
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2000

Component-Based Simulation Modeling

Buss, Arnold H.

https://hdl.handle.net/10945/38640

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

COMPONENT-BASED SIMULATION MODELING

Arnold H. Buss

Operations Research Department
Naval Postgraduate School

Monterey, CA 93943-5000, U.S.A.

ABSTRACT

This paper presents a component-based framework for
designing simulation models and discusses its
implementation in a package called Simkit. In this
framework, Components are defined to be monolith
software entities that interact with other components in one
of only three ways. Although seemingly restrictive, this
approach supports more extensibility and customization of
simulation models than conventional Object-Oriented
design.

1 INTRODUCTION

This paper presents a component-based framework that is
useful for designing and implementing discrete event
simulation (DES) models. This paper is an attempt to
solidify the grounds for component-based simulation
modeling. The framework consists of a few simple
elements that enable a considerable amount of flexibility in
creating simulation models. It will be illustrated with a
package called Simkit.

Component-based simulation modeling is
complementary to OO modeling. While the approach we
take here is implemented in an object-oriented language
(Java), it is possible to implement it in a non-OO system,
such as Microsoft�s COM.

Components appear to be the ideal level of granularity
for implementing simulation models. Most commercial
simulation software packages provide a Graphical User
Interface (GUI) with the ability to choose relatively large
parts of the model from a palette. For example, a standard
factory simulation package will contain palette items for
workstations, material buffers, and workers. The success
of these commercial packages may give the impression that
component frameworks are ubiquitous and that the
fundamental problems of Component-based simulation
modeling have been solved.

Unfortunately, there are many difficulties with the
standard approach, and the resemblance of the GUIs to a
true component-based framework is superficial. The
96

evidence for this statement lies in the fact that every
commercial simulation product relies critically on low-
level external code to customize their entities beyond the
original design. This external code is written in a language
such as Fortran, C, or Visual Basic. A true Component-
based framework would not require the modeler to work
outside basic components this way.

The remainder of this paper is organized as follows.
In the following section we will discuss the basics of
Component-Based Design in general terms. Section 3
gives a brief overview of Design Patterns, a critical aspect
of software design that is particularly useful for
components. Section 4 then gives the basic structure of our
approach to component-based simulation modeling.
Section 5 discusses the Listener pattern, a particularly
important design pattern that greatly facilitates loose
coupling of components, and concludes with two useful
applications of the pattern. Section 6 briefly touches on
some other useful design patterns, and finally Section 7 is a
short discussion and presents conclusions.

2 COMPONENT BASED DESIGN

Component-based simulation modeling differs from OO
modeling in several ways. In OO design, inheritance and
overloading are the primary�indeed, the only�
mechanisms for implementing polymorphism.
Component-based design prefers to utilize an approach
based on establishing common interfaces between
components rather than exclusive use of inheritance.
Therefore, the primary design tasks for Component-based
design are mapping the tasks to be performed to
corresponding software components and deciding how the
components are to communicate.

A key difference between simply designing with
components and Component-Based Design is the degree of
coupling necessary between the components. Coupling
here is defined to be the extent to which one component
must be aware of another when interacting. In this paper
we will describe several design patterns that have proved to
4

Buss
be useful in implementing Component-Based Design for
Discrete Event Simulation modeling.

A framework for Component-Based Modeling may or
may not be Object-Oriented. Sun�s JavaBeans is an
example of an object-oriented framework, while
Microsoft�s COM is a non-object-oriented component
framework (while COM may be implemented in an OO
language, COM itself is not Object-Oriented). The critical
features that make a design Component-Based have to do
with the extent to which the components are monolithic
and the degree of loose coupling between the components.
The approach we take here is closer to JavaBeans in
implementation but has elements present in COM,
particularly with its reliance on the use of interfaces.

Although a satisfactory definition of component
remains elusive, we will use the following one in this
paper. A component is a monolithic programming entity
whose external interface consists only of property
accessor/mutator methods, of action methods, and event
handler methods.

Property accessor/mutator methods are small methods
whose only purpose is to enable reading/writing a single
property. Commonly used synonyms are �setters� and
�getters.� In fact, the JavaBeans component framework
prescribes that all properties be accessed only through
set<Property> and get<Property> methods.

An event handler method is a method that supports the
Listener pattern (discussed below in Section 5). It should
usually be part of an interface for which it is the only
prescribed method. Its signature is always the event of
interest. For example, for the SimEventListener pattern
discussed in Section 5.1 the method has the signature
processSimEvent(SimEvent) and is specified in the
SimEventListener interface.

An action method changes the state of the component
in ways that are typically more complicated than simply
setting the value of a property. In Simkit�s implementation
there are two kinds of action methods: those built into
Simkit for interaction with the Event List and user-defined
Event methods that are invoked whenever the appropriate
event occurs. The most important Simkit-defined action
methods are waitDelay() and interrupt(). The
waitDelay() method schedules a SimEvent�that is,
places a SimEvent on the Event List�and the
interrupt() method removes a previously-scheduled
SimEvent from the Event List. The only user-defined
action methods are those identified by the SimEvent
through the original scheduling waitDelay() method.
The most often used signature is waitDelay(String,
double), in which the first argument is the name of the
Event method and the second is the amount of simulated
time to elapse before the event occurs. In Simkit the Event
method has the same name as the Event but with the String
�do� prepended. Thus, the Event called �Arrival� has
corresponding Event method �doArrival()� and is
96

scheduled by the invocation �waitDelay(�Arrival�,
delay).�

A related set of methods are associated with
registering and unregistering Event Listeners and with
dispatching the Event to all registered listeners. These
methods comprise the Listener Pattern, which is described
in Section 5.

The term �Monolithic� has a negative connotation
these days, mostly because it has been applied to legacy
systems that have been deemed to be too inflexible and
�stove piped.� A monolithic system is, by definition,
resistant to easy modification and is difficult to extend.
Therefore, monolithic is bad in a system. On the other
hand, being monolithic is actually a highly desirable
property of a component. In Component-Based Design the
Component is the fundamental design unit. While the
components themselves will be written in a language
capable of fine-grained control, a true Component-Based
Design eschews this control in favor of exclusive use of
Components and their interfaces. Of course, this last
statement is an ideal that is hardly ever realized; never-
theless, it is one to which Component-Based models aspire.

3 DESIGN PATTERNS

The concept of software design patterns (Gamma, Helm,
Johnson, and Vlissides 1995) provides an extremely useful
framework with which to discuss component-based design.
A design pattern describes a common, generic solution to a
large class of related problems. The seminal book by
Gamma et al (1995) presents 23 of the most basic design
patterns encountered in Object-Oriented software design.
Many other useful design patterns have also been
discovered.

We will focus primarily on the Listener pattern, one in
which components signal their change of state by
multicasting events to other objects who have indicated
their interest by registration. The Listener pattern can be
seen as a lightweight version of the Observer pattern
(Gamma, et al 1995, p.293). As we discuss below, the
Listener pattern is very important for creating component
models that are loosely-coupled. Briefly, the Listener
pattern�s use of event multicasting without requiring
callbacks enables components to communicate generically
in ways that are self-describing. One variant that is
particularly useful is the SimEventListener pattern,
described in Section 5 below, in which the method that is
ultimately invoked is determined dynamically from the
event that is multicast.

In the following section we will briefly describe the
component structure that will provide the context for our
component-based design. For specificity, we will restrict
ourselves to the Simkit implementation; however, the ideas
are not restricted to this one implementation, but could be
applied in a wider context.
5

Buss
4 BASIC STRUCTURE

Simkit is a package that can aid in implementing
component-based simulation models. It is written in the
JavaTM programming language, which has the added
benefit of providing platform-independence as well as
network-awareness (Buss and Stork 1996).

Simkit uses Event Graphs (Schruben 1983, 1992;
Schruben and Yücesan 1993) as the underlying
methodology because of its power and simplicity. Event
Graphs provide an expressive and flexible modeling
methodology that is very conducive to Component-Based
simulation modeling. Event Graphs have just three
elements: the Event node, the scheduling edge, and the
canceling edge. In Simkit these correspond, respectively,
to instance methods having a special prefix (�do�
methods), an instance method called waitDelay(), and
an instance method called interrupt().

Simkit�s implementation is broken down into a
collection of related interfaces, the most important of
which are listed below.

• SimEvent�Events that are scheduled on the

event list and subsequently multicast to
SimEventListeners.

• SimEventSource�The ability to register listeners
and multicast SimEvents.

• SimEventListener�The ability to register and
listen to SimEventSources. This interface consists
of a single method, processSimEvent(SimEvent).

• SimEntity�The ability to schedule events on the
Event List. This is a sub-interface of
SimEventSource and SimEventListener. This
interface contains the waitDelay() and
interrupt() methods.

SimEvents are placed on the Event list by a SimEntity

object by invoking its instance method wait-
Delay(String, double). The first argument is the
name of the SimEvent, and it is meant to match a
corresponding user-written instance method in the
SimEntity that gets invoked when the EventList processes
the SimEvent. The second argument is the amount of time
until the event is scheduled to occur, the delay time. An
event occurs when it becomes the next event on the Event
List. When that happens, the Event List removes the event
and makes a callback to the SimEntity that originally
scheduled the SimEvent by invoking its
handleSimEvent(SimEvent) method. This approach is
a simple and typical implementation of an Event List (see
Law and Kelton, 2000).

Simkit uses Java�s reflection to match the name of an
event with a method in the SimEntity that has the same
name with �do� prefixed. Thus, the SimEvent called
�Arrival� will cause an instance method called doArrival()
9

to be invoked on the scheduling SimEntity when that
SimEvent occurs.

After the SimEvent�s owner is finished executing the
corresponding method, it dispatches the SimEvent to all its
registered SimEventListeners (see Section 5.1). This
Listener pattern is a key feature of component-based
modeling, and we will now discuss it in more detail.

5 THE LISTENER PATTERN

The Listener Pattern provides the primary mechanism by
which simulation components communicate. Two types of
components are involved with a listener pattern: the listener
component and the Event Source component. The �listening�
component registers interest in another component�s events
and waits for the other component to fire the event. When the
event fires in the simulation component, it notifies all its
registered listeners of the event. Note that the term �event�
here is distinct from the simulation events that come off the
event list. No matter how many of these events are fired, no
simulated time passes. Indeed, the firing of these events can
technically be considered to be part of the state transition
function for the current simulation Event.

Three entities are involved with every implementation
of the Listener pattern: The Event, the Listener, and the
Event Source. The same component can serve as a
Listener to some components and be an Event Source to
other components. The Event that is fired should contain
enough information for the Listener to be able to decide
what to do without a callback to the Event Source. This
no-callback property is a critical one for maximizing the
looseness of the coupling between components since such
a callback requires the listener to have knowledge of the
event source object. Indeed, this feature distinguishes the
Listener pattern from the Observer pattern (see Gamma,
Helm, Johnson, and Vlissides, 1995), since the latter
typically does require a callback to the event source.

For maximum flexibility the Listener should be
implemented as an interface consisting of just the single
notification method with a signature consisting of a
reference to the dispatched event.

The Event Source component has three tasks: to
register Listener components, to unregister Listener
components, and to fire the Event at the proper time. The
Event Source is particularly amenable to the use of
delegation to perform its task.

Note that the use of an interface to implement the
Listener pattern is critical to its extensibility. Imple-
menting a Listener as a class, whether concrete or abstract,
restricts all further Listeners to be subclasses. In fact, there
is an Interface design pattern that is appropriate here
(Gamma, Helm, Johnson, and Vlissides, 1995). The Inter-
face pattern is easily implemented using a Java interface,
enabling disparate classes without any �is-a� relationship
whatsoever to be first-class participants as Listeners.
66

Buss
The power of the Listener pattern stems from the fact
that the Event dispatching can be implemented generically,
with the Event Source having to know only that the
receiving component implements the Listener interface.

The interface for a Listener typically consists of a
single method with one argument, a reference to the
dispatched Event. The event source uses this method to
make a callback to each listener when the Event is
dispatched. Thus, the interface for the event source
consists (at a minimum) of methods for registering and
unregistering Listeners and at least one method to trigger
an Event dispatch.

We will now discuss two uses of the Listener pattern
that have proved very useful for Discrete Event Simulation
Modeling: The SimEventListener and the
PropertyChangeListener. These will be presented as they
are implemented in Simkit.

5.1 SimEventListener

The SimEventListener pattern involves an event that has
been executed by the Event List. It consists of the source
of the event (the SimEntity that scheduled it) multicasting
the same SimEvent to registered SimEventListeners.

The callback method from the Event List for a
SimEntity is handleSimEvent(SimEvent), which
simply invokes the processSimEvent(SimEvent)
method defined by SimEventListener. The SimEvent
contains data (in the form of a String) about which method
is to be invoked and optionally a parameter list (in the form
of an array of Objects) to be passed to the method. Java�s
reflection mechanism is used to find the desired method
and to invoke it. The invoked method is determined by
prepending �do� to the event name and matching a method
of that name with a signature consistent with the parameter
list. When processSimEvent() returns, then
notifyListeners(SimEvent) is called, thus multicasting the
SimEvent to all registered SimEventListeners. The
SimEventListener interface defines just the
processSimEvent(SimEvent) method Thus making it
very easy for components to define different ways to
respond to SimEvents. For example, instead of the slower
(but flexible) reflection used by SimEntityBase, Simkit�s
default SimEntity base class, the desired method could be
invoked using a static switch statement based on magic
numbers. Another example occurs when a base class that
is not a SimEventListener has already been identified. The
class has only to declare that it implements
SimEventListener and then actually implement the
processSimEvent(SimEvent) method. This is typical
of the way Java implements polymorphism and is an
alternative to the more typical use of multiple inheritance.

A SimEntity can only multicast a SimEvent it has
previously scheduled; a �heard� SimEvent is not re-
multicast. This enables two SimEntities having the same
96

Event to listen to each other without generating an infinite
loop. Of course, it is always possible to programmatically
create cycles of scheduled events, but each new event must
be explicitly scheduled.

5.2 PropertyChangeListener

The PropertyChangeListener pattern specifically involves
components changing a property value and notifying
interested listeners about that change. The Java language
provides support for this pattern with the
PropertyChangeEvent and the PropertyChangeListener
interface, part of the �JavaBeans� conventions. A
PropertyChangeEvent instance contains the property�s
name, references to both the old and new values, and a
reference to the source of the PropertyChangeEvent to
support callbacks.

The PropertyChangeListener pattern is useful in
simulation models for handling state variables and their
changes and Simkit adopts the convention of firing
PropertyChangeEvents whenever state variables change
value.
 The PropertyChangeListener interface has a single
callback method, propertyChanged(PropertyChangeEvent)
that is invoked when a property is fired. The
PropertyChangeSupport class has methods for registering
and unregistering PropertyChangeListeners and for firing
PropertyChangeEvents. An object can delegate the
management of the PropertyChangeListener pattern to an
instance of PropertyChangeSupport.

The PropertyChangeListener pattern is more useful
than a SimEventListener when the listening component is
primarily interested in the state changes rather than the
occurrence of a particular event. The property itself could
in fact be present in more than one simulation component;
and a PropertyChangeListener could be registered with all
components managing a particular property. Furthermore,
a component only concerned with the state variable would
have to make a callback to the source if it used the
SimEventListener pattern to hear the property changes. A
PropertyChangeEvent, in contrast, contains all the
necessary state information for that variable.

The SimEventListener pattern is more useful when the
occurrence of the event is the important piece of
information to the listening component rather than the state
variables. In the queueing example in Section 5.3 below,
the Server component is listening to the ArrivalProcess
component for the Arrival event and does not care about
the state of the ArrivalProcess.

5.3 Example

In this section we will illustrate the SimEventListener
pattern by showing how a simple Arrival Process
SimEntity can be defined to create Arrival events that are
7

Buss

listened to by a Server SimEntity in a loosely coupled way.
We will use Event Graph methodology to describe the
simulation components (see Schruben, 1983; 1992;
Schruben and Yücesan, 1993) as well as snippets of Simkit
code.

5.3.1 The ArrivalProcess SimEntity

The Arrival Process is the simplest non-trivial DES model.
It consists of a single event, Arrival, whose occurrence
triggers another Arrival event with a delay given by a
stream of interarrival times {tA} that may be deterministic
or stochastic. Typically a state variable counts the number
of events that have occurred. The ArrivalProcess can thus
be thought of as a renewal process, although it is slightly
more general since it can support a correlated stream of
interarrival times. The Event Graph for the ArrivalProcess
is shown in Figure 1.

Figure 1: The Arrival Process

 The Simkit code snippet corresponding to the Arrival
Process Event Graph of Figure 1 is as follows:

public void doArrival() {
 waitDelay(�Arrival�,
 interarrivalTimes.generate());

}

The waitDelay() method schedules the Arrival event

after a delay given by the second argument, which in this
case is randomly generated. When an Arrival event is
processed from the Event List, the doArrival() method is
invoked, prompting another Arrival event to be scheduled.
While the Arrival Process is a complete DES, it holds little
interest alone. In the next section we will show how it can
be used to stimulate arrivals to a simple queue.

The ArrivalProcess is implemented as a simulation
component in Simkit using the above code in a Java class.
The ArrivalProcess component is initialized by configuring
the random interarrival time generator and by scheduling
the first Arrival event. Once it is verified to be correct, it
need not be modified for use with a second component that
models the server portion of a queueing model.

5.3.2 The Server SimEntity

The Server SimEntity models a multiple-server queue in
which arrivals wait in a queue until they can be served by one

Arrival

tA
96
of several servers (see, for example, Law and Kelton; 2000).
The Server can be modeled with two state variables,
numberInQueue and numberAvailable Servers, and
three events: Arrival, StartService, and EndService. The
Server Event Graph is shown in Figure 2. The Simkit
methods for the Server SimEntity are shown below:

Figure 2: The Server Event Graph

public void doArrival() {
 firePropertyChange(�numberInQueue�,
 numberInQueue,
 ++numberInQueue);
 if (numberAvailableServers > 0) {
 waitDelay(�StartService�, 0.0);
 }
}
public void doStartService() {
 firePropertyChange(
 �numberAvailableServers�,
 numberAvailableServers,
 --numberAvailableServers);
 firePropertyChange(�numberInQueue�,
 numberInQueue,
 --numberInQueue);
 waitDelay(�EndService�,
 serviceTimes.generate());
}
public void doEndService() {
 firePropertyChange(
 �numberAvailableServers�,
 numberAvailableServers,
 ++numberAvailableServers);
 if (numberInQueue > 0) {
 waitDelay(�StartService�, 0.0);
 }
}

Note that we have added the firePropertyChangeEvent()
methods in the above code whenever a state variable
changed values. In general, a PropertyChangeEvent should
always be fired whenever a state variable changes value.
Unlike the ArrivalProcess, the Server is not a complete
DES, but must be connected with another SimEntity that
generates Arrival events.

5.3.3 Connecting ArrivalProcess and Server using

the SimEventListener Pattern

To create a complete DES for the queueing model the
ArrivalProcess and Server SimEntities must be connected
by the SimEventListener pattern. Specifically, an instance
of Server must be made a SimEventListener to at least one

Arrival Start

Service
End

Service

ts
(Q > 0)

(S > 0)

{Q++} {Q--, S--} {S++}
8

Buss

instance of a SimEntity that generates Arrival events. This
is accomplished by the following Simkit code:

SimEntity arrivals = new ArrivalProcess(...);
SimEntity server = new Server(...);

arrivals.addSimEventListener(server);

The above code first creates the two SimEntities, then

adds the server instance as a SimEventListener to the arrivals
instance. Now whenever the Arrival event occurs in the
arrivals instance, an Arrival event will also be triggered in the
server instance; that is, the doArrival() method of server will
be invoked. No additional Arrival events will be put on the
Event List as a result of this listening; conceptually, the Arri-
val event in the server is just part of the overall Arrival event.

The code necessary to implement the SimEventListener
pattern is implemented in a SimEntityBase class. The
generic implementation is such that the modeler does not
need to configure the Event listener. Rather, the SimEvent
carries the Event name that matches an instance method with
the string �do� prepended (see the code above). Any
arguments to the method are also referenced by the
SimEvent and passed to the �do� method when it is invoked.

Connecting SimEntity objects with the
SimEventListener pattern enables components to be
loosely-coupled�they can interact in meaningful ways
simply by being connected. The listener pattern provides
an extremely flexible way to connect simulation
components. For example, an number of SimEntity objects
can provide the Arrival event necessary to stimulate an
arrival to the Server process described above.
Furthermore, any SimEntity having the Arrival process
(with zero arguments) can provide the stimulus, so long as
the Server instance is added as a SimEventListener to it.

The SimEventListener pattern also enables reuse of
components by enabling them to be connected in new ways
using very small �adapter� classes. The simplest version of an
adapter class involves listening to one event in a component
and scheduling another event in another component. For
example, the simple queueing model above consists of two
components, an ArrivalProcess and a Server. Suppose that the
modeler wishes to use these two classes to create a transfer
line consisting of n multiple-server queues in series. It is easy
enough to create n Server instances, but they cannot be
directly connected by the SimEventListener pattern (recall
that all events are heard, so a StartService event in one Server
instance will stimulate a StartService event in the next, not the
desired behavior). Instead, a small SimEntity called
MaterialHandler is created that listens to the EndService event
and schedules the Arrival event, as shown below:

public class MaterialHandler
 extends SimEntityBase {
 public void doEndService() {
 waitDelay(�Arrival�, 0.0);
 }

}
96
To create the transfer line, the modeler must simply
instantiate one instance of MaterialHandler after each
Server instance (except, of course, for the last one)

5.4 Statistics Gathering using the Listener Pattern

A loosely coupled approach to gathering statistics is
supported by the PropertyChangeListener pattern. All state
variables in Simkit should fire a PropertyChangeEvent
when their value is changed. Any components designed to
gather information about a simulation can obtain all state
trajectories by implementing the PropertyChangeListener
interface. Unlike the SimEventListener pattern, the
PropertyChangeListener pattern is more ingrained in Java.
Indeed, PropertyChangeEvents are part of the standard
Java 2 class files. This means that many components that
were not written with Simkit in mind may nevertheless be
registered as PropertyChangeListeners to SimEntity objects
and received state changes.

One example of using a PropertyChangeListener for
statistics is Simkit�s SimpleStats class. This class is a
standard statistical accumulator class. As values are
added, an instance of SimpleStats updates internal
accumulators for the count, sum, sum of squares,
minumum, and maximum values. When SimpleStats is
instantiated with the name of a property then whenever it
hears a PropertyChange event with the name of that
property, it uses the new value of the PropertyChangeEvent
to update its accumulators. Thus, a state variable could be
changed in many different components, yet the data be
properly recorded by ensuring that a SimpleStats with that
property name was listening to each object in which the
state variable was changed.

The PropertyChangelistener pattern is also effective
for displaying state variables graphically. A
PropertyChangeListener that updates its graph is all that is
required. Like the SimpleStats example above, the
property could exist in many different objects.

One advantage of using the PropertyChangeListener
pattern is that the state variable (property) names can be
decoupled from the actual names of the instance variables,
thus hiding the inner details of the implementation. This is
useful if state variable name conflicts need to be resolved
or if the property being fired is some function of state
variables. For example, suppose that internally the Server
class kept a state variable called NumberAvailableServers
that modeled the number of available servers at any given
moment. However, suppose the designer of the class
wished to represent the number of busy servers as the state
variable. This could be done by simply firing a
PropertyChangeEvent called �NumberBusyServers� that
was the difference between the total number of servers and
the number of available servers.

A significant modeling benefit to the
PropertyChangeListener pattern is that simulation
9

Buss

components can be written without any statistics gathering
code in them, as long as PropertyChangeEvents are fired
for each state change. This not only reduces the size of
model code, but it imparts a great deal of flexibility. The
modeler can write simulation classes with the only
consideration being the correct sequence and timing of
state transition in the model. The code will never have to
be subsequently revised simply because some state variable
was not collected.

6 OTHER DESIGN PATTERNS

There are more design patterns that are very useful for
supporting Component-Based simulation modeling. One
particularly important one is the Abstract Factory Pattern
(Gamma, et al 1995, p.87). Instead of invoking a
constructor, an Abstract Factory is called to request an
instance of an object implementing a desired interface.
The Abstract Factory instantiates the object and returns it
as a reference typed to the interface. This is critical to
maintaining a clean separation between interface and
implementation.

Simkit uses an Abstract Factory to separate random
number generation and random variate generation while
making either one extremely configurable. For example, in
a Simkit model it is possible to change the probability
distribution without recompiling the model. This change
can even be made on a running program.

Another useful pattern is the Mediator pattern
(Gamma et al, p, 273). This pattern is responsible for
adjudicating interactions between two simulation
components. It has been applied in military simulation
models to capture interactions between a sensor and a
potential target. A Mediator component contains the
particular detection algorithm used by the sensor to detect
the target. The pattern�s use enables different detection
algorithms to be easily used in a model. The Mediator
pattern furthermore keeps private data regarding the
ground truth of the target away from the sensor component
(and vice versa). It is important to separate this
information so it is not inadvertently used by the sensor to
improperly detect or locate the target.

A related pattern is the Referee, which is responsible
for determining which components will in fact interact. Its
responsibility typically involves nothing more than
assigning the proper Mediator to two components at the
appropriate time. It therefore only has to determine the
existence of the interactions and then delegate the �work�
to the correct Mediator.

7 DISCUSSION AND CONCLUSIONS

At first glance, the loosely coupled component modeling
described here may appear similar to many commercial
discrete event simulation packages. �Drag and Drop�
97
visual modeling has the feel of a component-based
framework. The main difference between these packages
and the component approach taken in this paper is the
tightness of the coupling between the components. In this
framework, components are loosely coupled by the two
listener patterns. Any simulation component may listen to
any other one and likewise any PropertyChangeListener
component can hear PropertyChangeEvents from any
component firing those events. In contrast, the
components found in the visual scenario builders are
restricted in what they communicate with and relatively
inflexible about the nature of that communication.

The component-based simulation framework presented
here is more flexible and extensible than that of traditional
OO modeling alone. The transmittal of messages is done
using the two generic Listener patterns described above
rather than maintaining an explicit reference to the
recipient of the message (see, for example, Joines and
Roberts 1999). The two types of messages in our
framework have proved to be sufficient for all simulation
modeling purposes encountered by the author.

Design patterns have proved to be an extremely
powerful tool for software modeling and the component
framework described in this paper has explored the use of a
few such patterns. There is great potential for more
extensive use of design patterns in simulation software
design.

The component-based framework presented in this
paper can be implemented in a number of languages. Any
language that supports delegation, interfaces, and runtime
type information in addition to traditional object-oriented
features is a viable candidate. There are some features of
the JavaTM programming language that have proved to be
particularly enabling. Two in particular are the language-
level support for interfaces and the language�s support for
reflection. Interfaces enable a cleaner separation between
the public �view� of a component and the implementation
details than classic OO design. Specifically, it is possible
for classes with no �is-a� relationship whatsoever to be
interchangeable providing they implement a common
interface. Interfaces also are key to the use of Abstract
Factories to obtain instances. Reflection allows objects to
reveal information about themselves through Class and
Method objects, thus making it possible to write extremely
generic code to �discover� the structure of a simulation
component.

ACKNOWLEDGMENTS

The author would like to thank Lee Schruben for Event
Graphs and Gordon Bradley for comments on an earlier
version of the paper. He would like to especially thank
Paul Sanchez for his discerning critical feedback as well as
for many useful discussions about software design. This
research was supported by a grant from the Air Force
0

Buss

Office of Scientific Research. This support is gratefully
acknowledged.

REFERENCES

Buss, A. and K. Stork. 1996. Simulation on the world wide

web using Java. In Proceedings of the 1996 Winter
Simulation Conference, ed., J. Charnes, D. Morrice, D.
Brunner, and J. Swain. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA.

Joines, J. and Roberts, S. 1999. Simulation in an object-
oriented world. In Proceedings of the 1999 Winter
Simulation Conference, ed., P. A. Farrington, H. B.
Nembhard, D. T. Sturrock, and G. W. Evans,. Institute
of Electrical and Electronics Engineers, Piscataway,
New Jersey.

Law, A. and D. Kelton. 2000. Simulation Modeling and
Analysis, Third Edition, McGraw-Hill., Boston, MA.

Schruben, L. 1983. Simulation modeling with event
graphs. Communications of the ACM 26: 957-963.

Schruben, L. 1992. Sigma: A Graphical Simulation
Modeling Program. The Scientific Press. San
Francisco, CA.

Schruben, L and E. Yücesan. 1993. Modeling paradigms
for discrete event simulation. Operations Research
Letters. 13: 265-275.

Stork, K. 1996. Sensors In Object Oriented Discrete Event
Simulation. Masters Thesis, Operations Research
Department, Naval Postgraduate School, Monterey,
CA.

AUTHOR BIOGRAPHY

ARNOLD H. BUSS is an Assistant Professor in the
Operations Research Department at the Naval Postgraduate
School. He received a B.A. in Psychology from Rutgers
University, his M.S. in Systems Engineering from the
University of Arizona, and a Ph.D. in Operations Research
from Cornell University. His recent work has involved
Component-Based software design. His email address is
<bussa@or.nps.navy.mil>.

971

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

