were explained and outlined. Finally, case studies for both the

WatchKeeper and MASI projects were outlined and the variables that led to the success

or failure of the projects were explored. The variables of the WatchKeeper and MASI

projects were compared to agile system development, and an analysis was conducted to

evaluate whether agile methodologies were suitable for IT projects of this kind. Given

this analysis, I believe that agile methodologies are quite suitable for IT projects within

the DoD and DHS, and that agile development should be another tool that should be

explored as an option when developing IT systems within the government. I do not

believe that agile system development is a silver bullet that will solve all software

development challenges; it does, however, offer a refreshing approach to software

development within the DoD and DHS.

A. FUTURE RESEARCH

This thesis focused primarily on the case studies of the WatchKeeper and MASI

projects, and the variables involved with those two projects. The thesis also focused on

agile software development, the characteristics of the agile methodologies, and the

strengths and weaknesses of the methodologies. Further research is required on the

implementation of agile system development and how it can dovetail with the DoD

acquisition process and other DoD acquisition mandates.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

LIST OF REFERENCES

Argyris, C., & Schön, D. (1996). Organizational learning II: Theory, method and
practice. Reading, MA: Addison-Wesley.

Atkinson, R., Crawford, L., & Ward, S. (2006). Fundamental uncertainties in projects and
the scope of project management. International Journal of Project Management,
24(8), 687–698. doi: 10.1016/j.ijproman.2006.09.011.

Balasubramaniam, R., & Lan, C. (2007). Agile software development: Ad hoc practices
or sound principles? IT Professional, 8(2), 41–47.

Beck, K. (2000). Extreme programming explained. Boston, MA: Addison-Wesley.

Beck, K. (2003). Test driven development: By example. Boston, MA: Addison-Wesley

Beck, K. (2005). Extreme programming explained: Embrace change (2nd ed.). Boston,
MA: Addison-Wesley.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
& Sutherland, J. (2001). Manifesto for agile software development. Retrieved
from http://agilemanifesto.org/

Beck, K., & Fowler, M. (2001). Planning extreme programming applied. Boston, MA:
Addison-Wesley.

Benito, R., Casagni, M., Mayfield, K., Northern, C. (2010). Initiatives to the warfighter
(technical report WN080041.). Bedford, MA: The MITRE Corporation.

Benito, R., Casagni, M., Mayfield, K., & Northern, C. (2011). Handbook for
implementing agile in Department of Defense information technology acquisition
(technical report MTR 100489). Bedford, MA. The MITRE Corporation.

Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer, 35(1), 64–69.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline. Boston, MA: Addison-
Wesley.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings
of the 28th International Conference on Software Engineering (pp. 12–29). New
York, NY: ACM. doi: 10.1145/1134285.1134288

Bohner, S., & Coram, M. (2005). The impact of agile methods on software project
management. In Proceedings of the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (pp. 363–370). Los
Alamitos, CA: IEEE Computer Society.

http://agilemanifesto.org/

 70

Brooks, Jr, F.P. (1982). The mythical man-month: Essays on Software Engineering.
Boston, MA: Addison-Wesley.

Burd, S. D., Jackson, R. B., & Satzinger, J. W. (2012). Systems analysis and design in a
changing world [Course technology]. Belmont, CA: Cengage Learning.

Clifton, M., & Dunlop, J. (2003, September 29). What is DSDM? Retrieved from
http://www.codeproject.com/Articles/5097.

Cockburn, A. (2002). Agile software development. Boston, MA: Addison-Wesley.

Cockburn, A. (2006). Agile software development: The cooperative game (2nd ed.).
Boston, MA: Addison-Wesley.

Cockburn, A., & Highsmith, J. (2001a, September). Agile software development: The
business of innovation. Computer, 34(9), 120–129.

Cockburn, A., & Highsmith, J. (2001b, November). Agile software development: The
people factor. Computer, 34(11), 131–133.

Department of Homeland Security. (2009, October). Department of Homeland Security
acquisition manual. Retrieved from
http://www.dhs.gov/xlibrary/assets/opnbiz/cpo_hsam.pdf

Dingsøyr, T., & Dybå, T. (2008, August). Empirical studies of agile software
development: A systematic review. Information and Software Technology, 50(9–
10), 833–859.

Dingsøyr, T., Dybå, T., Moe, N. B., & SpringerLink. (2010). Agile software
development: Current research and future directions. Berlin, Germany: Springer.

Duquette, J., Bloom, M., & Crawford, L. (2008). Transitioning Agile/Rapid Acquisition.
In Handbook for implementing Agile in Department of Defense. Bedford, MA.
The MITRE Corporation.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software
development, and extreme programming: The state of research. Journal of
Database Management, 16(4), 88–100.

Extreme programming. (2000). Retrieved from
http://www.extremeprogramming.org/map/project.html

Feature-driven development. (n.d.). Retrieved from http://www.step-
10.com/SoftwareProcess/FeatureDrivenDevelopment/index.html

Fleming, Q. W., & Koppelman, J. M. (2009, March). The two most useful earned value
metrics: The CPI and the TCPI. Cost Engineering, 51(3), 16–18.

http://www.codeproject.com/Articles/5097.
http://www.dhs.gov/xlibrary/assets/opnbiz/cpo_hsam.pdf
http://www.extremeprogramming.org/map/project.html
http://www.step-10.com/SoftwareProcess/FeatureDrivenDevelopment/index.html
http://www.step-10.com/SoftwareProcess/FeatureDrivenDevelopment/index.html

 71

Glaiel, F., Moulton, A., & Madnick, S. (2013). Agile project dynamics: A system
dynamics investigation of agile software development methods (Working Paper
CISL# 2013=05). Cambridge, MA: MIT.

Government Accountability Office. (2012). Portfolio management approach needed to
improve major acquisition outcomes. Retrieved from
http://www.uscg.mil/history/docs/GAO/GAO2012PortfolioMgmt648636.pdf

Highsmith, J. (1997). Messy, exciting, and anxiety-ridden: Adaptive software
development. American Programmer, 10(1).

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development.
Communications of the ACM, 38(3), 69–81.

Lynch, C. (2011, November 4). What scrum and how do we use it? [blog post]. Retrieved
from http://www.realmdigital.co.za/post/whats-scrum-and-how-do-we-use-it//

Nerur, S., Mahapatra, R., & Mangalara, G. (2005, May). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 72–78.

Pisano, J., Teece, A., & Teece, D. J. (1997). Dynamic capabilities and strategic
management. Strategic Management, 18(7), 509–533.

Primavera Systems. (2008, November). Leveraging earned value management and IT
governance. Contract management, 48(11), 66–70.

Pruitt, J. (2011, February 12). Perspectives on software development [blog post].
Retrieved from http://blog.jgpruitt.com/2011/02/12/crystal/

Scio. (2010, February 24). Lean product software development in 4 phases [Web blog
post]. Retrieved from http://blog.sciodev.com/2010/02/24/lean-software-product-
development-in-4-phases/

Security and Accountability for Every Port (SAFE Port) Act of 2006, 109th USC 4954
(2006).

Senge, P. M. (1990). The fifth discipline: The art and practice of the learning
organization. New York, NY: Doubleday/Currency.

Sengupta, K. Van Oorschot, K .E., & Van Wassenhove, L. N., (2013). Dynamics of Agile
Software Development.

Strigel, W. (2001). Using extreme programming and other experiences. IEEE Software,
18(6), 17–18.

http://www.uscg.mil/history/docs/GAO/GAO2012PortfolioMgmt648636.pdf
http://www.realmdigital.co.za/post/whats-scrum-and-how-do-we-use-it/
http://blog.sciodev.com/2010/02/24/lean-software-product-development-in-4-phases/
http://blog.sciodev.com/2010/02/24/lean-software-product-development-in-4-phases/

 72

Suganya, G., & Mary, S. A. (2010). Progression towards agility: A comprehensive
survey. Paper presented at the Second International Conference on Computing,
Communication, and Networking Technologies, Karur, India.

Turk, D., France, R., & Rumpe, B. (2005). Assumptions underlying agile software-
development processes. Journal of Database Management, 16(4), 62–87.
Retrieved from http://search.proquest.com/docview/199601533?accountid=12702

Van de Ven, A. H., Delbecq, A. L., & Koenig, R. (1976). Determinants of coordination
modes within organizations. American Sociological Review, 41(2), 322–338.

Wells, D. (2011). Extreme programing project. Retrieved from
http://www.extremeprogramming.org/map/project.html.

http://www.extremeprogramming.org/map/project.html

 73

APPENDIX

 74

 75

 76

 77

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Organization of the Study
	B. Motivation
	C. Research Questions

	II. What Is Agile?
	A. MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT
	B. General Guidelines to Agile (Basic Theories)
	C. Agile Development Methods
	1. Crystal Methodologies
	2. Dynamic Software Development Method (DSDM)
	3. Feature-Driven Development
	4. Lean Software Development
	5. Scrum
	6. Extreme Programming (XP)

	D. Assumptions and Impacts
	1. Assumptions
	2. Impacts
	3. Process and Documentation Impacts
	4. Comparison to Traditional Engineering Methods (Plan Driven)
	5. When to Apply Agile Development

	III. WATCHKEEPER AND MASI
	A. WatchKeeper Goals and Objectives
	B. WatchKeeper Project Process and Doctrine
	C. WatchKeeper Project Progress Measurement
	D. Stakeholders, Roles, and Responsibilities
	1. Sponsor and Sponsor’s Representative

	E. Communications
	F. Other Factors
	G. WatchKeeper Outcome
	1. WatchKeeper Outcome Compared to Goals and Objectives

	H. Mission and Asset Scheduling Interface (MASI)
	1. MASI Goals and Objectives

	I. MASI Project Process and Doctrine
	J. MASI Project Progress Measurement
	K. Stakeholders, Roles, and Responsibilities
	L. Communications
	M. MASI: Other Factors
	N. MASI Outcome

	IV. project Impacts
	A. WatchKeeper Process and Doctrine (RIGIDITY)
	B. WatchKeeper Project Progress Measurement
	C. Stakeholders and Communication
	D. WatchKeeper Other Factors
	E. MASI Outcome Compared to Goals and Objectives
	F. MASI Process and Doctrine
	G. MASI Progress Measurement
	H. MASI Stakeholders and Communication
	I. MASI: Other Factors
	J. WATCHKEEPER AND MASI PROJECTS relative score
	K. WATCHKEEPER AND MASI PROJECTS COMPARED TO AGILE DEVELOPMENT

	V. CONCLUSION
	A. Future Research

	list of References
	appendix
	Initial Distribution List

