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SPC Applications in Syndromic Surveillance

Ronald D. Fricker, Jr., Matthew C. Knitt, Benjamin L. Hegler, David A. Dunfee, and Cecilia X. Hu
Naval Postgraduate School

Abstract

Syndromic surveillance is the regular collection, analysis,
and interpretation of real-time and near-real-time indicators
of diseases and other outbreaks by public health organiza-
tions. This paper provides an overview of how statistical
process control (SPC) methods can be modified for use in
syndromic surveillance systems and illustrates one approach
for comparing the relative performance of various methods.
Specifically, we summarize comparisons we have done be-
tween: (1) the C1, C2, and C3 methods implemented in
the Early Aberration Reporting System (EARS) versus a
CUSUM applied to model-based prediction errors, and (2)
two new directionally-sensitive multivariate methods, based
on the multivariate CUSUM (MCUSUM) and the multivariate
exponentially weighted moving average (MEWMA). Based
on our analyses, we found that the CUSUM performed bet-
ter than the EARS’ methods across all of the scenarios we
evaluated and, similar to results for the univariate CUSUM
and EWMA in classical SPC applications, the directionally-
sensitive MCUSUM and MEWMA perform very similarly.

KEY WORDS: Statistical process control, biosurveillance,
bioterrorism, early event detection, situational awareness.

1. Introduction

The Centers for Disease Control and Prevention (CDC) as well
as many state and local health departments around the United
States are developing and fielding syndromic surveillance sys-
tems (CDC, 2004). Making use of existing health-related data,
these health surveillance systems are intended to give early
warnings of bioterrorist attacks or other emerging health con-
ditions. See Fricker (2007a), Fricker (2007b), and Fricker and
Rolka (2006) for more detailed exposition and discussion.

Biosurveillance systems use a variety of temporal and spa-
tial methods for early event detection, often applying vari-
ants of the standard univariate statistical process control (SPC)
methods: Shewhart, cumulative sum (CUSUM), and/or expo-
nentially weighted moving average (EWMA) charts. Woodall
(2006) provides a comprehensive overview of the application
of control charts to health surveillance. Montgomery (2001)
is an excellent introduction to these methods in a statistical
process control setting. Shmueli and Fienberg (2006) and
Shmueli (2006) give a review of these and other methods po-
tentially applicable to early event detection in a biosurveil-
lance setting.

The challenge in applying standard SPC methods is that
syndromic surveillance generally violates classical SPC as-
sumptions, particularly the assumption of independent and

identically distributed observations. Biosurveillance data is
generally autocorrelated and frequently has seasonal periodic-
ities. Further, given the goal of quick detection, methods are
usually run on individual observations for which an assump-
tion of normality generally does not apply.

In spite of this, the standard SPC methods are sometimes
applied with little modification (see, for example, Fricker,
2007b) and in some cases the methods are modified to attempt
to account for the autocorrelation. For example, the CDC’s
Early Abberation Reporting System (EARS) applies variants
of the Shewhart chart (CDC, 2006) which use various moving
windows of data to estimate the process mean and standard
deviation.

In this paper we present an overview of some of our re-
cent work assessing the performance of various SPC meth-
ods that have been modified for the syndromic surveillance
problem. Specifically, we compare the performance of a
standard univariate CUSUM applied to model-based predic-
tion errors to the EARS methods and then we compare two
new directionally-sensitive multivariate methods, based on
the multivariate CUSUM (MCUSUM) and the multivariate
exponentially weighted moving average (MEWMA). All of
the comparisons were conducted using simulated syndromic
surveillance data. Because of space limitations, we only
present an overview of our work. More detail is available in
Fricker, Hegler and Dunfee (2007c) and Fricker, Knitt and Hu
(2007d), as well as Dunfee and Hegler (2007) and Hu and
Knitt (2007).

This paper is organized as follows. In Section 2 we briefly
describe how we simulated the syndromic surveillance data
and in Section 3 we introduce the metrics we used to compare
between methods. In Section 4 we describe how we conducted
the univariate comparisons and provide some example results.
In Section 5 we describe the multivariate methods, how we
conducted the comparisons, and we provide some example re-
sults. Finally, in Section 6 we conclude with an abbreviated
summary of our findings.

2. Simulating Syndromic Surveillance Data

In order to compare the various methods, we simulated syn-
dromic surveillance data. This simulated data consisted of a
variety of background disease incidence patterns with bioter-
rorism attacks/natural disease outbreaks (which we will refer
to herein simply as “outbreaks”) of various sizes and dura-
tions overlaid. The simulations of both background disease
incidence and outbreaks are purposely idealized depictions de-
signed to capture the main features of syndromic surveillance
data.

The simulations were conducted in MatLab 7.1.0.246 using
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Figure 1: An example of simulated syndromic surveillance
data for c = 90, A = 80, µ = 0 and σ = 30.

the randn function to generate random normal variates and
lognrnd to generate lognormal random variates.

The backgrounddisease incidence data was simulated as the
sum of a mean disease incidence, a seasonal sinusoidal cycle,
a systematic day-of-the-week effect, and a random fluctuation.
Outbreaks, when they occurred, were incorporated as another
additive term. That is, a daily observation Y (t) was simulated
as

Y (t) = max(0,
⌈
c+s(t)+d(t)+Zc(t)+o(t)

⌉
), t = 1, 2, 3, . . . ,

(1)
where

• c is a constant level of disease incidence;

• s is the seasonal deviation;

• d is the day-of-the-week effect;

• Zc(t) is the random noise around the systematic compo-
nent, c + s(t) + d(t);

• o(t) is the mean outbreak level which, when an outbreak
is occurring, increases the disease incidence level as de-
scribed below; and,

• �x� is the ceiling function, which rounds x up to the next
largest integer.

The seasonal effect is calculated as s(t) =
A[sin(2πt/365)], where A is the maximum deviation
from c with t = 1 corresponding to October 1st on a 365 day
per year calendar. For the random component, we assumed
Z ∼ N(µ, σ2) when c is large and Z ∼ LN(µ, σ2) when c is
small. The day-of-the-week effect is the systematic deviation
from c + s(t), where d(t) = d(t + 7) for all t. It is defined in
terms of σ, a parameter of Z .

Parameter values for Equation (1) were pre-specified to de-
fine 12 “scenarios” that spanned a range of possible underly-
ing disease incidence patterns. Figure 1 shows an example of
the simulated data for c = 90, A = 80, µ = 0 and σ = 30.

As described above, outbreaks were incorporated into
Equation (1) as an additive term o(t) representing the mean

g , p y
idealized outbreak form that could be parameterized simply,
in terms of a peak magnitude M , a duration D, and a random
start day τ , where outbreaks started on some day τ , increased
linearly up to M over the course of (D + 1)/2 days, and then
decreased linearly back down to zero.

As we previously mentioned, the characterization of dis-
ease incidence in Equation (1) is purposely idealized in or-
der to facilitate comparison of the relative performance of the
methods under various scenarios. The idea is to mimic the
most salient and important features of syndromic surveillance
data in a simulation environmentwhere we can know precisely
when outbreaks occur so that we can clearly assess and eval-
uate performance. That said, it is important to note that the
methods do not exploit the idealized features of the data and
can be readily adapted to account for those features of real
data that are not included in Equation (1). For additional dis-
cussion, see Fricker, Hegler and Dunfee (2007c) and Fricker,
Knitt and Hu (2007d).

Figure 2: Outbreaks were parameterized in terms of a peak
magnitude M and a duration D, where outbreaks started on
a random day τ , increased linearly up to M over the course
of (D + 1)/2 days, and then decreased linearly back down to
zero.

3. Comparison Metrics

The syndromic surveillance literature attempts to evaluate per-
formance simultaneously in three dimensions: “sensitivity,
specificity, and timeliness.” As discussed in Fricker, Hegler
and Dunfee (2007) and Fricker, Knitt and Hu (2007), we con-
sider the sensitivity, specificity, and timeliness measures of the
syndromic surveillance literature ill-defined.

The metrics we use to compare performance between meth-
ods are: (1) the fraction of times a method missed detecting an
outbreak and (2) the average time to first outbreak signal (AT-
FOS). The former is a measure of detection capability while
the latter is a conditional measure of the timeliness of detec-
tion. The ATFOS is defined as the average time until the first
signal among all simulations for which a signal occurred dur-
ing the outbreak period. Clearly performance in both dimen-
sions must be considered since a desirable method must simul-
taneously have a short ATFOS and a low fraction of outbreaks
missed. A method that is small in one dimension while being
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In addition, we set signal thresholds to achieve a specific

average time between false signals (ATFS), where the ATFS
is determined using a specific background disease incidence
pattern during which no outbreaks were allowed. This is simi-
lar to the approach used in the SPC literature, where the ATFS
is roughly equivalent to the “in-control average run length”
and the ATFOS is equivalent to the “out-of-control average
run length.” The average run length, or ARL, is the average
number of observations until a signal. In the SPC literature,
it is common practice to compare the performance of methods
by first setting thresholds that achieve a specific in-control av-
erage run length and then compare out-of-control average run
lengths under various conditions. The method that demon-
strates lower out-of-control average run lengths across a vari-
ety of conditions deemed important is judged to be the better
method.

However, our metrics differ from the SPC literature because
we also use the fraction missed metric. In the SPC literature,
once a process goes out-of-control, it is assumed to stay in that
condition until a method signals and the cause is identified and
corrected. Thus, once a method goes out of control, any signal
is a true signal. This is not the case in syndromic surveillance
where outbreaks are transient and after some period of time
disappear. In this situation, it is possible for a method to fail
to signal during an outbreak, after which a signal is a false
signal.

4. Univariate Comparisons: EARS’ Methods vs. CUSUM
on Adaptive Regression Residuals

In this section we provide an overview of a comparison be-
tween the C1, C2, and C3 methods and the cumulative sum
(CUSUM) method applied to the prediction errors of a model
based on the adaptive regression methodology proposed by
Burkom et al. (2007). The need for a model-based approach
arises because syndromic surveillance data generally contain
uncontrollable trends, periodicities, and day-of-the-week and
other effects. See Shmueli (2006) for additional discussion
about syndromic surveillance data. See Fricker, Hegler and
Dunfee (2007c) and Dunfee and Hegler (2007) for our com-
plete results.

4.1 Methods

4.1.1 EARS’ C1, C2, and C3

The C1, C2, and C3 methods were intended to be CUSUM-
like methods and, in fact, at least one paper (Zhu et al., 2005)
explicitly refers to them as CUSUMs. However, the C1 and
C2 are actually Shewhart method variants that use a moving
sample average and sample standard deviation to standardize
each observation. The C1 method uses the seven days prior
to the current observation to calculate the sample average and
sample standard deviation. The C2 is similar to the C1 but
uses the seven days prior to a two-day lag. The C3 method
combines information from C2 statistics as described below.

( ) p p g,
for example, the number of individuals arriving at a particular
hospital emergency room with a specific syndrome on day t.
The C1 method calculates the statistic C1(t) as

C1(t) =
Y (t) − Ȳ1(t)

S1(t)
(2)

where Ȳ1(t) and S1(t) are the moving sample mean and stan-
dard deviation, respectively:

Ȳ1(t) =
1
7

t−7∑
i=t−1

Y (i) and S2
1(t) =

1
6

t−7∑
i=t−1

[
Y (i) − Ȳ1(i)

]2
.

As implemented in the EARS system, the C1 method signals
at time t when the C1 statistic exceeds a threshold h, which
is fixed at three sample standard deviations above the sample
mean: C1(t) > 3.

The C2 method is similar to the C1 method, but incorporates
a two-day lag in the mean and standard deviation calculations.
Specifically, it calculates

C2(t) =
Y (t) − Ȳ3(t)

S3(t)
(3)

where

Ȳ3(t) =
1
7

t−9∑
i=t−3

Y (i) and S2
3(t) =

1
6

t−9∑
i=t−3

[
Y (i) − Ȳ3(i)

]2
,

and in EARS it signals when C2(t) > 3.
The C3 method uses the C2 statistics from day t and the

previous two days, calculating the statistic C3(t) as

C3(t) =
t−2∑
i=t

max [0, C2(i) − 1] . (4)

In EARS it signals when C3(t) > 2.
In our comparisons between the EARS methods and the

CUSUM, we do not use the threshold values given above, but
adjust them to achieve an equal ATFS when no outbreak is
present. Details on how we calculated the ATFS are described
in Fricker, Hegler and Dunfee (2007c).

4.1.2 The CUSUM

The CUSUM method is a well known statistical process con-
trol methodology. Formally, the CUSUM is a sequential hy-
pothesis test for a change from a known in-control density f 0

to a known alternative density f1. The method monitors the
statistic S(t), which satisfies the recursion

S(t) = max[0, S(t − 1) + L(t)], (5)

where the increment L(t) is the log likelihood ratio

L(t) = log
f1[Y (t)]
f0[Y (t)]

.

The method is usually started at S(0) = 0; it stops and con-
cludes that Y ∼ F1 at the first time when S(t) > h, for some



0 ( ,
when no outbreak is present).

If f0 and f1 are normal densities with means µ and µ + δ,
respectively, and unit variances, then Equation (5) reduces to

S(t) = max[0, S(t − 1) + Y (t) − µ − k], (6)

where a common choice for k is k = δ/2.
Equation (6) is the form routinely used, even when the un-

derlying data is only approximately normally distributed. It
is a one-sided CUSUM, meaning that it will only detect in-
creases in the mean. If it is important to detect both increases
and decreases in the mean, a second CUSUM must be used
to detect decreases. However, in syndromic surveillance de-
creases are not relevant since it is only important to quickly
detect increases in disease incidence.

In industrial settings, the CUSUM is applied directly to the
observations because some control is exhibited over the pro-
cess such that it is reasonable to assume F0 is stationary. In
syndromic surveillance this is generally not the case as the
data often has uncontrollable systematic trends, such as sea-
sonal cycles and day-of-the-week effects. One solution is to
model the systematic component of the data, use the model
to forecast the next day’s observation, and then apply the
CUSUM to the forecast errors (Montgomery, 2001).

4.1.3 Applying the CUSUM to Adaptive Regression Residu-
als

We used the “adaptive regression model with sliding baseline”
of Burkom et al. (2007) to model the systematic component of
the syndromic surveillance data. The basic idea is as follows.
Let Y (i) be an observation, say chief complaint count on day
i. Regress the observations for the past n days on time relative
to the current period. Then use the model to predict today’s
observation and apply the CUSUM to the difference between
the predicted value and today’s observed value. Repeat this
process each day, always using the most recent n observations
as the sliding baseline in the regression to calculate the fore-
cast error. For t > n, and assuming a linear formulation with
day-of-the-week effects, the model is

Y (i) = β0 + β1 × (i − t + n + 1) + β2IMon + β3ITues
+β4IWed + β5IThurs + β6IFri + β7ISat + ε (7)

for i = t − 1, . . . , t − n. The Is are indicators, where I = 1
on the relevant day of the week and I = 0 otherwise, and ε is
the error term which is assumed to follow a symmetric distri-
bution with mean 0 and standard deviation σ ε. Of course, as
appropriate, the model can also be adapted to allow for non-
linearities by adding a quadratic term into Equation (7).

Burkom et al. (2007) used an 8-week sliding baseline (n =
56). We compared the performance for a variety of n values
and between a linear and quadratic form of the model. Fricker,
Hegler and Dunfee (2007c) describes how we determined the
form for the adaptive regression and the n values.

The model is fit using ordinary least squares, regressing
Y (t − 1), . . . , Y (t − n) on n, . . . , 1. Having fit the model,

y y

r(t) = Y (t) −
[
β̂0 + β̂1 × (n + 1)

]
,

where β̂0 is the estimated slope and β̂1 is the estimated inter-
cept. For any other day of the week the forecast error is

r(t) = Y (t) −
[
β̂0 + β̂1 × (n + 1) + β̂j

]

where β̂2 is the estimated day-of-the-week effect for Monday,
β̂3 is for Tuesday, etc.

Standardizing r(t) on σε, we have x(t) = r(t)/σε and the
CUSUM is thus

S(t) = max[0, S(t − 1) + x(t) − k], (8)

where we assume the expected value of the residuals is zero.
(If σε is not known, it can be estimated in the usual way from
the residuals.) It now remains to determine k.

As shown in the appendix of Fricker, Hegler and Dunfee
(2007c), we can estimate the standard deviation of the forecast
error for a simple linear adaptive regression as

σp.e. = σε

√
(n + 2)(n + 1)

n(n − 1)
. (9)

Assuming it is important to detect an increase in the mean
disease incidence of one standard deviation of the prediction
error, then set

k =
1
2

√
(n + 2)(n + 1)

n(n − 1)
,

where σε (or σ̂ε) does not appear in the expression because
the CUSUM in Equation (8) uses the standardized residuals.
See Fricker, Hegler and Dunfee (2007) for further discussion
and the appendix for derivation of Equation (9) as well as the
equivalent expression for a multiple regression incorporating
day-of-the-week indicator variables.

4.2 Illustrative Univariate Results

Figure 3 in many ways summarizes the results of all the eval-
uations we conducted. In it, the plots on the left side show the
average time to first outbreak signal (ATFOS) versus various
outbreak durations (D) in a scenario with c = 90, A = 80,
µ = 0 and σ = 30, starting with a small outbreak at the top
(M = 9), a medium outbreak in the middle (M = 22.5), and
a large outbreak at the bottom (M = 45). The plots on the
right side show the fraction of times a method missed detect-
ing an outbreak versus outbreak duration. Each plot gives the
results for six methods, the C1, C2, and C3, as well as three
CUSUMs using various sliding baseline lengths (n values): 7,
15 (the “optimal” for this scenario), and 56 days.

What Figure 3 shows is that the C1, C2, and C3 methods do
not perform as well as the CUSUM methods with the larger
sliding baselines. Focusing for a moment just on the C1, C2,
and C3 methods, we see that the C1 and C2 methods perform
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Figure 3: Performance of the methods for a scenario with c = 90, A = 80, µ = 0 and σ = 30 for three magnitudes of
outbreaks – M = 9, M = 22.5, and M = 45, shown from top to bottom – versus various outbreak durations.
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lower ATFOS compared to the C2 but at the expense of having
slightly higher fraction missed than the C2. However, when
comparing the C1 and C2 to the CUSUMs, we see that they
all have similar ATFOS performance but the CUSUMs with
longer sliding baselines miss significantly fewer outbreaks.
This difference in performance is evident for all the outbreak
magnitudes, but is most striking with the larger magnitude out-
breaks. For example, in the middle row of plots, the C1 and
C2 ATFOS can be up to a day or two shorter than the longer
sliding baseline CUSUMs, but they only catch between about
25-35 percent of the outbreaks while the 56-day sliding base-
line CUSUM catches nearly 80 percent of the outbreaks of the
longest duration. For this scenario, it is clear that the CUSUM
with a 56-day sliding baseline is the preferred method.

A note about the ATFOS plots is in order for those used
to looking at graphs of average run lengths in the statistical
process control literature. Such readers may be surprised that
the ATFOS curves increase as outbreak duration increases. In
this problem the time to first outbreak signal is constrained
to the interval [1, D]. That is, the earliest a “true signal” can
occur is on the first day of the outbreak and the latest is on
the last day of the outbreak (D). Thus, for D = 3, ATFOS is
constrained to be between 1 and 3 and, as we see in the plot, is
about 2 for all the methods. On the other hand, for D = 15 the
ATFOS can be much larger and, in fact, falls anywhere from
about 4 days to about 7 days for the various methods.

Also in Figure 3, we see that the C1 and the CUSUM with
a 7-day sliding baseline suffer from being contaminated by
the outbreak data in the largest magnitude outbreak scenarios.
That is, in the lower right plot we see that the fraction missed
by these two methods actually increases for longer duration
outbreaks (as eventually does the C2 and C3, as well as the
CUSUM with a 15-day sliding baseline ever so slightly). If
these methods fail to detect the outbreak early on, they begin
to incorporate the outbreak data into their calculations (either
the moving average for the C1 or the adaptive regression pre-
dictions for the CUSUM), making it increasingly more diffi-
cult to distinguish the outbreak from the normal background
disease incidence. In comparison, the two-day lag in the C2
method seems to be sufficient to eliminate much of this prob-
lem for that method (and the C3 which is a function of the C2
statistics).

5. Multivariate Comparisons:
MEWMA vs. MCUSUM

In this section we provide an overview of a comparison be-
tween two new directionally-sensitive multivariate methods,
based on the multivariate CUSUM (MCUSUM) and the mul-
tivariate exponentially weighted moving average (MEWMA).
While neither of these methods is currently in use in a bio-
surveillance system, they are among the most promising mul-
tivariate methods for this application. The MCUSUM and
the MEWMA are also applied to residuals from an adaptive
regression that accounts for the systematic effects normally
present in syndromic surveillance data. See Fricker, Knitt and
Hu (2007c) and Hu and Knitt (2007) for our complete results.

5.1.1 Directional MCUSUM

Consider a p-dimensional set of observations at time t, Xt =
{X1, . . . , Xp}. In syndromic surveillance one might think of
this as a vector of “chief complaint” counts on day t at p differ-
ent hospitals in some region. Chief complaints are broad cat-
egories – e.g., respiratory, gastrointestinal, unspecified infec-
tion, neurological, etcetera – into which patients are grouped
before diagnosis. Chief complaint is the primary symptom or
reason a patient sought care.

Crosier (1988) proposed a MCUSUM that at each time t
calculates the statistic

St = (St−1 + Xt − µ)(1 − k/dt), if dt > k, (10)

where µ is the mean of Xt, k is a predetermined statistical
distance, and dt = [(St−1+Xt−µ)′Σ−1(St−1+Xt−µ)]1/2.
If dt ≤ k then reset St = 0. The method starts with S0 = 0
and sequentially calculates

Ct = (S′
tΣ

−1St)1/2,

where Σ is the variance-covariance matrix of X. It concludes
that a change has occurred at the first time when Ct > h, for
some pre-specified threshold h that achieves a desired ATFS.

In terms of choosing k, Crosier (1988) states, “In the uni-
variate [CUSUM] case, the quantity St−1+(Xt−µ) is shrunk
towards 0 by k standard deviations. If this is to hold for the
multivariate case, k must satisfy k′Σ−1k = k2 – that is, k
must be of length k, where the length is defined by using the
covariance matrix Σ.”

The literature contains a number of MCUSUM methods. In
fact, the Crosier method described above is one of a number
of other multivariate CUSUM-like methods he proposed, but
Crosier generally preferred the above method after extensive
simulation comparisons. Pignatiello and Runger (1990) pro-
posed other multivariate CUSUM-like methods but found that
they performed similar to Crosier’s. Healy (1987) derived a
sequential likelihood ratio test to detect a shift in a mean vector
of a multivariate normal distribution. However, while Healy’s
method is more effective when the change is to the precise
mean vector to be detected, it is less effective than Crosier’s
for detecting other types of shifts, including mean shifts that
were close to but not precisely the specified mean vector.

For the syndromic surveillance problem, an advantage of
Crosier’s MCUSUM formulation is that it is easy to modify
to only look for positive increases. As described in Fricker
(2007b), the motivation for this modification is the univari-
ate CUSUM where directionality is achieved because the
CUSUM statistic is bounded below by zero. In the modi-
fied MCUSUM directionality is similarly achieved by bound-
ing each component of the cumulative sum vector by zero. In
particular, for detecting positive increases relevant to the syn-
dromic surveillance problem, when dt > k limit St to be non-
negative in each dimension by replacing Equation (10) with
St = (St,1, . . . , St,p) where

St,j = max[0, (St−1,j + Xt,j − µj)(1 − k/dt)],

for j = 1, 2, . . . , p.



Lowry et al. (1992) introduced the MEWMA as a generaliza-
tion of the univariate EWMA of Roberts (1959). As with the
MCUSUM, denote the mean for Xt as µ and let Σ be the co-
variance matrix. In the spirit of the reflected EWMA of Crow-
der and Hamilton (1992), the directionally sensitive MEWMA
proposed by Joner et al. (2007) calculates

Zt =
{

max[0, λ(Xt − µ) + (1 − λ)Zt−1], for t > 0
0, for t = 0 ,

where the maximum function is applied componentwise. Z t

is a weighted average of the current observation standardized
around 0 and the previous Z statistic. The parameter 0 <
λ ≤ 1 is the smoothing parameter which controls the weight
assigned to the new observation vector. The covariance matrix
for Zt is

ΣZt =
λ

[
1 − (1 − λ)2t

]
2 − λ

Σ.

Taking the limit as t → ∞, we have

ΣZ∞ =
λ

2 − λ
Σ.

ΣZ∞ is then used to calculate the MEWMA test statistic Et

where
Et = Z′

tΣ
−1
Z∞Zt.

The MEWMA signals an alarm whenever Et exceeds a pre-
determined threshold h which is set to achieve a desired ATFS.
If Et does not exceed h, then the MEWMA iterates through
the next time step with a new observation vector, recalculating
the test statistic, and continuing until such time as the Et > h.

5.1.3 Setting Parameters

In order to compare the MEWMA and MCUSUM under a
variety of syndromic surveillance scenarios, we first fixed λ
for the MEWMA and then searched for the value of k in the
MCUSUM that matched its performance to the MEWMA’s.
Montgomery (2001) recommends setting 0.05 ≤ λ ≤ 0.25
for the univariate EWMA and, given the emphasis on timeli-
ness in this application and based on our experience, we thus
chose to set λ = 0.2. Having fixed λ, we conducted simu-
lation comparisons over various values of k to find that value
for which the MCUSUM performed as closely as possible to
the MEWMA. We found that k = 0.74 gave the closest per-
formance to the MEWMA with λ = 0.2. Please see Fricker,
Knitt and Hu (2007) or Hu and Knitt (2007) for additional de-
tails.

5.2 Illustrative Multivariate Results

Figures 4 and 5 summarize our main finding: the MEWMA
and MCUSUM performed virtually identically, both in terms
of ATFOS and percent missed, across all the scenario and out-
break combinations we evaluated. Though the lines deviate
slightly in Figures 4 and 5, the differences are not statistically
significant. See Hu and Knitt (2007) for details.
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MCUSUM and MEWMA performance for the scenario with
c = 90, A = 90, µ = 0, and σ = 10 across all the types
of outbreaks, from small to large magnitudes, and for all the
durations. This result was also true for the other scenarios we
evaluated. For example, Figure 5 shows the results for three
different scenarios for an outbreak of medium magnitude. See
Hu and Knitt (2007) for plots for all of the scenarios and types
of outbreaks.

Figure 4 demonstrates how the methods perform for the var-
ious types of outbreaks. For example, the ATFOS plots show
that outbreaks of small magnitude and of three days duration
will only be detected about 30 percent of the time and, when
detected, it will take about two days on average for either the
MCUSUM or MEWMA to signal. As the outbreak magnitude
increases, the methods detect virtually all of the outbreaks and
the ATFOS decreases to about one day for the largest magni-
tude outbreak. In comparison, for durations of 15 days, the
methods detect almost 70 percent of the small magnitude out-
breaks and again virtually all of the larger outbreaks. For the
small magnitude outbreaks the average time to signal is about
six days, for the medium magnitude it is just under five days,
and for the large magnitude outbreak it is about 2-1/2 days.

Figure 5 demonstrates that the adaptive regression with slid-
ing baseline methodology does very well at removing the
systematic component, at least for our synthetic syndromic
surveillance data. In this case, the systematic component is
the seasonal sinusoid where, at the top the sinusoid is large
(A = 90), in the middle it is medium sized (A = 20), and
at the bottom it is non-existent (A = 0). In terms of ATFOS,
there is no visible difference between the three plots in Figure
5. In terms of percent of outbreaks missed, there is a slight
degradation in the number of outbreaks caught as the ampli-
tude increases. However, these plots demonstrate that, overall,
the adaptive regression is quite effective at accounting for the
systematic trends in the data.

6. Discussion

Based on our comparisons of the EARS methods to the
CUSUM methods applied to the residuals of adaptive regres-
sions, we find that the CUSUM methods perform better. In
particular, the EARS methods frequently failed to catch a ma-
jority of the outbreaks across a wide variety of background
disease incident patterns (large and small daily counts; large,
medium, small, and no seasonal cycles; large and small ran-
dom daily fluctuations; with and without day-of-the-week ef-
fects) and a wide variety of outbreak magnitudes and dura-
tions. In fact, the EARS methods generally caught less than
30 percent of the outbreaks except in the largest outbreak
cases. In contrast, the CUSUM methods, particularly with the
8-week sliding baseline, performed much better.

Of course, the EARS methods were originally designed for
a drop-in surveillance system with little or no baseline data
available. In these situations the use of an 8-week sliding base-
line may be impossible, at least upon initiation of the drop-
in system. However, our simulations showed that a CUSUM
with a 7-day sliding baseline performed about the same as the
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Figure 4: Performance of the MCUSUM and MEWMA under a scenario with c = 90, A = 90, µ = 0, and σ = 10 for three
magnitudes of outbreaks – M = 9, M = 22.5, and M = 45, shown from top to bottom – versus various outbreak durations.
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Figure 5: Performance of the MEWMA and MCUSUM for c = 90, µ = 0, σ = 30, and outbreak magnitude M = 22.5 for
three magnitudes of amplitude – A = 90, A = 20, and A = 0, shown from top to bottom – versus various outbreak durations.
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creased the performance of the CUSUM quickly improved.
This suggests a strategy for drop-in surveillance systems of
starting with a CUSUM with a 7-day sliding baseline and, as
time progresses and more data accumulates, allowing the base-
line to increase until such time as enough data is accumulated
so that baseline can be allowed to slide.

In terms of the multivariate comparisons, when we began
this research we fully expected to identify scenarios in which
the MCUSUM performed better than the MEWMA and vice
versa. That the two methods performed practically identically
is an unexpected surprise. It is a surprise because, while it is
well-known that with the appropriate choice of parameters the
univariate EWMA and CUSUM can be made to perform sim-
ilarly in standard SPC applications, the directional MEWMA
and MCUSUM described herein are neither the exact multi-
variate analogues of their univariate counterparts nor is the
syndromic surveillance problem the same as the standard SPC
application.

Because there is seemingly no performance advantage in
using one method over the other, this result leads us to pre-
fer the MEWMA for procedural reasons. Specifically, it is
relatively easy to develop an intuitive appreciation for how to
choose λ and much more difficult to understand how to ap-
propriately choose k. That is, unlike the k in the univariate
CUSUM which has a clear interpretation, namely it is one-
half of the smallest mean shift that is to be detected quickly,
the k in Crosier’s MCUSUM is a parameter in a multiplicative
“shrinkage factor” for which there is no literature or research
to guide one in the trade-offs that must result from various
choices of k.

Finally, in all of our analyses, we found the adaptive regres-
sion methodology to be effective at removing the systematic
effects from the background disease incidence. See Fricker,
Hegler and Dunfee (2007c) and Fricker, Knitt and Hu (2007d),
as well as Dunfee and Hegler (2007) and Hu and Knitt (2007)
for more detail. The longer sliding baseline, along with the lin-
ear form of the model, is also effective at ensuring the adap-
tive regression does not get contaminated in longer duration
outbreaks if it uses some of that data in the regression model.

Future research should assess whether these conclusions
continue to hold on actual syndromic surveillance data.
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