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Abstract: This paper presents the analytical steps for decoupling the

natural dynamics representing the relative motion of two spacecraft

flying in close orbits, both without and with the inclusion of the J2

perturbation. Linear, constant coefficients mathematical models are

available in literature for representing such dynamics. In both cases

two modes can be highlighted through the eigenvalue analysis of the

state matrix: a double integrator, representing the secular part of

the spacecraft relative motion, and a harmonic part, related to the

typical oscillations present in spacecraft relative dynamics. In this

work we introduce a rigorous two-step state vector transformation,

based on a Jordan form, in order to decouple the two modes and be

able to focus on either of them independently. The obtained results

give a deep insight to the control designer, allowing for easy stabi-

lization of the two spacecraft relative dynamics, i.e. canceling out

the double integrator mode, which implies a constant drift taking the

two spacecraft apart. On the other hand, one could desire an imme-

diate control on the harmonic part of the dynamics, which is here

made possible thanks to the decoupled form of the final equations.

Furthermore, the obtained decoupled equations of motion present

an analytical solution when only along-track control is applied to

the spacecraft. This solution is here presented. The phase planes

behavior for the controlled cases are reported.

Keywords: Spacecraft Relative Motion; Linear Dynamics Transformation; Jordan

form.

Mathematics Subject Classification (2000): 37N05 70F10
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1 Nomenclature

α = Free parameter in generalized eigenvec-
tor calculation
a = First non zero and non unity value in
the state matrix
A = State matrix
A′ = State matrix after first transformation
Â = State matrix decoupled (after second
transformation)
β = First free parameter in second transfor-
mation matrix T2

b = Second non zero and non unity value in
the state matrix
B = Control distribution matrix
B̂ = Control distribution matrix after trans-
formations
γ = Second free parameter in second trans-
formation matrix T2

i = Complex unity
iref = Reference orbit inclination

J2 = Second order harmonic of Earth
gravitational potential field (Earth flattening)
[108263 × 10−8, [1]]
λ = Vector of the eigenvalues of A
LVLH = Local Vertical Local Horizontal
ω = Reference orbit angular velocity
rref = Reference orbit radius
Re = Earth mean radius [6378.1363 km, [1]]
T = Transformation matrix
T1 = First transformation matrix
T2 = Second transformation matrix
t = Time
u = Control vector
wi, i = 1, .., 4 = Eigenvectors of A
x = Spacecraft relative state vector in LVLH
frame
x, y = Spacecraft relative position compo-
nents in LVLH frame
z = Transformed spacecraft relative state
vector
(...)0 = Initial value (t = 0)

2 Introduction

A formal state vector transformation is presented in order to separate the two modes

characterizing the relative motion between a chaser spacecraft and a target spacecraft in

circular orbit, for both the well known unperturbed Hill-Clohessy-Wiltshire ([2]) model

and the more recent Schweighart-Sedwick ([3] )model which includes the J2 perturbation.

Only the in-plane part of the relative motion is here considered, being the out-of-plane

dynamics decoupled.

Our work builds upon the work of Leonard ([4]) who separates the dynamic of the

Hill-Clohessy-Wiltshire model by averaging the evolution in time of the state variables,

without developing a formal state transformation.

In particular, we employ a two-steps transformation into a Jordan form ([5, 6]) and

then into a new decoupled-natural-dynamics form by using a chain of generalized eigen-
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vectors in order to cope with the defectiveness of the state matrix. We obtain two

transformed system models (for the cases with and without J2) with the natural dy-

namics decoupled into a double integrator and a harmonic oscillator. The present work

embodies the results of Leonard ([4], moving-ellipse formulation of Hill-Clohessy-Wilshire

model) as a particular case.

The obtained results add further insight to the description of spacecraft relative mo-

tion, and, in particular, enables the control designer to focus on either one of two critical

goals regarding the stabilization of the chaser’s motion with respect to the target: namely,

either the stabilization into a closed elliptical relative orbit or into a separate circular

orbit with respect to the Earth center.

Furthermore, we perform the analytical integration of the transformed dynamics by

considering only along-track thrust (as proposed in recent literature to simplify mission

design, [7]-[9]).

The decoupled dynamics here obtained, and in particular the analytical nature of

the obtained results, have been used by Bevilacqua and Romano ([10]) for developing a

completely analytical differential drag controller for multiple spacecraft assembly.

The paper is organized as follows: Section 3 introduces the linear models without and

with J2 perturbation. Section 4 is dedicated to the state vector transformations. Section

5 gives the analytical solution for the time evolution of the state vector for the case of

constant along-track control. Finally Section 6 concludes the paper.

3 Spacecraft Relative Motion Dynamics

The in-plane part of the motion of a chaser spacecraft with respect to a target spacecraft

in circular orbit can be represented by the following general equation, encompassing both

the Hill-Clohessy-Wiltshire ([2]) unperturbed model and the Schweighart-Sedwick ([3])

model which includes J2 perturbation
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ẋ = Ax + Bu,

x =




x

y

ẋ

ẏ




, A =




0 0 1 0

0 0 0 1

b 0 0 a

0 0 −a 0




(1)

where x is the “R-bar” axis, pointing from the Earth’s center to the LVLH frame’s

origin at the target spacecraft, y is the “V-bar” axis in the direction of the velocity of

the target along a circular orbit.

For the Hill-Clohessy-Wiltshire model it is

a = 2ω

b = 3ω2
(2)

For the Schweighart-Sedwick model it is

a = 2ω c

b =
(
5c2 − 2

)
ω2

(3)

where the coefficient c is given by

c =
√

1 + s

s =
3J2R

2
e

8r2
ref

(1 + 3cos2iref )
(4)

The following substantial difference exists between the Hill-Clohessy-Wiltshire model

and the Schweighart-Sedwick model: while the state vector of the former model describes

the chaser’s position and velocity with respect to either a target spacecraft or a reference

point in circular orbit, the state vector of the latter model describes the chaser’s position

and velocity only with respect to a target spacecraft. Indeed, in the Schweighart-Sedwick

case, the evolution of the state of the chaser with respect to a reference point in circular

orbit is described by a more complicated expression, due to the J2 perturbation ([3])

It is immediate to see that, if we neglect the J2 perturbation, the Schweighart-Sedwick
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equations reduce to the Hill-Clohessy-Wiltshire equations. Furthermore, we underline

the fact that the condition b < a2 holds for both models. In particular, while this is

immediately obvious for the Hill-Clohessy-Wiltshire case, for the Schweighart-Sedwick

model it translates onto the following condition for the variable s

(
5c2 − 2

)
ω2 < 4ω2c2 → |s| < 1

(5)

which is always true, because max (|s|) =
3J2R

2
e

2r2
ref

≤ 3J2

2
= 1.624 · 10−3.

4 State Vector Transformation

The eigenvalues of the state matrix A in Eq. 1 are

λ =




0

0
√

b− a2

−√b− a2




(6)

Being b < a2, the third and fourth eigenvalues in Eq. 6 are complex conjugated.

By observing Eq. 6, it is clear that a double integrator and a harmonic oscillator are

the two modes composing the natural dynamics.

Only the following three independent eigenvectors exist for the matrix A

w1 =




0

1

0

0




, w3 =




−
√

b− a2

a

1

a2 − b

a

√
b− a2




, w4 =




√
b− a2

a

1

a2 − b

a

−√b− a2




(7)

Where w1 corresponds to the two multiple zero eigenvalues (Eq. 6), and w3 and

w4 correspond to the two complex conjugated eigenvalues. Since the state matrix A is
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defective (there are only three independent eigenvectors for the system which is of fourth

order), it cannot be diagonalized. As an alternative to diagonalization, we look for a

similarity transformation aiming to possibly represent the system with the state matrix

in the following form

Â =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 −Ω2 0




(8)

This new form of the system matrix, inspired by the developments of [4], is useful

because it decouples the natural dynamics into a double integrator and a harmonic

oscillator. In Eq. 8, Ω represents the frequency of the harmonic oscillator.

As a first step of the transformation, we build a transformation of A into the modified-

diagonal form (or Jordan form, see [5]-[6]). Let us write

x = T1z
′ (9)

where z′ is the corresponding new state. The transformation matrix T1 is obtained

as follows

T1 =
(

w1 w2 w3 w4

)
(10)

where w2 is the generalized eigenvector found by solving the following “Jordan chain”

equation ([5])

(A− λ (1) I)w2 = w1 → Aw2 = w1 → A2w2 = Aw1 (11)

where λ (1) = 0, from Eq. 6, leading to
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w2 =




−a

b

α

0

1




(12)

where α is an arbitrary complex parameter which is obtained form the “Jordan chain”

procedure and can be conveniently chosen, as shown in the following.

The transformation of Eq. 10 results in the following Jordan-form

A′ = T−1
1 AT1 =




0 1 0 0

0 0 0 0

0 0
√

b− a2 0

0 0 0 −√b− a2




(13)

As a second step of the transformation of the system matrix toward the desired form

of Eq. 8, we use the following complex transformation matrix

T2 =




1 0 0 0

0 1 0 0

0 0 −β
√

a2 − b iβ

0 0 γ
√

a2 − b iγ




(14)

Where β and γ are arbitrary complex parameters which can be conveniently selected,

as explained later.

The final expression for the state matrix is calculated as

Â = T−1
2 A′ T2 =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 b− a2 0




(15)

This transformed system matrix is indeed in the desired form of Eq. 8 with Ω =
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√
a2 − b.

The overall transformation is given by

x = Tz, T = T2T1 =




0 −a

b
i

(
a2 − b

)
(β + γ)

a

(β − γ)
√

a2 − b

a

1 α − (β − γ)
√

a2 − b i (β + γ)

0 0
(β − γ)

√
(a2 − b)3

a
i

(
a2 − b

)
(β + γ)

a

0 1 −i
(
a2 − b

)
(β + γ) − (β − γ)

√
a2 − b




(16)

5 Analytical Solution of the Transformed Equations in Case of Constant

Along-Track Control

We here focus the attention on the case of a single control thrust acting along the y axis.

In this case, the initial and transformed control distribution matrices are

B =




0

0

0

1




, B̂ = T−1B =




αb

a2 − b

− b

a2 − b

1
4

i (β + γ) a2

βγ (a2 − b)2

−1
4

(β − γ) a2

βγ (a2 − b)
3
2




(17)

In order to have a control distribution matrix with real values, α,
i (β + γ)

βγ
and

(β − γ)
βγ

must all be real. The last two conditions are satisfied only if γ = −β∗, yielding

to Eq. 18
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B̂ =




αb

a2 − b

− b

a2 − b

−1
2

Im(β) a2

‖β‖2 (a2 − b)2

1
2

Re(β)a2

‖β‖2 (a2 − b)
3
2




(18)

At this stage, looking at Eq. 18, we are able to impose convenient values for the

arbitrary parameters α and β. We choose those values to be α = 0, β = −1
a
. Therefore,

the matrices in Eqs. (17) And (18) become

T = T2T1 =




0 −a

b
0 −2

√
a2 − b

a2

1 0
2
√

a2 − b

a
0

0 0 −
2
√

(a2 − b)3

a2
0

0 1 0
2
√

a2 − b

a




, B̂ = T−1B =




0

− b

a2 − b

0

a3

2 (a2 − b)
3
2




(19)

The expressions of Eq. 19 are expanded in the Appendix as functions of ω and c.

Moreover, we have
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x = Tz =




−a3z2 + 2b
√

a2 − bz4

a2b

az1 + 2
√

a2 − bz3

a

−2
√

a2 − bz3

a2

az2 + 2
√

a2 − bz4

a




, z = T−1x =




a2y − by − aẋ

a2 − b

−b (ax + ẏ)
a2 − b

− a2ẋ

2 (a2 − b)
3
2

−a2 (bx + aẏ)

2 (a2 − b)
3
2




(20)

In particular, for the Hill-Clohessy-Wiltshire dynamic model, the transformed system

with control along y is obtained by substituting the values of a and b given in Eq. 2 into

Eqq. 15 and 18

Â =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 −ω2 0




, B̂ =




0

−3

0

4




(21)

Eq. 21, corresponding to our new state
[

z1 z2 z3 z4

]T

, reproduces the results

of Leonard ([4], where the state, in Leonard’s notation, is
[

ȳ ˙̄y β β̇

]T

, with β

having a different meaning with respect to our notation).

Analytical integration of the transformed dynamics, taking into account only a con-

stant controlling thrust along y, leads to
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z1 = − b

a2 − b
uy

t2

2
+ z20t + z10

z2 = − b

a2 − b
uyt + z20

z3 =

(
z30 −

a3uy

2 (a2 − b)
5
2

)
cos

[(√
a2 − b

)
t
]
+

z40√
a2 − b

sin
[(√

a2 − b
)

t
]

+
a3uy

2 (a2 − b)
5
2

z4 = z40 cos
[(√

a2 − b
)
t
]−√a2 − b

(
z30 −

a3uy

2 (a2 − b)
5
2

)
sin

[(√
a2 − b

)
t
]

(22)

The assumption of continuous constant thrust reflects the state of the art for space

thrusters, where only a regime value for the control is available ([11]). Figure 5.1 and

Figure 5.2 show the phase planes for the two types of forced motion (the forced double

integrator represented by state variables z1 and z2, and the forced harmonic oscilla-

tor represented by state variables z3 and z4) with either positive or negative constant

control along y. Arrows are indicating the paths directions according to the sign of

the control. The curves on phase plane z1 vs. z2 are parabolas with symmetry about

the z2 axis for both the Hill-Clohessy-Wiltshire and the Schweighart-Sedwick models

(only the curvature change in the two cases, being in particular equal to −3ω2

8uy
for the

Hill-Clohessy-Wiltshire model and −a2 − b

2buy
for the Schweighart-Sedwick model). The

curves on the phase plane z3
z4√

a2 − b
are circles for both the Hill-Clohessy-Wiltshire and

Schweighart-Sedwick models. The z3 coordinates for the centers of the circles in Figure

5.2 are given by

a3uy

2 (a2 − b)
5
2

(23)

as calculated through the analitycal solution in Eq.21). The position of those centers

is positive or negative according to the control sign.

Eq. 22 also gives the state vector evolution for coasting (control off) phases, by simply

imposing uy = 0. In particular, when the control is off, a drift parallel to the z1 axis is
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0

0

z
1

(m)

z
2

(m
/s

)

u
y
<0

u
y
>0

switching curve

switching curve

A B

CD

Figure 5.1: Qualitative shape of the curves on the phase plane of the double integrator
subsystem (z1 vs. z2) in case of constant thrust along the y axis for both the Hill-Clohessy-
Wiltshire and the Schweighart-Sedwick models

experienced in the z1 vs. z2 phase plane, whose direction is related to the sign of z2 (see

Eq. 22), while the circles in Figure 5.2 simply evolve around the origin. Again, the phase

planes reproduce the results of [4] when the values for Hill-Clohessy-Wiltshire equations

are used for a and b.

Eq. 20 and Eq. 22 together show how the spacecraft relative motion can be seen as an

oscillation, represented by the states z3 and z4, around a virtual point, whose evolution

is given by z1 and z2 in Eq. 22.
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0

0

z
3

(m)

z
4
/(

a
2
-b

)
1
/2

(m
)

u
y
<0

u
y
>0

a
3
u

y
/2(a

2
-b)

5/2

-a
3
u

y
/2(a

2
-b)

5/2

Figure 5.2: Qualitative shape of the curves on the phase plane of the harmonic oscillator
subsystem (z3 vs. z4) in case of constant thrust along the y axis for both the Hill-Clohessy-
Wiltshire and the Schweighart-Sedwick models
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6 Conclusion

We developed a linear transformation of both the Hill-Clohessy-Wiltshire model for space-

craft relative motion nearby a circular orbit and the more recent Schweighart-Sedwick

including the J2 effect. The proposed transformation highlights the superposition of dou-

ble integrator and harmonic oscillator modes. Previous results in literature, regarding

the traveling-ellipse formulation of the Hill-Clohessy-Wiltshire equations are included as

a particular case of our state vector transformation. In particular we give analytical

solution and a description of the phase planes when only along-track control is used.

The achieved dynamic separation via state transformation allows the control designer to

focus directly on either one of two critical goals regarding the stabilization of the chaser’s

motion with respect to the target: namely, either the stabilization into a closed elliptical

relative orbit or into a separate circular orbit with respect to the Earth center.
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8 APPENDIX

Substitution of Eqq. (3) into Eq. 19 leads to

T =




0 −2
c

ω (5c2 − 2)
0

i
√

ω2 (c2 − 2)
2ω2c2

1 0
−i

√
ω2 (c2 − 2)

ωc
0

0 0
i
(
c2 − 2

)√
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