
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2000-06

What's Wrong with DoD's So-Called
Information Architectures And What We Ought
To Be Doing About It

Buddenberg, Rex
Monterey, California: Naval Postgraduate School.

https://hdl.handle.net/10945/37835

Downloaded from NPS Archive: Calhoun

What's Wrong with DoD's So-Called Information Architectures
And What We Ought To Be Doing About It

Rex Buddenberg
Naval Postgraduate School

Monterey, Ca 93943
http://web1.nps.navy.mil/~budden

March 2000
What are we after?

Interoperability. Components of multiple programs, services and allies need to work
together. This paper accepts without further argument that improved information systems
can improve combat power, including the deterrence capability that combat power
confers. This paper also recognizes that the list of other programs that one must be
interoperable with is indefinitely long. Therefore, an open-ended solution is a
fundamental requirement.

This leads us directly to the need for an architecture. We need a common design vision
that each program manager or procurement agent works to fit into. Defining and
articulating such an architecture is my purpose here.

Large Information Systems.

We have evolved and codified a program manager doctrine for executing large programs,
both in the military and elsewhere in government. This methodology concentrates enough
authority in the hands of the program manager that he can execute the program and
deliver the product. For industrial age, platform-oriented weapons systems, this
methodology works tolerably well.

But as we consider how to build large1 information systems, we find that the
conventional program manager metholology does not work - at least not without some
modification. Information systems cut across multiple platforms. Indeed, interoperability
impacts an indefinitely large number of diverse platforms when we consider multiple
services and allies as within the scope of 'enterprise wide'. It is not conceivable that we
would give any program manager that much authority. Further, if we tried, the mega-
program would be so large that it would collapse of its own weight. Indeed, the landscape
is littered with far less sizable information system programs that have failed.

We cannot deliver an enterprise-wide information system by simply assigning the job to a
single program manager.

1Buzzword: enterprise-wide.

On the other hand, it appears entirely practical to achieve the end in two stages:

• First, require all information systems to be cross-program interoperable. How to
achieve this is the subject of this paper.

• Second, include the interoperability requirements in each program manager's
charter.

A large enterprise-wide information system consists of the deliverables of innately
interoperable, but modest programs. Each program, because of its modesty, is practical;
their sum is the enterprise-wide information system.

What's wrong?

We must deconflict the definitions of architecture.

We have voluminous documents with the term `architecture' in their titles in DoD. But
none of them are truly architecture and they don't provide the tools that the CIO needs to
reach the lofty interoperability goals desired. Dealing with these documents and their
committees over the years has convinced me that we are making this problem far harder
than it needs to be. And much of the time we're shooting at the wrong target.

I include among this rogues gallery of architecture wannabes the several `Joint Tactical
Architectures' , the Technical Architecture for Information Management (TAFIM), the
C4ISR Architecture Framework, the Core Architecture Data Model, etc.; the JTAs are
sacks full of standards but there is no architecture. Dilbert illustrates this point perfectly.
The rest are simply chasing the wrong definition.

Further, polluting the landscape with multiple definitions of `architecture' - as in
operational, technical and systems architectures - lends little clarity. It may help with
infrastructure, but not much with architecture. This muddle badly confuses program
management with architecture.

Dilbert and the Salesman2

How did we get into this mess?

In order to chart a way out, it helps to know how we got in. Part of the problem is
undiciplined definition, part is committee dynamics.

Undisciplined language. We can all agree that an architecture is necessary3, but
definitions of architecture vary widely. Indeed, the US Department of Defense
recognizes three definitions that are pursuing at least two divergent objectives.

The best, and applicable, definition I've found for `architecture' is "Design. The way

2Scott Adams. My clipping says 4/11 c 1994, reprinted in The Dilbert Principle, Harper 1996, p.216.
3In the context of the FY00 DoD Appropriations Law contains the following: "SEC. 8121. (a)

REGISTERING INFORMATION TECHNOLOGY SYSTEMS WITH DOD CHIEF INFORMATION
OFFICER.--After March 31, 2000, none of the funds appropriated in this Act may be used for a mission
critical or mission essential information technology system (including a system funded by the defense
working capital fund) that is not registered with the Chief Information Officer of the Department of
Defense. A system shall be considered to be registered with that officer upon the furnishing to that
officer of notice of the system, together with such information concerning the system as the Secretary of
Defense may prescribe. An information technology system shall be considered a mission critical or
mission essential information technology system as defined by the Secretary of Defense.

"(b) CERTIFICATIONS AS TO COMPLIANCE WITH CLINGER-COHEN ACT.--(1) During fiscal year
2000, a major automated information system may not receive Milestone I approval, Milestone II
approval, or Milestone III approval within the Department of Defense until the Chief Information
Officer certifies, with respect to that milestone, that the system is being developed in accordance with
the Clinger-Cohen Act of 1996 (40 U.S.C. 1401 et seq.). The Chief Information Officer may require
additional certifications, as appropriate, with respect to any such system."(2) The Chief Information
Officer shall provide the congressional defense committees timely notification of certifications under
paragraph (1). Each such notification shall include, at a minimum, the funding baseline and milestone
schedule for each system covered by such a certification and confirmation that the following steps have
been taken with respect to the system:

 (A) Business process reengineering.
 (B) An analysis of alternatives.
 (C) An economic analysis that includes a calculation of the return on investment.
 (D) Performance measures.
 (E) An information assurance strategy consistent with the Department's Command, Control,

Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) Architecture
Framework."

components fit together."4 This definiton is the dictionary term that is useful for cross-
program interoperability purposes and is prescriptive in nature.

The other legitimate dictionary defintion of architecture that is descriptional, as
"architecture n. ... 3. A style and method of design and construction <Roman
architecture>"5. 'All the buildings at the US Coast Guard Academy are of Georgian
architecture.' This is a taxonomic, not prescriptive, definition so it's useful for describing
a style, but does not help us in our quest for interoperability. This paper does not use this
definition, although both the 'systems architecture' and 'operational architecture' official
DoD definitions root to this version6 (but not the IEEE Dictionary definition of 'systems
architecture', confusingly enough).

Beyond these definitions, we have a lot of just plain sloppy terminology abuse. These
things are blamed on the architect, but they are not architecture:

• - infrastructure ('system of public works')
• - architecture in the plural (usually descriptions of infrastructures)
• - provisioning ('allowance parts list', 'range and quantity of items', configuration)
• - systems engineering (getting the right boxes)
• - machine language dictionaries, as in 'instruction set architecture' for 'Intel

Architecture' chips or MilStd 1750 processors.

The prescriptional, design, definition of architecture - as the means to interoperability - is
the proper area of concern to the architect (CIO). These other definitions of the term
properly belong within each program manager's domain.

4From FOLDOC, Free On-line Dictionary of Computing, http://foldoc.doc.ic.ac.uk. My next favorite one is

in the IEEE Standard Dictionary of Electrical and Electronic Terms. You have to look under S for
system architecture: "The structure and relationship among the components of a system."

5Webster
6The DoD definitions of `architecture', `technical architecture', `operational architecture', and `systems

architecture' can all be found in the DoD Joint Tactical Architecture (http://www-jta.itsi.disa.mil/jta).
These fail the Occam's Razor test, and you should beware anytime anybody uses the A word in plural as
does Section 3 of the C4ISR Architecture Framework - we need a single information architecture.

Committees. All of the existing `architecture' documents are a product of committees7.
Enter the natural bureaucratic, committee tendencies: reach a common denominator that
all on the committee can agree upon. Motivation was less to do something good; more
not to do something bad. As a result, we got deforestation without compensation8.

Some of the standards are mutually contradictory and unnecessarily complicated, but
that's secondary: none of these committees produced anything so risky as a real
architecture. Ironically, we seem to have produced the inverse of the crypto system that is
described by Lt Keefer to Ens Willie Kieth in The Caine Mutiny: "The Navy is a master
plan designed by geniuses for execution by idiots9." We can all agree that standards are a
necessary part of architecture. But the various Joint Technical Architectures are mere
collections of standards - not architecture10. The committees tended to work on the things
they knew how to work on - compendia of standards - rather than the things that needed
to be worked on. This well-meaning work has diverted us from the main objective of an
architecture.

Measures of Effectiveness.

Settling on the applicable definition of architecture is the first step. But it won't do any
good to settle on one if there's no payoff, so we need to tie the definition to some profits
first. Here's my list:

• simple. Clauswitz was right. So was Occam. If an architecture requires two inches
of paper to specify, it's unworkable.

• minimal and extensible. A `kitchen sink' approach routinely sinks of its own
weight11. Good Sailors will find creative ways to use the tools provided and that

7Some were called IPTs: Integrated Product (or Process) Teams. They're still committees.
8Adams, Scott, The Dilbert Principle, Harper 1996, p76. Original print 1/16/1995.
9Wouk, Herman; Doubleday & Co, 1951. This quote appears on p.120.
10DoN CIO's IT Standards Guidance is more honest in this regard. It explicitly says `standards guidance',

not architecture. Standards guidance is what it delivered.
11The Internet Engineering Task Force has demonstrated repeatedly that a minimal protocol that is

extensible is a powerful and practical tool. The Multimedia Internet Mail Extensions (MIME) is an

creativity (which can translate directly into combat potential) needs to be enabled.

• scaleable. Local activities must fit into a larger whole. And the whole is likely to
grow somewhat larger than originally planned12.

• real. We can specify an architecture that requires no uninvented technology to
implement, without compromising the extensibility to incorporate new technology
as it appears.

• platform and function independent. A sensor module is a sensor module; whether
it is carried by a ship, tank, individual, aircraft, or is fixed to a structure is not
material to the architecture. Further, the architecture should be neutral regarding
what the sensor does.

Real architecture.

Architecture is "Design. The way components fit together."

Applying the definition. All information systems, whether tactical or administrative, can
be decomposed into Sense, Decide and Act functions, interconnected by
communications13. Complexity can be explained by nesting and chaining14. `Bad'
architecture can generally be identified as

1)situations where the module boundaries are incorrectly articulated - we got the
boxes mismodularized, and

2) situations where complexity doesn't cleanly nest15.

The core of architecture must be a modularization methodology, implemented by a
standard set of interfaces for these three classes of boxes and the network that defines

excellent example: there are only a handful of top-tier standard data elements: text, image, audio, video,
etc. But implementors are free to add and register second-tier elements to suit needs. MIME, as a result
of its flexibility and extensibility, has become the means both for e-mail attachments and World Wide
Web object definitions. By contrast, the X.400 e-mail standard was unblessed by concurrent
implementation and proved far too complex to be usable. The internal conflicts only became apparent
when programmers attempted to actually build X.400-compliant products. (Several of those
implementors gave up in disgust and invented MIME).

12'Enterprise-wide' is indefinitely large. The Internet itself is my best example. None of the designers of IP
thought that we'd ever exhaust a 32-bit address space and none of the designers of RIP ever thought that
the diameter of the Internet would exceed 16 routers (the maximum hop count supported by RIPv1).
The Internet has successfully scaled by several orders of magnitude.

13You can mentally apply the sense/decide/act model to garden variety information systems like the
paycheck system - the personnel clerk is acting as the sensor, collecting data. Printing the paychecks is
the Act module. The similarity to the late Col John Boyd's OODA loop is not entirely accidental.

14Chaining: in the case of the paycheck illustration, output (action) of this loop becomes input to your
bank's sense/decide/act loop.

15These situations are most closely illustrated by Edsgar Dykstra's indictment of the GoTo statement in
FORTRAN. He held that the infamous GoTo was the progenitor of unstructured spaghetti code.

how they fit together. If we succeed, then sensors bought from one program can be
interconnected with decision support modules provided by a different program. Without
knowing a priori what needs to fit together. The remainder of this paper outlines these
interfaces.

The elements.

We need a small handful:

• A network.
• An interface definition for attaching end systems to the network.
• An interface definition between end systems.

Network Centric16.

A coherent architecture must use a common network structure. To wit: internet
technology. The Internet is a complex system. But most of the complexity can be masked
and is not important to the end systems that we attach to it. The border of the network is a
local area network.

The fundamental rule of network centric is that all end systems (sense, decide and act)
attach to the network, never directly to each other. This allows for scale and redundancy
- replication becomes easy. And it allows the end systems that are products of multiple
programs to be attached to the same network.

We also place ourselves in a position where we can leverage commercial internet
technology. We can adapt to meet our needs rather than designing from the beginning.
Further, most of the scale problems likely to be present in a military intranet will have
been found and solved in the commercial world first.

A few assumptions about the network need to be specific:

• within the network cloud we have e-mail Message Transfer Agents and
• network monitoring capability that uses SNMP.
• We need a PKI17 and
• must support QoS services.

The first three of these services are actually delivered by end systems; the last is
delivered by the routers in the network. The network can and should support many other
services but these are the ones that are architecturally significant. This is an expansive

16See http://web1.nps.navy.mil/~budden/lecture.notes/net_centric.html for a fuller treatment.
17Public Key Infrastructure, in turn, implies a directory structure. This directory may do many things, but

the architectural requirement is that it authentically serve public keys. Resistance to denial of service
attacks, link crypto, low probability of intercept and detection are all issues that belong inside the
network cloud; they are not of architectural concern to end systems attached to the network.

definition of the internet and its services, but nothing that isn't available today.

We now also have means for simplifying the communications requirements: all the
programs within the network cloud, such as satellite communications programs, wireless
LANs, link crypto, spread spectrum communications, etc., should be optimized to haul IP
datagrams. These issues and components are invisible to the end systems attached.

Good network citizens: end system < - > network interface.18

The first architectural rule is that all end systems attach to the network; never directly to
each other. End systems can be easily attached to an internet ... providing that these end
systems qualify as Good Network Citizens19. A Good Network Citizen should have:

• - a LAN interface
• - an 'enveloping' interface.
• - a management interface.
• - a PKI-base capability to authenticate itself
• - an ability to request QoS services if best-effort delivery is not adequate.

This is deliberately sparse. Details of protocol stacks are not explicit and the architecture
is neutral regarding the operating system used inside a module. However, the
specification is sufficient. And if something is missing, the hooks are all there to do
modifications without wholesale changes to the end system.

LAN Interface. In the vast majority of cases, a 10 Base-T ethernet interface will do. Few
end systems can produce enough volume of data to significantly load a 10M ethernet.
Reasonable alternatives include other routable networks20.

Looking briefly inside the network cloud, we can easily translate from one of these LAN
interfaces to something else by use of routers and bridges (switches). So more detail here
will complicate the picture, but not improve it.

Enveloping interface. End systems should deliver data in MIME-compliant e-mail. If this
interface component meets the needs, don't look farther21. You get these things:

18See http://web1.nps.navy.mil/~budden/lecture.notes/good_net_citizen.html for a fuller treatment.
19The 'toaster' moniker is Internet in-crowd. Early demonstrations of SNMP demonstrated the flexibility to

manage devices other than conventional computers and routers. One of the legends is the SNMP-
managed toaster at an Interop exhibition.

20I can agree that the RJ-45 physical connector for 10Base-T ethernet is a bit flimsy for exposed locations.
But connectors can be beefed up; this is a packaging, not an architectural issue. Other reasonable
alternatives include routable LAN technology such as FDDI or FiberChannel. But eschew serial
interfaces (RS-232, Mil-1379) and non-routable data links (Mil-1553, Link 11).

21E-mail is an 80% solution. One place to look farther, especially for information dissemination tasks, is
world wide web technology. Coupled with multicast and distributed servers, this can be a very powerful

• - the data will tend to be organized in fields22 in order to meet the MIME
definitions. This allows the data to be poured into a database at the destination.

• - we've gotten to the point where data element standardization can be performed.
This part of the definition definitely does not address or solve this important
problem, but it sets you up for it. See the next section.

• - it's hard for the vendor to provide you with what you asked for without also
providing you an e-mail user agent, and a TCP/IP protocol stack in the end
system. Whether you asked for it or not.

• The e-mail interface affords us enormous flexibility. If we need to direct the data
to an unplanned-for destination, all that must be done is to amend the e-mail
addressee list (or an alias in an MTA somewhere23).

Management interface. Since we want the data remotely, we need to be able to `read the
dials' and 'twist the knobs' remotely too. The proper vehicle is a Simple Network
Management Protocol interface. Specifically in the form of the Management Information
Base (MIB).

Public Key Infrastructure. With the growth particularly of remote sensors, the need to
authenticate the data to preclude spoofing will become quickly evident. With stovepipe
information systems, membership on the network implied authenticity; this assumption
now disappears. And the data from some end systems requires confidentiality in addition
to authenticity. These requirements can be achieved by upgrading the e-mail user agent in
the end system to support S/MIME and by provision of a Public Key Infrastructure within
the network support.

Quality of Service (QoS). If best effort delivery (the norm in the Internet today) is
adequate for the end systems in a particular information system, then skip this paragraph.
If differential services or bounded delay delivery24 are requirements, then the interface
needs to support Differential Services or RSVP, respectively.

The purpose of this interface definition is to allow an end system, whatever its function or
location, to be attached to a network. More importantly, it's about all that an end system
designer needs to know about the network in order to function effectively - we are
partitioning the knowledge requirements in a way that allows the divisions of labor that

and efficient capability. Other internet applications are acceptable but beware those that must penetrate
firewalls and cannot be easily proxied. Also beware those that cannot provide authenticity and
confidentiality via Public Key Infrastructure.

22The e-mail folks call these 'body parts'; the database folks call them 'fields'.
23MTAs also do (incomplete) multicasting. If you send e-mail to multiple addees that are all served by the

same MTA, your MTA will only send a single copy to that site; replication occurs there. The
incomplete part (technology exists, implementation doesn't) is that we don't yet have the practical
mechanism for multicasting to multiple MTAs (as in a mail server on each ship). All this is an
efficiency issue, not an architectural one.

24Bounded delay delivery or deterministic delivery is disciplined language; 'real time' isn't so I don't use it.

typify industrial engineering.

The first big step. It is worth noting that even if we fail to achieve true interoperability
across systems (the modularizaiton issue in the next section), we have taken a big step
forward in getting even the non-interoperable components onto a common network
foundation. Getting just this far has profit.

Modularization: end system < - > end system interface25.

Making the modularization match the sense, decide and act taxonomic functions is the
second big step. This transforms the taxonomy into an architecture. Three rules apply:

• make the functions of sense, decide and act match the module boundaries.
Avoid, in particular, placing single sensor integration functions in the decision
module26. Modularize the end systems consistently to increase the probability
that a sensor originally part of one program can provide data effectively to a
decision support module that was part of another.

• Nest cleanly. The best illustration is in structured software langages that make
it very difficult for a subroutine to return to any place other than where it was
called from. Clean nesting allows reuse of modules and building of arbitrarily
complex information systems.

• Chain properly. Ensure that the act function (not the decide) of one system
represents the sense function of the next system. Recognize sense-decide-
decide-act chains not as chaining at all, but as poor (but often necessary)
halfway steps that should only be indulged in to accommodate legacy.

My classes have produced case studies of information systems that followed all the
standards checklists, and still produced Bad Architecture. Most of these had to do with
poor modularization between end systems, such as attempting to perform Sense
functions in the Decide module. The parts had the right interfaces, but they were
misshapen. In addition to the specific information system implementation being klutzy,
all the opportunities to take output from one sensor and pipe it into a different decision
support module were lost.

Proper function-to-module mapping in sensors might also be characterized as complete
data reduction. Examples might be integrating noisy data over time to improve its quality
(scan-to-scan correlation in radars is one instance). Another facet is to have the radar
produce its data in a tabular form (track reports) that are easily exported to a common
tactical picture database rather than in the customary form of video27. Our architectural

25See http://web1.nps.navy.mil/~budden/lecture.notes/it_arch/modularization.html for a fuller treatment.
26We have a lot of legacy where the first order fusion is done in a central computer; the legacy reason has to

do with the expense of CPU horsepower. That's clearly not the case today.
27Note that a side effect of improving the ability to integrate the data is a reduction in the number of bits that

rule of thumb is that Sense modules should do all the first order fusion in situ.

The data fusion community produced a taxonomy and dictionary that perhaps has some
value here. They define first order fusion as single-sensor fusion - analogous to the the
previous paragraph. Second order fusion is similar-sensor fusion such as producing a
tactical plot using data from multiple radars or producing a comprehensive paycheck
database from input data from multiple (but similar) payclerk sources. Third order fusion
is heterogeneous sensor fusion. An example might be overlaying the composite radar
picture with meteorological data. For architectural purposes, these complex topics can be
reduced to a single thumb rule: second and third order fusion belongs in the Decide
module. Trying to value-add it into a Sense module will inhibit scaling and is
consequently not clean architecture.

Data element standardization. Once we do the modularization - but not before - we can
tackle the data element standardization problem with some discipline. Now we can
standardize the data elements either by using the repository system or some other
means28.

Conclusion.

This paper has prescribed, at the top level, an information system architecture. It:

• is top down. Complexity can be decomposed. The overall model is simple.

• is arbitrarily scaleable. We can make the infrastructure as large and complex
as needed as long as we maintain the building blocks.

• leverages commercial internet technology.

• allows incremental program building, controlling risk.

The part of the architecture that I have described that cannot be reduced to checklists is
the modularization problem. The best I can offer are the thumb rules; beyond that subject
matter expertise - the domain of the program manager - is still important. The
architecture cannot be entirely designed for execution by idiots.

A tacit part of this prescribed architecture is that it minimizes the interference that the
architect poses to the multiple program managers that he must harmonize.

must be transmitted across the network.

28Another of the publications that has architecture in the title but isn't is the Core Architecture Data Model
(CADM). It becomes useful once we get the modularization problem solved, but not until. Precisely
how the data element standardization occurs is not a primary issue, as long as it happens. There are at
least two usable approaches. One is the procedure-oriented approach extant in DoD today, using the
data repositories for storing metadata. Another is the object-oriented approach of CORBA and netCDF
where the metadata is included with the data itself.

