
Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2004

Simkit Analysis Workbench for Rapid

Construction of Modeling and Simulation Components

Buss, Arnold

Monterey, California: Naval Postgraduate School.

http://hdl.handle.net/10945/37865

Downloaded from NPS Archive: Calhoun

Simkit Analysis Workbench for Rapid Construction of Modeling and
Simulation Components

Arnold Buss

MOVES Institute
700 Dyer Road

Naval Postgraduate School
Monterey, CA 93943

abuss@nps.edu

Keywords: Discrete Event Simulation; Event Graphs; Simulation Components

ABSTRACT: A recurring dilemma in the use of simulation models for analytic support of decision-making has been
the length of time required to build the simulation model. Although emerging simulations have improved over legacy
models, the problem persists. It is particularly difficult to create a simulation model using existing tools that captures
only the desired elements affecting the performance measures to be studied. Additionally, there is often a lack of
rigorous methodology underlying the model�’s design. Simkit is an Object-Oriented API for creating Discrete Event
Simulation (DES) models in Java. Based on proven Event Graph methodology, Simkit has been used to quickly create
models in a wide range of areas, including logistics and operational support, undersea models, and models that
evaluate algorithms for allocation of weapons and sensors to targets in ground combat. Simkit�’s component-oriented
approach facilitates the composition of models using some pre-built and some custom simulation components. This
work demonstrates a Graphical User Interface (GUI) for the creation and analysis of Simkit models. It utilizes XML
to represent the components, so there is built-in interoperability with many other tools. Specifically, simulation
components and models designed in this manner will be capable of interacting with models with Extensible Modeling
and Simulation Framework (XMSF) capabilities. In component design mode, a new component is created by drawing
the Event Graph and filling in parameters, so that the simulation modeler need not be a sophisticated programmer. In
component construction mode, components are hooked together to create a model. In analysis mode, the models are
exercised and run according to the desired experimental design. The workbench also has a number of exemplar
models that have been extracted from recent NPS Master�’s Theses.

1. Introduction

The use of simulation models for analysis is becoming
increasingly important. Many important questions of
interest require a model that represents features
challenging, if not impossible, for analytic or algorithmic
approaches ([1]). Discrete Event Simulation (DES),
described in the following section, is often used as the
simulation methodology of choice for analysis. One of
the challenges to using DES in analysis is the amount of
time and effort devoted to creating the model in the first
place.

Simkit is a Java-based package that enables faster
development of DES programs. Simkit is oriented
towards Event Graph Methodology, first proposed by
Schruben in 1983 ([2]), which is an ideal balance
between expressiveness and simplicity for representing
DES models. Simkit has demonstrated its efficacy in
implementing DES models by the more than thirty
Masters theses at the Naval Postgraduate School which

have used Simkit. Simkit is also utilized fro its core DES
functionality in the U.S. Army�’s COMBATXXI
simulation.

However, Simkit requires a fair amount of Object-
Oriented programming expertise, specifically in Java. It
was desirable to reduce this dependence on
programming, which would also allow the modeler to
focus more on the structure and content of the model
being developed rather than on programming issues.
This paper discusses a workbench for creating Simkit
models using a graphical user interface. It focuses
particularly on Viskit, a component of the workbench for
creating DES models by drawing Event Graphs and
filling in forms. Viskit thus has the potential for
supporting even more rapid development of models than
can be accomplished using the current Simkit practice of
writing Java code.

The remainder of this paper is organized as follows. First
Event Graph methodology will be briefly covered,
followed by a description of Simkit. The Simkit Analysis

Workbench components will be presented, starting with
an XML representation of Event Graph models, followed
by the two components of Viskit, the Event Graph editor
and the Assembly editor.

2. Event Graph Methodology

Discrete Event Simulation (DES) methodology is a way
of modeling a situation in a certain stylized manner ([1]).
Two elements of DES are noteworthy. First, DES
models advance time according to the Next Event rule.
A list of future events (the �“Event List�”) holds the
pending list of scheduled future events at any time point.
Rather than advancing time in discrete, uniform
increments, the simulation time is advanced to that of the
next scheduled event. The second identifying element is
that the state variables (defined below) stay constant
between events, and at events change value according to
a predefined state transition function for the occurring
event. This state transition occurs instantaneously in
simulated time units.

Event Graph methodology is a way of formally
representing DES models ([2]). An Event Graph model
consists of four elements: A collection of parameters, a
collection of state variables, a collection of events (or
state transitions) and a collection of scheduling
relationships between events.

Parameters are elements that do not change and do not
have the possibility of changing in the course of a single
simulation replication. Examples include the total
number of servers in a multiple queueing system, the
number of workstations in a serial production line, etc.
For modeling purposes, a sequence of values, even a
pseudo-random one, may be considered to be a single
parameter. In that case, even though different values
may be generated, the sequence as a whole stays
unaltered.

A state variable is an element that changes, or at least has
the possibility of changing, in the course of a single
simulation replication. As mentioned above, the rule by
which a state changes value is pre-specified by a state
transition function, which occurs when the corresponding
event �“occurs�” in the simulation run.

An Event is a way of labeling or identifying each state
transition function. The collection of Events describes
every possible change of value in that simulation model.
State variable can only change value during the execution
of an Event, and an Event always occurs in 0 simulated
time. Thus, time only passes between events, never
during an event.

Events are placed on the Event List for possible
occurrence at some future scheduled time in the
simulation. An Event Graph describes this scheduling
relationship by specifying which Events (if any) are
scheduled when each Event occurs. A second scheduling
relationship involves removing a previously scheduled
Event from the Event List. These scheduling
relationships may be represented as a direction graph, an
Event Graph, in which the Events are the nodes and the
scheduling relationships form the edges. The two types
of scheduling relationships are shown in Figure 1.

Figure 1 Basic Event Graph Constructs

The top construct in Figure 1 is a scheduling edge
between Events A and B; the elements on the edge are a
boolean condition (i), a time delay t, and a parameter
expression j. Event B has an argument (k), which can be
thought of in the same way as the list of formal
parameters in a method definition. The scheduling edge
reprehension has the following interpretation. When
Event A occurs, then if boolean condition (i) is true, then
Event B is scheduled to occur t time units in the future.
When Event B occurs, then its argument(s) k are set to
the value of the parameter(s) j at the time Event B was
scheduled.

There is only one special event in Event Graph
methodology, the Run event. Every Event Graph model
has at least one Run event, and that event is assumed to
be placed on the Event List at time 0.0. If there were no
such construct, the Event List would start empty, and the
simulation would immediately end. �“Run�” is analogous
to a �“main�” method in C or Java programming, providing
a starting place for the model to run. Once the Event List
algorithm starts, the Run event is processed like any
other event. Its state transition should set the initial
values of all state variables, and it should then schedule
whatever events are necessary, as determined by the
specifics of the particular model.

2.1. Event Graph Examples

To reinforce the event Graph modeling paradigm, we will
present several simple examples.

2.1.1. Arrival Process

The simplest Event Graph model has one parameter, one
state variable, and a single event (in addition to the Run
event). This model represents something of interest that
occurs repeatedly throughout a run. Examples include
the arrival of customers to a server , the arrival of jobs to
a machine, or the arrival of calls for fire to an artillery
battery. The parameter consists of a sequence of
interarrival times {tA}, which can be random or
deterministic. The state variable N represents the
cumulative number of arrivals that have occurred at any
point in time. The state transition when the event of
interest occurs is simply that the cumulative count gets
incremented by 1. The Event Graph is shown in Figure 2.

Figure 2 Arrival Process Event Graph

2.1.2. Multiple Server Queue

Customers arrive to a service facility according to an
arrival process and are served by one of k servers.
Customers arriving to find all servers busy wait in a
single queue and are served in order of their arrival. The
parameters are: {tA} = interarrival times; {tS} = service
times; k = total number of servers. The state variables
are: Q = # of customers in queue; S = # of available
servers. The Event Graph is shown in Figure 3.

Figure 3. Multiple Server Queue

2.1.3. Server with Reneges

This model illustrates passing parameters on edges and
canceling edges. Impatient customers arrive to a server
and join a queue. Each customer is only willing to wait a
certain amount of time in queue before leaving (the
amount of time could vary from customer to customer).
The parameters are identical to the multiple server queue
model of the previous section, with the addition of a
sequence {tR} of �“renege�” times. The state variables are:
S = # available servers, N = customer number (unique to
each arriving customer), q = a fifo container holding the
unique customer numbers, R = total number of reneges.
The Event Graph for just the server portion of the model
is shown in Figure 4.

Figure 4. Server with Reneges Event Graph

2.2. Event Graph Components (LEGO)

As powerful as the basic Event Graph paradigm is, it
does not scale up to very large models effectively. This
is primarily because in their original form, Event Graphs
are essentially monolithic, and as the number of state
variables and events increase, the size of the Event Graph
becomes larger and larger, ultimately becoming virtually
impossible to understand, modify, or verify.

A component framework for Event Graphs has been
developed based in the Listener software design pattern.
The listener pattern enables simulation components to be
created in which state variables and parameters are
encapsulated in an object and the essential logic is
represented by an Event Graph snippet. Since the
components are connected using �“listening�”, they have
been dubbed �“Listener Event Graph Objects�”, or LEGOs
(see [4]).

There are two flavors of the Listener patter used in the
LEGO framework: SimEventListener and
PropertyChangeListener.

The SimEventListener pattern is implemented by having
one simulation component register interest in �“hearing�”
the SimEvents of another. Whenever an event scheduled
by the source component �“occurs�” (that is, bubbles to the
top of the Event List and is processed), then all
SimEventListeners are notified and the event is passed to
each one. The SimEventListener responds to this event
in exactly the same way as if it had scheduled it. That is,
state transitions are performed, followed by scheduling
and canceling of events, as defined by the simulation
component. This mechanism provides extremely loose
coupling of components, and enables much larger models
to be built by connecting components together. The
SimEventListener relationship is illustrated in Figure 5.

Figure 5. SimEventListener Pattern

The PropertyChangeListener pattern is similar. Instances
of a PropertyChangeListener component register interest
in �“hearing�” the PropertyChange events of a SimEntity
component. When the source object fires the
PropertyChange Event, all registered
PropertyChangeListener objects are notified and passed
the PropertyChange event. As with the
SimEventListener pattern, the source neither knows nor
cares what the listener objects do with the event, nor do
the listeners care which object fired it. The primary
difference between a SimEventListener and a
PropertyChangeListener, as used in Simkit, is that one
SimEvent is dispatched whenever an event occurs,
whereas a PropertyChangeEvent is fired whenever a state
variable changes value. A SimEvent carries information
about the name of the event, its scheduled time (normally
the current value of simulated time, and any parameters
that had been passed when it was scheduled. A
PropertyChangeEvent has only the name of the property,
its new value, and (usually) its �“old�” value. Thus, a
PropertyChangeEvent only has information about a
particular state transition. In general, there may be many
PropertyChangeEvents fired during when a particular
event occurs. On the other hand, and event may occur
without any state variables changing value. In such a

case, a SimEvent would be dispatched, but no
PropertyChangeEvent would be fired.

The PropertyChangeListener pattern is used primarily in
the Simkit implementation (discussed in the following
section) to decouple the dynamics of a model from data
collection and estimation of statistics. The convention is
that whenever a state variable changes its value, the
object in which it resides fires a PropertyChangeEvent.
If the analyst wishes to collect statistics, for example,
based on a set of state variables, then statistics
PropertyChangeListeners are instantiated and registered
with the appropriate SimEntity objects. Thus, data may
be gathered in a non-invasive manner, and a LEGO
component need not be modified in order for a different
set of statistics to be gathered on it.

In fact, this mechanism virtually ensures that any
performance measure possible can be estimated from a
DES model implemented in this manner. Only state
variables change throughout a given simulation run, and
if each state transition can be observed, then all the
information about state trajectories can be extracted,
again without having to modify the LEGO components
themselves. Since all measures for a DES are some
function of its state trajectories, there is no feasible
measure that cannot be estimated.

3. Simkit

Simkit is a collection of Java libraries that support
implementing Event Graph and LEGO models. There is
a direct correspondence between an Event Graph or a
LEGO model and a Simkit program. Each LEGO
template is represented by a subclass of SimEntityBase,
and each of the four elements of an Event Graph are
represented within the class by the correspondence
shown in Table 1.

Event Graph Simkit
Parameter Private instance variable
State Variable Protected instance variable
Event �“do�” Method
Scheduling edge Call to �“waitDelay�”

Table 1. Event Graph/Simkit Correspondence

Simkit makes it straightforward to implement Event
Graph models for execution. The Event Graph and the
SimEntity class contain exactly the same information,
and the mapping in Table 1 makes it extremely simple to
develop the program itself. For example, the Simkit code
for the ArrivalProcess is shown below (comments and
ancillary statements have been omitted for clarity):

public class ArrivalProcess extends SimEntityBase {

 private RandomVariate interarrival;
 protected int numberArrivals;
 public void reset() {
 numberArrivals = 0;
 }
 public void doRun() {
 waitDelay(�“Arrival�”, interarrival.generate());
 }
 public void doArrival() {
 firePropertyChange(�“numberArrivals�”,
 numberArrivals, ++numberArrivals);
 waitDelay(�“Arrival�”, interarrival.generate());
 }
}

Figure 6. Code for ArrivalProcess

Further information about building Event Graphs with
Simkit may be found in [5].

Simkit implements the Listener patterns of the LEGO
component framework by means of the SimEventListener
and SimEventSource interfaces (for SimEventListener
pattern) and PropertyChangeSourse and
PropertyChangeListener interfaces (for the
PropertyChangelistener Pattern). Note that the
PropertyChangeListener interface is actually part of Java.
The SimEntityBase abstract base class is both a
SimEventSource and a SimEventListener, as well as a
PropertyChangeSource. Thus, both
SimEventListenersand PropertyChangeListeners can be
registered with an instance of a subclass
ofSimEntityBase.

4. XML Representation

The visual Event Graph tool requires a format for saving
its components. Although Java source code files might
be considered a natural choice, XML is a superior one
because of its universality, the ability to be parsed by a
plethora of software, its being a natural fit for Web
Services, and for the ability to transform XML
documents via stylesheet transforms into any one of a
number of formats.

As with Simkit models, there is a natural mapping
between Event Graph elements and Elements in an XML
document. The key elements are shown in Table 2.

Event Graph XML
Parameter Parameter Element
State Variable State Variable Element
Event Event Element
Scheduling edge Schedule Element

Table 2. Event Graph to XML Mapping

With a one-to-one correspondence between Event Graph
components and Simkit classes, and between Event
Graph Components and XML documents, it is

straightforward to create executable programs from the
XML files.

The XML shown in Figure 7 shows that the same
information is being stored as in the Java source code of
Figure 6.

<SimEntity name="ArrivalProcess" version="0.1"
xsi:noNamespaceSchemaLocation="http://diana.gl.nps.navy
.mil/Simkit/simkit.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Parameter type="simkit.random.RandomVariate"
name="interarrivalTime"/>
 <StateVariable name="numberArrivals" type="int"/>
 <Event name="Run">
 <StateTransition state="numberArrivals">
 <Assignment value="0"/>
 </StateTransition>
 <Schedule priority="0.0"
delay="interarrivalTime.generate()" event="Arrival"/>
 <Coordinate y="60" x="40"/>
 </Event>
 <Event name="Arrival">
 <StateTransition state="numberArrivals">
 <Assignment value="numberArrivals + 1"/>
 </StateTransition>
 <Schedule priority="0.0"
delay="interarrivalTime.generate()" event="Arrival"/>
 <Coordinate y="60" x="250"/>
 </Event>
</SimEntity>

Figure 7. XML for Arrival Process SimEntity

The simulation model is described via a
�“SimkitAssembly�” element, which specifies which
objects are to be instantiated, what the parameter values
will be, and establish the listener relationships. And
example of a SimkitAssembly is shown in Figure 8.

<SimkitAssembly version="1.0" package="pkg"
name="MultipleServerQueue"
xsi:noNamespaceSchemaLocation="http://diana.gl.nps.navy
.mil/Simkit/assembly.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SimEntity name="arrival"
type="simkit.examples.ArrivalProcess">
 <FactoryParameter
factory="simkit.random.RandomVariateFactory"
type="simkit.random.RandomVariate">
 <TerminalParameter value="Exponential"
type="String"/>
 <MultiParameter type="Object[]">
 <TerminalParameter value="1.5"
type="java.lang.Double"/>
 </MultiParameter>
 <TerminalParameter
value="simkit.random.CongruentialSeeds.SEED[0]"
type="long"/>
 </FactoryParameter>
 </SimEntity>
 <SimEntity name="server"
type="simkit.examples.Server">
 <TerminalParameter value="2" type="int"/>
 <FactoryParameter
factory="simkit.random.RandomVariateFactory"
type="simkit.random.RandomVariate">
 <TerminalParameter value="Gamma"
type="String"/>
 <MultiParameter type="Object[]">
 <TerminalParameter value="2.5"
type="java.lang.Double"/>
 <TerminalParameter value="1.2"
type="java.lang.Double"/>
 </MultiParameter>
 <TerminalParameter
value="simkit.random.CongruentialSeeds.SEED[1]"
type="long"/>
 </FactoryParameter>
 </SimEntity>
 <SimEventListenerConnection listener="server"
source="arrival"/>
</SimkitAssembly>

Figure 8. Simkit Assembly Example

5. Viskit

Viskit is a graphical front end for creating, editing, and
composing DES simulation models using Event Graphs
and the LEGO framework Viskit is very early in its
development cycle, and it is anticipated that there will be
many changes as experience is gained using the tool.
Nevertheless, Viskit currently implements all the basic
functionality required to implement the kind of DES
models described in previous sections. This section will
provide an overview of the Viskit tool and its
capabilities.

5.1. Event Graph Editor

The Event Graph Editor is used to create Event Graph
components by drawing the Event Graph on a palette
and running inspectors to create parameters, state
variables, and edit the event nodes and
scheduling/canceling edges. An empty EventGraph
editor is shown in Figure 9.

Figure 9. Empty Event Graph Editor

The Event Graph palette is on the left, and the two right
panels are for defining state variables (top) and
parameters (bottom). A new event is created by dragging
the yellow node icon from the toolbar to the palette.
Scheduling and canceling edges are created by selecting
which type of edge to be drawn on the toolbar and then
dragging the mouse from the scheduling event to the
scheduled event. Figure 10 shows a completed Event
Graph component corresponding to the server with
reneging customers model in Figure 4.

Figure 10. Server With Reneges Event Graph

shows the Node inspector which is used to input, display,
and edit the data associated with the node.

Figure 11. Event Node Inspector

The Node inspector can be used to change the name of
the event and to define state transitions. The interface for
state transitions ensures that only state variables can be
modified. Variables which are local to the event may be
defined for convenience. Finally, arguments to the event
are also defined. An instance of the Beanshell interpreter
is used to verify that user input consist of legitimate
expressions, meaning that all variables have been
specified (parameters, state variables, or local variables)
and that all expressions are syntactically correct.

Figure 12 shows the edge inspector, which is used to
input, display, and edit information about the edges.

Figure 12. Edge Inspector

As with the node inspector, Beanshell is used to verify all
expressions entered in free form. The source and target
events are displayed, but cannot be edited from the edge
inspector. The time delay and boolean conditions are
filled in by the user as freeform expressions (which are

verified, as described above). The possible edge
parameters and associated types are filled in from the
signature of the target event, ensuring that the signature
of the edge matches the scheduled (or cancelled) event.

The Event Graph Editor normally saves its components
in XML format, according to the schema described in
Section 4. Simkit Java code can also be generated and
saved for separate compilation, as shown in Figure 13.

Figure 13. Generated Simkit Code

5.2. Assembly Editor

The Assembly Editor is used to compose DES models
using Event Graph components. The Assembly Editor
also uses a drawing palette and inspectors to populate the
model, but the meaning of the nodes and edges are
different. The Assembly Editor can utilize components
created using the Event Graph Editor or compiled Java
classes that have been created elsewhere. The Assembly
Editor appears empty when first opened, as shown in
Figure 14.

Figure 14. Empty Assembly Editor Window

The palette is on the right (to make it easy to distinguish
whether one is using the Assembly or the Event Graph
Editor) and the left panels are populated by Event Graph
classes (top left) and PropertyChangeListener classes
(bottom left). Additional classes may be added or
removed by use of the �‘+�’ and �‘-�‘ buttons. Dragging an
item onto the palette signals an instantiation of an object
of that type. Event Graph instances (LEGOs) are
connected using the SimEventListener pattern described
previously, and PropertyChangeListener instances listen
to SimEntities using the PropertyChangeListener pattern,
also discussed previously.

Figure 15. Server with Reneges Assembly

The blue icons in Figure 15 represent the Event Graph
component instances (LEGOs) and the pink icons
represent PropertyChangeListeners. The dark arrows
represent SimEventListening and the pink arrows
represent PropertyChangeListening.

An Assembly is normally saved in XML format, like that
of Figure 8. As with the Event Graph Editor, the
corresponding Java code can be generated, saved, and
compiled separately. The Assembly editor can be used to
create many different models from the same set of
components.

A created Assembly can be run using the controls at the
bottom of the window. The user can fill in the stop time
for the run and check whether the run is to be in verbose
or quiet mode. Verbose mode prints out each event along
with the Event List after each event is executed.

6. Conclusions and Ongoing Work

The need for rapid development and implementation of
DES models will be present for the foreseeable future.
Effective tools are needed to support this. Simkit is a
proven platform that supports rapidly implementing DES
models in Java. The Analysis Workbench discussed in
this paper incorporates tools for even more rapid
development while reducing the dependency on
programming expertise.

The use of XML as the �“native�” format has some
interesting and useful implications for further work.
More and more software utilizes XML for data, and the
use of stylesheets allows XML data to be readily
transformed from one form to another. XML is a key
technology in Web Services, so the description of Event
Graph components and Assemblies in XML can help
support interoperability with web-based simulation
services. In particular, the groundwork exists for
interacting with models developed using the Extensible
Simulation Modeling Framework (XMSF) ([7])

The Viskit component of the Analysis Workbench
provides a user-friendly means of creating Event Graph
components and DES simulation models by assembling
components. The application is being tested and
feedback from users will be incorporated into subsequent
versions. One component of the Analysis Workbench
not described here consists of a common user interface
for launching complete Simkit or Viskit models. This
component is currently under development and is being
implemented to execute models based on some recent
Masters theses written at the Naval Postgraduate School.
These models include such diverse areas as maintenance
and repair policies for aircraft engines, submarine tactics
for negotiating a minefield, and analyzing the dynamic
allocation of networked fires and sensors.

Acknowledgments

Rick Goldberg and Michael Bailey expertly implemented
schema and graphical user interfaces resulting in the
Viskit tool. Curt Blais, Don Brutzman, and Don
McGregor gave valuable input and feedback. Comments
on a previous draft by the SIW reviewer resulted in
substantial improvements. This work was sponsored by
the United States Navy OPNAV (N81); this support is
gratefully acknowledged.

7. References

[1] Law, A. and D. Kelton. 2000. Simulation Modeling
and Analysis, Third Edition, McGraw-Hill, Boston.
MA.

[2] Schruben, L. 1983. Simulation Modeling with Event
Graphs, Communications of the ACM, 26, 957-
963.Buss, A. 1996. Modeling with Event Graphs,
Proceedings of the 1996 Winter Simulation
Conference, J. M. Games, D. J. Morrice, D. T.
Brunner, and J. J. Swain, eds.

[3] Buss, A. 2000. Component-Based Simulation
Modeling, Proceedings of the 2000 Winter
Simulation Conference, J. A. Joines, R. R. Barton,
K. Kang, and P. A. Fishwick, eds.

[4] Buss , A. and P. Sanchez. 2002. Building Complex
Models with LEGOs (Listener Event Graph

Objects). Proceedings of the 2002 Winter Simulation
Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon,
and J. M. Charnes, eds.

[5] Buss, A. 2001. Discrete Event Programming with
Simkit. Simulation News Europe, 32/33,
November,15-25.

[6] Schruben, L. 1995. Graphical Simulation Modeling
and Analysis Using Sigma for Windows, Boyd and
Fraser Publishing Company, Danvers, MA.

[7] D. Brutzman, M. Zyda, J. M. Pullen, and K. L.
Morse: �“Extensible Modeling and Simulation
Framework (XMSF): Challenges for Web-Based
Modeling and Simulation, Findings and
Recommendations Report of the XMSF Technical
Challenges Workshop and Strategic Opportunities
Symposium,�” October 2004.

Author Biographies

ARNOLD BUSS is a Research Assistant Professor in the
MOVES Institute at the Naval Postgraduate School. He
received his MS in Systems Engineering from the
University of Arizona and his PhD in Operations
Research from Cornell University. His research interests
include Discrete Event Simulation and component-based
modeling.

