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ABSTRACT 

In Graph Theory, every graph can be expressed in terms of certain real, 

symmetric matrices derived from the graph, most notably the adjacency or Laplacian 

matrices.  Spectral Graph Theory focuses on the set of eigenvalues and eigenvectors, 

called the spectrum, of these matrices and provides several interesting areas of study.  

One of these is the inverse eigenvalue problem of a graph, which tries to determine 

information about the possible eigenvalues of the real symmetric matrices whose pattern 

of nonzero entries is described by a given graph.  A second area is the energy of a graph, 

defined to be the sum of the absolute values of the eigenvalues of the adjacency matrix of 

that graph. 

Here we explore these two areas for the hypercube Qn, which is formed 

recursively by taking the Cartesian product of Qn-1 with the complete graph on two 

vertices, K2.  We analyze and compare several key ideas from the inverse eigenvalue 

problem for Qn, including the maximum multiplicity of possible eigenvalues, the 

minimum rank of possible matrices, and the number of paths that occur both as induced 

subgraphs and after deleting certain vertices.  We conclude by deriving several equations 

for the energy of Qn. 
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I. INTRODUCTION  

A.   PURPOSE  

The hypercube, denoted Qn, is a graph of remarkable properties and numerous 

applications in coding, computer science, and other areas of mathematics.  In this paper, 

we analyze Qn from the point of view of spectral graph theory.  Specifically, in Chapter I, 

we derive the adjacency and Laplacian matrices for Qn.  Once we have constructed these 

matrices, we show what their associated eigenvalues are, along with their multiplicities, 

as well as derive the associated eigenvectors.  In Chapter II, we consider the inverse 

eigenvalue problem (IEP) for the hypercube.  In spectral graph theory, the usual focus is 

on obtaining information about a graph from the associated matrices.  In the IEP, almost 

the opposite is done.  Here, we seek to determine information about the possible spectra 

of the matrices whose pattern of non-zero entries is described by a given graph, in this 

case, the hypercube.  A great deal of work has been done on this problem with respect to 

numerous other types of graphs, most notably trees [1], but little has been done with Qn.  

During this analysis, we focus on four main concepts:  the maximum multiplicity of 

eigenvalues, the minimum rank of a certain associated set of matrices, the path cover 

number for Qn, and the path vertex-deletion number for Qn.  We provide an upper bound 

for the minimum rank of graph Cartesian products of graphs and also show that for Qn, n 

> 2, the maximum multiplicity of an eigenvalue is greater than the path cover number 

which is greater than the path vertex–deletion number.  Finally, in Chapter III, we discuss 

the concept of the energy of a graph and derive several equations for determining the 

energy of Qn.  

B.   GRAPH THEORY 

Here we define some of the fundamental concepts and definitions of graph theory 

that we use in this paper; for terminology not defined here, refer to a standard graph 

theory text such as Chartrand & Zhang’s Introduction to Graph Theory [2].   
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Formally, a graph G = (V(G), E(G)) consists of a finite nonempty set V(G) of 

vertices and a set E(G) of two-element subsets of V(G) called edges.  A graph is a 

directed graph (or diagraph) when the two-element subsets of the set E(G) are ordered 

pairs, and the graph is undirected otherwise.  Two vertices are adjacent if they are joined 

by a single edge.  For undirected graphs, the degree of a vertex is the number of edges 

incident to that vertex.  For directed graphs, the degree at each vertex is the number edges 

oriented toward that vertex, called the in-degree, minus the number of edges oriented 

away from that vertex, called the out-degree.  A graph is called regular if the degree of 

every vertex is the same.  A walk in a graph is defined as a sequence of vertices such that 

the consecutive vertices in the sequence are adjacent.  A trail is a walk in which no edge 

is traversed more than once and a path is a walk such that no vertices are repeated.  We 

denote a graph consisting of only one path by Pn, where n is the number of vertices.  If a 

graph contains a path between every pair of vertices, the graph is connected, otherwise 

the graph is disconnected.  The distance between two vertices is defined as the shortest 

path between those vertices and we define the diameter of a connected graph to be the 

greatest distance between any two vertices.  A trail of three or more vertices containing 

repeated vertices is called a circuit.  We define a cycle to be a circuit in which no vertex 

repeats except that the first vertex equals the last.  A complete graph, denoted Kn where n 

is the number of vertices, is one in which every vertex is connected to every other vertex 

in the graph.  A graph H is called a subgraph of graph G if G contains all the vertices and 

edges of H.  H is called an induced subgraph of G if, for whichever vertices of G that H 

contains, H also contains the same edges incident to those vertices as G.  If either V(H) is 

a proper subset of V(G) or E(H) is a proper subset of E(G), then H is a proper subgraph 

of G.  A connected subgraph that is not a proper subgraph of any other connected 

subgraph is called a component.  An automorphism of a graph G is defined as a mapping 

of the vertices of G onto themselves while maintaining vertex adjacency.  A vertex-

transitive graph is a graph G such that, given any two vertices a and b of G, there is an 

automorphism f: V(G) →V(G) such that f(a) = b. 
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C. MATRIX THEORY 

Matrix theory, generally considered a sub-branch of linear algebra, is the branch 

of mathematics that studies matrices, which are collections of numbers arranged into a 

fixed number of rows and columns.  Throughout this thesis, we use several fundamental 

concepts from matrix theory; for definitions of these concepts, please refer to any 

standard linear algebra text such as Leon’s Linear Algebra With Applications [3].  

Specifically, we use such concepts as square matrices, symmetric matrices, the set of 

eigenvalues of a matrix (also called the spectrum), and the associated eigenvectors.  

D. SPECTRAL GRAPH THEORY 

Spectral graph theory is where graph theory and matrix theory meet.  Given a 

graph G, spectral graph theory is the study of the spectrum of the adjacency matrix of G, 

denoted as Spec(G), as well as the study of the spectra of the incidence and Laplacian 

matrices.  We now define these matrices.   

1. Adjacency Matrices 

The adjacency matrix AG of an undirected graph G with n vertices is the n x n 

symmetric matrix AG = [ai,j], where 

  i,j
1, if (i,j) E(G)

a
0, otherwise.     

∈⎧
= ⎨
⎩

  

In other words, if two vertices are adjacent, then the corresponding entry in the 

associated matrix is a one, and the corresponding entries for all non-adjacent vertices as 

well as the main diagonal of the matrix are all zeros.  Figure 1 shows an example of a 

graph and its associated adjacency matrix. 
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Figure 1.   Graph G with Associated Adjacency Matrix AG. 

2. Incidence Matrices 

a. For Undirected Graphs 

The incidence matrix BG of an undirected graph G with n vertices and m 

edges is the n x m matrix BG = [bi,j], where 

 i j
i,j

1, if v  is incident with e
b

0, otherwise.                     

⎧⎪= ⎨
⎪⎩

   

Therefore, in addition to labeling the vertices, we must also label the 

edges.  Then, once the labeling is complete, we develop a matrix where the rows 

represent the vertices and the columns represent the edges.  If an edge is incident to a 

vertex in the graph, then there is a one in the corresponding entry of the matrix, otherwise 

the entry is zero.  Figure 2 shows the graph from the previous example, but this time with 

its associated incidence matrix. 

 

Figure 2.   Graph G with Associated Incidence Matrix BG. 

1 

2 

4 5 

0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G: AG = 

 1    2   3    4   5 
1 
2 
3 
4 
5 

 a    b    c   d   e    f 
1 
2 
3 
4 
5 

1 

3 

2 

4 5 

1 1 0 0 0 0
1 0 1 1 0 0
0 1 1 0 1 0
0 0 0 1 1 1
0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a 

b 

c 

e 

d 
f 

G: BG = 

3 
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b. For Directed Graphs 

The incidence matrix DG of an directed graph G with n vertices and m 

edges is the n x m matrix DG = [di,j], where 

 
j i

j ii,j

  1, if e  points towards v    

d 1, if e  points away from v

  0, otherwise.                       

⎧
⎪

= −⎨
⎪
⎩

   

Figure 3 shows an orientation of the graph in the previous two examples 

and its associated incidence matrix. 

 

 

Figure 3.   Directed Graph D with Associated Incidence Matrix DG. 

3. Laplacian Matrices 

The Laplacian Matrix of a graph G, denoted LG, can be obtained in several ways.   

a. Directly from the Definition 

The Laplacian matrix LG of a graph G with n vertices and m edges is 

defined to be the n x n symmetric matrix LG = [li,j], where 

  i,j i

1 if (i,j) E(G),
l degree of v if i = j,           

  0 otherwise      

− ∈⎧
⎪= ⎨
⎪
⎩

  [4]. 

 a     b    c     d     e     f 
1 
2    
3    
4    
5 

1 1 0 0 0 0
1 0 1 1 0 0
0 1 1 0 1 0
0 0 0 1 1 1
0 0 0 0 0 1

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

1 
4 5 

2 
a 

b 

c 

e 

d 
f 

G: DG = 

3 
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Figure 4 shows the same graph as in the previous examples, but now with 

its Laplacian Matrix. 

 

Figure 4.   Graph G with Associated Laplacian Matrix LG.  

b. From the Adjacency Matrix 

Equivalently, the Laplacian Matrix can be formed by taking LG = Δ – AG, 

where Δ is a diagonal matrix with the entries on the diagonal equal the degree of the 

corresponding vertex. 

GG

2 0 0 0 0 0 1 1 0 0 2 1 1 0 0
0 3 0 0 0 1 0 1 1 0 1 3 1 1 0

L A .0 0 3 0 0 1 1 0 1 0 1 1 3 1̀ 0
0 0 0 3 0 0 1 1 0 1 0 1 1 3 1
0 0 0 0 1 0 0 0 1 0 0 0 0 1 1

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Δ − = − = − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

c. From the Directed Incidence Matrix 

The Laplacian Matrix can also be found by multiplying the directed 

incidence matrix by its transpose.  In other words, LG = (DG)(DG)T. 

1 1 0 0 0
1 1 0 0 0 0 2 1 1 0 0

1 0 1 0 0
1 0 1 1 0 0 1 3 1 1 0

0 1 1 0 0
.0 1 1 0 1 0 1 1 3 1̀ 0

0 1 0 1 0
0 0 0 1 1 1 0 1 1 3 1

0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 1

0 0 0 1 1

GL

−⎡ ⎤
− − − −⎡ ⎤ ⎡ ⎤⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥= ⋅ =− − − −⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦

 

 1      2     3     4     5 
1 
2    
3    
4    
5 

1 
4 5 

3 

2 

G: LG = 

2 1 1 0 0
1 3 1 1 0
1 1 3 1̀ 0

0 1 1 3 1
0 0 0 1 1

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦
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E. CARTESIAN PRODUCTS OF GRAPHS 

For two graphs G and H, the Cartesian product G x H has vertex set V(G x H) = 

V(G) x V(H), that is, every vertex of G x H is an ordered pair (u,v), where u∈V(G) and 

v∈V(H).  Two distinct vertices (u,v) and (x,y) are adjacent in G x H if either: 

1. u = x and vy∈E(H), or 

2.     v = y and ux∈E(G). 

 Figure 5 is an example of the Cartesian product of two graphs. 

 

 

Figure 5.   Cartesian Product of Graphs G and H 

 There are several properties and theorems in Spectral Graph Theory based on 

Cartesian products that will prove useful later in the paper; these will be introduced when 

needed.  Using this notion of graph Cartesian products, we now arrive at the graph that is 

the focal point of this paper, the hypercube Qn. 

F. HYPERCUBES 

1. Formally Defined 

We define Q1 to be K2 and, for n > 2, define Qn by Qn = Qn-1 x K2 [2].  The 

hypercube Qn may also be defined non-recursively as the graph whose vertex set Vn 

consists of the 2n n-tuples with coordinates 0 or 1, where two vertices are adjacent 

whenever their respective vectors differ in exactly one coordinate.  The hypercube Qn for 

n = 1, 2, and 3 are shown in Figure 6. 

X = 

G H G x H 
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Figure 6.   Hypercubes Q1,  Q2,  and Q3. 

2. Basic Properties of the Hypercube 

Here we note three basic properties of the hypercube that will be useful later.   

a. Regularity 

Hypercubes are regular graphs and the degree of each vertex of Qn is equal 

to n.  As seen in Figure 6, the degrees of Q1, Q2, and Q3 are 1, 2, and 3 respectively. 

b. Bipartiteness 

Hypercubes are also bipartite, i.e. the vertex set of the graph can be 

partitioned into two subsets, where, within each set no vertices are adjacent.  

Furthermore, for the hypercube, the cardinalities of these sets are equal, so exactly half of 

the vertices are in each bipartite set.  Therefore, each set has 2n–1 vertices.  In Figure 7, Q3 

is drawn in two ways, the second emphasizing the bipartition. 

 

 

Figure 7.   Q3 Drawn Showing Bipartite Structure. 
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c. Vertex Transitivity 

Hypercubes are vertex-transitive graphs, i.e. given any two vertices in Qn, 

there is an automorphism mapping one vertex to the other while maintaining vertex 

adjacency.   
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II. THE MATRICES AND SPECTRA OF HYPERCUBES 

A. THE ADJACENCY MATRIX OF Qn 

By inspection of Figure 6, we can see that Q1 has the following adjacency matrix: 

Q1

0 1
A

1 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

and that Q2 has the following adjacency matrix:  

Q2

0 1 1 0
1 0 0 1

A
1 0 0 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

Now, if we look at Q2
A in terms of 2 x 2 blocks, we see that  

Q2

0 1 1 0
1 0 0 1

A
1 0 0 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 1

1

Q

Q

A I

I A

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 where I is a 2 x 2 identity matrix.  We can 

see why this happens by considering the fact that Qn is the Cartesian product of Qn–1 and 

K2, n > 2.  Consider Figure 8. 

 

Figure 8.   Q2 = Q1 x K2 and Associated Adjacency Matrix Q2
.A  

 

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q2
A =

1 
2 
3 
4 

1 2 3 4 

Q1

1 2 

3 4 

Q1

Q2 = 
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When forming Q2 from the Cartesian product Q1 x K2, we take a second copy of 

Q1, then adjoin each vertex in the second copy with its corresponding vertex in the first 

copy.  The previous example shows this by adjoining vertex 1 to vertex 3 and vertex 2 to 

vertex 4.    Likewise, when building the matrix for Q3, we can see in Figure 9 that taking 

the two copies of Q2 yields the upper left and lower right blocks of AQ3 and adjoining the 

appropriate corresponding vertices yields the identity matrices in the upper right and 

lower left blocks.   

 

Figure 9.   Q3 = Q2 x K2 and Associated Adjacency Matrix Q3
.A  

We can now see that the adjacency matrices for hypercubes can be built 

recursively with
Qn-1

Qn Qn-1

A I
A

I A

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

, where I is the 2n–1 x 2n–1 identity matrix [5].  In 

passing, we can see that this recursive structure of the adjacency matrix generalizes for 

any graph formed by the Cartesian product with K2.  For example, if G = H x K2, then 

H
G

H

A I
A

I A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

B. THE LAPLACIAN MATRIX OF Qn 

As noted earlier, one way to construct the Laplacian matrix of a graph is to use 

the fact that LG = ΔG – AG.  First, start with n = 1 to find LQ1: 

Q3  = 
1 

3 

5 6 

7 8 

2 

4 

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q3
A =

1 

2 
3 
4 

1 2 3 4 

5 
6 
7 
8 

5 6 7 8 

Q2 

Q2 

 
2

2

Q

Q

A I
I A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
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Q Q Q1 1 1

1 0 0 1 1 1
L Δ A

0 1 1 0 1 1
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

Now we find LQ2, and subsequently LQn, by examining the matrices in blocks. 

    

                                 
Q

Q

Q1 1

Q1 1

2 I A

2 I A

A I2 I 0
0 2 I I A

I

I

⋅ −

⋅ −

⎡ ⎤⎡ ⎤⋅⎡ ⎤ ⎢ ⎥⎢ ⎥= − =⎢ ⎥⋅ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−

−
 

In general, 

Q Q

Q Q

n 1 n 1

n 1n 1

n I A

Q Q Qn n n n I A

A In I 0
L Δ A .

0 n I I A

I

I
− −

−−

⋅ −

⋅ −

⎡ ⎤ ⎡ ⎤⋅⎡ ⎤ ⎢ ⎥ ⎢ ⎥= − = − =⎢ ⎥⋅ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

−

−

 

Since Qn is regular of degree n, then Qn
Δ  n I = ⋅ and so   

Q Q Q Qn n n n
L Δ  A   n I A .= − = ⋅ −    

It follows for Qn–1 that: 

Q Qn 1 n 1
L  (n 1) I A

− −
= − ⋅ −  

   Qn 1
 n I  I  A ,

−
= ⋅ − −  so 

Q Qn 1 n 1
L I  n I  A .

− −
+ = ⋅ −  

Therefore, we can recursively define the Laplacian matrix of the hypercube by:   

Q

Q

n 1

n 1
Qn

L  .
L I I

I L I
−

−

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

+ −

− +
 

2 2Q Q Q2

2 0 0 0 0 1 1 0 2 1 1 0
0 2 0 0 1 0 0 1 1 2 0 1

L Δ A
0 0 2 0 1 0 0 1 1 0 2 1
0 0 0 2 0 1 1 0 0 1 1 2

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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C. THE EIGENVALUES OF Qn 

Now that we have properly defined the adjacency and Laplacian matrices for the 

hypercube, we can now analyze the eigenvalues of those matrices. 

1. Eigenvalues of the Adjacency Matrix of Qn 

First, we present the eigenvalues and note the multiplicities for the adjacency 

matrices of Q1 thru Q4 followed by our observations for the eigenvalues of Qn in Table 1 

which can be verified in [6]: 

 

n Eigenvalues Multiplicity 

1 –1, 1 1, 1 

2 –2, 0, 2 1, 2, 1 

3 –3, –1, 1, 3 1, 3, 3, 1 

4 –4, –2, 0, 2, 4 1, 4, 6, 4, 1 

… … … 

k 
– k, –k + 2, –k + 4, . .        

k – 4, k – 2, k            
k k k k k

,  ,  ,  . . . ,  
0 1 2 k 1 k
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Table 1.   Eigenvalues of the Adjacency Matrix of the Hypercube. 

Because Qn is the Cartesian product Qn-1 x K2, we can use [7] to note the 

following basic theorem about the eigenvalues of Cartesian products to derive the 

eigenvalues for Qn.   

Theorem 1:  Let G and H be graphs with eigenvalues λ1, . . . , λm and μ1, . . . , μn, 

respectively.  The m·n eigenvalues of the Cartesian product G x H are the sums λi + μj, 

for 1 < i < m and 1 < j < n. 
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For a graph G and its associated adjacency matrix A, we will use the notation 

Spec(G) interchangeably with Spec(A), both representing the multiset of eigenvalues {λ1, 

λ2, . . .} of A.  Since K2 = Q1, we can see from Table 1 that Spec(K2) = {–1, 1}.  

Therefore, if we construct Q3 = Q2 x K2,  

Spec(Q3) = {–2 – 1, 0 – 1, 0 – 1, 2 – 1, –2 + 1, 0 + 1, 0 + 1, 2 + 1} 

           = {–3, –1, –1, 1, –1, 1, 1, 3}. 

As observed in Table 1, the multiplicities of the eigenvalues are identical to rows 

of Pascal’s triangle.  The following theorem notes that the multiplicities for the ordered 

eigenvalues of the adjacency matrix of the hypercube are the binomial coefficients: 

           Theorem 2:  If we order the n + 1 distinct eigenvalues of Qn as λ0 < λ1 <  . . . <  λn, 

the multiplicity of λk  is 
n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

, where 0 < k < n [8]. 

2. Eigenvalues of the Laplacian Matrix of Qn 

We can determine the Laplacian Matrices for Q1 thru Q4 as previously shown and, 

using any standard mathematics software, determine the associated eigenvalues with 

multiplicities which are shown in Table 2. 

 

n Eigenvalues Multiplicity 

1 0, 2 1, 1 

2 0, 2, 4 1, 2, 1 

3 0, 2, 4, 6 1, 3, 3, 1 

4 0, 2, 4, 6, 8 1, 4, 6, 4, 1 

… … … 

k 
0, k + 2, k + 4, . .       

2k – 4, 2k – 2, 2k        
k k k k k

,  ,  ,  . . . ,  
0 1 2 k 1 k
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Table 2.   Eigenvalues of the Laplacian Matrix of the Hypercube. 
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As can be immediately observed, the eigenvalues μi of the Laplacian are just a 

shift by n from the eigenvalues λi of the adjacency matrix.  To show why this is true, 

consider from basic linear algebra that if Ax = λx, then (A + n ⋅ I) ⋅x = (λ + n) ⋅x.  Since L 

= Δ – A = n ⋅ I – A, and because of the symmetry of the eigenvalues of A, we can see that 

μi = λi + n.  The following table illustrates this shift for n = 3. 

  

Adjacency Matrix 

(eigenvalue = λ) 
 λ =     {–3,      –1,       –1,       –1,       1,       1,       1,       3} 

n n = 3 

Laplacian Matrix 

(eigenvalue = μ = λ + n) 
μ =      {0,        2,          2,        2,        4,        4,       4,      6} 

Table 3.   Eigenvalue Comparison of Adjacency and Laplacian Matrices for Q3. 

As shown in Table 3, since the spectrum of Laplacian matrices are just shifts from 

the spectrum of the adjacency matrices, each eigenvalue in the Laplacian matrix retains 

the same multiplicity as its corresponding eigenvalue in the adjacency matrix. 

D. THE EIGENVECTORS OF Qn 

The eigenvectors of the adjacency matrix for the hypercube can also be readily 

determined.  We once again use the fact that Qn is the Cartesian product Qn-1 x K2.  In 

general, if a graph G has an eigenvalue λ and associated eigenvector x = (x1, x2, . . ., xn)T 

and if the graph H has an eigenvalue μ and associated eigenvector y = (y1, y2, . . ., ym)T 

then the eigenvector zij (1 < i < n, 1 < j < m) in the Cartesian product of G x H for 

eigenvalue λi + μj is found by 

j1 i

j2 i

jm i

i,j ...

y
y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

z

x

 [4], [9]. 
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We can use this construction to derive the eigenvectors for the hypercube.  Let us 

start by determining the eigenvectors for Q2 
A by taking Q1 x K2 where Q1 

A has 

eigenvalues λi and K2 
A has eigenvalues μi.  The eigenvectors of Q1 

A are as follows: 

for λ1 = 1, 1
1

,
1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x  and for λ2 = –1, 2

1
=

1
⎡ ⎤
⎢ ⎥−⎣ ⎦

x .   

Since Q1 = K2, the eigenvectors for K2 
A are as follows: 

for μ1 = 1, 1
1

,
1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

y  and for μ2 = –1, 2

1
=

1
⎡ ⎤
⎢ ⎥−⎣ ⎦

y .   

Now, we use the preceding construction to build the eigenvectors of Qn for n > 2.  

For Q2 there are 2 · 2 = 4 eigenvectors, shown in Figure 10. 

 λ2+μ1 = 1+1 = 2      1 1

1 1
1,1

y
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
z

x

1 11
1 1

11
1

11

⎡ ⎤⎡ ⎤ ⎡ ⎤⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥⋅ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 

λ2+μ1 = –1+1 = 0     1 2

1 2
2,1

y
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
z

x

1 11
1 1

11
1

11

⎡ ⎤⎡ ⎤ ⎡ ⎤⋅⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥⋅ ⎢ ⎥⎢ ⎥ −−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 

λ1+μ2 = 1 –1 = 0       2 1

2 1
1,2

y
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
z

x

1 11
1 1

11
1

11

⎡ ⎤⎡ ⎤ ⎡ ⎤⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎡ ⎤⎢ ⎥− ⋅ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 

λ2 + μ2 = –1–1 = –2 2 2

2 2
2,2

y
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
z

x

1 11
1 1

11
1

11

⎡ ⎤⎡ ⎤ ⎡ ⎤⋅⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎡ ⎤⎢ ⎥− ⋅ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 

Figure 10.    Deriving the Eigenvectors for Q2. 
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If we combine the eigenvectors of Q2 into a matrix Z, where 

1,1 2,1 1,2 2,2Z ⎡ ⎤= ⎣ ⎦z z z z , we have 

1 1 1 1
1 1 1 1

Z
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

.  This matrix is an example of 

a Sylvester–Hadamard Matrix.  An n x n Sylvester–Hadamard matrix Hn is recursively 

defined by n-1 n-1

n-1 n-1
n

H H
H H H

⎡ ⎤
= ⎢ ⎥−⎢ ⎥⎣ ⎦

 where H1 = [1].  This Sylvester–Hadamard-type 

recursion occurs in Qn–1 x K2, since K2 has eigenvectors 
1
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
1
1

⎡ ⎤
⎢ ⎥−⎣ ⎦

.  If Qn has 

eigenvectors of length 2n, say n21 2 3 ,z ,  z ,  z , . . . , z  then Qn+1 has eigenvectors 

n

n

3 31 2 1 22

3 31 2 1 22

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ −− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

zz zz z z z
,   ,   , . . . ,  ,  ,  ,  ,

zz zz z z z
n

n

2

2

⎡ ⎤
⎢ ⎥−⎣ ⎦

z
. . . ,  ,

z
 all in

n 12 .
+

  Thus, 

we can conclude that the eigenvectors for the adjacency matrix of the hypercube Qn are 

given by the columns of the Sylvester–Hadamard Matrix Hn.  Since the columns of 

Sylvester–Hadamard matrices are pairwise orthogonal, we can also conclude that the 

adjacency matrix for Qn always has a complete, orthogonal set of eigenvectors.  Note that 

for Q1, the adjacency matrix and the Laplacian matrix both have eigenvectors 
1
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and
1
1

⎡ ⎤
⎢ ⎥−⎣ ⎦

, and so this recursive eigenvector construction for Qn applies to both matrices.   
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III. THE INVERSE EIGENVALUE PROBLEM FOR THE 
HYPERCUBE 

A. INTRODUCTION 

In her paper, Spectral Graph Theory and The Inverse Eigenvalue Problem of a 

Graph [1], Hogben describes how spectral graph theory originally focused on obtaining 

information about the graph from examining the associated matrices (adjacency and 

Laplacian).  The inverse eigenvalue problem looks at the problem the other way and tries 

to determine information about the possible eigenvalues of the real symmetric matrices 

whose pattern of nonzero entries is described by a given graph [1], [10].  

First, we need to define which matrices qualify for the inverse eigenvalue 

problem of a graph.  For a symmetric real n x n matrix B, the graph of B, G(B), is the 

graph with vertices {1, 2, . . . , n} and edge set {{i,j}| bij ≠ 0 and i ≠ j}.  We define S(G) 

to be the set of all real n x n matrices such that G(B) = G [1].  In other words, if A is the 

adjacency matrix for graph G, then B is an element of S(G) if B 

1. Is real and symmetric, 

2. Has the same off-diagonal zeros as A, 

3. Has non-zeros where A has ones, and 

4. Has arbitrary real numbers on its diagonal. 

Figure 11 gives a simple example, using the hypercube Q2, to illustrate what kinds 

of matrices qualify for the inverse eigenvalue problem. 

 

Figure 11.   Matrix for the Inverse Eigenvalue Problem of Q2. 

1 2 

3 4 

Q2 

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2QA =

1 
2 
3 
4 

1 2 3 4 

where a thru h are real numbers 
and e thru h are non zero 

B =

a e f 0
e b 0 g
f 0 c h
0 g h d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Initially, this seems to include such a large number of matrices derived from each 

graph that it would be difficult to determine anything interesting about the corresponding 

possible eigenvalues of matrices in S(G).  This may be true in many cases, but there has 

been a great deal of study done on the inverse eigenvalue problem of trees.  Surprisingly, 

relatively little work has been done on graphs other than trees, including the hypercube.  

Hogben [1] defines four key terms that will help us make progress on the inverse 

eigenvalue problem of the hypercube: 

1.  The Maximum Multiplicity of a Graph, denoted M(G) 

2.  The Minimum Rank of a Graph, denoted mr(G) 

3.  The Path Cover Number, denoted P(G) 

4.  The Path Vertex–Deletion Number, denoted Δ(G) 

1. Maximum Multiplicity M(G) 

The algebraic multiplicity of an eigenvalue is simply the number of times that 

eigenvalue is repeated in the spectrum of that matrix, i.e., its multiplicity as a zero of the 

characteristic polynomial.  The maximum multiplicity for the inverse eigenvalue problem 

denotes the maximum number of times we can find an eigenvalue repeated in the 

spectrum among all matrices B∈S(G). 

2. Minimum Rank mr(G) 

Closely related to maximum multiplicity is the minimum rank of G, which refers 

to the lowest rank we can find among all matrices B∈S(G).  We note here that, from 

basic matrix theory, finding the matrix that yields the minimum rank is equivalent to 

finding the matrix with largest algebraic multiplicity of zero as an eigenvalue.  Hogben 

showed the following fundamental theorem relating maximum multiplicity and minimum 

rank. 

Theorem 3 [1]:  M(G) + mr(G) = n (where n is the number of vertices of G, 

which is also the number of rows and columns in the adjacency matrix of G). 
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To explain this relationship between M(G) and mr(G), consider finding a matrix 

B* with eigenvalue λ, which has largest multiplicity, say x, among all eigenvalues of all 

matrices B∈S(G).  Since subtracting a constant multiple of the identity matrix only shifts 

the eigenvalues and does not change their multiplicities, we can now take C = B* – λ·I, 

where C has eigenvalue μ = 0, also with multiplicity x.  Because the diagonal is ignored 

in the inverse eigenvalue problem, C∈S(G).  Now, since C has the most zero eigenvalues 

of any matrix in S(G), we can see that C will yield the minimum rank of G.   

3. Path Cover Number P(G) 

The path cover number of G, P(G), is the minimum number of vertex-disjoint 

paths occurring as induced subgraphs of G that cover all the vertices of G.  

4. The Path Vertex–Deletion Number Δ(G) 

The path vertex–deletion number is given by 

      Δ(G) = max{p – q | there is a set of q vertices whose deletion leaves p disjoint paths}.   

Johnson and Duarte [11] noted that a single vertex counts as a trivial path and that 

Δ(G) may also be described as max [p – q] such that there are n – q vertices of G that 

induce a subgraph of p components, each of which is a path.  Hogben [1] point outs three 

basic theorems that involve these terms. 

Theorem 4:  For any graph G, Δ(G) < P(G). 

Theorem 5:  For any graph G, Δ(G) < M(G). 

Theorem 6:  For any tree T, M(T) = P(T) = Δ(T). 

While Theorem 6 holds for trees, little is known about the relationship between 

M, P, and Δ for graphs in general, other than the results in Theorems 4 and 5.  In cases 

where G is not a tree, Hogben shows one graph where M(G) > P(G) and another graph 

where P(G) > M(G) [1].  Also, since M(G) + mr(G) = n, what is the relation between 

mr(G) and Δ(G) or P(G)?  From these, we draw the central question that inspires the 

work in the remainder of this chapter of the thesis:  What are M(Qn), mr(Qn), P(Qn), 

and Δ(Qn), and what are the relationships between them? 
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B. MINIMUM RANK FOR GRAPH CARTESIAN PRODUCTS 

1. Background 

In this section we look at the minimum rank of the hypercube from the standpoint 

that Qn = Qn–1 x K2, for n > 2.  First, we look at the adjacency matrix for Q2.  We have 

Q2

0 1 1 0
1 0 0 1

A
1 0 0 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, with mr(Q2) = 2 and Spec(Q2) = {–2, 0, 0, 2}.  Now, if we 

look at Q3 = Q2 x K2, with Spec(K2) = {–1, 1}, we can use Theorem 1 to show that 

  Spec(Q3) = {λi + μj | λi ∈  Spec(Q2),  μj ∈  Spec(K2)}. 

    = {–2 – 1, 0 – 1, 0 – 1, 2 – 1, –2 + 1, 0 + 1, 0 + 1, 2 + 1} 

    = {–3, –1, –1, 1, –1, 1, 1, 3}. 

So now, under the inverse eigenvalue problem in looking at B∈  S(Q3), if we take 

B = Q2 
A + I, then Spec(B) = {–2, 0, 0, 0, 2, 2, 2, 4}, and the three zero eigenvalues give 

that  mr(Q3) < 5.  But Godsil shows that mr(Q3) = 4 by proving the following theorem.  

Theorem 7.  mr(Qn) = 2n–1 for n > 2 [12].   

Godsil is able to construct a matrix B ∈  S(Q3) of which four of the eigenvalues 

are zero (exactly half the eigenvalues) and so B has lower rank than the adjacency matrix 

of Q3.  Let us examine the matrix Ln that he develops to see how he accomplishes this.  

He defines 2

1 1
2 2L

1 1
2 2

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

 where Spec(L2) = {–1, 1}.  Constructing H3 = L2 x AK2, 

since Spec(K2) = {–1, 1}, we see that Spec(H3) = {–1 – 1, –1 + 1, 1 – 1, 1 + 1}  

     = {–2, 0, 0, 2}.   
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Next, 3
2

2

1 1 1 0
2 2 2
1 1 10L I 2 21 2L

I L 1 1 12 0
2 22

1 1 10
2 22

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎡ ⎤
⎢ ⎥= =⎢ ⎥− ⎢ ⎥⎣ ⎦ − −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

with Spec(L3) = {–1, –1, 1, 1}. 

We can see that in forming H4 = L3 x K2
,A  we have  

Spec(H4) = {–1 – 1, –1 – 1, –1 + 1, –1 + 1, 1 – 1, 1 – 1, 1 + 1, 1 + 1} 

    = {–2, –2, 0, 0, 0, 0, 2, 2}.   

Thus, since half the eigenvalues are zero, Godsil has constructed H3 ∈  S(Q3) such that 

3
n

2mr(H ) 2 .=   From looking at H3 and H4, we can see that Godsil’s construction of 

n-1
n

n-1

L I1L  
I L2

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

for n > 3 recursively builds matrices Ln that have half their 

eigenvalues equal to –1 and the other half equal to +1. Now, when we take Hn = Ln x 

K2
,A  we can see that 

n
4

n
2

n
n

4

2, with multiplicity 2

Spec(H ) 0, with multiplicity 2

2, with multiplicity 2 .

⎧−⎪
⎪= ⎨
⎪
⎪
⎩

 

Recall from Theorem 3 that M(Qn) + mr(Qn) = 2n (the number of vertices of Qn).  

Since mr(Qn) = 2n–1, we can conclude that M(Qn) = 2n-1 as well and so M(Qn) = mr(Qn). 

2. Minimum Rank for Cartesian Products 

Based on the analysis of Godsil’s construction, as well as Theorem 1 and 

Theorem 3, we can see that the minimum rank of a matrix for the inverse eigenvalue 

problem of the Cartesian product of two graphs is less than or equal to the order of that 
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matrix minus the product of the maximum multiplicity of the two graphs.  Godsil 

certainly showed that in the case of the hypercube we can do better, but the following 

corollary to Theorem 3 gives an upper bound for the minimum rank of any graph 

Cartesian product. 

Corollary 8:  Let G and H be two graphs with orders m and n respectively.  Then 

mr(G x H) < m · n – M(G) · M(H). 

Proof:  Let G be a graph of order m.  If M(G) = p, then we can find A∈S(G) with 

eigenvalues λ1, λ2, . . . λm such that λ1 = λ2 = . . . = λp = 0.  Next, let H be a graph of order 

n.  If M(H) = q, then we can find B∈S(H) with eigenvalues μ 1, μ 2, . . . μ n such that μ1 = 

μ2 = . . . = μq = 0.  When we form the eigenvalues of G x H we have λ1 + μ1 = λ1 + μ2 = 

λ1 + μ3 = . . . = λ1 + μq = λ2 + μ1 = λ2 + μ2 = λ2 + μ3 = . . . = λp + μq = 0, so we have 

p q⋅ eigenvalues guaranteed to equal to zero in G x H.  Now, since p q M(G) M(H)⋅ = ⋅ , 

we can conclude that the minimum rank of G x H is less than or equal to the total number 

of eigenvalues minus the product of the number of eigenvalues equal to zero of G and H.  

QED. 

Here is an example of the corollary:  Take a graph G with five vertices and graph 

H with three vertices.  If Spec(G) ={–1, –2, 1, 1, 1} and Spec(H) = {–1, 0, 1}, then  

Spec(G x H) = {–3, –2, –2, –1, –1, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2}.   

We can see that there is a matrix C∈S(G x H) that has a maximum multiplicity at 

least four and thus mr(G x H) < 15 – 4 = 11, and we see that the corollary is satisfied: 

mr(G H)  11  m n M(G) M(H)  5 3  3 1  12.× ≤ ≤ ⋅ − ⋅ = ⋅ − ⋅ =  

The inequality in this corollary can be strict, as we show below for Qn. 

n n n 1 n n
n n2 2

1 32   mr(Q K )  m n M(Q ) M(K )  2 2  2 1  2 (2  ) 2 .
2 2

− ⎛ ⎞= × ⋅ − ⋅ = ⋅ − ⋅ = − = ⎜ ⎟
⎝ ⎠

<
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C.  COMPARING M(Qn), P(Qn), AND Δ(Qn) 

1. Introduction 

In this section we explore the relationship between the maximum multiplicity 

M(G), the path cover number P(G), and the path vertex-deletion number Δ(G) for 

hypercubes.  Hogben [1] points out that for any graph G we have Δ(G) < P(G).  For trees 

these three quantities are equal, but little is known about their relationship on other 

graphs [1].  Here we analyze each of these three values for Qn and show that M(Qn) > 

P(Qn) > Δ(Qn) for all n > 3. 

2. The Maximum Multiplicity of Qn 

As we have presented, Godsil proves that M(Qn) = 2n–1 for all n > 1.  Here we 

simply list the results for n = 1 to n = 5 for subsequent comparison. 

 

 

 

 

 

 

Table 4.   Maximum Multiplicity M(Qn) for 1 < n < 5. 

3. The Path Cover Number of Qn for 1 < n < 3 

We begin our analysis by stating the obvious case: P(Q1) = 1, since Q1 = P2.   

Next, we can see that for both P(Q2) and P(Q3),  using just one path would create 

an induced cycle, so P(Q2), P(Q3) > 1.  Since we can cover both Q2 and Q3 with two 

paths, we can conclude that P(Q2) = P(Q3) = 2.  See Figure 12.  Additionally, we can see 

that M(Qn) = P(Qn) for n = 1, 2. 

n M(Qn) 

n = 1 1 

n = 2 2 

n = 3 4 

n = 4 8 

n = 5 16 
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Figure 12.   Path Coverings showing P(Q2) = P(Q3) = 2. 

4. The Relationship Between M(Qn) and P(Qn) for n > 3 

Theorem 9:  If n > 3, M(Qn) > P(Qn). 

Proof:  First, note that M(Q3) = 4 > 2 = P(Q3).  Now consider Q4 =  Q3 x K2.  If 

we simply apply the construction for P(Q3) to both copies of Q3 in Q4 we can see that it 

must be the case that P(Q4) < 4.  This is actually a loose bound; we will show later that 

P(Q4) = 3, but P(Q4) < 4 suffices for this proof.   

 

 

Figure 13.   A Path Covering of Q4 showing that P(Q4) < 4. 
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Now, if we apply the same construction again recursively using paths of length 4, 

we can see that P(Q5) < 8: 

 

 

Figure 14.   A Path Covering of Q5 showing that P(Q5) < 8. 

Again, as with the case of Q4, this is a fairly loose upper bound as we will later 

show that P(Q5) = 3.  So, as we continue this recursive process for each successive Qn, 

we obtain that P(Qn) < 2n–2.  Since Godsil showed that M(Qn) = 2n–1, we can conclude 

that M(Qn) = 2n–1 > 2n–2 > P(Qn).  QED. 

5. The Path Cover Number of Q4 

Developing the proper path covering for Q4 and higher order becomes more 

difficult.  The main issue is that, because of the large number of cycles in Qn, as we 
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progress along a path we soon run out of vertices that would not generate a cycle in the 

resulting induced subgraph and thus eliminate the path from consideration.  In the 

previous section we showed that P(Q4) < 4.  We now show that P(Q4) > 2.  We proceed 

using a constructive, exhaustive proof that has two parts.  First, we demonstrate that the 

longest “allowed paths” (i.e. the longest vertex disjoint paths occurring as induced 

subgraphs) in Q4 are of length eight.  Thus, the only way we could properly cover the 16 

vertices of Q4 in two paths is for the second path to also be of length eight.  We will show 

in the second part of the proof that in every case, the remaining eight vertices cannot be 

connected by a single path.  

a. The Longest Path in Q4 is Length Eight 

We exploit the fact that the hypercube is bipartite, and redraw it as shown 

in Figure 15. 

 

Figure 15.   Q4, Drawn to Show Bipartite Structure. 
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Next, to begin our path, and without loss of generality, we start at vertex 1.  

As we proceed along the path, once we choose each successive vertex we eliminate the 

other neighbors of its predecessor from later joining the path, since this would induce a 

cycle.  For instance, if we travel from vertex 1 to 2, we eliminate the other neighbors of 

vertex 1, which are vertices 3, 5, and 9.  We will show later in part c that in every case, as 

the path reaches length eight, we eliminate eight vertices as well, thus leaving no more 

vertices to continue the path. 

b. The Remaining Eight Vertices  

Given that the longest path in Q4 is of length eight, since there are 16 

vertices total, in order to achieve P(Q4) = 2 the other path must also be of length eight.  

We find in every case, though, that in the set of eight remaining vertices there is at least 

one vertex that has three neighbors in the same set, and so that vertex would have degree 

three in an induced subgraph.  But in a path the only possible degrees are one for the end 

vertices and two for all others.  Therefore, the remaining eight vertices cannot form a 

single path. 

c. Example Showing Construction for the Proof 

We now begin the construction of a path of length eight in Figure 16.  The 

path is denoted in blue, and the circled red vertices are those eliminated from possible 

inclusion in our path due to the fact that they would create a cycle.  The following figure 

has nine steps.  The first seven steps denote the construction of a path of length eight and 

the last two steps show how the remaining eight vertices cannot be covered in one 

additional path.  
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V3, and V9 cannot be 
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they will create a cycle 
back to V1.  

Going from V5 to V7 
eliminates vertices V6 and 
V13.   

Going from V7 to V15 
eliminates vertex V8. 
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Figure 16.   Constructing a Path Covering for Q4. 

d. Remaining Paths Starting at Vertex 1 

The previous example shows one possible path of length eight for Q4.  If 

we continually repeat the process for all possible paths of length eight (starting with 

vertex one), we find 24 possible paths, listed in Table 5.  For each path, we also denote 

the set of remaining vertices and from that set which vertex has three neighbors and thus 

causes the induced subgraph not to be a path.  Because the hypercube is vertex transitive, 

without loss of generality, we can conclude the same result for any starting vertex. 
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the maximum path is of 
length 8. 

For the second path, we 
now remove the vertices 
and all associated edges 
from the first path, shown 
above.  We note there are 8 
remaining vertices. 

By redrawing these 8 
vertices and remaining 
edges, we can easily see 
at least one vertex has 
degree 3 and so these 8 
vertices cannot be 
covered with one path. 
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Paths of Length 8 Remaining Vertices Vertex From Remaining 
Vertices with 3 Neighbors 

1, 2, 4, 8, 7, 15, 13, 14 3, 5, 6, 9, 10, 11, 12, 16         11,      10, 12, 16 
1, 2, 4, 12, 11, 15, 13, 14 3, 5, 6, 7, 8, 9, 10, 16          7,       3, 5, 8 
1, 2, 6, 8, 7, 15, 11, 12 3, 4, 5, 9, 10, 13, 14, 16        14,       10, 13, 16 
1, 2, 6, 14, 13, 15, 11, 12 3, 4, 5, 7, 8, 9, 10, 16          7,       3, 5, 8 
1, 2, 10, 12, 11, 15, 7, 8 3, 4, 5, 6, 9, 13, 14, 16        13,       5, 9, 14 
1, 2, 10, 14, 13, 15, 7, 8 3, 4, 5, 6, 9, 11, 12, 16        12,       4, 11, 16 
1, 3, 4, 8, 6, 14, 13, 15 2, 5, 7, 9, 10, 11, 12, 16        11,       10, 12, 16 
1, 3, 4, 12, 10, 14, 13, 15 2, 5, 6, 7, 8, 9, 11, 16          6,       2, 5, 8 
1, 3, 7, 8, 6, 14, 10, 12 2, 4, 5, 9, 11, 13, 15, 16        15,       11, 13, 16 
1, 3, 7, 15, 13, 14, 10, 12 2, 4, 5, 6, 8, 9, 11, 16          6,        2, 5, 8 
1, 3, 11, 12, 10, 14, 6, 8 2, 4, 5, 7, 9, 13, 15, 16        13,       5, 9, 15 
1, 3, 11, 15, 13, 14, 6, 8 2, 4, 5, 7, 9, 10, 12, 16        12,       4, 10, 16 
1, 5, 6, 8, 4, 12, 11, 15 2, 3, 7, 9, 10, 13, 14, 16        10,       2, 9, 14 
1, 5, 6, 14, 10, 12, 11, 15 2, 3, 4, 7, 8, 9, 13, 16          4,       2, 3, 8 
1, 5, 7, 8, 4, 12, 10, 14 2, 3, 6, 9, 11, 13, 15, 16        15,       11, 13, 16 
1, 5, 7, 15, 11, 12, 10, 14 2, 3, 4, 6, 8, 9, 13, 16          4,       2, 3, 8 
1, 5, 13, 14, 10, 12, 4, 8 2, 3, 6, 7, 9, 11, 15, 16        15,       7, 11, 16 
1, 5, 13, 15, 11, 12, 4, 8 2, 3, 6, 7, 9, 10, 14, 16        14,       6, 10, 16 
1, 9, 10, 12, 4, 8, 7, 15 2, 3, 5, 6, 11, 13, 14, 16        14,       6, 13, 16 
1, 9, 10, 14, 6, 8, 7, 15 2, 3, 4, 5, 11, 12, 13, 16          4,       2, 3, 12 
1, 9, 11, 12, 4, 8, 6, 14 2, 3, 5, 7, 10, 13, 15, 16        15,       7, 13, 16 
1, 9, 11, 15, 7, 8, 6, 14 2, 3, 4, 5, 10, 12, 13, 16          4,       2, 3, 12 
1, 9, 13, 14, 6, 8, 4, 12 2, 3, 5, 7, 10, 11, 15, 16        15,       7, 11, 16 
1, 9, 13, 15, 7, 8, 4, 12 2, 3, 5, 6, 10, 11, 14, 16        14,       6, 10, 16 

Table 5.   Paths of Length Eight of Q4 Starting With Vertex 1. 

e. Demonstrating P(Q4) = 3 

Above, we established that P(Q4) > 2.  Certainly, there are many ways to 

properly cover Q4 with three paths and Figure 17 shows an example using two paths of 

length seven and one path of length three.  From this, we can conclude that P(Q4) = 3. 
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Figure 17.   A Path Covering for Q4 showing that P(Q4) < 3. 

6. The Path Cover Number of Q5 

Because Q5 = Q4 x K2, it follows that since P(Q4) = 3, then P(Q5) > 3.  Since a 

covering is shown in Figure 18 using only 3 paths, we can then conclude that P(Q5) = 3. 

 

 

Figure 18.   A Path Covering for Q5 showing that P(Q5) < 3. 
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7. The Path Cover Number of Qn in General 

At this point, it seems that there is no way to determine the path cover number for 

Qn in general.  Table 6 summarizes our results so far from Q1 thru Q5. 

 
 

Hypercube Qn Number of Vertices Path Cover Number 

Q1 2 1 

Q2 4 2 

Q3 8 2 

Q4 16 3 

Q5 32 3 

Table 6.   Path Cover Number for Q1 thru Q5. 

8. The Path Vertex-Deletion Number Δ(Qn) 

Determining the path vertex-deletion number of a graph involves two main steps.  

First, we need to delete vertices so that we divide the graph into components of vertex 

disjoint paths.  The number of these initially–deleted vertices becomes the lower bound 

for q.  Second, we consider deleting additional vertices that will yield more p paths and 

thus maximize [p – q].  We begin with Δ(Q1). 

Proposition 10:  Δ(Q1) = 1 – 0 = 1.   

Proof:  Since Q1 is already a vertex disjoint path we can easily see that we do not 

need to delete any vertices and Δ(Q1) = 1 – 0 = 1.  QED. 

Proposition 11:  Δ(Q2) = 2 – 2 = 0.   

Proof:  Since Q2 is a cycle of length four, we must delete at least one vertex in 

order to divide the graph into components that are disjoint paths.  Figure 19 shows that 

when deleting one or two vertices the maximum choices of [p – q] are [1 – 1] or [2 – 2],  
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and so Δ(Q2) = 0.  Note that deleting three vertices would leave one isolated vertex 

remaining and thus only one path and so p – q = 1 – 3 = –2, which is less than zero and so 

discarded.  QED. 

 

Figure 19.   Cases in Determining Δ(Q2). 

Proposition 12:  Δ(Q3) = 4 – 4 = 0.   

Proof:  We begin by deleting vertices of Q3 in order to divide the graph into 

components that are disjoint paths.  It is easy to see that deleting only one vertex alone 

will not achieve this since Q3 has two disjoint cycles, one in each copy of Q2.  Because of 

the vertex transitivity of the hypercube, we only need to consider the cases where the 

deleted vertices are different distances apart.  In deleting two vertices, there are three 

unique cases (up to isomorphism) based on the deleted vertices being distance either 1, 2, 

or 3 away from each other.  Three is the largest distance to consider since the diameter of 

Q3 is 3.  Figure 20 shows that deleting only two vertices, shown as empty circles, still 

does not achieve dividing the graph into paths. 
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Figure 20.   Cases in Determining Δ(Q3) using q = 2. 

Next, we examine deleting three vertices from Q3.  Again, there are three unique 

cases to consider.  If we denote the deleted vertices A, B, and C, and denote the distance 

between each of these points as: (A to B, B to C, A to C), then the three unique cases are: 

(1, 1, 2), (2, 2, 2), and (1, 2, 3).  Figure 21 shows that only in the final case, with 

distances between deleted vertices (1, 2, 3), do we finally divide the graph into 

components of vertex disjoint paths and attain p – q = –2.  

 
 

 

Figure 21.   Cases in Determining Δ(Q3) using q = 3. 
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We now consider deleting additional vertices in an effort to find a higher value for 

p – q, continuing with q = 4.  If we delete four vertices, that leaves four vertices 

remaining, and the largest number of paths we can achieve would be four disjoint paths 

of length one.  If we consider that the hypercube is bipartite and delete the four vertices 

of one bipartite set, we will leave the four vertices from the other bipartite set.  Since no 

two vertices in a bipartite set are adjacent, we know these remaining vertices will form 

the four disjoint paths that we are trying to achieve.  So, given that the size of each 

bipartite set is 2n–1, we can see that deleting one set yields p – q = 2n–1 – 2n–1 = 4 – 4 = 0.  

See Figure 22. 

 

Figure 22.   Determining Δ(Q3) using q = 4. 

To conclude this proof, we must address two additional cases not yet covered in 

determining Δ(Q3) and show that both yield p – q < 0.  First, we consider deleting four 

vertices but not from the same bipartite set.  Then, of the four remaining vertices, at least 

two will be adjacent, and therefore the largest number of paths we can achieve is three, 

leaving p – q < 3 – 4 = –1, which is less than zero and so discarded.  Finally, we consider 

deleting five or more vertices.  Since this would yield three or less vertices remaining, the 

best we can achieve for p – q < 3 – 5 = –2, which again is less than zero and so discarded.   

We can see now the maximum choice for p – q = 2n–1 – 2n–1 = 4 – 4 = 0 and 

therefore can conclude that Δ(Q3) = 0.  Note that any other choices for p and q in 

determining Δ(Q3) other than p = q = 2n–1 will yield p – q < 0.  QED.   

Theorem 13:  Δ(Qn) = 2n–1 – 2n–1 = 0 for n > 2 
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Proof:  We have already shown that Theorem 13 is true for n = 2, 3. Additionally, 

we can certainly see that by deleting one bipartite set of vertices from Qn, we will achieve 

p – q = 2n–1 – 2n–1 = 0, n > 2.  The goal now will be demonstrating that all other choices 

for p and q yield p – q < 0.  We note here that Qn, n > 3, contains 2n–3 copies of Q3 and 

the key to this proof will be focusing on how those copies are divided into vertex disjoint 

paths. 

Case 1:  Deleting three vertices for every copy of Q3 in Qn. 

Based on the third construction shown in Figure 21, we can see that we must 

delete a minimum of three vertices within all copies of Q3 that exist in Qn, n > 3 in order 

to divide Qn into vertex disjoint paths.  We certainly may have to delete more vertices; 

three is simply a lower bound.  Figure 21 shows that deleting these three vertices within 

each copy of Q3 will create a single path P5, within each copy.  The best we can do to 

maximize p under this scenario is for these paths to remain vertex disjoint and so p would 

equal the number of copies of Q3.  Therefore if we denote the number of copies of Q3 in 

Qn (n > 3) as x, then the maximum we can achieve is  

p – q = x – 3x = –2x and so p – q < 0. 

Case 2:  Deleting three vertices in some copies of Q3 while deleting four vertices 

in the remaining copies of Q3 in Qn.   

Since there are 2n–3 copies of Q3 in Qn, we let y be number of copies in which we 

delete three vertices, leaving 2n–3 – y copies remaining.  For each copy where we delete 3 

vertices, we will again create one path P5, and for each copy where we delete four 

vertices, the best we can do is to create fours paths P1.  As in case 1, we maximize p 

when these paths remain disjoint between different copies of Q3.  Therefore, in this case,  

p < 1 · y  +  4 · (2n–3 – y) and 

   q = 3 · y  +  4 · (2n–3 – y), so      

       p – q < [y  +  4 · (2n–3 – y)] – [3y  +  4 · (2n–3 – y)]  

    <  y – 3y  =  –2y  and it follows that p – q < 0. 
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Case 3:  Deleting four vertices in each copy of Q3, where at least one deleted 

vertex is not in the same bipartite set as the other deleted vertices.   

Since this means that at least two vertices in one copy of Q3 will be adjacent and 

thus form a path of at least length two, p can be at most 2n–1 –1 and thus  

p – q < (2n – 1 – 1) – (2n – 1) = –1, so p – q < 0. 

Case 4:  Deleting five or more vertices in at least one copy of Q3.   

For any copy of Q3 that we delete at least five vertices, the maximum number of 

paths remaining will be three if they are all disjoint paths of length one.  Here, we denote 

the number of copies of Q3 in which we delete 3, 4, or 5 vertices to be x, y, and              

(2n–3 – x – y), respectively.  Therefore, under these conditions,  

p <  1 · x   +   4 · y  +  3 · (2n–3 – x – y) and 

q =  3 · x   +   4 · y  +  5 · (2n–3 – x – y), so 

      p – q < [x  +  4y  +  3·(2n–3 – x – y)]  –  [3x  +  4y  +  5·(2n–3 – x – y)] 

               < – 2x  – 2·(2n–3 – x – y)  =  –2·(2n–3 – 2x – y) and we have p – q < 0. 

Since we have shown that all other choices for p and q other than p = q = 2n–1   

yield p – q < 0, we can conclude that Δ(Qn) = 2n–1 – 2n–1 = 0, n > 2.  QED.   

Figure 23 shows Δ(Q4) by applying Theorem 13. 

 

 

Figure 23.   Determining Δ(Q4). 
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9. Summary of Results for the Inverse Eigenvalue Problem of Qn 

Table 7 lists the results we have found, or conjectured, for the hypercube for 

M(Qn), mr(Qn), P(Qn), and Δ(Qn). 

 

Hypercube Qn M(Qn) = mr(Qn) P(Qn) Δ(Qn) 

Q1 1 1 1 

Q2 2 2 0 

Q3 4 2 0 

Q4 8 3 0 

Q5 16 3 0 

Table 7.   Summary Table for the Inverse Eigenvalue Problem of the Hypercube. 

Since Q1 is a tree, our results agree with Theorem 6 agrees that tells us 

M(Q1) =  mr(Q1) = P(Q1) = Δ(Q1). 

For Q2 we have 

M(Q2) = mr(Q2) = P(Q2) > Δ(Q2). 

Now, using Theorems 7, 9 and 13, we can easily conclude the following: 

Theorem 14:  M(Qn) = mr(Qn) > P(Qn) > Δ (Qn), for n > 3. 

 

 



41 

IV. THE ENERGY OF THE HYPERCUBE 

A. INTRODUCTION 

The energy E(G) of a graph G is defined to be the sum of the absolute values of 

the eigenvalues of the adjacency matrix of G [13].  For certain special graphs, this is easy 

to determine in general.  For instance, the complete graph Kn has n eigenvalues {n–1 , –1, 

–1, –1, . . ., –1}, so its energy is E(Kn) = (1)(n – 1) + (n – 1)(1) = 2n – 2.  In other cases, 

we can only provide bounds for the energy of certain types of graphs.  For instance, 

Koolen and Moulton showed that for any graph with order n and size m, E(G) 2mn,≤  

and, if we only consider the order, nE(G) (1 n )
2

≤ +  [14].  Additionally, they showed 

that if G is bipartite, then nE(G) ( 2 n )
8

≤ +  [15].  In the next section, we derive 

several equivalent formulas for the energy of the hypercube Qn. 

B. APPLIED TO THE HYPERCUBE 

1. Deriving the equation for E(Qn) 

Using Table 1 in Chapter II.C.1, we can determine the absolute values of 

eigenvalues (with multiplicity) for the hypercube to be as summarized here in Table 8.   

 

 Absolute Values of Eigenvalues             Multiplicity 

Qn λ = n, n – 2, n – 4, . . . , n – 4, n – 2, n ,  ,  ,  . . . ,  
0 1 2 1
n n n n n

n n
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Table 8.   Absolute Values of the Eigenvalues of the Adjacency Matrix of Qn with 
Multiplicity. 
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Thus, we can see that the energy of the hypercube is given by 

n
n n n n n n

E(Q ) (n) (n 2) (n 4) ... (n 4) (n 2) (n) .
0 1 2 n 2 n 1 n
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + − + − + + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

We now consider the symmetry in the above equation and focus on the two cases, 

one when n is odd and the other when n is even.  To illustrate, consider Q5 and Q6: 

5
5 5 5 5 5 5

E(Q ) (5) (3) (1)                  (1) (3) (5)   60.
0 1 2 3 4 5
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

6
6 6 6 6 6 6 6

E(Q ) (6) (4) (2) (0) (2) (4) (6)   120.
0 1 2 3 4 5 6
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

First, it is easy to see that the first eigenvalue (in absolute value) equals the last, 

the second equals the second last and so forth.  When n is odd, we have pairs of 

eigenvalues in absolute value to be 

{n, n, n – 2, n – 2, . . . 5, 5, 3, 3, 1, 1}. 

When n is even, we have pairs of eigenvalues in absolute value to be  

{n, n, n – 2, n – 2, . . . 4, 4, 2, 2, 0}. 

Since the zero eigenvalue can be discarded when determining the energy, we can 

see that the smallest eigenvalues (in absolute value) is λ = 1 when n is odd and λ = 2  

when n is even.  It will be useful later to express this minimum as λmin = n 1n 2 .
2

⎛ − ⎞⎢ ⎥− ⋅⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
   

Since 
n n
k n k
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
, we can see that the eigenvalues with these pairs of 

coefficients above have the same multiplicity.  In the case where n is even, the 
n

n
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

term occurs only once, but the corresponding eigenvalue is zero (and is thus discarded in 

calculating the energy).  Based on these considerations, we can see that in general 
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n

n
n n n n 1E(Q ) 2 (n) (n 2) (n 4) . . . n 2 .n 10 1 2 2

2

⎡ ⎤⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ − ⎞⎢ ⎥⎢ ⎥⎜ ⎟= + − + − + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

   

We have proven the following theorem: 

Theorem 15: 

1
2

i 0

n

n
n

E(Q ) 2(n 2i) .
i

⎢ ⎥
⎢ ⎥⎣ ⎦

−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑  

In Table 9, we calculate the energy for Qn (1 < n < 4) in both ways: on the left, 

using this formula, and on the right using the definition of energy by listing and adding 

the absolute values of the eigenvalues (excluding zeros). 

 

Using Theorem 15 Using the Definition 

0

i 0
1

1 1
E(Q )  2(1 2i)   2(1 2 0)   2

i 0=

⎛ ⎞ ⎛ ⎞
= − = − ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  

1 + 1 = 2 

0

i 0
2

2 2
E(Q )  2(2 2i)   2(2 2 0)   4

i 0=

⎛ ⎞ ⎛ ⎞
= − = − ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  

2 + 2 = 4 

1

i 0
3

3
E(Q )  2(3 2i)

i=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑  

            
3 3

 2 (3 2 0)   (3 2 1)   12
0 1

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ⋅ + − ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 

3 + 1 + 1 + 1 + 1 +       

1 + 1 + 3 = 12 

 

1

i 0
4

4
E(Q )   2(4 2i)

i=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑  

            
4 4

2 (4 2 0)   (4 2 1)   24
0 1

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ⋅ + − ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 

4 + 2 + 2 + 2 + 2 + 2 +     

2 + 2 + 2 + 4 = 24 

 

Table 9.   Calculating E(Qn) in Two Ways for 1 < n < 4. 
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In Table 10, we summarize E(Qn) for 1 < n < 12. 

 

Qn Energy  Qn Energy 

Q1 2  Q7 280 

Q2 4  Q8 560 

Q3 12  Q9 1,260 

Q4 24  Q10 2,520 

Q5 60  Q11 5,544 

Q6 120  Q12 11,088 

Table 10.   E(Qn) for 1 < n < 12. 

2. Proving E(Qn) = 2 ⋅E(Qn–1) for n Even 

Observation of the above table seems to show that, for n even, 

1nnE(Q ) 2 E(Q ).−= ⋅   By applying Theorem 15 and letting n = 2k, this observation 

suggests that  

2k 1 2k 1 1
2 2

i 0 i 0

2k 2k 1
2(2k 2i)   2 2(2k 1 2i) .

i i

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − −

= =

⎡ ⎤
−⎛ ⎞ ⎛ ⎞⎢ ⎥− = − −⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  

By simplifying the upper limit of the summation using 

2k 1 2k 1 1 k 1
2 2
− − −⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 we state the following theorem. 

Theorem 16:  
k 1 k 1

i 0 i 0

2k 2k 1
(2k 2i)   2 (2k 2i 1) .

ii

− −

= =

⎡ − ⎤⎛ ⎞ ⎛ ⎞
− = − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑  

Proof:  First, we expand the summation of the right side, obtaining the sum 

2k 1 2k 1 2k 1 2k 1 2k
2 (2k 1) (2k 3) (2k 5) ... 3 1 .

0 1 2 k 2 k 1
⎡ − − − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− + − + − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
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Now, we show that the left side is equal to the right side.  We proceed by 

expanding the left side to obtain 

2k 2k 2k 2k 2k 2k
2k   (2k 2)   (2k 4)   ...  6   4   2 .

0 1 2 k 3 k 2 k 1
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + − + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Since there is only one way to choose zero objects from a set of any size, we can 

replace the first term in the expansion of 
2k
0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 with
2k 1

0
−⎛ ⎞

⎜ ⎟
⎝ ⎠

.  We then apply Pascal’s 

identity 
k k 1 k 1
i i i 1

⎛ − − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 to all of the other terms on the left side, and so we have 

2k 1 2k 1 2k 1 2k 1 2k 1
2k   (2k 2)   (2k 4)   ...

0 0 1 1 2

2k 1 2k 1 2k 1 2k
                                                  4   2

k 3 k 2 k 2

− ⎡ − − ⎤ ⎡ − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + + − + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ − − ⎤ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1
.

k 1
⎡ − ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

 

We distribute the terms {2k, 2k – 2, 2k – 4, . . . , 4, 2} within each bracketed 

group of combinations and now have 

2k 1 2k 1 2k 1 2k 1 2k 1
2k (2k 2)   (2k 2) (2k 4)   (2k 4) ...

0 0 1 1 2

2k 1 2k 1 2k
                                                                        4 4 2

k 3 k 2

− − − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + − + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
− − −⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

1 2k 1
2 .

k 2 k 1
−⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

          We now use the associative law of addition to regroup the combinations as follows: 

2k 1 2k 1 2k 1 2k 1 2k 1
2k (2k 2)   (2k 2) (2k 4)   (2k 4) ...

0 0 1 1 2
⎡ − − ⎤ ⎡ − − ⎤ ⎡ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + − + − + − +⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣

2k 1 2k 1 2k 1 2k 1
                                                             4   4 2   2 .

k 3 k 2 k 2 k 1
− ⎤ ⎡ − − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + +⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ ⎣ ⎦ ⎣ ⎦
 

Next, we simplify the equation inside each bracket to get 
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2k 1 2k 1 2k 1
(4k 2)   (4k 6)   (4k 10)  ...

0 1 2

2k 1 2k 1 2k 1
                                    10   6   2 .

k 3 k 2 k 1

⎡ − ⎤ ⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + − + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ − ⎤ ⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Finally, if we factor out a two from each term, we have the following: 

2k 1 2k 1 2k 1
2 (2k 1)   (2k 3)   (2k 5)  ...

0 1 2

2k 1 2k 1 2k 1
                                      5  3   1 .

k 3 k 2 k 1

⎡ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + − + − +⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣
− − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦

 

This is precisely equal to the right side of Theorem 16, which is what we were trying to 

show.  QED. 

3. An Alternate Equation for the Energy of the Hypercube 

Since 1nnE(Q ) 2 E(Q )−= ⋅ for n even, there might be two separate, identifiable sub-

sequences of E(Qn) for n being even and for n being odd.  We study this next. 

a. Sequence of E(Qn ) for n Even 

Let n be even.  The first six terms of E(Qn) starting with n = 2, are 4, 24, 

120, 560, 2520, and 11088.  In searching the On-Line Encyclopedia of Integer Sequences 

[16], we find an exact match with sequence number A002011 which has the formula:  

2
4 (2n 1)!

(n!)
⋅ + , except that this sequence starts at n = 0 and the sequence of E(Qn) starts with 

n = 2.  Therefore, if we replace n with n 1
2
−  in the formula for the A002011 sequence, we 

can conjecture that 

1
2

n 2

n

i 0

n 4(n 1)!E(Q ) 2(n 2i) .
i n 1 !

2

⎢ ⎥
⎢ ⎥⎣ ⎦

−

=

⎛ ⎞ −
= − =⎜ ⎟

⎝ ⎠ ⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  
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b. Sequence of E(Qn) for n Odd 

Let n be odd.  The first six terms of E(Qn) starting with n = 1, are 2, 12, 

60, 280, 1260 and 5544.  Again, in searching the On-Line Encyclopedia of Integer 

Sequences [16], we find an exact match with sequence number A005430 which has the 

formula:  
2n

n
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 also starting with n = 1.  Therefore, if we replace n with n 1
2
+ , we can 

conjecture that 

n 1
2

n
i 0

n 1n n 1E(Q ) 2(n 2i) .n 1i 2
2

−⎢ ⎥
⎢ ⎥⎣ ⎦

=

+⎛ ⎞⎛ ⎞ +⎛ ⎞⎜ ⎟= − = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  

c. Furthering the Conjectures for E(Qn) for n Even and Odd 

Earlier, we proved that 1nnE(Q ) 2 E(Q )−= ⋅ , n > 2, using our established 

formula for E(Qn).  We show now that our conjectured alternate formulas for E(Qn) for n 

even also satisfy E(Qn) = 2 · E(Qn–1).  Although this does not prove conclusively these are 

alternate formulas for E(Qn), it does help substantiate the conjectures.  Let n be even, we 

then have 

n n 1E(Q ) 2 E(Q )−⋅=  

2

n 1 1
4(n 1)! n 1 12 n 1 12n 21 !
2

⎡ − + ⎤⎛ ⎞− − +⎛ ⎞⎢ ⎥⎜ ⎟= − +⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎛ ⎞⎛ ⎞ ⎢ ⎥⎝ ⎠⎣ ⎦−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
n

n .n
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=  

We proceed by showing how the left-hand-side is equal to the right-hand-

side. 
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2
4(n 1)!  
n 1 !
2

−
=

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

2

2

n !
24(n 1)!

n n n1 ! 1 ! !2 2 2

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⋅ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2

2

n 4(n 1)!
2

n !
2

⎛ ⎞ −⎜ ⎟
⎝ ⎠ =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
2n (n 1)!  
n n! !
2 2

−
=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
n

n .n
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

d. A Conjectured Alternate Formula for E(Qn) 

Based on the results of the previous two sections, we now conjecture a 

more concise formula for Qn than that originally provided in Theorem 15.   

n

n 1
n 1 for n odd;n 12

2E(Q )
n

n for n even.n
2

⎧ +⎛ ⎞+⎪ ⎜ ⎟+⎪ ⎜ ⎟
⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪
⎜ ⎟⎪
⎜ ⎟⎪
⎝ ⎠⎩
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V. TOPICS FOR FURTHER RESEARCH 

A. APPLICATION 

Although the hypercube has numerous applications to coding theory as well as the 

study of Boolean functions, there are currently no specific applications known to us for 

the spectral graph theory analysis of the hypercube provided in this paper.  Since the 

energy of a graph is used in chemistry to approximate certain aspects of molecules, the 

focal point on finding applications of the energy of the hypercube should start in this 

area. 

B. OPEN QUESTIONS 

There are several unanswered questions noted throughout this paper, both with 

respect to the inverse eigenvalue problem as well as the energy of the hypercube. 

1.  Is there a general formula for P(Qn)? 

2.  Is there any relationship between the maximum multiplicity of the possible 

eigenvalues M(Qn) and E(Qn)?   

3.  Can we generalize the results we derived for the energy of the hypercube to 

find the energy of other graph Cartesian products? 
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