
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987-01

A Relational Information Resource Dictionary System

Dolk, Daniel R.; Kirsch, Robert A. II

https://hdl.handle.net/10945/38313

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

A relational implementation of IRDS using SQL demonstrates how the
flexibility of the relational environment enhances the extensibility of the
IRDS while at the same time providing more powerful dictionary
capabilities than are typically found in relational systems.

A RELATlONdL INFORIUATION RESOURCE

DANIEL. R. DOLK and ROBERT A. KIRSCH II

The problem of controlling and administering orga-
nizational information resources is an increasingly
complex one for today’s MIS manager. The exponen-
tial growth of computer technology and the corre-
sponding demand for information have placed a
higher priority on the effective management of these
resources, but the effort to keep pace with technol-
ogy often leaves little time for the proper administra-
tion of this technology. Consider the resolution of
the following typical hypothetical questions:

How many files and programs will be affected by
changing zip codes from five to nine digits?
To make the transition from a Fortran to an Ada
environment, how many programs and lines of
code will have to be converted?
To help plan a distributed processing environ-
ment, what departments use which files and pro-
grams what percentage of the time?
What computing equipment (including personal
computers) does the organization have, and what
is it used for?
To implement a data-management environment,
which files and programs must be converted for
database processing?

Although it is difficult to imagine an effective infor-
mation planning, control, and operations environ-
ment without timely access to this kind of informa-

This research was supported by grants from the U.S. Army Military Personnel
Center and the Naval Ocean Systems Center.

0 1987 ACM OOOl-0782/87/0100-0048 750

tion, relatively straightforward questions like these
continue to stymie many managers.

Historically, data management has been con-
cerned primarily with the development of effective
database management systems (DBMSs) to facilitate
data sharing, reduce data redundancy, and provide
an integrated environment for data manipulation.
An integral part of such a DBMS is the data dictio-
nary (D/D), a catalog of information about the logi-
cal and physical aspects of the data environment. In
sharp contrast to the operational databases devel-
oped within the DBMS environment, the D/D
is concerned with the description of the operational
databases rather than the actual data values
contained within those databases.

In recent years, the scope of the D/D has been
expanded to include a wider range of information
resources: that is, to include basically any informa-
tion entity-a program, user, hardware, or decision
model. This enhanced notion of a D/D is referred to
here as an information resource dictionary system
(IRDS).

It is estimated that the federal government can
realize as much as $120 million in benefits by the
early 1990s from the use of a standard IRDS [3]. To
help realize these savings, the National Bureau of
Standards has developed specifications for an IRDS
that will form the basis for a Federal Information
Processing Standard IRDS (FIPS IRDS) [3-61. These
specifications include many of the functions avail-
able in existing commercial D/D systems [l, 141, but

48 Communications of the ACM january 1987 Volume 30 Number I

Computing Practices

also provide flexibility for tailoring the IRDS to spe-
cific information administration requirements.

The development of these specifications should
significantly facilitate the corresponding develop-
ment of IRDSs for relational DBMS (RDBMS) envi-
ronments. Typically, RDBMSs are strongly oriented
toward implementing operational databases and do
not adequately support the administrative aspects of
information management [14]; they tend to be per-
formance rather than administration oriented. More-
over, RDBMS dictionaries are generally concerned
only with their own data resource environment, not
the overall information environment, and are usu-
ally hard-wired so that data administrators cannot
modify them for their own requirements.

In this article, we describe a relational model of a
passive IRDS (i.e., a “stand-alone” IRDS) that is con-
sistent with a subset of the FIPS specifications and
can easily be implemented and used with existing
RDBMS products. This model is then enhanced by
adding another metalayer, which allows the IRDS to
become self-descriptive, Finally, we show how the
addition of this metalayer facilitates IRDS extensibil-
ity, and the migration to an active IRDS that interacts
with other system components, by demonstrating an
actual implementation of the enhanced model using
the ORACLE RDBMS. We argue that our relational
implementation of the logical kernel of the FIPS
IRDS specifications provides the following benefits:

l a more comprehensive dictionary capability than
most commercially available RDBMSs offer,

l a flexible prototype for developing organizational
dictionaries that is easy to implement and can be
adapted to a wide range of applications and
environments,

l compatibility with an emerging federal standard,

l a basic relational implementation of the entity-
relationship model [8], and

l a foundation for considering more powerful
semantic models for metadata management.

The first two introductory sections of the paper
offer brief overviews of dictionary terminology and
the FIPS IRDS specifications, respectively. For a
more complete discussion of dictionary concepts and
the potential applications of dictionary systems, see
[15] and [16].

INFORMATION RESOURCE DICTIONARY
SYSTEMS: A REVIEW OF THE TERMINOLOGY
An IRDS is a logically centralized repository of data
about all relevant information resources within an
organization. Since the data within an IRDS describe
other data, they are often referred to as metadata.

The dictionary component of an IRDS describes what
information resources exist, what they mean, and
what their logical structures are. An IRDS may also
have a directory component describing where infor-
mation resources are located and how they are ac-
cessed. For the data resource, dictionary and direc-
tory are roughly analogous to logical and physical
descriptions, respectively. A dictionary description
of an employee file might contain the fields within
the file, sources for the data, and data integrity con-
straints; whereas the directory description would
contain data on the machine, operating system, and
file structure under which the file is stored.

Dictionaries are classified as either passive or active
in nature. A passive IRDS is one in which no process
or system component depends on the IRDS for its
metadata, whereas an active IRDS generates meta-
data for one or more processes and is the sole source
for those metadata. A common example of an active
IRDS would be where a DBMS consults an IRDS for
all information concerning the data entities within a
particular operational database. Passive systems are
used primarily for documentation purposes and re-
quire separate transactions for registering metadata.
Active systems are much more powerful in imple-
menting control mechanisms, but extract a perfor-
mance penalty since all transactions must go
through the IRDS. A common implementation strat-
egy is to build a passive system and then extend it to
an active system for selected applications; this pro-
cess of activating the RIRDS is reviewed briefly
on page 59.

IRDSs can also be characterized as either DBMS
dependent or freestanding (DBMS independent).
A DBMS-dependent IRDS uses an existing DBMS
to implement the description, manipulation, and
control of its metadata, and therefore can avail itself
of the underlying query processor, security, backup/
recovery, and other features. A freestanding IRDS,
on the other hand, must supply those capabilities
internally. The advantage of the freestanding IRDS is
that it does not require a specific DBMS environ-
ment and is therefore more versatile for multi-DBMS
and distributed database applications.

FEDERAL INFORMATION PROCESSING
STANDARDS FOR INFORMATION RESOURCE
DICTIONARY SYSTEMS (FIPS IRDS)
The Institute for Computer Sciences and Technology
of the National Bureau of Standards has developed
specifications for an IRDS that will form the basis for
a FIPS. These specifications have been accepted by
the American National Standards Committee X3H4
as the basis for its draft proposed American National
Standard IRDS [3-61.

]anua y 1987 Volume 30 Number 1 Communications of the ACM 49

FIPS DDS Design Objectives
The first of three major design objectives defined for
the IRDS was that it contain the major features and
capabilities found in existing dictionary systems. All
major vendors of dictionary systems were asked to
review and make recommendations on various
drafts of the standards. Thesle suggestions were
eventually incorporated into a COW dictionary system
consisting of a system-standard schema, three modules
(entity level security, application program interface,
and data model support), and two user interfaces
(panel and command language).

The second design objective was to make the IRDS
as flexible as possible, in recognition of the fact that
no single standard will be able to satisfy the unique
requirements of all users. Thus, the system-standard
schema represents a consensus concerning the enti-
ties, attributes, and relations:hips that should be
available in an IRDS. However, this does not pre-
clude the addition of other entities, attributes, and
relationships by individual users or vendors. To con-
tribute further to this flexibility, the FIPS IRDS does
not require both interfaces o:r any of the modules to
be in the IRDS, only that the,y be independent of one
another, which allows users to choose which options
they wish in their IRDS.

The third major objective ‘was that the IRDS sup-
port portability of skills and a wide range of user
environments. This resulted in specifications for a
menu-driven panel interface for the inexperienced
user and a command language interface for the more
experienced user. .An implementation of the IRDS
standard is considered complete if either of the
interfaces is implemented.

Features of the IRDS
The FIPS IRDS specifications include a collection of
entity-types, attribute-types, and relationship-types
comprising the COY~ system-standard schema. The core
is expected to be a part of every implementation
conforming to the standard, and can be extended, if

IRD scheme description layer

IRD schema layer

Entity-type

ELEMENT,RECORD,etC.

IRD data layer Soc-Sec-No.Empl-
Recora,etc.

Operational data 555-23-6666(Employee
record for Kirk)

necessary, by adding additional schema descriptors
as required. Below is a brief discussion of the core as
it relates to the relational IRDS described on page 52.
For a more detailed account of the core and the
IRDS specifications, see [ll].

The IRDS architecture is based on the entity-
relationship (E-R) model [8] and is comprised of the
Information Resource Dictionary (IRD) and the IRD
schema. The IRD consists of entities, attributes, and
relationships that are instances of the corresponding
IRD schema entity-types, relationship-types, and
attribute-types. The IRD schema, in turn, consists of
instances of metaentities, metarelationships, and
metaattributes at the IRD schema description level.
Thus, the IRD may contain the data PERSONNEL-
RECORD, which is an instance of the entity-type
RECORD in the IRD schema, which, in turn, is an
instance of the metaentity ENTITY-TYPE at the
schema description level (Figure 1).

The structure of the IRDS is similar to a semantic
network where entities are the nodes, and relation-
ships are the arcs that connect nodes. All relation-
ships are binary, and entities may be related to
themselves. Attributes may be associated with either
entities or relationships. Another key characteristic
of the IRDS is that it is strongly typed: Each instance
of an entity, attribute, or relationship corresponds
with an instance of an entity-type, attribute-type,
or relationship-type, respectively. The entity-,
attribute-, and relationship-types comprising the
core are shown in Figure 2.

Entity-Types. The IRD schema contains 12 entity-
types that are categorized as either data, process, or
external. FILE,RECORD,ELEMENT, and DOCUMENT
are the major data entity-types. BIT-STRING,
CHARACTER-STRING,FIXED-POINT,andFLOAT
are also data representation entity-types used by the
REPRESENTED -AS relationship to describe charac-
teristics of ELEMENTS. SYSTEM,PROGRAM, and
MODULE comprise the system entity-types, and USER
is the sole external entity-type.

Relationship-type

RECORD-CONTAINS-
ELEMENT

Empl-Record-
CONTAINS-Soc-
Set-No

Attribute-type

DATE-ADDED,LENGTH,
LOCATION,etC.

23N0-185, 12 (Char)
BldgA-Room3

Empl-Record for (Attributes do not appear as
Kirk-CONTAINS- instances in operational
(555-23-6666) databases)

50 Communications of the ACM

FIGURE 1. IRDS Archi&cture

]anuary 1987 Volume 30 Number 1

SYSTEM FILE
PROGRAM RECORD
MODULE ELEMENT
USER DOCUMENT

BIT-STRING
CHARACTER-STRING
FIXED-POINT
FLOAT

Attribute-types

Entity related:

ACCESS-NAME
ADDED-BY
ALLOWABLE-VALUE
ALTERNATE-NAME
CLASSIFICATION
CODE-LIST-LOCATION
COMMENTS
DATA-CLASS
DATE-ADDED
DESCRIPTION
DESCRIPTIVE-NAME
DOCUMENT-CATEGORY
DURATION-TYPE

Relationship related:

ACCESS-METHOD
RELATIVE-POSITION

DURATION-VALUE
HIGH-OF-RANGE
LAST-MODIFICATION-DATE
LAST-MODIFIED-BY
LOCATION
LOW-OF-RANGE
NUMBER-OF-LINES-OF-CODE
NUMBER-OF-MODIFICATIONS
NUMBER-OF-RECORDS
RECORD-CATEGORY
SECURITY
SYSTEM

FREQUENCY

Relationship-types

CONTAINS GOES-TO
PROCESSES CALLS
RESPONSIBLE-FOR DERIVED-FROM
RUNS REPRESENTED-AS

FIGURE 2. Core System-Standard Schema Types

Attribute-Types. Attribute-types in the core system-
standard schema were selected as those most likely
to be needed by organizations to describe their infor-
mation environments: They are intended to provide
audit trail information as well as general documen-
tation for entities and relationships.

The core allows several distinct names to be
associated with an entity: ACCESS -NAME,
DESCRIPTIVE-NAME,andALTERNATE-NAME.The
ACCESS -NAME is the primary name with which
the user will interact; it should be short for ease of
use and must be unique throughout the IRDS. The
DESCRIPTIVE -NAME allows a more detailed and
meaningful name to be assigned to an entity so that
the brevity of the ACCESS-NAME is not a restriction;
it must also be unique throughout the IRDS. The
ALTERNATE-NAME provides a “synonym” or “alias”
capability so that different names can be assigned to
the same entity.

Not all attribute-types shown in Figure 2 apply
to all entity-types. NUMBER-OF - LINES -OF - CODE,
for example, applies only to the PROGRAM and

Computing Practices

MODULE entity-types (see [3] for more details). The
following attribute-types, however, pertain to all but
the data representation entity-types: ACCESS -NAME,
ADDED-BY, CLASSIFICATION, COMMENTS, DATE -
ADDED,DESCRIPTION,DESCRIPTIVE-NAME,
ALTERNATE-NAME,LAST-MODIFICATION-
DATE,LAST-MODIFIED-BY,NUMBER-OF-
MODIFICATIONSandSECURITY.

Some of the attribute-types are also multiple attri-
butes in that they are in a many-to-one relationship
with entity-types. ALTERNATE-NAME, for example,
may have several different values for any particular
entity-type with which it is associated. Thus, the
entity ‘ZIP-CODE’ may have ALTERNATE -
NAME attribute values ‘ZCODE’ , ‘ZIP’, and
‘ZIPCODE’. Multiple attribute-types in Figure 2
are ALLOWABLE - RANGE, ALLOWABLE -VALUE,
CLASSIFICATION,CODE-LIST-LOCATION,
and LOCATION.

Relationship-Types. The relationship-types provided
by the IRD schema are designed to capture the
important associations between entities that apply
in an information resource environment. All
relationship-types in the core system are binary and
are named self-descriptively according to the
entity-types that participate in them (e.g., SYSTEM-
CONTAINS -PROGRAM).

Restrictions concerning which entity-types can
participate in which relationship-types (Figure 3,
next page) serve to define the integrity constraints
that will be applied to the underlying entity and
relationship metadata. Relationship-types may have
associated attribute-types as well: For example, the
IRD schema allows the attribute-type ACCESS -
METHOD for the relationship-types SYSTEM -
PROCESSES-FILE,PROGRAM-PROCESSES-FILE,
andMODULE-PROCESSES-FILE.

Functions and Processes. The core IRDS must sup-
port the description, manipulation, and control
of entity-, attribute-, and relationship-types as well
as particular instances of the same. Schema mainte-
nance and output involve the ability to describe
entity- and relationship-types and display informa-
tion about the types existing in the IRDS. In other
words, the IRDS must be self-descriptive.

IRDS population, maintenance, and output refer
to the creation, manipulation, and display of actual
entity and relationship instances involving the data
about the information resources themselves (as
opposed to the logical description of the resources).
Thus, schema maintenance is involved in describ-
ing the entity-types FILE and PROGRAM and the
relationship-type PROGRAM- PROCESSES -FILE,
whereas IRDS maintenance would be involved

Ianuary 1987 Volume 30 Number 1 Communications of the ACM 51

Computing Practices

CONTAINS(system,system) PROCESSES(system,file)
CONTAINS(system,program) PROCESSES(system,document)
CONTAINS(system,module) PROCESSES(system,record)
CONTAINS(program,program) PROCESSES(system,element)
CONTAINS(program,module) PROCESSES(program,file)
CONTAINS(module,module) PROCESSES(program,document)
CONTAINS(file,file) PROCESSES(program,record)
CONTAINS(file,document) PROCESSES(program,element)
CONTAINS(file,record) PROCESSES(qodule,file)
CONTAINS(file,element) PROCESSES(module,document)
CONTAINS(document,document) PROCESSES(module,record)
CONTAINS(document,record) PROCESSES(module,element)
CONTAINS(document,element) PROCESSES(user,file)
CONTAINS(record,record) PROCESSES(user,document)
CONTAINS(record,element) PROCESSES(user,record)
CONTAINS(element,element) PROCESSES(user,element)

RESP-FOR(user,file)
RESP-FOR(user,document)
RESP-FOR(user,record)
RESP-FOR(user,element)
RESP-FOR(ker,system)
RESP-FOR(user,program)
RESP-FUR(user,module)

RUNS(user,system)
RUNS(user ,program)
RUNS(user,module)

DERIVED-FROM(document,file)
DERIVED-FROM(document,document)
DERIVED-FROM(document,record)
DERIVED-FROM(element,file)
DERIVED-FROM(element,document)
DERIVED-FROM(element,record)
DERIVED-FROM(element,element)
DERIVED-FROM(file,document)
DERIVED-FROM(file,file)
DERIVED-FROM(record,document)
DERIVED-FROM(record,filef
DERIVED-FROM(record,recordf

CALLS(program,program)
(!ALLS(program,module)
CALLS(module,module)

GOES-TO(system,system)
GOES-TO(program,program)
GOE+TO(module,module)

TheFlPSlRDSexpressesrelationshipsas ENTITYTYPE-RELSHIP-ENTITYTYPE
(e.g., SYSTEM-CONTAINS-SYSTEM). Instead, we represent relationships as
RELSHIP(entitytype,entitytype).

FIGURE 3. BIDS Relationships

in entering data about the PROGRAM entity
EMPLJPDATE, the FILE~I-I~~~~EMPL-PROFILE,
andthe relationship PROCESSES(EMPL-UPDATE,
EMPL-PROFILE).

An important IRDS output is the impact-of-change
report, which lists all entities affected by a change to
one or more other entities. Other output specifica-
tions involve specific report formats for displaying
entity and relationship information.

IRDS control facilities include the following:

l Versjoning-allows description of multiple versions
of the same entity (e.g., a program).

l Life-cycle phase-allows each entity to be assigned
to a life-cycle phase and provides integrity rules
for moving from one phase to another.

l Qualify indicators--facilitate definition of quality
indicators that can be assigned to entities.

l Views-allow different users to have different
views of the dictionary.

l Security-regulates authorization and access to the
contents of the dictionary.

RELATIONAL IRDS MODEL
Most relational DBMSs provide a relatively narrow
range of dictionary capabilities [14], primarily
because RDBMSs are concerned mainly with data
resources and do not accommodate other information
resources such as hardware, software, and decision-
making models. Secondly, concentration on database
performance tends to dominate other considerations.
The technological problems of building an efficient
and effective RDBMS are complex and still being
investigated (e.g., efficient query optimization is still
a key issue in the performance of relational systems,
especially with very large databases). Finally,
RDBMS dictionaries are hard-wired into their
respective systems and cannot be modified.

Since each RDBMS vendor has its own idea about

52 Communicatiot~s of the .4CM]anuaty 1987 Volume 30 Number 1

what should be included in a dictionary system,
there is little compatibility or uniformity in the fea-
tures these systems provide. Furthermore, there is
often limited flexibility in changing or adding to the
entity-, attribute-, and relationship-types forming
the foundation of the dictionary. However, building
an organizational IRDS is a complex task, and one
can reasonably expect that, like any large informa-
tion system, it will change dramatically during its
development life cycle.

The FIPS IRDS specifications provide a standard
core from which dictionary systems can be imple-
mented. The power and flexibility of RDBMSs pro-
vide many built-in features (e.g., query languages,
report generators, security mechanisms, and views)
to facilitate this implementation. In this section we
describe a relational model of an IRDS that is com-
patible with a major portion of the FIPS IRDS core
specifications and can easily be implemented and
used in existing RDBMS environments to extend
information administration.

Design Objectives
The design objectives incorporated in the relational
IRDS (RIRDS) model and the subsequent implemen-
tation are as follows:

Passivity and RDBMS dependency. The RIRDS
should be freestanding. (Approaches to activating
the RIRDS are discussed on p. 5%)
Compatibility with a significant subset of the FlPS
IRDS specifications. This means that most of the
entity-, attribute-, and relationship-types specified
in the core system-standard schema are included.
Ease of implementation and use. The RIRDS model
should be easy to implement in an RDBMS envi-
ronment, and all operations on the RIRDS should
be accomplished via the RDBMS query language.
Extensibility. To incorporate nonstandard entity-,
attribute-, and relationship-types, and other fea-
tures in order to accommodate user-specific re-
quirements. The flexibility of the relational model
(Le., the ability to change logical descriptions inde-
pendently of the underlying physical storage) pro-
vides powerful extensibility options.
Self-descriptiveness. The RIRDS should be able to
describe the entity-, attribute-, and relationship-
types comprising it. The administrator should
be able, via a simple query, to determine which
entity-types are involved in the CONTAINS
relationship-type.

RIRDS Model
Since the FIPS IRDS is based directly on the E-R
model, the relational model for the RIRDS must first
and foremost capture this essence. This is done

Computing Practices

ENTITY(ename,etype,dname,added-by,
date-added,mod-by,last-mod,nmods,
dur-value,dur-type,comments,descr,
security,lang,lines-code,nrecs,
ret-cat,data-class,doc-cat)

RELSHIP(~,elname,eltype,e2name,e2type,
access-method,frequency,rel-pos)

FIGURE 4. Basic Relational Representation
of the IRDS Entity-Relationship Model

straightforwardly with two relations, ENTITY and
RELSHIP, as shown in Figure 4. (All relations are
in uppercase, and attributes of a relation in lower-
case. Keys are underlined.) Note that values for
ENTITY. etype and RELSHIP. rtype must come
from the domain of acceptable IRDS entity-types
and relationship-types, respectively, as shown in
Figure 2; and the nonkey attributes associated with
ENTITY and RELSHIP include all appropriate core
attribute-types (as shown in Figure z), with the few
exceptions discussed below (i.e., primarily those
designated as multiple attributes). Self-evident ab-
breviations are used for the FIPS attribute names
(e.g., aname for ACCESS -NAME, and dname for
DESCRIPTIVE-NAME).

With this E-R model as a base, the RIRDS model
(Figure 5, next page) can be conveniently super-
imposed using the view feature provided by
RDBMSs. Notice, for example, that the SYSTEM
entity-type is simply a subset of the ENTITY rela-
tion for the case etype=‘SYSTEM’.Similarly, the
SYSTEM-PROCESSES-FILE relationship-type is
simply a subset of the RELSHIP relation for the case
rtype='PROCESSES' & e 1 type='SYSTEM'
& e2type='FILE'.(Further discussion ofthis
procedure occurs on p. 55 under “Implementa-
tion.“)

Compatibility with FIPS IRDS. The primary focus
of this RIRDS implementation has been to capture
the entities, attributes, relationships, and meta-
equivalents comprising the FIPS IRDS core system-
standard schema. Implementation of IRDS control
facilities such as versioning and quality indicators
has not been attempted.

The entity-types BIT-STRING,CHARACTER-
STRING,FIXED-POINT,~~~ ~~~~~,whicharein-
eluded in the core system-standard schema, have
been left out of the RIRDS, as has the REPRESENTED -
AS relationship-type, because these types are con-
cerned with the physical representation of data (pri-
marily ELEMENT entities)andthus comprise the
directory portion of the IRDS. Although it is appro-
priate to provide this in an IRDS, we feel that the
FIPS approach unnecessarily precludes representing

lanuary 1987 Volume 30 Number I Communications of the ACM 53

Computing Practices

Entities and attributes

SYSTEM(aname,dname,added-by,date-added,
mod-by,last-mod,nmods,dux-value,
dur-type,comments,descr,security)

PROGRAM(aname,dname,added-by,date-added,
mod-by,last-mod,nmods,dur-value,
dur-type,lang,lines-code,comments,
descr ,rjecurity)

MOLWLE(aname,dname,added-by,date-added,
mod-by,fast-mod,nmods,dur-value,
dur-type,Iines-@ode,comments,descr,
security)

FILEfaname dname,added-by,date-added, -I
mod-by,last-mod,nmods,nrecs,
comments,descr,security)

RECORD(aname,dname,added-by,date-added,
mod-by,l.ast-mod,nmods,rec-cat,
comments,descr,security)

,dname,added-by,date-added,
mod-by,last.-mod,nmods,data-cl&s,
low-range,high-xange,conunents,
descr,security)

DOCUMENT(aname,dname,added-by,dabe-adaed,
mod-by,last-mod,nmods,doc-cat,
comments,descr,,security)

USER(aname,dname,added-by,date-added,
mod-by,Iast-mod,nmods,comments,descr,
location,security)

Relatlenshiis

All relationships have the same attributes and keys:

REL(elname,eltype,e2name,e2type) --
where e 1 name, e2name are the entity instances

e I type , e 2 type are the entity-types of which
e 1 name , e2name are instances, respectively

REL is any of the relationships CONTALNS ,
PROCESSES, RUNS, RESP-FOR,‘CALLS,
GOES-TO, DERIVED-FROM, ALIAS, and KWIC

lntegMyconstlaints

See Figure 3

FIGURE .5. Relational IRDS (RIRDS)

many realistic situations: for example, the element
entity ‘SOCIAL-SECURITY-NUMBER’, which may
appear as+a FIXED-POINT element in one file and a
CHARACTER- STRING in another. Because of the bi-
nary nature of relationships, this information cannot
be recorded in the IRDS; the (equivalent of a tertiary
relationship such as ELEMENT -REPRESENTED -
AS - DATA -TYPE - IN - FILE is necessary to capture
it. Therefore, we recommend embedding this in-
formation in the FILE-CONTAINS-ELEMENT

relationship-type in the form of an attribute-type
such as FORMAT.

The core attribute-types that have been omitted
from the RIRDS are primarily those designated as
multiple attributes in Figure 2. The multiple attri-
bute designation results in relations with repeating
groups, which violates first normal form. Therefore,
to include those attributes in the model, new rela-
tions have to be defined. In cases where these attri-
butes are vital, the relations are included (e.g.,
ALIAS and KWIC corresponding to the attribute-
types ALTERNATE-NAME and CLASSIFICATION,
respectively). Otherwise, as with ALLOWABLE -
RANGE,CODE-LIST-LOCATION,andLOCATION,
the attributes are omitted from the model to stream-
line the presentation.

Two other interesting features are provided by the
RIRDS model: the synonym capability represented
by the ALIAS relation, which allows multiple names
to be assigned to the same entity-a common occur-
rence in information processing environments; and
the synonym feature, which allows these names to
be identified and eventually standardized.

Finally, a key-word-in-context (KWIC) feature is
provided by the KWIC relation. Using this feature,
entities can be classified according to user-chosen
categories facilitating queries such as “List all
entities associated with PERSONNEL.”

Extensible Feafures. The extensibility of this version
of the RIRDS derives directly from the flexibility of
the RDBMS environment, where entity-, attribute-,
and relationship-types can be added dynamically as
needed by simply adding the appropriate relations or
attributes. To add the INPUT-TO relationship-type
to complement DERIVED-FROM and provide for in-
formation flow descriptions, the information admin-
istrator would simply define the INPUT-TO relation
with the appropriate attributes in the host RDBMS.
More examples are provided in the implementation
discussion on the facing page.

Self-Description. In its present form, the RIRDS
model accommodates the IRD and the IRD schema.
However, it is limited in that it is not possible for the
information administrator to know what the model
is from the RIRDS itself That is, there is no way to
discover what the entity-types are in the model or
which entity-types participate in which relationship-
types without resorting to the host RDBMS’s dictio-
nary capabilities. Since the RIRDS is intended as a
significant extension to current RDBMS dictionaries,
it is essential that the RIRDS be able to describe
itself.

This is equivalent to implementing the IRD

54 Communications of the ACM]anuary 1987 Volume 30 Number I

Computiilg Practices

schema description level given in Figure 1 as an
integral part of the RIRDS. This is done by creating
the additional “meta” relations ENT-TYPE,
ATT-TYPE, and REL-TYPE, asshownin Figure 6;
the additional metalayer facilitates description of
the IRDS model. Instances of ENT-TYPE are the
entity-types supported by the IRDS (e.g., SYSTEM,
FILE, USER), and are implemented as views in the
RIRDS at the IRD schema level.

Metaentities, -attributes, and -relationships

ENT-TYPE(aname,dname,added-by,date-added,
mod-by,last-mod,nmods,comments,
descr,security)

ATT-TYPE(aname,dname,added-by,date-added,
mod-by,last-mod,nmods,comments,
descr,security)

REL-TYPE(aname,dname,added-by,date-added,
mod-by,last-mod,nmods,comments,
descr,security)

Integrity Constraints

CONTAINS(ent-type,att-type)
CONTAINS(rel-type,ent_type)

FIGURE 6. RIRDS Schema Description

The relational prototype we propose can also
accommodate the integrity constraints shown in
Figure 3. For example, to show that PROGRAM -
PROCESSES-FILE is a valid relationship between
entity-types, we simply add the tuple PROCESSES
(‘program’, lent-type’ , ‘file’ , lent-type’)
to the RIRDS. To demonstrate that the attribute
DATE-ADDED is part of the SYSTEM entity, we add
thetuple CONTAINS('system','ent-type',
‘date-added’, ‘att-type’). In this way, we
effectively represent the logical structure of the
IRDS, which can then be queried like any other
data. This self-descriptive capability means that

l the integrity of the IRDS can be determined and
enforced via simple queries;

l extensibility is enhanced because the information
administrator can now add new entity-types as
well as specify which relationship-types they can
participate in;

l activation of the dictionary is facilitated.

The metaentity level information describes the logi-
cal structure of the IRD schema level for the in-
stances that will be stored at the IRD level.

Implementation
The RIRDS is intended for implementation on any
RDBMS and subsequent manipulation, as with any
other database, using standard DBMS capabilities
(primarily the query language). To demonstrate the
features of the RIRDS, we present an implementa-
tion using the ORACLE RDBMS on a VAX 780 oper-
ating under VMS. ORACLE was chosen primarily
because it supports the SQL data manipulation lan-
guage, which is under consideration as a federal
standard [z]. No claims are made for the relative
superiority of either ORACLE or SQL vis-a-vis other
systems. The reader is assumed to have some famil-
iarity with SQL syntax and the notion of subqueries
(see [7] and [8] for more details on SQL].

Creation of ORACLE Tables. The RIRDS is imple-
mented very straightforwardly in ORACLE by creat-
ing the relations and views given in Figures 4, 5, and
6 using the SQL CREATE TABLE and CREATE
VIEW commands. (See Figure 7, on the next page, for
examples of this process.) Although several relation
names are reserved words in ORACLE and there-
fore unavailable for use (e.g., FILE, USER, and
CONTAINS), for purposes of this discussion the
original entity-type names will be used.

Entering Schema Description Information. Once the
appropriate relations have been created, the schema
information is entered in the RIRDS, establishing the
self-descriptive capability of the system. All opera-
tions involving entity-, attribute-, and relationship-
types should be handled by the information resource
administrator. Schema data are entered using the
SQLINSERT INTO tablename VALUEScom-
mand as follows:

Enter all entity-types (including ENT-TYPE) as
tuples in the ENT-TYPE relation (Figure 8a, p. 57).
Enter all attribute-types as tuples in the
ATT-TYPE relation and the entity-types or
relationship-types to which they belong in the
CONTAINS view (Figure 8b, p. 57).
Enter all relationship-types as tuples in the
REL-TYPE relation (Figure 8c, p. 57).
Enter all constraints involving which entity-
types can participate in which relationship-
types, as defined in Figure 3 (Figure 8d, p. 57).

With the schema information entered, the logical
structure of the RIRDS is self-contained and can be
manipulated just like any other data. This gives the
information administrator a high degree of flexibility
and extensibility, which is especially valuable for
developing dictionary system prototypes. Figure 8
(p. 57) presents several queries for retrieving infor-
mation about the logical structure of the IRDS.

]anuary 1987 Volume 30 Number I Communications of the ACM 55

Computing Practices

(a) Create ENTITY and RELSHIP tables.

CREATE TABLE ENTITY
(ENAME CHAR(15) NOT NULL,

ETYPE CHAR(a) NOT NULL,
DNAME CHAR(30),
ADDED-BY CHAR(l5) NOT NULL,
DATE-ADDED DATE NOT NULL,

DATA-CLASS CHAR(8)
DOC-CAT CHAR(a));

CREATE TABLE RELSHIP
(RTYPE CHAR(12) NOT NULL,

ElNAME CHAR(15) NOT NULL,
ElTYPE CHAR(S) NOT NULL,
EZNAME CHAR(15) NOT NULL,
E2TYPE CHAR(8) NOT NULL,
ACC-METHOD CHAR(lU),
FREQUENCY CHAR(lU),
REL-POS NUMBER(5));

(b) Create entity and general relationship views.

CREATE 'VIEW PROGRAM AS
(SELECT ANAME, DNAME, ADDED-BY, DATE-ADDED, MOD-BY, LAST-MOD,

DUR-TYPE, LANG, LINES-CODE, COMMENTS, DESCR, SECURITY
FROM ENTITY
WHERE ETYPE='PROGRAM');

CREATE VIEW PROCESSES AS
(SELECT ElNAME, ElTYPE, E2NAHE, EZTYPE

FROM RELSHIP
WHERE RTYPE='PROCESSES');

NMODS, DUR-VALUE,

(c) Create specific relationship views.

CREATE VIEW PROGRAM-PROCESSES-FILE AS
(SELECT ElNAME, EZNAME, ACCESS-METHOD

FROM RELSHIP
WHERE RTYPE='PROCESSES' AND E1TYPE='PROGRAM' AND

EZTYPE='FILE');

FIGURE 7. Creating RIRDS Tables and Views in ORACLE

Entering IRD Metadata. Once the logical structure
has been entered, the RIRDS is ready to accept meta-
data about the information resource environment it
will support. This involves inserting values into the
various entity views (SYSTEM, FILE, USER, etc.)
and the appropriate relationships (PROCESSES,

CONTAINS, etc.). SQL can then be used to retrieve
the desired resource information (see Figure 10,
p. 58).

Extending the RIRDS. The FIRS IRDS specifications
provide only a baseline logical structure for an IRDS
that can then be extended by information adminis-
trators to support the idiosync:rasies of their own
environments. To see how this process works with
the RIRDS, assume that we want to add the informa-
tion resource MODEL as the first phase in imple-

56 Communications of the ACM

menting organizational model management [lo]. To
add the information resource MODEL, we

1.

2.

3.

4.

5.

enter a MODEL tuple with the appropriate values
in the ENT-TYPE relation (Figure lla, p. 59);
enter the attributes associated with MODEL

in the ATT-TYPE and CONTAINS relations
(Figure lib, p. 59);
enter the relationships in which MODEL partici-
pates in the appropriate relationship relations
(Figure llc, p. 59);

create a MODEL table in the RIRDS using the
SQL CREATE VIEW command (Figure lid,
p. 59);
enter model metadata (Figure lie, p. 59).

A similar process is employed for adding attribute-

]anua y 1987 Volume 30 Number 1

Computirig Practices

(a) Entering entity-types in RIRDS

INSERT INTO ENT-TYPE VALUES
('program' ,'computer-program','dolk',
'23Nov85',null,null,null,'Any computer
program written in a single language',
'unclass');

(b) Entering attribute-types and entity-types to which they
belong in RIRDS

INSERT INTO ATT-TYPE VALUES
('aname', 'access_name','dolk','23Nov85',
null,null,null, 'Access name is a
unique name in the IRDS','unclass');

INSERT INTO CONTAINS VALUES
('program','ent-type','aname',

'att-type');

(c) Entering relationship-types in RIRDS

INSERT INTO RELSYPE VALUES
('contains', 'ent-type-contains-ent-
type ' , 'kirsch',~23Nov85',null,null,
null,'An entity-type contains some
entity-type','unclass');

(d) Entering integrity constraints in RIRDS

INSERT INTO CONTAINS VALUES
('system','ent-type','program',

'ent-type');

INSERT INTO CONTAINS VALUES
('program','ent_type','module',

lent-type');

FIGURE 8. Entering RIRDS Schema Description Information

types to existing entity-types. To add the attribute-
type PHONE to the USER entity-type, we add the
PHONEtupletothe ATT-TYPE relation,addthe
CONTAINS('user','ent_type','phone',
‘att-type’) tuple,usethe SQL ALTER TABLE
command to change the ENTITY relation, and then
redefine the ~~~~viewtoinclude PHONE.

Attributes are deleted by redefining the view
(using DROP VIEW and CREATE v1~win SQL),
leaving off the attribute(s) to be deleted.

Data Integrity
The self-descriptive RIRDS contains the apparatus
for verifying its own data integrity. Consider the
problem of determining whether any invalid tuples
have been enteredinthe CONTAINS relationship,
where an invalid tuple is one that violates one
of the constraints listed in Figure 3. For example,
CONTAINS('edit-doc','document','edit-
SYS' , ‘system’) is invalid since a document can-
not contain a system. .Any integrity violations in the
CONTAINS relationship can be reported via the fol-
lowing SQL command r‘ ! ” is equivalent to “NOT"):

(4

(4

“List all attributes associated with PROGRAM and a
description of each.”

SELECT E2NAME,COMMENTS FROM CONTAINS,
ATT-TYPE

WHERE ElNAME=*program' AND E2TYPE=
'att-type' AND CONTAINS.EZNAME =
ATT-TYPE.COMMENT.5;

E2NAME COMMENTS

aname Access name is a unique name in
the IRDS

dname
added-by
date-added
mod-by
date-mod
dur-value
dur-type
nmods
lang
lines-code
descr
comments
security

Descriptive name
User who added entity or entity-type
Date entity or entity-type added
User who modified entity or entity-type
Date user modified entity or entity-type
Duration value
Duration type
Number of modifications
Source language
Lines of code
Description
Explanatory comments
Security classification

“Which entity-types participate in
RESPONSIBLELFOR?"

SELECT ElNAME,E2NAME FROM RESP-FOR
WHERE ElTYPE='ent_type' AND E2TYPE=

lent-type';

ElNAME E2NAME

user system
user program
user module
user document
user file
user record
user element

“Which entity-types does RECORD contain?”

SELECT E2NAME FROM CONTAINS
WHERE ElNAME='record' AND EZTYPE=

lent-type';

E2NAME

record
element

FIGURE 9. SQL Queries for Schema Description Information

SELECT * FROM CONTAINS
WHERE ElTYPE != 'ENT TYPE' AND

E2TYPE != 'ENT-TYPE' AND
(ElTYPE,E2TYPE) NOT IN

(SELECT ElNAME,EZNAME FROM
CONTAINS

WHERE ElTYPE = 'ENT-TYPE' AND
EZTYPE = 'ENT-TYPE')

january 1987 Volume 30 Number 1 Communications of the ACM 57

Computiq Practices

(a) “List all files from which the P3MDATA file is derived.”

SELECT EZNAME FROM DERIVED-FROM,FILE
WHERE ElNAME='p3mdata' AND ElTYPE='file' AND

DERIVED-FROM.E2NAME=RECORD.ANAME;

(b) “All Fortran programs are to be converted to Ada. List all Fortran programs,
the lines of code, and the users responsible for each.”

SELECT ElNAME,E2NAME,LINEKCODE FROM RESP-FOR,PROGRAM
WHERE ElTYPE='user' AND E2TYPE='program' AND

RESPvFOR.E2NAME=PROGRAM.ANAME AND LANG='fortran'
ORDER BY ElNAME;

(c) “Which users are responsible for files containing the element ZIP-CODE or any of its aliases?”

SELECT ElNAME,E2NAME FROM RESP-FOR
WHERE ElTYPE='user' AND E2TYPE='file' AND

E2NAME IN
(SELECT ElNAME FROM CONTAINS
WHERE ElTYPE=*file' AND EZTYPE='element' AND

(E2NAME='zip-code' OR E2NAME IN
(SELECT EZNAME FROM ALIAS
WHERE ElNAME='zip-code' AND

ElTYPE='element')));

FIGURE 10. SQL Queries for Retrieving Metadata

This facility demonstrates the power of being able to
mix metadata and IRD schema information in the
same query. The subquery (tbe second SELECT
clause) identifies the set of all pairs of entity-types
in the IRD schema that can legally participate in
CONTAINS. The first SELECT clause then identifies
any pairs of entities in the metadata appearing in
CONTAINS whose entity-types do not fall in that set.
All invalid occurrences can subsequently be deleted
from the database by simply changing "SELECT *"
to “DELETE" in the above query.

Limitations of the RIRDS Implementation
The RIRDS implementation relies on existing
ORACLE functionality to perform its data descrip-
tion and manipulation. Although this provides a
powerful dictionary capability for the knowledge-
able user, there are shortcomings in the areas of
data entry and retrieval performance.

Specifically, data entry via SQL is a tedious pro-
cesssince INSERT INTO tablename VALUES
must be typed for every tuple. However, nearly all
DBMS products, including ORACLE, provide tools
for fashioning input screens and forms that signifi-
cantly facilitate data entry and which could easily
be added to the prototype.

A second problern related to data entry is that the
inability to represent derived data in the form of
rules sometimes necessitates an unreasonable
amount of input. Assume, for example, that we en-

terthe file ORDERS containing the record ORDERS-
RECORD, which in turn contains a dozen data ele-
ments. If we have entered in CONTAINS the tuple
showingthat ORDERS includes ORDERS-RECORD as
well as the dozen tuples showing what data ele-
ments ORDERS-RECORD is comprised of, it is still
necessary to add another dozen tuples showing that
ORDERS includes the data elements. However, if it
were possible to represent a rule of the form

CONTAINS(x,y) & CONTAINS(y,z)
+CONTAINS(x,z)

it would only be necessary to add the tuple
CONTAINS(orders,orders-record)tothe
IRDS;theCONTAINS(file,element)tuples
would then be derived by an appropriate query
processor at data retrieval time. However, this
would require an extension to SQL, which cannot
perform this kind of inferencing.

It is appropriate here to discuss the motivation for
this particular RIRDS design. Initially, a simpler ap-
proach was considered in which the entity- and
relationship-types shown in Figure 5 were repre-
sented explicitly as tables rather than views. The
major problem with this design was that several
important queries could not be answered using a
single SQL command. Specifically, in executing the
impact-of-change query, “If we change entity X,

what other entities will be affected?“, the explicit
design would require exhaustively searching each

58 Comnlunicafions of the ,4CM januay 1987 Volume 30 Number 1

Enter MODEL entity-type.

INSERT INTO ENT-TYPE VALUES
('model', 'mathematical-modell,rkirschl,

12Dec85',null,null,null,~Any
mathematical model',*unclass*);

Enter MODEL attributesin ATT-TYPE if they are not
already there (we wit assume they are) and associate
them with MODEL.

INsEw INTO CONTAINS VALUES
('model', 'ent-type',*aname*,'att_typer);

INSERT INTO CONTAINS VALUES
('modell, lent-type','dname*,'att-type');

(etc, etc)

Enter the relationships in which MODEL participates.

INSERT INTO RESP-FOR VALUES
('user', 'ent-type','modelq,lent-type*);

INSERT INTO DERIVED-FROM VALUES
(ldocument',aent,type','model',qenttype');

INSERT INTO PROCESSES VALUES
('user', 'ent-type','model','ent-type');

INSERT INTO RUNS VALUES
('program','ent-type','model','ent,type');

Create MODEL view.

CREATE VIEW MODEL AS
(SELECT ANAME, DNAME, ADDED-BY, DATE-ADDED,

MOD-BY, DATEMOD, NMODS,
MOD-TYPE,
MOD-METHOD, COMMENTS, DESCR,
SECURITY

FROM ENTITY
WHERE ETYPE='MODEL')

Enter model metadata.

INSERTINTOMODELVALUES
('Hm', 'personnel-policy-projection',

'kirsch', '12Dec851,null,null,null,
'forecast', 'simulation', 'PredictMOS
manningandreenlistments', 'unclass');

FIGURE 11. SQL Commands to Enter New Entity-Type

An important benefit of designing the RIRDS to be
self-descriptive is that this also facilitates the activa-
tion process. The most logical situation for activating
an RIRDS is to integrate it with its host RDBMS to
gain the following advantages:

relationship-using a series of SQL commands-to
see which entities interacted with entity X. The cur-
rent view-oriented approach, on the other hand,
can satisfy the impact of change in one command
(assume x is the element ZIP-CODE):

l Integrity constraints can be invoked automatically,
as described under “Data Integrity” on page 57.

l A simplified version of SQL can be generated to
free users from “navigational” details of their data-
bases.

SELECT RTYPE,ElNAME,ElTYPE,E2NAME, l The IRDS provides a much richer spectrum of in-
E2TYPE FROM RELSHIP formation than current relational dictionaries.

WHERE (E2NAME='ZIP_CODE' AND l The IRDS is extensible rather than hard-wired.
E2TYPE='ELEMENT') l The IRDS can be integrated with other system

OR (ElNAME='ZIP-CODE' AND processes thus reinforcing the concept of central-
ElTYPE='ELEMENT') ized usage of data and information resources.

Computing Prucfices

The view-oriented design is also more flexible in
that it effectively implements a self-descriptive E-R
model. Any E-R application can be implemented
with this methodology by simply specifying the
desired attributes when creating the ENTITY and
RELSH I P tables, and then proceeding as described
under “Implementation” (p. 55).

A disadvantage of the view-oriented approach
is a certain loss of efficiency in that any tuple in
ENTITY or RELSHIP is likely to have many null
fields for those attributes that do not apply to the
view the tuple is instantiating. In the IRDS, this is
not a serious problem because the entity-types share
many common attribute-types. In the general case,
however, this may be the exception rather than
the rule. Also, some RDBMSs do not allow insertion
or modification operations on views. Entering a
SYSTEM entity, for example, would require insertion
directly into the ENTITY relation, forcing the user
to be aware of which attributes required null values.
The ORACLE RDBMS allows insertion and modifi-
cation of views if they are based on only a single,
underlying relation. All views in the RIRDS satisfy
this stipulation.

Activating the RIRDS
As a passive dictionary system, the RIRDS is not
integrated with other system software components
that rely on the dictionary for its metadata. Thus, it
is primarily a documentation tool. The true value
of an IRDS exhibits itself when the IRDS can be
included in an information processing loop as an
active control and audit mechanism: for example, at
the front end of a DBMS, data design, or require-
ments analysis software system. Establishing active
links between the IRDS and operational information
systems dramatically increases the utility of an
IRDS.

jarwary 1987 Volume 30 Number 1 Communications of the ACM 59

Computiilg Practices

A simplified way of integrating the RIRDS is to
build an SQL preprocessor (FIRE-SQL) that accepts a
modified SQL syntax and then generates appropriate
SQL commands for execution by the RDBMS. In
many cases, PRE-SQL will eliminate the need for the
FROM table syntax by searching the attribute list
in the SELECT clause to determine in which tables
they appear. It also means that users need not know
which attributes are associatled with which tables,
However, attribute names must be unique for this to
work correctly; otherwise, PRE-SQL has to query the
user to resolve the ambiguity.

Although a discussion of the concrete details of
how an RIRDS can be integrated with its host
RDBMS or other system proclasses is beyond the
scope of this article, the value of an active dictio-
nary-coupled with the additional information that
an RIRDS provides for a relational environment-
makes this a timely topic worthy of further investi-
gation.

Future Research
In the past, dictionary systems have often been
viewed as mundane tools used primarily for docu-
mentation and other necessary administrative evils.
However, as we understand more about data man-
agement, database design, and data semantics, the
importance of dictionary systlems is bound to in-
crease. The establishment of (dictionary standards
and a relational implementati.on are one step in this
direction. Fruitful areas of further research in this
area include the following:

l Incorporating other semantic models into the IRDS.
The semantic data model (SDM) [12] subsumes the
E-R model in terrns of semantic expressiveness.
The ability of the IRDS to accommodate more ro-
bust models like the SDM must be examined.

l incorporating time semantics into the IRDS. The
IRDS versioning and life-cycle-phase functions as
well as audit trail requirements imply a semantics
of time that neither the FIPS specifications nor the
relational model adequately support.

l Extending the dictionary system to a knowledge-based
system. An IRDS is essentially a knowledge-based
system about an organization’s information re-
sources [13]. Several of the limitations of the
RIRDS (see p. 58) suggest that Prolog might be
a more appropriate tool for IRDS development.
Requirements for implementing the IRDS as an
expert system should be explored.

CONCLUSIONS
As the importance of metadata management grows
in tandem with the increased complexity of infor-
mation resource administration and the increased

technological maturity of RDBMSs, the specification
of IRDS standards will provide a foundation for
building metadata support tools. We have surveyed
the FIPS IRDS specifications and developed a rela-
tional model that conforms to a subset of those spec-
ifications. The implemented model is intended to
enhance the dictionary capabilities of existing
RDBMSs while remaining easy to implement and
use, assuming a knowledge of the host RDBMS’s data
manipulation language. In its most general form, the
RIRDS can serve as an implementation of the E-R
model. The shortcomings of the relational model as
the implementation medium for the IRDS include
the inability to express rules easily and the lack of
time semantics for capturing the dynamic aspects of
an information resource environment.

The FIPS IRDS recognizes that specifications pro-
vide only a baseline from which organizations may
fashion an IRDS to meet their unique requirements:
An IRDS must be extensible. The relational model
presented here supports this extensibility as a result
of both the inherent flexibility of the relational envi-
ronment and the explicit representation of meta-
level information that makes the IRDS model self-
descriptive. These self-descriptive facilities are also
critical in converting the IRDS from a passive, pri-
marily documentation-oriented tool, to an active
control mechanism.

The development of an organizational IRDS is a
complex project. The relational model presented
here can perhaps serve as a working prototype from
which to develop an IRDS that is FIPS-compatible,
extensible, and capable of being activated.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

Allen. F.W.. Loomis, M.E.S., and Mannino, M.V. The integrated
dictionary/directory system. ACM Comput. Sure. 14. 2 (June 1982),
245-286. A comprehensive survey of dictionary/directory system
features with examples from commercial systems.
American National Standards institute. (Draft proposed) American
National Standard database language SQL. ANSI X3H2. American
National Standards Institute, New York. 1984. The FIPS specifica-
tions for the SQL database language.
American National Standards Institute. (Draft proposed) American
National Standard information resource dictionary system: Part l-
Core standard. ANSI X3H4. American National Standards Insti-
tute. New York. 1985. The FIPS specifications for the core system-
standard schema.
American National Standards Institute. (Draft proposed) American
National Standard information resource dictionary system: Part Z-
Entity-level security. ANSI X3H4. American National Standards
Institute. New York. 1985. The FIPS specifications for the entity
level security module.
American National Standards Institute. (Draft proposed) American
National Standard information resource dictionary system: Part 3-
Application program interface. ANSI X3H4. American National
Standards Institute. New York. 1985. The FIPS specifications for the
application program interface module.
American National Standards Institute. (Draft proposed) American
National Standard information resource dictionary system: Part 4-
Support of standard data models. ANSI X3H4, American National
Standards Institute. New York. 1985. The FIPS specifications for the
data model support module.
Chamberlin, D.D.. et al. SEQUEL 2: A unified approach to data
definition. manipulation. and control. IBM J Res. Den 20, 6 (Nov.
1976). 560-575. A description of the first version of SQL.

60 Communications of the ACM Ianuary 1987 Volume 30 Number 1

Computing Practices

8. Chen. P. The entity-relationship model: Toward a unified view of
data. ACM Tram. DafaOasr Sysr. 1, 1 (Mar. 1976). 9-36. The seminal
article describing the entity-relationship model.

9. Dale. C.J. An Infroducfiou to D&abase Systems, Volume 1. 3rd ed.
Addison-Wesley, Reading, Mass., 1982. A classic textbook on
database systems including a discussion of SQL.

10. Dolk. D.R.. and Konsynski. B.R. Model management in organiza-
tions. Jrf Marlage. 9. 1 (Aug. 1985), 35-47. Introduction of model
management as an important component of information resource
managemenl.

11. Goldfine. A. The information resource dictionary system. In Pro-
ceedings of fhe 4fh Jnfermfional Enfify-Relationship Conference (Chi-
cago, 111.. Oct. 26-30). IEEE Press. New York, 1985. pp. 114-122.
A concise survey of the FIPS IRDS model by one of its creators.

12. Hammer. M.. and McLeod. D. Database description with SDM: A
semantic database model. ACM Trans. Database Syst. 6, 3 (Sept. 1961).
351-386. A detailed description of the semantic data model.

13. Kerschberg. L.. Marchand, D.. and Sen. A. Information system inte-
gration: A m&data management approach. In Proceedings of the 4th
lnfenmfioml Cmfewrce on Jnforntafio?~ Systems (Houston, Tex.. Dec.).
The Society for Information Management, Chicago, Ill.. 1963.
pp. 223-239. Discusses the notion of a dictionary as a corporate
knowledge base, and argues in favor of a larger role for dictionary
systems.

14. Lefkovils. H.C., Sibley, E.H., and Lefkovits, S.L. I~~formafion Re-
source/Dafa Dicfiomq Systems. Q.E.D. Information Sciences. Welles-
ley. Mass., 1963. Provides a low-level introduction to dictionary
concepts. and surveys eight commercially available systems.

15. Leong-Hong. B.W.. and Plagman. B.K. Data Dicfiomvy/Direrfory Sys-
furs: Adnrinisfrafion, Jmplrnwr~fafiort and Usage. Wiley-Interscience.
New York, 1982. The most thorough treatment of dictionaries cur-
rently available. Discusses the concepts, applications, selection,
implementation. and management of dictionary systems.

16. Navathe. S.B.. and Kerschberg. L. Role of dictionaries in information
resource management. I!$ Mawge. 70, 1 (Jan. 1986). 21-46. A com-
prehensive overview of the application of dictionaries to informa-
tion requirements analysis/specification and informalion modeling.

CR Categories and Subject Descriptoh: H.2.1 [Database Manage-
ment]: Logical Design-relafional dicfimtary: r,lfify-relafionslrip model;
H.2.7 [Database Management]: Database Administration-irlformatiofz w-
source admirrisfrufim; irlfornmfiorr resource dicfimay system

General Terms: Design, Standardization
Additional Key Words and Phrases: Database management system,

extensibility. ORACLE, query processor. SQL

Received l/86; accepted 4/86

Authors’ Present Addresses: Daniel R. Dolk. Dept. of Administrative
Sciences. Naval Postgraduate School, Monterey, CA 93943; Robert A.
Kirsch II. Thayer Computer Center, U.S. Military Academy, West Point,
NY 10996.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its dale appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

ACM SPECIAL INTEREST GROUPS
ARE YOUR TECHNICAL SIGCAPH Newsletter (Computers and the SIGMETRICS Performance Evaluation

INTERESTS HERE? Physically Handicapped) Print Edition Review (Measurement and

SIGCAPH Newsletter, Cassette Edition
Evaluation)

The ACM Special Interest Groups further the ad- SIGMICRO Newsletter

vancement of computer science and practice in SIGCAPH Newsletter, Print and Cassette (Microprogramming)

many specialized areas. Members of each SIG Editions SIGMOD Record (Management of Data)
receive as one of their benefits a pefiodiil ex-
clusively devoted to the special interest. The fol-

SIGCAS Newsletter (Computers and SIGNUM Newsletter (Numerical
Society) Mathematics)

lowing are the publications that are availabfe-
through membership or spedal subscription. SIGCHI Bulletin (Computer and Human

SIGOA Newsletter (Office Automation)

Interaction) SIGOPS Operating Systems Review
(Operating Systems)

SIGCOMM Computer Communication
Review (Data Communication) SIGPLAN Notices (Programming

SIGACT NEWS (Automata and Languages)
Computability Theory) SIGCPR Newsletter (Computer Personnel SIGPLAN FORTRAN FORUM (FORTRAN)

SIGAda Letters (Ada)
Research)

SIGSAC Newsletter (Security, Audit.
SIGCSE Bulletin (Computer Science and Control)

SIGAPL Quote Quad (APL) Education) SIGSAM Bulletin (Symbolic and Algebraic

SIGARCH Computer Architecture News SIGCUE Bulletin (Computer Uses in Manipulation)

(Architecture of Computer Systems) Education) SIGSIM Simuletter (Simulation and

SIGDA Newsletter (Design Automation)
Modeling)

SIGART Newsletter (Artificial
Intelligence)

SIGSMALL/PC Newsletter (Small and
SIGDOC Asterisk (Systems Personal Computing Systems and

SIGBDP DATABASE (Business Data
Documentation) Applications)

Processing) SIGGRAPH Computer Graphics
SIGSOFT Software Engineering Notes

(Computer Graphics)
(Software Engineering)

SIGBIO Newsletter (Biomedical SIGUCCS Newsletter (University and
Computing) SIGIR Forum (Information Retrieval) College Computing Services)

]anuay 1987 Volume 30 Number I Communications of the ACM 61

