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a b s t r a c t

We describe a methodology for optimizing a threshold detection-based biosurveillance system. The goal
is to maximize the system-wide probability of detecting an ‘‘event of interest” against a noisy back-
ground, subject to a constraint on the expected number of false signals. We use nonlinear programming
to appropriately set detection thresholds taking into account the probability of an event of interest occur-
ring somewhere in the coverage area. Using this approach, public health officials can ‘‘tune” their biosur-
veillance systems to optimally detect various threats, thereby allowing practitioners to focus their public
health surveillance activities. Given some distributional assumptions, we derive a one-dimensional opti-
mization methodology that allows for the efficient optimization of very large systems. We demonstrate
that optimizing a syndromic surveillance system can improve its performance by 20–40%.

Published by Elsevier B.V.

1. Introduction

Biosurveillance is the practice of monitoring populations – hu-
man, animal, and plant – for the outbreak of disease. Often making
use of existing health-related data, one of the principle objectives
of biosurveillance systems has been to give early warning of biot-
errorist attacks or other emerging health conditions [4]. The Cen-
ters for Disease Control and Prevention (CDC) as well as many
state and local health departments around the United States are
developing and fielding syndromic surveillance systems, one type
of biosurveillance.

A syndrome is ‘‘A set of symptoms or conditions that occur to-
gether and suggest the presence of a certain disease or an increased
chance of developing the disease” [17]. In the context of syndromic
surveillance, a syndrome is a set of non-specific pre-diagnosis
medical and other information that may indicate the health effects
of a bioterrorism agent release or natural disease outbreak. See, for
example, Syndrome Definitions for Diseases Associated with Criti-
cal Bioterrorism-associated Agents [3]. The data in syndromic sur-
veillance systems may be clinically well-defined and linked to
specific types of outbreaks, such as groupings of ICD-9 codes from
emergency room ‘‘chief complaint” data, or only vaguely defined
and perhaps only weakly linked to specific types of outbreaks, such

as over-the-counter sales of cough and cold medication or absen-
teeism rates.

Since its inception, one focus of syndromic surveillance has
been on early event detection: gathering and analyzing data in
advance of diagnostic case confirmation to give early warning of
a possible outbreak. Such early event detection is not supposed
to provide a definitive determination that an outbreak is occurring.
Rather, it is supposed to signal that an outbreak may be occurring,
indicating a need for further evidence or triggering an investigation
by public health officials (i.e., the CDC or a local or state public
health department). See Fricker [10,9] and Fricker and Rolka [11]
for more detailed exposition and discussion.

BioSense and EARS are two biosurveillance applications cur-
rently in use. The first is a true system, in the sense that it is com-
prised of dedicated computer hardware and software that collect
and evaluate data routinely submitted from hospitals. The second
is a set of software programs that are available for implementation
by any public health organization.

� BioSense was developed and is operated by the National Center
for Public Health Informatics of the CDC. It is intended to be a
United States-wide electronic biosurveillance system. Begun in
2003, BioSense initially used Department of Defense and
Department of Veterans Affairs outpatient data along with
medical laboratory test results from a nationwide commercial
laboratory. In 2006, BioSense began incorporating data from
civilian hospitals as well. The primary objective of BioSense is
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to ‘‘expedite event recognition and response coordination
among federal, state, and local public health and health care
organizations” [10,5,22,23]. As of May 2008, BioSense was
receiving data from 563 facilities [7].

� EARS is an acronym for Early Aberration Reporting System.
Developed by the CDC, EARS was designed to monitor for bioter-
rorism during large-scale events that often have little or no
baseline data (i.e., as a short-term drop-in surveillance method)
[6]. For example, the EARS system was used in the aftermath of
Hurricane Katrina to monitor communicable diseases in Louisi-
ana, for syndromic surveillance at the 2001 Super Bowl and
World Series, as well as at the Democratic National Convention
in 2000 [24,15]. Though developed as a drop-in surveillance
method, EARS is now being used on an on-going basis in many
syndromic surveillance systems.

A characteristic of some syndromic surveillance systems is that
the data collection locations (typically hospitals and clinics) are in
fixed locations that may or may not correspond to a particular
threat of either natural disease or bioterrorism. In order to provide
comprehensive population coverage, syndromic surveillance sys-
tem designers and operators are inclined to enlist as many hospi-
tals and clinics as possible. However, as the sources and types of
data being monitored proliferate in a biosurveillance system, then
so do the false positive signals from the systems. Indeed, false pos-
itives have become an epidemic problem for some systems. As one
researcher [21] said, ‘‘. . .most health monitors. . . learned to ignore
alarms triggered by their system. This is due to the excessive false
alarm rate that is typical of most systems – there is nearly an alarm
every day!”

Our research provides a methodology which, if implemented,
would allow public health officials to ‘‘tune” their biosurveillance
systems to optimally detect various threats while explicitly
accounting for organizational resource constraints available for
investigating and adjudicating signals. This allows practitioners
to focus their public health surveillance activities on locations or
diseases that pose the greatest threat at a particular point in time.
Then, as the threat changes, using the same hospitals and clinics,
the system can subsequently be tuned to optimally detect other
threats. With this approach large biosurveillance systems are an
asset.

The methodology assumes spatial independence of the data and
temporal independence of the signals. The former is achieved by
monitoring the residuals from some sort of model to account for
and remove the systematic effects present in biosurveillance data.
The assumption is that, while it is likely that raw biosurveillance
data will have spatial correlation, once the systematic components
of the data are removed the residuals will be independent. The lat-
ter is achieved by employing detection algorithms that only de-
pend on data from the current time period.

It is worth emphasizing that our focus is on how to optimally
set threshold levels for detection in an existing system, rather than
how to design a new system. This is something of a unique prob-
lem for syndromic surveillance systems, meaning that in many
other types of sensor systems, one might design a system for a spe-
cific, unchanging threat or change the location of the sensors to re-
spond to a changing threat. But in syndromic surveillance systems,
where we can think of each hospital or clinic as a fixed biosurveil-
lance ‘‘sensor” for a particular location or population, the sensor
locations cannot be changed. Part of the solution is to adjust the
way the data from the sensors are monitored.

1.1. Threshold detection methods

In this work, we define a threshold detection method as an algo-
rithm that generates a binary output, signal or no signal, given that

some function of the input or inputs exceed a pre-defined thresh-
old level. In addition, for the methods we consider, inputs come in
discrete time periods and the decision to signal or not is based only
on the most recent input or inputs. That is, the methods do not use
historical information in their signal determination; they only use
the information obtained at the current time period.

In the quality control literature, the Shewhart chart is such a
threshold detection method. At each time period a measurement
is taken and plotted on a chart. If the measurement exceeds a
pre-defined threshold a signal is generated. However, if the mea-
surement does not exceed the threshold then the process is re-
peated at the next time period, and continues to be repeated
until such time as the threshold is exceeded. See Shewhart [20]
or Montgomery [19] for additional detail. A sonar detection algo-
rithm based on signal excess is also an example of threshold detec-
tion. See Washburn [26] and references therein for a discussion.

Threshold detection methods are subject to errors, either sig-
nalling that an event of interest occurred when it did not, or failing
to signal when in fact the event of interest did occur. In classical
hypothesis testing, these errors are referred to as Type I and Type
II errors, respectively. A Type I error is a false signal and a Type II
error is a missed detection. In threshold detection, setting the
threshold requires making a trade-off between the probability of
false signals and the probability of a missed detection. A receiver
operating characteristic (or ROC) curve is a plot of the probability
of false signal versus probability of detection (one minus the prob-
ability of a missed detection) for all possible threshold levels. See
Washburn [26, Chapter 10] and the references therein for addi-
tional discussion.

1.2. Optimizing sensor systems

Optimizing a system of threshold detection-based sensors, in
the sense of maximizing the probability of detecting an event of
interest somewhere in the region being monitored by the system,
subject to a constraint on the expected number of system-wide
false signals, to the best of our knowledge, has not been done.
Washburn [26, Chapter 10.4] introduces the idea of optimizing
the threshold for a single sensor, parameterizing the problem in
terms of the cost of a missed detection and the cost of a false signal,
and seeks to minimize the average cost ‘‘per look”. He concludes
that ‘‘In practice, the consequences of the two types of error are
typically so disparate that it is difficult to measure c1 [cost of a
missed detection] and c2 [cost of a false signal] on a common scale.
For this reason, the false alarm probability is typically not formally
optimized in practice”.

Kress et al. [18] develop a methodology for optimizing the
employment of non-reactive arial sensors. In their problem the
goal is to optimize a mobile sensor’s search path in order to iden-
tify the location or locations of fixed targets with high probability.
By dividing the search region into a grid of cells, Kress et al. use a
Bayesian updating methodology combined with an optimization
model that seeks to maximize the probability of target location
subject to a constraint on the number of looks by the sensors. Their
work differs from ours in a number of important respects, includ-
ing that their sensors can have multiple looks for a target, there
may be multiple targets present, and the use of Bayesian updating
to calculate the probability of a target being present in a particular
grid cell. In contrast, in our problem the sensors are fixed, they can
only take one look per period, and at most one ‘‘event of interest”
can occur in any time period.

One active area of research is how to combine threshold rules
for systems of sensors in order to achieve high detection rates
and low false positive rates compared to the rates for individual
sensors. For example, Zhu et al. [28] consider a system of threshold
detection sensors for which they propose a centralized ‘‘threshold-
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OR fusion rule” for combining the individual sensor node decisions.
In this work Zhu et al. [28] allow that multiple sensors may detect
the presence of the target with signals of varying strength and their
objective is to combine the decisions made by individual sensors to
achieve system detection performance beyond a weighted average
of individual sensors. Their work builds upon the research of Chair
and Varshney [8] who, via a log-likelihood ratio test, derived a fu-
sion rule that combines the decisions from the n individual thresh-
old detection sensors while minimizing the overall probability of
error.

1.3. Paper organization

The paper is organized as follows. In Section 2 we formulate the
general problem and its solution via an n-variable nonlinear pro-
gram, illustrate the methodology on some simple examples, and
then derive an equivalent one-dimensional optimization problem
given some distributional assumptions. In Section 3 we apply the
methodology to our motivating problem, biosurveillance, using
some hypothetical syndromic surveillance systems. And, in Section
4 we summarize and discuss our results, including directions for
future research.

2. Problem formulation

Consider a system of n sensors and let Xit denote the output
from sensor i; i ¼ 1; . . . ;n, at time t; t ¼ 1;2; . . .. Sensor outputs oc-
cur at discrete time periods and each sensor has exactly one output
per time period.

Assume that when no event of interest is present anywhere in
the system the Xit are independent and identically distributed,
Xit � F0 for all i and all t. If an event of interest occurs at time s,
then Xis � F1 for exactly one i. A signal is generated at time s� when
Xis� P hi for one or more i, where the thresholds hi can be set sep-
arately for each sensor.

Further assume that there is some distribution on the probabil-
ity that an event of interest will occur at sensor i’s location,
pi;p ¼ fp1; p2; . . . ; png, where

P
ipi ¼ 1. Note that p is a conditional

probability: it is the probability an event occurs in sensor i’s loca-
tion given that an event occurs somewhere in the system.

The goal is to choose thresholds that maximize the probability
of detecting the event of interest, given one occurs somewhere in
the region according to p, subject to a constraint on the conditional
expected number of system-wide false signals per time period.

For sensor i at time t, the probability of a true signal is

Pðsignaljevent of interest occurs at sensori’s locationÞ

¼
Z 1

z¼hi

f1ðzÞdz ¼ 1� F1ðhiÞ ¼ di; ð1Þ

and the probability of a false signal at sensor i is

Pðsignaljno event of interest at sensori’s locationÞ

¼
Z 1

z¼hi

f0ðzÞdz ¼ 1� F0ðhiÞ ¼ ai: ð2Þ

Thus, given that an event occurs in a particular time period, the
probability the system detects the event is

Pn
i¼1dipi. Further, given

that no event occurs, the expected number of false signals in a par-
ticular time period is

Pn
i¼1ai.

This latter quantity deserves further explanation. The
Pn

i¼1ai is
the expected number of false signals given that no event occurs any-
where in the system. As such, it is a measure of the cost of operating
the system for an event-free time period.

Define h ¼ fh1; . . . ;hng. Then we can pose the problem as the
following nonlinear program (NLP),

max
h

Xn

i¼1

½1� F1ðhiÞ�pi; ð3Þ

s:t:
Xn

i¼1

½1� F0ðhiÞ� 6 j;

where j is the limit on the average number of false signals per per-
iod of time. We will use the shorthand notation PdðhÞ for the objec-
tive function, sometimes suppressing the dependency on the vector
of thresholds h.

Note that in this formulation of the problem we are maximizing
the probability of detecting a single event that occurs somewhere
in the system. This is a conservative detection probability, in the
sense that if multiple events occur simultaneously, or if a single
event is so large that it is detected by multiple sensors, then the ac-
tual probability of detection will be greater than PdðhÞ.

Also note that within the NLP formulation, additional con-
straints can be added, depending on the requirements of the par-
ticular system or problem. For example, a constraint specifying a
lower bound on the conditional probability of detection for sensor
i; d0i, in the form of an upper bound on the threshold for sensor i,
could be added: hi 6 F�1

1 1� d0i
� �

. Or a constraint specifying an
upper bound on the probability of a false signal for sensor i; a0i,
in the form of a lower bound on the threshold for sensor i, could
be added: hi P F�1

0 1� a0i
� �

.

2.1. The biosurveillance problem

Consider a biosurveillance system of n hospitals, each located in
a separate geographic region, and each feeding data on a particular
syndrome into a syndromic surveillance system. Within the syn-
dromic surveillance system each stream of data from each hospital
is monitored with a Shewhart chart. Hence, we can think of each
hospital–Shewhart chart combination as a biosurveillance thresh-
old detection-based ‘‘sensor”.

Syndromic surveillance data is generally autocorrelated, with
various trends and other systematic components that correspond
to day-of-the-week, seasonal, and other effects. We assume that
such systematic components of the data can be appropriately mod-
eled and thus accounted for and removed from the data. See, for
example, Fricker et al. [12,13] where adaptive regression was used
to remove the systematic effects from syndromic surveillance data.
We then assume that the Shewhart charts are used to monitor the
standardized residuals from such a model and that the residuals
can be assumed to be independently distributed according to a
standard normal distribution. Finally, we assume that a disease
outbreak will manifest as a step increase in the mean of the resid-
ual distribution.

Thus, based on these assumptions, we have that:

� There are n independent ‘‘sensors”, each corresponding to a hos-
pital in a separate geographic region, each using a threshold
detection algorithm (Shewhart chart) to monitor for a disease
outbreak or bioterrorism attack.

� An attack in any region will manifest itself in the same way at
each hospital, at least in terms of the standardized residuals
being monitored. So Xi � F0 ¼ Nð0;1Þ when there is no bioter-
rorism attack and Xj � F1 ¼ Nðc;1Þ when an attack occurs in
the region served by hospital j.

� Therefore, for sensor i with threshold hi the probability of a false
signal is

Pðsignaljno attack in region iÞ ¼
Z 1

x¼hi

f0ðxÞdx ¼ 1�UðhiÞ;

where UðhiÞ denotes the cdf for the standard normal evaluated at hi,
and the probability of a true signal is
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Pðsignaljattack in region iÞ ¼
Z 1

x¼hi

f1ðxÞdx ¼
Z 1

x¼hi�c
f0ðxÞdx

¼ 1�Uðhi � cÞ:

So, given the above assumptions, the general NLP of Eq. (3) can
be expressed as

min
h

Xn

i¼1

Uðhi � cÞpi; ð4Þ

s:t:
Xn

i¼1

UðhiÞ > n� j;

where pi is the probability of attack in region i (which we have yet
to specify).

2.2. Optimizing thresholds

Given an appropriate choice of j in (3) or (4), the relevant ques-
tion is how to set the various thresholds, h1; . . . ;hn. In general there
is no simple analytical solution, since it depends on F0 and F1. For
example, consider a system of just two sensors in which the event
of interest is equally likely to occur at either sensor’s location. In
such a case, one might assume that the strategy that maximizes
the probability of detecting the event is the one that sets equal
thresholds on the two sensors. Yet, this is not necessarily so.

To illustrate, for this simple system we have p ¼ f1=2;1=2g and,
if we set the thresholds equally so that h1 ¼ h2 ¼ h,

Pd ¼
X2

i¼1

1
2
½1� F1ðhÞ� ¼ 1� F1ðhÞ:

Assuming the maximum probability of detection occurs on the
constraint boundary (so that the constraint can be expressed as an
equality), we also haveX2

i¼1

ai ¼
X2

i¼1

j=2 ¼ j:

Now, choose some �; 0 < � < j=2, and define a01 ¼ j=2� � and
a02 ¼ j=2þ �, so that a01 þ a02 ¼ j still. Then, assuming F0 is contin-
uous, h02 ¼ F�1

0 1� a02
� �

> h > h01 ¼ F�1
0 1� a01
� �

and

P0d ¼
X2

i¼1

1
2

1� F1 h0i
� �� �

¼ 1�
F1 h01
� �

þ F1 h02
� �

2
:

The result is that whether Pd > P0d; Pd ¼ P0d, or Pd < P0d depends
on the shapes of the distribution functions F0 and F1 between h01
and h02. In particular, if F1 is convex between h01 and h02 then
Pd > P0d, and conversely, if F1 is concave between h01 and h02 then
Pd < P0d.

The point is that it is not obvious how one should best choose
the thresholds, even in such a simple case as this with only two
sensors and equal probability of attack at each sensor.

2.2.1. Some illustrative examples
Again, consider a system with only two sensors so that we can

graph the objective function and the feasible region. For example,
Fig. 1 shows the plot of an objective function for a two-sensor sys-
tem with F0 ¼ Nð0;1Þ; F1 ¼ Nð1;1Þ and p ¼ f1=2;1=2g. We can ob-
serve a number of features of the objective function for this simple
problem.

First, it is clear that the function is increasing as either h1 or h2

(or both) decrease. Thus, without the constraint, the optimal solu-
tion is simply to set h1 ¼ h2 ¼ �1. Of course, in practice these are
useless thresholds since at such settings the sensors will signal at
every time period.

Second, there are relatively flat regions of the objective function
corresponding to the tails of the F1 distribution. In these regions
the objective function will be relatively insensitive to changes in
the thresholds. This suggests that additional constraints can be in-
cluded in the NLP restricting the thresholds to be within some rea-
sonable domain of F1 that contains most of the dynamic range of
the cumulative probability distribution. Such constraints may be
useful for bounding the problem in order to facilitate convergence
in an optimization package.

Fig. 2 shows a view of the feasible region of the objective func-
tion for the constraint a1 þ a2 6 0:1, where the vertical curved
plane shows the boundary, where a1 þ a2 ¼ 0:1. Looking at the
intersection of the objective function and the vertical plane, it is
visually clear that an optimal solution exists. In fact, the objective
function is maximized at h1 ¼ h2 ¼ 1:645. As we will see in the
next subsection, it is not an accident that the optimal solution oc-
curs on the boundary of the feasible region.

Now consider a system of 10 hospitals, as depicted in Table 1. In
this system, the event of interest is much more likely to occur at
one hospital’s location (hospital 1). In fact p1 is an order of magni-
tude greater than the probability at the next most likely hospital’s

-5
-2.5

0
2.5

5

h1

-5
-2.5

0
2.5

5
h2

0

0.25

0.5

0.75

1

Pd

Fig. 1. Plot of an objective function for n ¼ 2 with F0 ¼ Nð0;1Þ; F1 ¼ Nð1;1Þ and p ¼ f1=2;1=2g.
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location. Assuming F0 ¼ Nð0;1Þ and F1 ¼ Nð1;1Þ, the column la-
beled ‘‘Common Threshold #1” shows that the system would
achieve a probability of detection of Pd ¼ 0:117 and an expected
false signal rate of 0.143 signals per period using a common
threshold of 2.189 for all hospitals. However, by optimizing the
thresholds, the ‘‘Optimal Threshold” column shows that a probabil-
ity of detection of Pd ¼ 0:378 can be achieved for the same ex-
pected false signal rate. This is achieved by lowering the
thresholds (equivalently, increasing the probability of detecting
an attack should one occur) in those locations more likely to expe-
rience an event of interest while raising the thresholds in those
locations less likely to have an event of interest. Finally, the column
labeled ‘‘Common Threshold #2” shows that to achieve the same
Pd ¼ 0:378 with a common threshold the system would produce
an expected number of false signals of almost one per period.

For a small system, with F0 and F1 normal distribution func-
tions, it is a simple matter to express the NLP in an Excel spread-
sheet using the NORMDIST function and subsequently solve it
using the Solver. For this example, we used the Solver in Excel
2003 to find the optimal thresholds, which ran quickly (less than
a few seconds) and reliably found the optimal solution. (Within

the Solver, we used the Newton search method with Precision = 1�
10�7, Tolerance = 5� 10�6, and Convergence = 1� 10�7.) We veri-
fied the Excel solutions in Mathematica 5.0 (using the NMaximize
function) and also in GAMS using the MINOS solver.

However, it is important to note that the Solver is limited to 200
adjustable cells (http://support.microsoft.com/kb/75714), which
puts an upper bound on the number of hospitals (generically, sen-
sors) that can be optimized using this approach. For larger systems
one might consider the Excel Premium Solver, which can be used
for up to 500 adjustable cells (www.solver.com/xlsplatform.htm),
but in a test with 400 hospitals the Premium Solver did not find
an optimal solution after 12 h of run-time on a fast PC. Mathemat-
ica had an even more difficult time, failing to converge on smaller
systems.

The fundamental problem is that every additional sensor adds a
variable to the NLP. As the dimensionality of the problem grows,
more specialized optimization software such as the MINOS solver
in GAMS may suffice, though very large systems will likely exceed
the capacity of even these programs to solve via brute force. This
suggests a need for an alternative solution methodology that re-
duces the dimensionality of the problem.

2.2.2. Reducing the dimensionality of the problem
Even though it is easy to show that under some relatively mild

conditions the objective function in (3) is strongly quasiconvex
over the constraint region, because this is a maximization problem
a globally-optimal solution is not guaranteed. However, we can de-
rive some useful theoretical properties of the constraint, particu-
larly that the solution lies on the boundary of the constraint.
Then, using this fact, and further assuming some distributional
properties for F0 and F1, we can simplify this from an n-variable
optimization problem to a 1-variable optimization problem with
a guaranteed optimal solution.

We begin with a simple lemma that specifies when the NLP is
unconstrained.

Lemma 1. The NLP is unconstrained if j P n.

Proof. We first note that ai is simply the probability of a Type I
error (i.e., a false signal) for sensor i. Thus, the constraint in (3)
can be re-written as

2

4

6

2

4

6

0.2

0.4

0.6

Fig. 2. Plot showing the feasible region of the objective function in Fig. 1, where the vertical curved plane is the boundary of the constraint a1 þ a2 6 0:1. (The feasible region
is in the foreground.)

Table 1
An illustrative 10-hospital system with a specific p vector. The ‘‘Optimal Threshold”
column shows that Pd ¼ 0:378 can be achieved with a constraint on the expected
number of false signals of one per every seven periods. The other two columns show
the common thresholds that either matches the expected number of false signals at
the cost of a lower Pd or that achieves the optimal Pd at the expense of increased false
signals.

Hospital i pi Common
threshold #1

Optimal
threshold (hi)

Common
threshold #2

1 0.797 2.189 1.068 1.310
2 0.064 2.189 3.602 1.310
3 0.056 2.189 3.732 1.310
4 0.048 2.189 3.915 1.310
5 0.013 2.189 4.656 1.310
6 0.006 2.189 4.736 1.310
7 0.006 2.189 4.736 1.310
8 0.005 2.189 4.755 1.310
9 0.003 2.189 4.773 1.310
10 0.002 2.189 4.791 1.310

Pd 0.117 0.378 0.378P
ai 0.143 0.143 0.951
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Xn

i¼1

F0ðhiÞ > n� j:

Since 0 6 F0ðhiÞ 6 1 for all hi 2 R, the above inequality must be
trivially true whenever j P n. h

What Lemma 1 says, unsurprisingly, is that the expected num-
ber of false signals must be less than the number of sensors for the
constraint to be relevant. If j P n the maximization problem then
becomes trivial: set hi ¼ �1 for all i and Pd ¼

Pn
i¼1pi ¼ 1. In prac-

tice what this means is that each sensor produces an signal at
every period and thus one is guaranteed to ‘‘detect” the event of
interest. This is equivalent to a 100% inspection scheme in which
the sensors are irrelevant.

Of course, in an actual biosurveillance system application, the
constraint on the expected number of false signals will of necessity
be much smaller than the number of hospitals. Signals consume re-
sources as they must be investigated to determine whether an
event of interest actually occurred, and a system with a high ex-
pected number of false signals unnecessarily consumes a large
amount of resources.

Theorem 1. The optimal solution to the NLP in (3) lies on the
boundary of the constraint.

Proof. Define S ¼ h :
Pn

i¼1ai 6 j
� �

, and assume that there exists
an optimal solution Pdðh�Þ for some h� ¼ h�1; . . . ;h�n

� �
such thatPn

i¼1 1� F0 h�i
� �� �

< j. Since Pdðh�Þ is an optimal solution, then for
any other h 2 SXn

i¼1

½1� F1ðhiÞ�pi 6 Pdðh�Þ:

But since
Pn

i¼1ai < j there exists some � > 0 and some
aj; j ¼ f1;2; . . . ;ng, so that a0j ¼ aj þ � and

P
i–jai þ a0j 6 j. For

any such a0j there must exist some h0j ¼ F�1
0 ð1� a0j so that

1� F1 h0j
� 	

P 1� F1ðhjÞ. Therefore, Pdðh�Þ is either not the optimal
solution or an equivalent solution can be found closer to the
boundary. This procedure can be repeated indefinitely until a solu-
tion is found for an h on the boundary of S. h

Now, assuming F0 is a standard normal distribution and the
event of interest manifests itself as a shift in the mean of that dis-
tribution, the next lemma shows that the n-dimensional optimiza-
tion problem from (3) can be re-expressed as a one-dimensional
optimization problem. These assumptions follow from the biosur-
veillance problem described in Section 2.1.

Theorem 2. If F0 ¼ Nð0;1Þ and F1 ¼ Nðc;1Þ; c > 0, as in (4), then
the optimization problem reduces to finding l to satisfyXn

i¼1

U l� 1
c

lnðpiÞ

 �

¼ n� j; ð5Þ

and the optimal solution is hi ¼ l� 1
c lnðpiÞ.

Proof. From Theorem 1 we know that the optimal solution lies on
the boundary of the constraint, so we can express the constraint in
Eq. (4) as an equality. The result then follows from reformulating
the constrained minimization problem in Eq. (4) as the following
unconstrained problem:

min
h

f ¼ U U�1 n� j�
Xn

i¼2

UðhiÞ
" #

� c

 !
p1 þ

Xn

i¼2

Uðhi � cÞpi: ð6Þ

The partial differential equations with respect to each of the hi, for
i ¼ 2;3; . . . ;n, are

@f
@hi
¼

exp � h2
i þc2

2

� 	
pi exp½hic� � p1 exp

ffiffiffi
2
p

cErf�1 n� 2j�
Pn

i¼2Erf hiffiffi
2
p
h in oh i� 	

ffiffiffiffiffiffiffi
2p
p ;

ð7Þ

where Erfðz=
ffiffiffi
2
p
Þ ¼ 2ffiffiffi

p
p
R z

0 expð�t2Þdt and Erf�1ðErfðzÞÞ ¼ z.
Now, (7) can be equal to zero only if

pi exp½hic� ¼ p1 exp
ffiffiffi
2
p

c Erf�1 n� 2j�
Xn

i¼2

Erf
hiffiffiffi

2
p
 �( ) !

:

Simplifying gives

Erf
hi þ 1

c lnðpiÞ � lnðp1Þð Þffiffiffi
2
p

" #
¼ n� 2j�

Xn

i¼2

Erf
hiffiffiffi

2
p
 �

:

Since Erfðz=
ffiffiffi
2
p
Þ ¼ 2UðzÞ � 1, after some algebra we have that

U hi þ
1
c

lnðpiÞ �
1
c

lnðp1Þ

 �

þ
Xn

i¼2

UðhiÞ ¼ n� j;

and substituting hi ¼ l� 1
c lnðpiÞ gives the desired result. h

One way to think about the one-dimensional optimization in (5)
is in terms of finding l such that the sum of the probabilities that
each of n normally distributed random variables (all with the same
mean but possibly different variances) is greater than some con-
stant equals n� j. Specifically, find l such that

Xn

i¼1

P Xi >
1
c


 �
¼ n� j; ð8Þ

where Xi � Nðl; ½lnðpiÞ�
2Þ.

Given the continuity of the normal distribution, (8) makes it
clear that an optimal solution is guaranteed to exist. Furthermore,
it is a relatively simple problem to solve for l by starting with a
large value and gradually decreasing it until the sum of one minus
each cdf evaluated at 1=c in (8) equals n� j.

3. Syndromic surveillance applications

To illustrate the methodology, in this section we apply it to two
hypothetical syndromic surveillance systems.

3.1. Hypothetical Example #1: The 200 largest US cities

Based on the assumptions described in Section 2.1, consider a
hypothetical syndromic surveillance system for the 200 largest cit-
ies in the United States. Assume the probability of attack or out-
break in city j; pj, is proportional to the population in the city. Of
course, the probability of attack could be a function of any number
of factors, but for purposes of this example define

pj ¼
mjP

imi
¼ mj

M
;

where mj is the population of city j.
Per the US Census Bureau population estimates for July 1, 2006

(www.census.gov/popest/cities/SUB-EST2006.html), New York
was the largest city with just over 8.2 million people, followed
by Los Angeles with just under 4 million, Chicago with just under
3 million, and Houston with just over 2 million. The 200th largest
city was West Valley City, Utah with a population of just under
120,000. For a total population of the 200 cities of almost 75 mil-
lion, our assumption that the probability of attack is simply a func-
tion of population size means that the estimated probability of
attack for New York is 0.11, Los Angeles is 0.05, Chicago is 0.04,
and Houston is 0.03. At the other extreme, West Valley City is
0.002. Fig. 3 depicts the data for the 198 cities in the continental
United States (Honolulu, Hawaii and Anchorage, Alaska, also in
the 200 largest cities, are not shown) using bubbles centered on
the cities, where the area of the bubble corresponds to the esti-
mated probability of attack.
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Optimizing the system, assuming F0 ¼ Nð0;1Þ; F1 ¼ Nð2;1Þ, and
a maximum expected number of false signals of four per period,
the system has a probability of detection of Pd ¼ 0:583. This is
achieved with thresholds ranging from 0.47 for New York, 0.85
for Los Angeles, 1.00 for Chicago, and 1.14 for Houston, to 2.59
for West City Valley, Utah. If one were to have used a common
threshold for all the cities of h ¼ 2:054, which achieves an equiva-
lent expected number of false signals, the probability of detection
would decrease 18% to Pd ¼ 0:478. Conversely, setting a common
threshold of h ¼ 1:79 to achieve a Pd ¼ 0:583 results in a 59% in-
crease in the expected number of false signals to 7.35 per period.

Of course, the choice of four expected false signals per period
was made purely for illustrative purposes and assumes that the
organization operating the biosurveillance system has the re-
sources and desire to investigate and adjudicate that many signals
(on average) per observation period. Fig. 4 shows the trade-off be-

tween the probability of detection and the expected number of
false signals in this scenario. If the organization has additional re-
sources, the constraint on the expected number of false signals can
be relaxed and will allow for an increased probability of detection.
On the other hand, if the organization is resource constrained, the
constraint can be tightened. This will result in a decrease in the
probability of detection, but at least all signals will be investigated.
After all, an uninvestigated signal is equivalent to no signal.

Now, one can easily imagine that operators of a biosurveillance
system might want to adjust the system’s sensitivity to account for
some new intelligence or for other reasons. One way to do this is to
adjust p to reflect the most recent intelligence about the likelihood
of each city being attacked. Another possibility is to introduce
additional constraints into the NLP to, for example, ensure that
the probability of detection given an attack for some city or cities
is sufficiently large.

Fig. 3. Bubble chart of the 200 largest cities in the United States (Honolulu, Hawaii and Anchorage, Alaska not shown). The bubbles are centered on the cities and their size
denotes relative population size.

Fig. 4. The trade-off between the expected number of false signals and the probability of detection for the optimal thresholds for Example #1. For j ¼ 4 the optimal
thresholds give Pd ¼ 0:583. Increasing j increases the probability of detection, but with decreasing returns.
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For example, consider the 200 cities in the previous example,
where it is desired that the probability of detection given attack
in either New York or Washington, DC each be at least 90%. To
achieve this requires the addition of two constraints to the NLP
in (4):

hNY 6 2þU�1ð0:9Þ;
hDC 6 2þU�1ð0:9Þ:

The constraints require that the thresholds for New York and
Washington be no larger than 0.72. Re-optimizing results in a
New York threshold of 0.5 and a Washington threshold of 0.72.
For the other cities, new thresholds ranged from 0.87 for Los Ange-
les, 1.03 for Chicago, and 1.17 for Houston, to 2.61 for West City
Valley, Utah. The overall probability of detection decreases slightly
to Pd ¼ 0:578.

3.2. Hypothetical Example #2: monitoring 3141 US counties

In Example #1, one might take exception to only monitoring the
200 largest cities. The implicit assumption is that there is zero
probability of an attack outside of these cities. One alternative
would be to field a biosurveillance system designed to monitor
all 3141 counties in the United States. For the purposes of illustra-
tion, as with Example #1, we use the proportion of the total popu-
lation in a county as a surrogate for the probability that county is
attacked.

Per the US Census Bureau county population estimates for 2006
(www.census.gov/popest/counties/files/CO-EST2006-ALLDA-
TA.csv,‘‘popestimate2006”), Los Angeles was the largest county
with just under 10 million people, followed by Cook county with
just under 5.3 million, and Harris county with just under 4 million.
The smallest county was Loving county, Texas with a population of
60. For a total United States population in 2006 of 299.4 million,
the estimated probability of attack ranges from Los Angeles county
at 3.3% to Loving county at 4,100,000s of a percent.

If we assume as before that F0 ¼ Nð0;1Þ; F1 ¼ Nð2;1Þ, and a
maximum on the expected number of false signals of four per per-
iod, the system has a probability of detection of Pd ¼ 0:333. This is
achieved with thresholds ranging from 0.91 for Los Angeles county,

1.23 for Cook county, and 1.38 for Harris county, to 6.92 for Loving
county. Fig. 5 shows a plot of the optimal thresholds versus the
probability of attack and Fig. 6 is a map showing the probability
of attack and thresholds by county.

The cost for increasing the number of regions being monitored
from 200 to 3141 is about a 43% (25% point) decrease in the prob-
ability of detecting an attack that manifests itself as a two standard
deviation increase in the mean of the residuals. The benefit is an
increase in the area being monitored. Of course, this is something
of an apples-to-oranges comparison since in the 200-cities exam-
ple the probability of detecting an attack is conditional on the at-
tack occurring within that region. Thus, there are large areas of
the country for which an attack could not be detected at all. In con-
trast, the county-level system has some power to detect an attack
anywhere in the United States, but this comes at the expense of the
power to detect an attack within the 200-cities region.

In terms of the county-level model, it is worth noting that while
those counties with very low probabilities of attack have such high
thresholds that they will be virtually unable to detect a moder-
ately-sized outbreak/attack, these counties are being monitored
at a level consistent with their risk of attack. That is, the optimiza-
tion has made the necessary trade-off of probability of detection
versus the likelihood of false signals in order to maximize the prob-
ability of detecting an attack somewhere in the country within a
manageable false signal rate.

Now, consider system performance if one were to have used a
common threshold for all the counties of h ¼ 3:018, which
achieves the same expected number of false signals (four per per-
iod), the probability of detection would be cut more than in half to
Pd ¼ 0:154. This decrease in sensitivity occurs because the system
is less able to detect an attack in those locations most likely to be
attacked. Conversely, setting a common threshold of h ¼ 2:433 to
achieve a Pd ¼ 0:333 results in an almost sixfold increase in the ex-
pected number of false signals to 23.5 per period.

3.3. Discussion

In Examples #1 and #2 the thresholds were set assuming j ¼ 4
and c ¼ 2. Choosing j is a matter of resources and should be based
on an organizational assessment of the average number of signals

Fig. 5. Plot of the optimal thresholds versus probability of attack for Example #2. The optimized thresholds focus surveillance on those locations with higher probability of
attack.
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that can be investigated per period. For a fixed number and type of
sensors, one can improve the system-wide probability of detection
by increasing the expected number of false signals allowed. As
shown in Fig. 4, however, there is a decreasing level of improve-
ment in the probability of detection for resources invested in adju-
dicating signals. Table 2 shows the trade-off in probability of
detection for the 200-cities example for four levels of c and for five
values of j.

Choosing the value of c over which to optimize is a subjective
judgement based on the minimum increase that the monitor
wishes to detect. As shown in Table 2, once the choice is made
and the thresholds set, an outbreak manifested as a small value
for c (relative to the standard deviation of the observations or
residuals) will be harder to detect and will result in a lower prob-
ability of detection. Conversely, an outbreak manifested as a larger
c will make it easier to distinguish between F0 and F1 and thus will
result in a higher the probability of detection.

That said, a relevant question is how sensitive the resulting
probability of detection is to the mis-specification of c during the
optimization. For example, what happens if the thresholds are cho-
sen using an optimization based on c ¼ 2 and then the actual out-
break manifests itself with c ¼ 1 or c ¼ 3? Table 3 shows the actual
probabilities of detection that would occur for the 200-cities exam-

ple using the optimal thresholds determined for c ¼ 2. Comparing
Table 3 with Table 2 we see that there is some degradation in Pd if
the actual outbreak manifests at some c other than the value used
to optimize the system, but the loss in detection probability is not
large.

For biosurveillance system designers and operators, it is impor-
tant to understand the interplay between probability of detection
and the expected number of false signals. In Fig. 4 we have already
seen that, after a certain level, improving the probability of detec-
tion requires an increasingly larger expected number of false sig-
nals. A similar result holds when one tries to decrease the
thresholds in order to achieve higher probabilities of detection.
For example, Fig. 7 demonstrates how the probability of detection
and expected number of false signals change when the optimal
thresholds from Example #1 are uniformly lowered by the percent-
ages indicated on the horizontal axis. In the plot, zero percent de-
crease corresponds to the probability of detection and expected
number of false signals for the optimal thresholds and a 100% de-
crease in thresholds gives the probability of detection and ex-
pected number of false signals when all the thresholds are set to
0. What we see is that the expected number of false signals rises
much faster than the probability of detection for threshold de-
creases of more than 20% or so.

Table 2
Optimal probabilities of detection in the 200-cities example for various values of c
and j.

Pd j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5

c ¼ 1 0.165 0.228 0.272 0.307 0.336
c ¼ 2 0.388 0.481 0.540 0.583 0.618
c ¼ 3 0.726 0.801 0.840 0.866 0.885
c ¼ 4 0.939 0.964 0.974 0.980 0.984

Fig. 6. Map of the optimal thresholds and associated probabilities of attack from Example #2 for the counties in the contiguous continental United States.

Table 3
Actual probabilities of detection in the 200-cities example when the system is
optimized for c ¼ 2 and the outbreak/attack results in F1 with c as shown in the left
column of the table.

Pd j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5

Observed c ¼ 1 0.137 0.193 0.235 0.269 0.298
Observed c ¼ 2 0.388 0.481 0.540 0.583 0.618
Observed c ¼ 3 0.711 0.790 0.832 0.859 0.879
Observed c ¼ 4 0.925 0.955 0.968 0.976 0.981
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Similarly, if a system’s thresholds are not carefully set and con-
trolled then it is possible for the number of false signals to rapidly
exceed the available resources to adjudicate them. To illustrate
this, we conducted a simple simulation in which the optimal
thresholds from Example #1 were randomly varied by a certain
percentage. Fig. 8 shows that when the thresholds are allowed to
randomly vary anywhere from 5% to 200% of their optimal values,
the average system-wide probability of detection is essentially
unaffected. However, Fig. 8 also shows that as the fluctuation in-
creases the expected number of false signals increases signifi-
cantly. In fact, allowing the optimal thresholds to vary randomly
by 200% raises the average number of false signals by nearly
1,600%, from four expected false signals to 62. It thus behooves
biosurveillance system architects to both carefully design and con-
trol the system in order to manage the number of false signals the
system will generate.

Finally, we also explored how a biosurveillance system might
perform if the thresholds were calculated assuming the standard-
ized residuals were normally distributed but the actual distribu-
tion violated that assumption. In particular, using the 200-cities
example we allowed the standardized residuals to follow a t-distri-

bution with various degrees of freedom and then compared system
performance with the thresholds appropriately optimized for the t-
distribution to thresholds set using Theorem 2 assuming the resid-
uals were normally distributed.

Table 4 shows the results, where the expected number of false
signals were constrained to one per period (i.e., j ¼ 1) and we
set c ¼ 2. The first column labeled ‘‘df” gives the degrees of free-
dom for the t-distribution, which we varied from1 (i.e., a standard
normal) to df = 1. The next two columns give the system perfor-
mance, in terms of Pd and j, for the optimal thresholds calculated
for the correct t-distribution (where we used the Excel Solver, as
described in Section 2.2.1). Here we see, not surprisingly, that Pd

decreases for decreasing degrees of freedom (and fixed j), since
decreasing degrees of freedom corresponds to heavier tails and
thus more variability.

In the last two columns of Table 4 we see how the system would
perform if the thresholds were set using the Theorem 2; i.e., incor-
rectly assuming the residuals followed a standard normal distribu-
tion. What is most interesting is that Pd changes very little while
the observed average number of false signals significantly in-
creases as the distribution is increasingly misspecified. Compared

Fig. 7. Changes in the probability of attack and expected number of false signals for Example #1 when the optimal thresholds are uniformly decreased by some percentage as
shown on the horizontal axis.

Fig. 8. Effect on the probability of detection and expected number of false signals in Example #1 when individual thresholds are allowed to randomly vary from 5% to 200%.
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to the optimal Pds, using the incorrect thresholds results in higher
Pds, the cost of which at the most extreme (i.e., df = 1) is a 22-fold
increase in the average number of false signals over what was
desired.

Table 4 reinforces what we already observed in Fig. 7: the false
signal rate is much more sensitive to the choice of thresholds than
is the probability of detection. Said another way, biosurveillance
system designers and operators should be very cautious about
how thresholds are chosen since small changes that have minimal
effect on detection performance can have large effects on the num-
ber of false signals a system produces. In addition, for those using
the EARS’ C1 and C2 algorithms (including the W2 in BioSense),
this example suggests caution in using the results of Theorem 2
to set thresholds. For these algorithms, because the denominator
in the statistics is an estimator for the residual standard deviation
based on seven observations, the statistics being tracked may be
more likely to follow a t-distribution than a normal distribution.

For additional discussion, examples, and more detail on the
application of this methodology to biosurveillance, see Banschbach
[1].

4. Summary and conclusions

In this paper we have described a framework for optimizing
thresholds for a system of biosurveillance or other threshold detec-
tion sensors. In so doing, we have made a number of assumptions
about the sensor system, including that we can appropriately mod-
el and remove any systematic effects in the data from n sensors so
that the resulting residuals are independent and that the sensor
signals are independent over time. We have also assumed identical
distributions across all of the sensors and, in most of our examples,
that these are normal distributions with the event of interest man-
ifesting itself as an increase in the mean of the F0 distribution.

The choice of the normal distribution is based on the assump-
tion that one is monitoring the residuals from an adaptive regres-
sion and such residuals follow a normal distribution. However, the
methodology described herein is not limited to this assumption,
nor does it require identical distributions for all of the sensors.
What is required is that the probability of exceeding a given
threshold can be calculated for each sensor when no event being
present (a false signal) and when an event of interest is present
(a true signal).

The assumption that sensor signals are independent over time
simplified the optimization calculations and may or may not reflect
real-world conditions for a given biosurveillance or other sensor
system. Our motivation was biosurveillance in which some of the
algorithms currently in use are of this type. However, there are
other methods that use both current and historical information
(such as the CUSUM and EWMA quality control methods) for

which additional research is required to determine how to imple-
ment an equivalent approach. Certainly the idea is relevant – those
methods also use thresholds to reach a binary decision – but be-
cause the distribution at each time period is conditional on the his-
tory up to that time period, no simple expressions for the
percentiles and probabilities exist.

In some sensor systems it may be by design to have multiple
sensors in the same location all monitoring for an event of interest
in that region. In this situation, it is quite likely – even desirable –
that the sensors’ signals are correlated. In these systems, the sig-
nals from the various sensors are fed into some sort of ‘‘fusion cen-
ter” from which a single determination is made about whether an
event of interest has occurred in the region. In such systems, it
would be inappropriate to use the methodology described herein
to develop thresholds for the individual sensors. Rather, if the fu-
sion center’s output is based on a threshold detection methodology
of the combined sensor inputs, then this methodology should be
used to optimize the fusion center thresholds.

In terms of the biosurveillance problem, note that in a real sur-
veillance system each hospital will be monitoring m different syn-
dromes simultaneously. Thus, if the total number of system-wide
false signals that can be tolerated per period is j, the thresholds
for each syndrome must be optimized subject to j=m expected
number of false signals. Of course, this assumes that it is equally
important to detect an anomaly in one syndrome as in any other
syndrome. If this is not the case, it is also possible to set the allow-
able expected number of false signals differentially by syndrome,
where the higher the number of false signals allowed, the more
sensitive the overall system will be to detecting a true outbreak
of that particular syndrome.

We conclude by stressing that this methodology does not apply
just to biosurveillance systems. Systems of sensors have histori-
cally been used in military applications and today, with increasing
computing power and miniaturization, the uses of systems of sen-
sors are proliferating well beyond the military. Examples include
such diverse applications as meteorology, supply chain manage-
ment, equipment and production monitoring, health care, produc-
tion automation, traffic control, habitat monitoring, and health
surveillance. See, for example, Gehrke and Liu [14], Xu [27], Intel
[16], Trigoni [25] and Bonnet [2]. This methodology can potentially
be applied to any such application that uses threshold detection-
based sensors.

This methodology also has promise in industrial quality control
for optimizing Shewhart chart applications. Consider, for example,
a factory with n production lines, each monitored by a single Shew-
hart chart, where for whatever reason one of the lines is more
likely to go ‘‘out-of-control” compared to the others. Using stan-
dard practices, the factory would probably set the thresholds
equally on all the Shewhart charts. However, that would mean
less-than-optimal factory performance since ideally one would
want to tune the control limits to be more sensitive to catching
the line more likely to go out-of-control. The methodology pre-
sented in this paper provides the means for optimizing the thresh-
olds. It would require a change in the way one thinks about the
design of control charts since the objective function and constraint
are not in the usual terms of in-control and out-of-control average
run lengths. In addition, one would need to develop a methodology
for estimating the probability that each line goes out-of-control.
However, these are subjects for another paper.
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5 0.247 1.000 0.395 4.279
2 0.199 1.000 0.404 11.136
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