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A LINEAR-TIME ALGORITHM FOR COMPUTING K-TERMINAL
RELIABILITY IN SERIES-PARALLEL NETWORKS*

A. SATYANARAYANAt AnD R. KEVIN WOOD#

Abstract. Let G=(V, E) be a graph whose edges may fail with known probabilities and let K < V be
specified. The K-terminal reliability of G, denoted R(Gy), is the probability that all vertices in K are
connected. Computing R(Gg) is, in general, NP-hard. For some series-parallel graphs, R(Gg) can be
computed in polynomial time by repeated application of well-known reliability-preserving reductions.
However, for other series-parallel graphs, depending on the configuration of K, R(Gy ) cannot be computed
in this way. Only exponential-time algorithms as used on general graphs were known for computing R(Gg)
for these “irreducible” series-parallel graphs. We prove that R(Gg ) is computable in polynomial time in
the irreducible case, too. A new set of reliability-preserving ‘“polygon-to-chain” reductions of general
applicability is introduced which decreases the size of a graph, and conditions are given for a graph admitting
such reductions. Combining all types of reductions, an O(|E|) algorithm is presented for computing the
reliability of any series-parallel graph irrespective of the vertices in K.

Key words. algorithms, complexity, network reliability, series-parallel graphs, reliability-preserving
reductions

1. Introduction. Analysis of network reliability is of major importance in com-
puter, communication and power networks. Even the simplest models lead to computa-
tional problems which are NP-hard for general networks [5], although polynomial-time
algorithms do exist for certain network configurations such as “ladders” and “wheels”
and for some series-parallel structures such as the well-known ‘‘two-terminal” series-
parallel networks. In this paper, we show that a class of series-parallel networks, for
which only exponentially complex algorithms were previously known [7], [8], can be
analyzed in polynomial time. In doing this, we introduce a new set of reliability-
preserving graph reduction of general applicability and produce a linear-time algorithm
for computing the reliability of any graph with an underlying series-parallel structure.

The network model used in this paper is an undirected graph G =(V, E) whose
edges may fail independently of each other, with known probabilities. The reliability
analysis problem is to determine the probability that a specified set of vertices K < V
remains connected, i.e., the K-terminal reliability of G. Computing K-terminal reliabil-
ity was first shown to be NP-hard by Rosenthal [12], and it follows from Valiant [17]
that the problem is #P-complete even when G is planar. Two special cases of this
reliability problem are the most frequently encountered, the terminal-pair problem
where |K|=2, and the all-terminal problem where K = V. These problems are also
#P-complete [11], in general, although their complexities are unknown when G is
planar.

In network reliability analysis, three reliability-preserving graph reductions are
well-known: the series reduction, the degree-2 reduction (an extension of the series
reduction for problems with |K|>2) and the parallel reduction. From the realiability
viewpoint, we classify series-parallel graphs into two types, those which are reducible
to a single edge using standard series, parallel and degree-2 reductions, and those
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which are not. The former type is “reducible” and the latter ““irreducible.” For example,
the series-parallel graph of Fig. 1a is reducible if K ={v,, v,}, but irreducible for
K ={v,, v¢}. Thus, the reducibility of a series-parallel graph, for the purpose of
reliability evaluation, depends on the nature of the vertices included in K. A more
detailed exposition of this concept appears in § 2.

V2 ‘JA
Y1 M3
V3 Vs
(a)
v, \A vy vy
vy Ve vy Ve
\Z} Vs V3 Vs
() )
Vo M V2 Y4
Vl v6
V3 Vs V3 Vs

(d) (e)

FIG. 1. Reducible and irreducible series-parallel graphs. Note: Darkened vertices represent K-vertices.

The K-terminal reliability of a reducible series-parallel graph can be computed
in polynomial time. Several methods exist for the solution of the terminal-pair problem
for such a graph, i.e., for a two-terminal series-parallel network [9], [15], and for
|K|>2, direct extensions of the methods can be used. However, it has been believed
that computing the reliability of irreducible series-parallel graphs is as hard as the
general problem. (The use of series-parallel reductions with multi-state edges [13] is
applicable to this problem although this has not been recognized. We do not follow
this tack because of the simplicity and generality obtained by maintaining binary-state
edges.) The purpose of this paper is threefold: (1) to introduce a new set of reliability-
preserving graphs reductions called “polygon-to-chain reductions,” (2) to show that
by using these reductions, irreducible series-parallel graphs become reducible, and (3)
to give a linear-time algorithm for computing the reliability of any graph with a
series-parallel structure.

In a graph, a chain is an alternating sequence of vertices and edges, starting and
ending with vertices such that end vertices have degree greater than 2 and all internal
vertices have degree 2. Two chains with the same end vertices constitute a polygon.
In § 3, we show that a polygon can be replaced by a chain and that this transformation
will yield a reliability-preserving reduction. We discuss the relationship between
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irreducible series-parallel graphs and polygons in § 4. Using the polygon-to-chain
reductions in conjunction with the three simple reductions mentioned earlier, a poly-
nomial-time procedure is then outlined which will compute the reliability of any
series-parallel graph. This procedure is very simple but not of linear-time complexity,
soin § 5 we develop algorithm which is shown to operate in O(| E|) time. This algorithm
will compute the K-terminal reliability of any graph having an underlying series-parallel
structure. Finally, in § 6, we briefly discuss an extension to the algorithm to reduce a
nonseries-parallel graph as far as possible so that the algorithm could be used as a
subroutine in a reliability analysis program for general networks.

2. Preliminaries. Consider a graph G =(V, E) in which all vertices are perfectly
reliable but any edge e; may fail with probability g; or work with probability p,=1—g.
All edge failures are assumed to occur independently of each other. Let K be a specified
subset of V with |K|Z2. When certain vertices of G are specified to be in K, we
denote the graph G together with the set K by Gg. We will refer to the vertices of G
belonging to K as the K-vertices of G,. The K-terminal reliability of G, denoted by
R(Gk), is the probability that the K-vertices in Gk are connected. K-terminal reliability
is a generalization of the common reliability measures, all-terminal reliability and
terminal-pair reliability where K = V and |K| =2, respectively.

Reliability of a separable graph. A cutvertex of a graph is a vertex whose removal
disconnects the graph. A nonseparable graph is a connected graph with no cutvertices.
A block of a graph is a maximal nonseparable subgraph.

Let G=(V, E) be a separable graph and v V be any cutvertex in G. G can be
partitioned into two connected subgraphs G’ = (V,, E,) and G = (V,, E,) such that
ViUV,=V, VN V,=v, E;UE,=E and E,N E,=. Also, E, # Jand E, # . Denote
K,=K N V,and K, =K N V,. If one of the K is null, say K, = &, then G is irrelevant
and R(Gg)= R(G(,Q). Otherwise, assuming K; # J and K, # (J, it is well known that
R(Gk)=R(G¥,,)R(GRL,). (R(Gk)=1 if |K|=1. Therefore, if K;={v} then
R(G(IQU,,) =1 and the above statement is still true.) Thus the reliability of a separable
graph can be computed by evaluating the reliabilities of its blocks separately. For this
reason, we henceforth consider only nonseparable graphs.

Simple reductions. In order to reduce the size of graph Gy, i.e. reduce |V|+|E|,
and therefore reduce the complexity of computing R(Gy), reliability-preserving reduc-
tions are often applied: Certain edges and/or vertices in G are replaced to obtain G';
new edge reliabilities are defined; a new set K' is defined; and a multiplicative factor
Q is defined; all such that R(Gk ) = QR(G-). The following three reliability-preserving
reductions are well known and are called simple reductions.

A parallel reduction replaces a pair of edges e, = (u, v) and e, = (u, v) with a single
edge e. =(u, v) and defines p.=1-q.q,, K'=K, and Q=1.

Suppose e, = (u, v) and e, = (v, w) such that u # w, deg (v) =2, and v & K. A series
reduction replaces e, and e, with a single edge e, = (u, w), and defines p. = p,py, K'= K
and Q) =1.

Suppose e, =(u, v) and e, = (v, w) such that u # w, deg (v) =2, and {u, v, w}c K.
A degree-2 reduction replaces e, and e, with a single edge e.=(u, w) and defines
Pe="PaPs/(1—qaqs), K'= K —v, and A =1-q,q;

Series-parallel graphs. The following definition should not be confused with the
definition of a ““two-terminal” series parallel network in which two vertices must remain
fixed. No special vertices are distinguished here. In a graph, edges with the same end
vertices are parallel edges. Two nonparallel edges are adjacent if they are incident on
a common vertex. Two adjacent edges are series edges if their common vertex is of
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degree 2. Replacing a pair of series (parallel) edges by a single edge is called a series
(parallel) replacement. A series-parallel graph is a graph that can be reduced to a tree
by successive series and parallel replacements. Clearly, if a series-parallel graph is
nonseparable, then the resulting tree, after making all series and parallel replacements,
contains exactly one edge.

We wish to clarify the subtle difference between the term “‘replacement” used
here and the term ‘“‘reduction” used with respect to simple reductions. Replacement
is a strictly graph-theoretic term indicating some edges or vertices from G are removed
and then replaced by other edges or vertices to create a new graph G'. A reduction is
defined, on the other hand, with respect to G, K, and edge reliabilities. A reduction
includes the act of replacing edges or vertices in G to create G’ along with defining
edge reliabilities, K', and Q, all such that R(Gg ) = QR(G%), i.e. reliability is preserved.
For example, in graph G as shown in Fig. 1a, series replacements are possible while
no (reliability-preserving) simple reductions are possible in the corresponding Gy for
K = {v,, v¢} (Fig. 1b). Motivated by the difference between graphs which allow replace-
ments but, with K and edge reliabilities defined, do not allow reliability-preserving
simple reductions, we distinguish between graphs which can and cannot be reduced
by simple reductions.

Reducible and irreducible series-parallel graphs. Clearly, if G has no series or
parallel edges, then for any K, G admits no simple reductions. If G is a series-parallel
graph, then a simple reduction might or might not exist in Gx depending upon the
vertices of G that are chosen to be in K. For example, consider the series-parallel
graph G of Fig. 1a. The graph Gy, for K = {v,, vs, v,} as in Fig. 1¢c, can be reduced
to a single edge by successive, simple reductions. On the other hand, for K ={v,, vs},
Gy admits no simple reductions (Fig. 1b). A series-parallel graph Gy is reducible if
it can be reduced to a single edge by successive, simple reductions. If G is reduced
to a single edge e; using m reductions, then R(Gk)=p;[[,., Qx where Q, is the
multiplicative factor defined by the kth reduction. Note that any series-parallel graph
G is reducible for the all-terminal problem since any degree-2 vertex in Gy allows a
degree-2 reduction.

It is possible for a (nonseparable) series-parallel graph to admit one or more
simple reductions for a specified K and still not be completely reducible to a single
edge. As an illustration, consider Gk of Fig. 1d. Two series reductions may be applied
to this graph to obtain the graph of Fig. le, but no further simple reductions are
possible. A graph G is an irreducible series-parallel graph if Gx cannot be completely
reduced to a single edge using simple reductions.

Chains and polygons. In a graph, a chain yx is an alternating sequence of distinct
vertices and edges, v, (vy, v,), vy, (Vy, V3), U3, *, Uk_1, (Vk_1, Uk), Uk, sSuch that the
internal vertices, v,, U3, * +, Ux_y, are all of degree 2 and the end vertices, v, and vy,
are of degree greater than 2. A chain need not contain any internal vertices, but it
must contain at least one edge and two end vertices. The length of a chain is simply
the number of edges it contains. A subchain is a connected subset of a chain beginning
and ending with a vertex and containing at least one edge. Both the end vertices of a
subchain may be of degree 2. The notation y will also be used for a subchain with
the usage differentiated by context.

Suppose x; and yx, are two chains of lengths I, and 1, respectively. If the two
chains have common end vertices u and v, then A= x, U x, is a polygon of length I, + L,.
In other words, a polygon is a cycle with the property that exactly two vertices of the
cycle are of degree greater than 2. While this definition allows two parallel edges to
constitute a polygon, we will initially require a polygon to be of length at least 3.
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3. Polygon-to-chain reductions. In this section a new set of reliability-preserving
reductions will be introduced which replace a polygon with a chain and always reduces
| V|+|E| by at least 1. Consider a graph Gx which does not admit any simple reductions
but does contain some polygon A. In general, no such polygon need exist, but, if it
does exist, then the number of possible configurations is limited.

Property 1. Let Gk be a graph which admits no simple reductions. If Gx contains
a polygon, then it is one of the seven types given in the first column of Table 1.

Proof. This follows from the facts that (i) every degree-2 vertex of G is a K-vertex,
(ii) there can be no more than two K-vertices in a chain, and (iii) the length of any
chain in Gk is at most 3.

Polygon-to-chain transformations. Let A; be a type j polygon in Gy, a graph which
admits no simple reductions. Let u and v be the vertices in A; such that deg (u)>2
and deg (v) >2. Then, A; = x;U x/, where x; and xj are chains in Gx with common
end vertices u and v. Replacing the pair x; and x; by the corresponding chain y;, as
in Table 1, is called a polygon-to-chain transformation.

In Theorem 1 we will prove that a polygon-to-chain transformation can be used
to produce a reliability-preserving, polygon-to-chain reduction. It is useful here,
however, to make the distinction between a polygon-to-chain reduction and a polygon-
to-chain transformation, in the same manner that simple reductions and replacements
are differentiated. A transformation is only a topological mapping of a graph G to a
graph G’ and ignores all considerations of reliability including K-vertices. A reduction
includes the topological transformation as well as all reliability calculations and changes
in K-vertices.

The proof technique of Theorem 1 requires that we first discuss the use of
conditional probabilities for computing the reliability of a graph in a general context.
Let e; = (u, v) be some edge of Gk and let F; denote the event that e; is working and
F; denote the complementary event that e; has failed. Using rules of conditional
probability, the reliability of Gx can be written as

(1) R(Gk) =p:R(Gx|F)+qR(Gk |F,)=pR(G% )+ qR(G%)

where
G=(V-u—-v+w, E—e), w=ulUuo,
K’={K ifu,ve K,
K-u—-v+w ifueKorvek
and
G"=(V,E-e),
K"=K

F; and F;, are said to “induce” GY% and G'%. from Gy, respectively. (“Induce” is not
used in the standard graph-theoretic sense here.) G- is Gk with edge e; contracted,
and G%- is Gk with edge e; deleted.

Equation (1) can be applied recursively on the induced graphs and simple reduc-
tions made where applicable within the recursion. After repeated applications of the
formula, the induced graphs are either reduced to single edges for which the reliability
is simply the probability that the edge works, or some K-vertices become disconnected,
in which case the reliability of the induced graph is zero. In this way, the reliability
of any general graph may be computed. This method of computing the reliablity of a
graph is known as “factoring” [10], [14] and is a special case of pivotal decomposition
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TABLE 1
Polygon-to-chain reductions

Note: Darkened vertices represent K-vertices

Polygon Type Chain Type Reduction Formulas New Edge Reliabilities
a= aPpic
8 -Paqch
9 9
a_,’'b c
§=p_p.P (1+-—+—+—-) s
a’b'c Py b Pc P, = oy
@ =Py
- -t
B=p,q,9, Py " T4
Gﬂp PP (1 +-£+q_b+g_c.)
+
abe\" P, Py P, gl cszge-»sz
@ " Pa% 9Py +qapbpch +qapchpd
8 “PaPYy
q q q
b, e 4
§=p_p.p_P (l+—“+—+—-+—)
a‘b’ctd pa pb PC pd
G'anchpd
B =P 9 q.Py +9,P P 9y
§=p qp q
ade( a*qb 1 9
Y =P P P Pyll st H—
(4) a’b’c’d\" "p, Py P, Py
e || > 2 @ = 95PyP 9y
8 “Pa%Pc %
§=p_p.q - X
” aPplcq . % 9% 9 Pt Ty
C
See note Y = PoPyPcPy 1+P_.+.p__+;_ +p_)
) a b e "d v, = B+I
@ = 94PpPYgPe Y
B =paau P (Pgd, +94P,) P = _1_-6 v
+ Py (a P Pyd, +P,9.94P,) D@y
8 " PaPp3.Pg9e Y2
q q q q
a _ b c d e
Y= l+—+—+—+—+—
(6) PanPcPdpe Pa Py Pe Py pe)
@ " 9,PpP 4P P
Note:
B=p_q. P (q,pP Pr+Pq Pr+P P q,)
a'bc 'd e f dle" f de’f For |K|‘2:
+ PP 9 Pe(Pyaq +94P,) new chain is
+ 9P PPy Q. Pe+P.qg) . e, .
a'b'c'd e f Felf » &
§=p_p aq p,p.4 g N
a'bic’dve’f
Y =P,P, P PyP.P (1 s, P = (P, +Pa2pPcPy) /0
a‘b c’d e f pa Pb pc Q'Pb+P8quC
™ 9 a, 9
b ——— p—
Py Pe Pg

of a general binary coherent system [1]. For our purposes, factoring will only be applied
to the edges of a single polygon or a chain.

Polygon-to-chain reductions.

THEOREM 1. Suppose Gk contains a type j polygon. Let G denote the graph
obtained from Gy by replacing the polygon A; with the chain x; having appropriately
defined edge probabilities, and let Q); be the corresponding multiplication factor, all as in
Table 1. Then, R(Gk) = Q;R(G%).
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We prove the exactness of reduction 7 only, since reductions 1-6 may be shown
in a similar fashion. Figs. 2 and 3 illustrate the proof of the theorem. To improve
readability in the proof, we drop the subscript “7” on a, B, 8, y, and ) even though,
strictly speaking, these are functions of the type of reduction.

(a) Schematic of a graph with a type 7 polygon.

u \4 w v
G
G
1,k 1K,
State: FFFF : ¢ FF g
ate IR RN N State: FF P PFF
P . = . =
rob o qapbpchpepf Prob.: § papchpdpeqf
ulv
ul A\
G
G 4
2,K, Ky,
States: F¥FFFF 5
tates Y bhcidrexf Fakbr F lF Fr States: Fanl-cl"dF Fo F FbF( FFF,
FFFFF
b Ky eﬁf F le rdr R FFF, }dr Fo F FbFCFdF Fo
FF¥FFFF
abcdef F FchbdF F F FbF FdF Ff FanFcPdFeFf
FEFFF
APy FF P F F R FFF Ff
Srobs.: B = Ly =
robs.: i PadpPdgP Py + PP Py P Probs.: y PaPLPPaPePs + A PP PGP P

PaPpdcdgPePy PaPpdcPydePy

PatpPePaPedy ¥ 9aPLPcPydePy

APLP PP A

PapPe g P+ pyd pe + PP ap) N . R
Ppd P (Pydy + agp,) B papbpcpdpepf<l + v, * v, * v ey v,

A PP ePglape + p ap)

PadpPcPaPePs + PaPh9ePyPePs
PaPpP9gPePr + P PP PP

+ o+ o+
+ 4+ o+

P PP PP ¢

+ o+

(b) Nonfailed induced graphs.
FiG. 2

Proof of Theorem 1. Let F; be the event that edge e; in the polygon is working
and let F; be the event that edge e; has failed. F denotes a compound event or state
such as F,F,F,F,F.F, and F denotes the set of all 2° such states. Also, z; =1 if F;
occurs and z; =0 if F; occurs. By conditional probability and extension of (1),

(2) R(GK)=FZFPZ“‘1¢1:—Z“ e ’P;/‘I}_ZfR(GK|E)~

Only sixteen of the possible sixty-four states are nonfailed states where

R(Gx | F) # 0. Each nonfailed state will induce a new graph with a corresponding set

G, %, e, Y, e 9

)
Lf
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G&,

(a) Graph of Fig. 2 with polygon replaced by chain.

V u v

St D F =
ate rFsFt State: l"rI-SFt

Prob.: a,.p P

sPe Prob. : UG
u v
u v
G
G
2,K, 4K,
State: }-rFSFt State: FrFsFt
P . :
rob prqspt Prob.: prpspt

(b) Nonfailed induced graphs
Fi1G. 3

of K-vertices of which there only four different possibilities. Figure 2 gives these four
graphs Gk, i=1,2,3,4, the states under which the graphs are induced, and the
summed state probabilities in each case, @, B, §, and vy. Thus, by grouping and
eliminating terms, (2) is reduced to

3) R(Gg)= aR(Gl,Kl) + BR(G2,K2) + 8R(G3,K3) + 'YR(G4,K4)‘

Now G- is obtained from Gk by replacing the polygon with a chain u, e, vy,
e,, Uy, €, w, and redefining K as shown in Fig. 3. Using conditional probabilities again,

R(G,K’) =prqutR(G;(’|(FrFsFt))+ qrpser(GlK’l(ﬁrFsFt))
+ppsqR(G | (F.F,F,)) + pp,q.R(Gx | (F,FF,))

where only the nonfailed states have been written.
The four nonfailed states of G- induce the same four graphs which the nonfailed
states of Gk induce. Multiplying (4) by a factor (), we thus have

(5)
QR(G%)=0pqp.R(G, k) +Qqpp.R(G, k,) + Qp.pq,R(G; &,) + Qp,pp. R(G4 k).

Equating, term by term, the coefficients in (3) and (5) gives

4)

a = quPsP: = Q(l _pr)Pspta o= Qprpsqt = Qprps(l _pt),
B=Qpq.p.=Qp,(1=p)p;,  v=0p,p:p..
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These four equations in the four unknowns Q, p,, p,, and p, may be easily solved to obtain

2% a+'y’ DPs B+'Y,
(a+y)(B+y)(+7y)
Pt=8_?: s Q= B P) s
Y Y

which are the values given in Table 1 for a type 7 polygon. The reader may verify that
when these values are substituted into (4), we obtain

QR(G’K') = aR(Gl,K|)+BR(G2,K2) + BR(G:;’K}) + ')’R(G4’K4) = R(GK). D

It can be seen from Table 1 that polygon-to-chain reductions, like simple reductions,
always reduce | V|+|E| by at least 1.

Theorem 1 can be extended to give a result which can be useful for computing
the reliability of a general graph. In a nonseparable graph, a separating pair is a pair
of vertices whose deletion disconnects the graph. For example, vertices u and v in
Fig. 2 are a separating pair. Using the same conditioning arguments as in the proof
of Theorem 1, it can be shown that any subgraph between a separating pair can be
replaced by a chain of 1, 2, or 3 edges to yield a reliability-preserving reduction. For
two special cases, it has been shown that a subgraph between a separating pair can
be replaced by a single edge [6]. The first case occurs when the subgraph including
the separating pair has no K-vertices, and the second case occurs when the separating
pair belongs to K. The fact that a chain can always be used to replace any subgraph,
irrespective of the K-vertices, greatly increases the generality of any algorithm which
uses this reduction.

4. Properties of series-parallel graphs. In this section we set down some properties
of series-parallel graphs with respect to topology and reliability. We prove that a
series-parallel graph must admit a polygon-to-chain reduction if all simple reductions
have first been performed. Thus, every series-parallel graph is reducible irrespective
of the vertices in K. Using this fact, we then outline a simple polynomial-time procedure
for computing the reliability of such graphs.

The following property is a simple extension of the definition of a series-parallel
graph.

Property 2. Let G’ be the graph obtained from G by applying one or more of the
following operations:

a series replacement;

a parallel replacement;

an inverse series replacement (replace an edge by two edges in series);

an inverse parallel replacement (replace an edge by two edges in parallel).
Then, G' is a series-parallel graph if and only if G is series-parallel.

Proof of Property 2 may be found in [3]. The next two properties show that the
series-parallel structure of a graph is not altered by simple or polygon-to-chain reduc-
tions.

Property 3. Let G’ be the graph obtained by a polygon-to-chain transformation
on G. Then G' is a series-parallel graph if and only if G is series-parallel.

Proof. G' may be obtained from G by one or more series replacements, a parallel
replacement, and one or more inverse series replacements, in that order. Thus, this
property follows directly from Property 2. [
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Property 4. Let Gk be the graph obtained from Gk by applying a simple reduction
or a polygon-to-chain reduction on Gg. Then, G' is a series-parallel graph if and only
if G is series-parallel.

Proof. A series or degree-2 reduction implements a series replacement, a parallel
reduction implements a parallel replacement, and a polygon-to-chain reduction imple-
ments a polygon-to-chain transformation on G. Hence, by Properties 2 and 3, G’ is a
series-parallel graph if and only if G is a series-parallel. 0O

By next proving that every series-parallel graph Gk admits a simple reduction or
a polygon-to-chain reduction, it will be possible to show that R(Gg) can be computed
in polynomial time for such graphs.

Property 5. Let Gk be a series-parallel graph. Then, Gx must admit either a
simple reduction or one of the seven types of polygon-to-chain reductions given in
Table 1.

Proof. If Gx admits a simple reduction, then we are done. If Gk has no simple
reductions, then by Property 1, any polygon of Gx must be one of the seven types
given in Table 1. Hence, we need only show that G contains a polygon. Let G’ be the
graph obtained by replacing all chains in G with single edges. If G’ contains a pair
of parallel edges, then the two chains in G corresponding to this pair of edges constitute
a polygon. We argue that G’ must contain a pair of parallel edges. If G’ has no parallel
edges, no simple reductions are possible in G’ since all vertices in G’ have degree
greater than 2. Thus, G’ and hence G are not series-parallel graphs, which is a
contradiction. 0

One simple procedure for computing R(Gx ) can now be outlined as follows: (1)
Make all simple reductions; (2) find a polygon and make the corresponding reduction;
and (3) repeat steps 1 and 2 until Gk is reduced to a single edge. If G is originally
series-parallel, then Properties 4 and 5 guarantee that the above procedure eventually
reduces Gk to a single edge. The reliability is calculated by initializing M < 1, letting
M < MQ; whenever a polygon-to-chain reduction of type j is made, and letting
M <« MQ, for Q=1-q,.q,, whenever a degree-2 reduction is made on some edges e,
and e,. At the end of the algorithm with a single remaining edge e; the reliability of
the original graph is given by R(Gg)= Mp,.

The total number of parallel and polygon-to-chain reductions executed by this
procedure, before the graph is reduced to a single edge, is exactly |E|—|V|+1. This
is because the number of fundamental cycles in a connected graph is |E|—|V|+1, and
a parallel or polygon-to-chain reduction deletes exactly one such cycle [2]. The com-
plexity of steps (1) and (2) above can be linear in the size of G, and thus, the running
time of the whole procedure is at best quadratic in the size of G. In order to develop
a linear-time algorithm, we have found it necessary to move the parallel reduction
from the domain of simple reductions to the domain of polygon-to-chain reductions.
Indeed, a parallel reduction is a trivial case of a polygon-to-chain reduction with a
multiplier ) =1. We will henceforth consider two parallel edges to be the type 8
polygon and the parallel reduction to be the type 8 polygon-to-chain reduction.

5. An O(|E)) algorithm for computing the reliablity of any series-parallel graph. The
objective here is to develop an efficient, linear-time algorithm for computing the
reliability of any series-parallel graph. All results needed to present this algorithm have
been established; however, some additional notation and definitions must be given.

If u and v are the end vertices of a chain y, then u and v are said to be chain-adjacent.
When it is necessary to distinguish these vertices, we will use the notation x(u, v). A
subchain with end vertices u and v will also be denoted y(u, v) but in this case u and
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v cannot be said to be chain-adjacent. The algorithm is presented next, followed by
a proof of its validity and linear complexity. The algorithm reduces Gk to two edges
in parallel and prints R(Gg) if G is initially series-parallel (We stop at two edges in
parallel instead of a single edge because these edges do not form a polygon by our
definition; their end vertices do not have degrees greater than 2.), or prints a message
that G is not series-parallel. Comments are enclosed in square brackets.

ALGORITHM.
Input: A nonseparable graph G with vertex set V, |V| =2, edge set E, |E| =2, and
set K< V, |K|=2. Edge probabilities p; for each edge e, € E.
Output: R(Gg) if G is series-parallel or a message that G is not series-parallel.
Begin
M<1.
Perform all series reductions.
Perform all degree-2 reductions letting M < M} for each such reduction.
Construct list, T« {v|ve V and deg (v) > 2} marking all such v “onlist.”
Mark all vg T “offlist.”
While T # & and |E|>2 do
Begin
Remove v from T.
i< 1. [Index of the next chain out of v to be searched]
Until i >3 or v is deleted or deg (v) =2 do
Begin
Search the ith chain out of v.
i<it+l1.
If a polygon A(v, w) is found then do
Begin
Apply the appropriate type j polygon-to-chain reduction to A(v, w)
to obtain x(v, w), and let M « MQ,.
i<i—1.
If deg (v) =2 or deg (w) =2 then do
Begin
Apply all possible series and degree-2 reductions on the chain
(or cycle) containing subchain y(v, w) to obtain completely
reduced chain x(x, y) (or parallel edges (x, y) and (x, y)), letting
M < MQ for each degree-2 reduction.
If y# v and y is “offlist” then mark y “onlist” and add y to T.
If x# v and x is “offlist” then mark x “‘onlist” and add x to T.
End
End
End
End
If |E| =2 then print (“R(Gg) is” M(1—q.q,)) [for E ={e,, e,}]
else print (“G is not series-parallel”).
End.

The key to the algorithm is the way in which the “until” loop operates. This loop
says: ‘“‘Sequentially search chains incident to v reducing any polygons which are found
and making any subsequent series and degree-2 reductions until either (a) v is shown
to be chain-adjacent to three distinct vertices, or (b) v is completely deleted from G
through the reductions, or (c) v becomes a degree-2 vertex through the reductions.
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No chain is ever searched more than once each time this loop is entered. The correctness
of the algorithm is not hard to show. Arguments similar to those presented here may
be found in [16] where the problem is the recognition of two-terminal series-parallel
directed graphs.

Suppose firstly that G consists of a single cycle. The initial series and degree-2
reductions will reduce Gk to two edges in parallel, T will be empty, and the algorithm
therefore gives R(Gx) correctly at the final step of the algorithm. Next, suppose that
G does not consist of a single cycle, in which case T will not be empty and an initial
search for a polygon will begin. Since all initial series and degree-2 reductions were
performed, by Property 5, any polygon found must be one of the eight specified types.
If a polygon is found and reduced, the resulting chain may, in fact, be a subchain. If
this happens, some new series and degree-2 reductions may be admitted on the chain
(or cycle) containing that subchain but nowhere else. All such reductions are made
when applicable. Thus, every time the “until” loop of the algorithm is entered or
iterated, the graph admits no series or degree-2 reductions, and only polygons of the
eight given types can exist.

Vertices are continually removed from the stack T and replaced, at most two at
a time, only when polygon-to-chain reductions are made. At most |E|—| V| polygon-to-
chain reductions can ever be made since each polygon-to-chain reduction removes
exactly one of the |E|—|V|+1 fundamental cycles of G and the final reduced graph
must retain at least one fundamental cycle. Therefore, at most |V|+2(|E|—|V]) =
2|E|—| V| vertices can ever pass through T before T becomes empty and the “while”
loop must terminate. If | E| =2 at that point, then R(Gg) is correctly given at the last
step of the algorithm since only reliabilty-preserving series, degree-2, and polygon-to-
chain reductions are ever performed. Property 4 proves that the original graph must
have been series-parallel.

If |E|>2 when T becomes empty, then we must show that the reduced graph is
not series-parallel and that the original graph was not series parallel. In this case, every
vertex v with deg (v)>2 is chain-adjacent to at least three distinct vertices. This is
true since (i) every vertex v with deg (v)>2 is initially put in the list T and its
chain-adjacent vertices checked in the “until” loop and (ii) whenever the chain-
adjacency of a vertex or vertices is altered (this can occur to at most two vertices at a
time) after a polygon-to-chain reduction, then this vertex or vertices are returned to
the list T if not already there. The following property proves that a graph with the
given chain-adjacency structure is not series-parallel.

Property 6. Let G be a nonseparable graph such that all vertices v with deg (v) >2
are chain-adjacent to at least three distinct vertices. Then, G is not a series-parallel
graph.

Proof. Let G’ be the graph obtained from G by first replacing all chains with
single edges in a sequence of series replacements and then removing any parallel edges
in a sequence of parallel replacements. By Property 2, G is a series-parallel if and
only if G’ is a series-parallel. Now, every vertex ve V' has deg (v)>2 and there are
no parallel edges in E'. Thus, G’ admits no series or parallel replacements and cannot
be series-parallel. Therefore, G cannot be series-parallel. [

This proves that if the algorithm terminates with | E| > 2, the reduced graph is not
series-parallel, and Property 4 proves that the original graph could not have been
series-parallel either. This establishes the validity of the algorithm. We now turn our
attention to its computational complexity.

In order to show that the algorithm is linear in the size of G, we use a multi-linked
adjacency list to represent G. In this representation, for each vertex a doubly-linked
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list of adjacent vertices corresponding to incident edges is kept together with the
associated edge probabilities. Every edge is represented twice since we are dealing
with an undirected graph, and additional links are kept between both representations
of each edge. Such an adjacency list can be initialized in O(|V|+|E|) time for any
graph. Using the above representation, any series, degree-2, or polygon-to-chain reduc-
tion can be carried out in constant time. Also, none of the reductions ever require the
use of more vertices or edges after the reduction than before. This means that if any
new edges or vertices must be defined, old ones can be reused and the size of the
graph representation is never increased.

Now, initial series and degree-2 reductions are performed on O(|V|) time only
once and, consequently, may be ignored for purposes of complexity analysis. Consider
the “until” loop of the algorithm. Each time chains emanating from the current vertex
v are searched here, and [ polygons are found and reduced, the maximum amount of
work which can be performed is bounded by C, + C,I, where C; is a constant bounding
the amount of work required to find three chains with distinct end vertices, and C, is
a constant bounding the amount of work required to perform a polygon-to-chain
reduction and any subsequent series and degree-2 reductions. That C; is, in fact, a
constant is obvious. C, is a constant because there are only eight types of polygons
to recognize and reduce, and because after reduction of A(v, w) to x(v, w), any chain
x(x, y) containing (v, w) can have length at most 9. Thus x(x, y) would require at
most 8§ series and degree-2 reductions to be completely reduced. This worst case could
occur if deg (v) =deg (w) =2 after the polygon-to-chain reduction and the subchains
x(x,v), x(v,w), and x(w, y), which were proper chains before the reduction, are at
their maximum possible lengths of 3. (In the case that G is a cycle after a polygon-to-
chain reduction, the maximum length of such a cycle is 6, and reduction of the cycle
to two edges in parallel requires at most 4 series and degree-2 reductions.) Since at
most 2| E| —| V| vertices ever pass through T, and since at most | E| —| V| polygon-to-chain
reductions will ever be performed, the work performed by the algorithm is bounded
by Ci(2|E|—|V|)+ C,(|E|+|V]). Under the connectivity assumptions |E|=|V|, and we
have therefore proven the following theorem:

THEOREM 2. Let G be a nonseparable series-parallel graph. Then, for any K, R(Gg)
can be computed in O(|E|) time.

6. Extension to the algorithm. The algorithm of § 5 can be extended to make all
possible simple and polygon-to-chain reductions in a nonseries-parallel graph. In this
way, the extended algorithm can be used as a subroutine in a more general network
reliability algorithm for computing R(Gk) when G is not series-parallel. The com-
plexity of computing R(Gk ) can often be reduced to some degree by this device.

Suppose the reduction algorithm of § 5 starts with a nonseries-parallel graph G.
After termination of the algorithm, Gx may or may not have been partially reduced.
From the proof of Property 6, the only possible remaining reductions are polygon-to-
chain reductions. Each such polygon-to-chain reduction would correspond to a parallel
edge replacement used to obtain the graph G’ of that proof. Therefore, Gx can be
totally reduced by first applying the algorithm and then finding and reducing any
remaining polygons. This can easily be done by searching all chains emanating from
all vertices v with deg (v) > 2. In the worst case, each chain, and thus each edge, must
be searched twice. Parallel chains can be recognized in constant time, and therefore,
the added computation is O(| E|) and the algorithm with the extension remains O(|E|).

To illustrate the usefulness of the extended algorithm for a general graph, let us
consider the ARPA computer network configuration as shown in Fig. 4a [4]. Suppose
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(a) ARPA computer network.

UTAH CASE

RAND CcMU

BBN

(b) Reduced network.
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we are interested in the terminal-pair reliability between UCSB and CMU. Application
of the extended algorithm yields a reduced network as shown in Fig. 4b with redefined
edge reliabilities and an associated multiplier. The original reliability problem is now
equivalent to computing the terminal-pair reliability between RAND and CMU in the
reduced network. In linear time the size of the network has been reduced considerably
and, because computing the reliability of a general network is exponential in its size,
a significant computational advantage should be gained.
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